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Highlights

• Estimating the PSF at the same

time in the recently proposed
compressive deconvolution 
framework for ultrasound 
imaging.

• Taking fully advantage of the
existing method of PSF estima-

tion.

• Presenting an analytical solu-
tion to the sub-problem of PSF.

Graphical abstract

Abstract

The recently proposed framework of ultrasound compressive deconvolution offers the possibility of decreasing the acquired data while improv-

ing the image spatial resolution. By combining compressive sampling and image deconvolution, the direct model of compressive deconvolution 
combines random projections and 2D convolution with a spatially invariant point spread function. Considering the point spread function known, 
existing algorithms have shown the ability of this framework to reconstruct enhanced ultrasound images from compressed measurements by in-
verting the forward linear model. In this paper, we propose an extension of the previous approach for compressive blind deconvolution, whose aim 
is to jointly estimate the ultrasound image and the system point spread function. The performance of the method is evaluated on both simulated 
and in vivo ultrasound data.

Keywords: Ultrasound imaging; Compressive sampling; Blind deconvolution

1. Introduction

Despite its intrinsic rapidity of acquisition, several ultra-

sound (US) applications such as duplex Doppler or 3D imaging 

* Corresponding author.
E-mail address: zhouye.chen@hw.ac.uk (Z. Chen).

may require higher frame rates than those provided by conven-

tional acquisition schemes or may suffer from the high amount 

of acquired data. In this context, compressive sampling (CS) 

framework appears as an appealing solution to overcome these 

issues. Since the first works in compressive US imaging pub-

lished in 2010 [1–4], there have been several studies devoted to 

this topic to date [5–11]. Conventional approach to sample sig-

https://doi.org/10.1016/j.irbm.2017.11.002



nals or images follows the Shannon–Nyquist theorem. Accord-

ing to the Shannon–Nyquist sampling theorem, the sampling 

rate must be at least twice the maximum frequency contained 

by the signal. However, the theory of CS makes it possible to 

go against the common knowledge in data acquisition. It al-

lows to recover, via non linear optimization routines, an image 

from few linear measurements (below the limit standardly im-

posed by the Shannon–Nyquist theorem) provided two condi-

tions: i) the image must be sparse in a known basis or frame 

and ii) the measurement matrix must be incoherent with the 

sparsifying basis [12]. Existing works focused on these two as-

pects, i.e. the sparsity study and the incoherent acquisition, have 

shown that it is possible to recover US radio-frequency (RF) 

images based on their sparsity in basis such as 2D Fourier trans-

form [13], wavelets [14], waveatoms [15], or learning dictionar-

ies [6], using various acquisition schemes such as projections 

on Gaussian [4] or Bernoulli random vectors [13], plane-wave 

emissions [14] or Xampling [5].

However, despite the promising results, there are still two re-

maining problems regarding the application of CS in US imag-

ing. i) Since perfect sparsity is almost never reachable due to the 

presence of noise and the incoherence between measurement 

matrix and sparse basis cannot be easily satisfied in practical 

situations, the images reconstructed from compressed measure-

ments tend to be less good compared to standard acquisitions, 

especially for a low number of measurements. ii) In the case 

where an exact CS recovery is possible, i.e., the quality in terms 

of resolution of the recovered US images is equivalent to those 

acquired using standard schemes, whereas it is widely accepted 

that image quality is one of the open challenges in US imag-

ing. The signal-to-noise ratio, the spatial resolution and the 

contrast of standard US images are affected by the physical 

phenomenons related to US wave propagation and limited by 

the bandwidth of the transducer of imaging system.

Image deconvolution represents a valuable tool that can 

be used for improving image quality without requiring com-

plicated calibrations of the real-time image acquisition and 

processing systems. US image deconvolution has been exten-

sively studied in the literature, showing very promising results 

[16–18]. Motivated by the interest of CS and deconvolution, 

we have recently proposed a framework called compressive de-

convolution (CD) in US imaging [19]. The objective was to 

reconstruct enhanced RF images from compressed linear mea-

surements, aiming to obtain a higher frame rate or less data 

volume and to enhance the image contrast at the same time. 

The main idea behind CD is to combine CS and deconvolution, 

leading to the following linear direct model:

y = 8Hx + n (1)

where y ∈ R
M stands for the M linear compressed mea-

surements obtained for one RF image Hx and 8 ∈ R
M×N

(M << N ) corresponds to the CS acquisition matrix. The RF 

image Hx models that the tissue reflectivity function (TRF) 

x ∈ R
N is degraded by H ∈ R

N×N , which is a block circulant 

with circulant block (BCCB) matrix related to the 2D PSF of 

the US system. Finally, n ∈ R
M represents a zero-mean addi-

tive white Gaussian noise. We emphasize that all the images in 

(1) are expressed in the standard lexicographical order.

Inverting the model in (1) will allow us to estimate the

TRF x, which is considered as a higher resolved US image, 

from the compressed RF measurements y. Though similar 

models have been recently proposed for general image pro-

cessing purpose [20–23] including a theoretical derivation of 

RIP for random mask imaging [24], we formulated in [19] the 

reconstruction process into a constrained optimization problem 

exploiting the relationship between CS recovery and deconvo-

lution:

min
x∈RN ,a∈RN

‖ a ‖1 +α‖x‖
p
p +

1

2µ
‖ y − 89a ‖22

s.t. Hx = 9a

(2)

where a is the sparse representation of the US RF image Hx

in the transformed domain 9. It enables the reconstruction of 

the RF image and the TRF at the same time. α and µ are hy-

perparameters balancing the weight of each term in the cost 

function to minimize. The optimization problem above includes 

three terms: i) the ℓ1-norm term aiming at imposing the spar-

sity of the RF image in the sparse basis 9, ii) the ℓp-norm term 

modeling the a priori of the target image x, where the shape 

parameter p related to the Generalized Gaussian Distribution 

(GGD) is ranging from 1 to 2 (1 ≤ p ≤ 2), allowing us to gen-

eralize the existing works in US image deconvolution mainly 

based on Laplacian or Gaussian statistics [25,26], iii) the data 

fidelity term.

In order to solve this problem, an algorithm based on the 

Alternative Direction Method of Multipliers (ADMM) was 

initially proposed in [19] and was further improved with 

faster convergence based on Simultaneous Direction Method 

of Multipliers (SDMM) in [27]. Both algorithms have achieved 

promising results with the assumption that the PSF was known 

or could be estimated in a pre-processing step. However, the 

PSF cannot be perfectly known in practical situations. An ini-

tial investigation to jointly estimate the PSF has been recently 

published in [28] to show the possibility of recovering RF im-

age, TRF and PSF at the same time.

In this paper, following the previous work and exploiting the 

prior information on the PSF, we propose and detail a compres-

sive semi-blind deconvolution (CSBD) algorithm. The results 

on simulated and experimental images show improved perfor-

mance compared to the non-blind approach. The remainder of 

this paper is organized as follows. In Section 2 we formulate the 

compressive semi-blind deconvolution problem. Section 3 de-

tails our proposed CSBD algorithm and simulation results are 

shown in Section 4 before drawing the conclusions in Section 5.

2. Methods

2.1. Problem formulation

Given the commutativity of the 2D convolution product, let 

us write the CD direct model in a different form, that includes 

the PSF kernel h instead of the associated BCCB matrix H :



y = 8XPh + n (3)

where X ∈ R
N×N is a Block Circulant with Circulant Block 

(BCCB) matrix with the same structure as H , with the circulant 

kernel x ∈ R
N . h ∈ R

n represents the PSF with a support of 

size n. P ∈ R
N×n is a simple structure matrix mapping the n

coefficients of the PSF kernel h to a N length vector so that 

Hx = XPh. Its definition and implementation details can be 

found in Appendix A.

Inspired by the existing joint identification methods for blind 

deconvolution problem [26,29,30] and the prior information 

about the PSF such as the sampling frequency of the system, 

we formulate the compressive semi-blind deconvolution prob-

lem as below.

min
x∈RN ,a∈RN ,h∈Rs

‖ a ‖1 +α‖x‖
p
p + γ ‖ h − h0 ‖22

+
1

2µ
‖ y − 89a ‖22

s.t. Hx = 9a

(4)

where h0 represents an initial guess of the PSF and γ is a posi-

tive hyper-parameter. The objective function in (4) contains, in 

addition to the three terms that we detailed in the introduction, 

a regularization term for the PSF. Similar to [31,32], we hereby 

incorporated the a priori on the PSF as a fidelity-type term.

Compared to the objective function of the non-blind CD 

problem in (2), we face herein a non-convex optimization prob-

lem. In order to solve this non-convex problem, we propose 

hereafter a dedicated alternate algorithm.

2.2. Proposed algorithm

Though the aforementioned cost function is non-convex, it 

is in fact strictly convex with respect to variables x, a and h re-

spectively. Based on the alternating minimization scheme [33]

and CD algorithms in [19,27], we divide the problem in (4) into 

two sub-problems.























(xk+1,ak+1) = argmin
x∈RN ,a∈RN

‖ a ‖1 +α‖x‖
p
p

+ 1
2µ

‖ y − 89a ‖22 s.t. H kx = 9a

hk+1 = argmin
h∈Rn

γ ‖ h − h0 ‖22 s.t. Xk+1Ph = 9ak+1

(5)

where k is the iteration index. The first sub-problem which aims 

at estimating a and x for a fixed h at kth iteration is in fact 

the same with the CD problem addressed in [19,27]. Both the 

ADMM-based and SDMM-based algorithms are able to esti-

mate xk+1 and ak+1 at the same time. The details of SDMM-

based algorithm that we use herein can be found in Algorithm 1.

The second sub-problem can be solved by reformulating it 

in an unconstrained form

hk+1 = argmin
h∈Rn

γ ‖ h − h0 ‖22 + ‖ Xk+1Ph − 9ak+1 ‖22

(6)

It thus becomes a regularized least square problem and the 

corresponding analytical solution is

Algorithm 1 Compressive deconvolution SDMM-based algo-

rithm.

Require: C1 = 9−1H , C2 = IN , C3 = H , α, µ, β , v0
i
, b0

i
, i = 1, 2, 3

1: while not converged do

2: xj+1 ← argmin
x

1
2β

∑3
i ‖bj − Cix − vj ‖2

2

3: v
j+1
1

← argmin
v1

‖v1‖ +
1
2β

‖b
j
1

− C1x
j+1 − v

j
1
‖2
2

4: v
j+1
2

← argmin
v2

α‖v2‖
p
p + 1

2β
‖b

j
2

− C2x
j+1 − v

j
2
‖2
2

5: v
j+1
3

← argmin
v3

1
2µ

‖y − 8C3v3‖ +
1
2β

‖b
j
3

− C3x
j+1 − v

j
3
‖2
2

6: b
j+1
i

= b
j
i

+ Cix
j+1 − v

j+1
i

, j = 1, 2, 3
7: end while

Ensure: x, a = v1

hk+1 = [(Xk+1P)tXk+1P + γ In]
−1[(Xk+1P)t9ak+1 + γh0]

(7)

where In ∈R
n is the identity matrix. Based on the model refor-

mulation in (3), the analytical solution for estimating the PSF 

only requires the inversion of an n × n (the size of the PSF ker-

nel) matrix instead of an N × N (the size of the TRF) matrix. 

The computational cost is thus considerably reduced. More de-

tails about the practical implementation of the analytic solution 

in (7) can be found in Appendix B.

The proposed CSBD algorithm is summarized in Algo-

rithm 2.

Algorithm 2 Compressive semi-blind deconvolution algorithm.

Input: h0, α, µ, β , γ
1: while not converged do

2: xk+1, ak+1 ← hk ⊲ update xk+1, ak+1 using Algorithm 1

3: hk+1 ← xk+1, ak+1 ⊲ update hk+1 using (7)
4: end while

Output: x, a, h

3. Results

In this section, the performance of the proposed compressive 

semi-blind deconvolution method are evaluated on both simu-

lated and experimental data sets.

3.1. Simulated US data

To get a quantitative insight about the algorithm perfor-

mance, we first address the restoration of TRF, RF image and 

PSF on simulated US data where the degradation process (e.g., 

the variance of the additive Gaussian noise and the PSF) is 

known. To be in consistent with the direct model and regular-

izations we proposed in this paper, we simulated the envelope 

US image with a 2D convolution between the TRF and a 7 × 7

spatially invariant Gaussian PSF of variance 2. The TRF sized 

of 300 × 300 was generated by assigning the scatterers random 

amplitudes following a given distribution, weighted by a car-

toon image named by mask hereafter. A Laplacian distribution 

has been employed and the mask has been hand drawn to sim-

ulate four different regions with different echogenicities. The 

resulting TRF and US image (plotted in B-mode) are shown in 

Fig. 1(a) and (b), respectively. The compressed measurements 



Fig. 1. Simulated US image and its compressive blind deconvolution results for a SNR of 40 dB. (a) Original tissue reflectivity function, (b) simulated B-mode US

image, (c), (f), (i) results using CD with the true PSF for CS ratios of 0.8, 0.6 and 0.4, (d), (g), (j) results using CD with a pre-estimated PSF for CS ratios of 0.8, 0.6
and 0.4, (e), (h), (k) results using CSBD for CS ratios of 0.8, 0.6 and 0.4.

were obtained by projecting the US images onto an orthogo-

nal structurally random matrix (SRM) [34] and were degraded 

by an additive Gaussian noise corresponding to an SNR of 

40 dB.

Based on the simulated US image in Fig. 1(b), an initial 

guess of the PSF was estimated using the algorithm in [16], 

shown in Fig. 2(b). Fig. 1(c)–(k) show a series of TRF recon-

struction results using the SDMM-based CD algorithm given in 

Algorithm 1 with the known PSF, the SDMM-based CD with 

the initial estimated PSF and the proposed CSBD approach for 

CS ratios running from 0.4 to 0.8. We have also displayed the 

estimated PSFs in Fig. 2(c)–(e).

To evaluate the results quantitatively, we hereby employed 

two metrics: the standard peak signal-to-noise ratio (PSNR) and 

the Structural Similarity (SSIM) [35].

PSNR is defined as

PSNR = 10log10
NL2

‖ x − x̂ ‖2
(8)

where x and x̂ are the original and reconstructed images, N

stands for the number of pixels in the image and the constant L

represents the maximum intensity value in x.

SSIM, extensively used in US imaging, is defined as

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂
+ c1)(σ 2

x + σ 2
x̂

+ c2)
(9)

where x and x̂ are the original and reconstructed images, µx , 

µx̂ , σx and σx̂ are the mean and variance values of x and x̂, 

σxx̂ is the covariance between x and x̂; c1 = (k1L)2 and c2 =

(k2L)2 are two variables aiming at stabilizing the division with

weak denominator, L is the dynamic range of the pixel-values 

and k1, k2 are constants. In this paper, L was set to 1, k1 to 0.01 

and k2 to 0.03.

Table 1 regroups the PSNRs obtained with the proposed 

method, with SDMM-based CD algorithms using the known 

PSF (denoted as CD_true) and with SDMM-based CD algo-



Fig. 2. Estimated PSFs of CSBD. (a) True PSF, (b) estimated PSF using an existing method [16], (c), (d), (e) estimated PSF of CSBD for CS ratios of 0.8, 0.6
and 0.4.

Table 1

Quantitative assessment for simulated US data.

Methods CS ratios PSNRx SSIM PSNRh

CD_true 80% 29.29 80.10 –

60% 28.57 78.14

40% 27.07 73.91

20% 25.29 61.07

CD 80% 22.32 52.04 21.36

60% 22.33 50.51

40% 22.49 49.66

20% 22.72 45.76

CSBD 80% 28.55 80.03 44.74

60% 27.31 77.35 45.24

40% 26.87 73.22 44.68

20% 25.01 58.36 41.59

rithms using the initially estimated PSF for four CS ratios from 

0.2 to 0.8. In each case, the reported PSNRs are the mean val-

ues of 10 experiments.

3.2. In vivo US data

In this section, we tested our proposed method with an 

in vivo image. The image (sized by 250 × 180) shown in 

Fig. 3(a) was acquired with a 20 MHz single-element US probe 

and corresponds to part of a mouse kidney. In order to fit the 

compressive deconvolution framework, the measurements with 

CS ratios of 0.8, 0.6 and 0.4 were obtained by projecting the RF 

image onto the SRM and by further degradation with an addi-

tive Gaussian noise corresponding to an SNR of 40 dB. Similar 

to the simulation results, the initial PSF in Fig. 4 was estimated 

from the data using the method presented in [16]. Fig. 3 dis-

plays the TRF reconstruction results of the proposed method 

and Fig. 4 presents the corresponding PSFs.

3.3. Results’ discussion

We may firstly remark from the results on the simulated data 

in Fig. 1 and the quantitative metrics in Table 1 that the pro-

posed CSBD ourperforms the non-blind CD method with an 



Fig. 3. Results on in vivo data. (a) Original US image, (b)–(d) reconstruction results using CSBD for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1.5.

Fig. 4. Estimated PSFs with in vivo data. (a) Initial guess of PSF, (b)–(d) reconstruction results using CSBD for CS ratios of 0.8, 0.6 and 0.4.

initial guess of PSF. Moreover, the TRF reconstruction and PSF 

estimation of CSBD are very close to non-blind CD with the 

true PSF, which means that the algorithm converges to a crit-

ical point which may be close to the global minimizer in this 

case. We emphasize that CSBD is in fact an algorithm to a 

non-convex minimization problem, and the convergence largely 

depends on the hyperparameters. In this study, we manually 

tuned these hyperparameters including the number of iterations 

to get the best results. For this set of hyperparameters, the re-

construction took around 9 minutes for the simulated image and 

5 minutes for the in vivo data on the MacBook Air with 2.2 GHz 

Intel Core i7 and 8 GB RAM.

With the in vivo data, in the absence of TRF and PSF ground 

truth thus avoiding the computation of quantitative metrics, we 

can visually appreciate the contrast improvement of TRF recon-

structions in Fig. 3(c), (d) compared to the original US image 

in Fig. 3(a). We may also observe from Fig. 4 that the PSFs cor-

responding to the in vivo data do not follow a Gaussian shape 



as we simulated in Fig. 2, especially in the axial direction. This 

is in fact a typical US PSF, shown as [36]. With a relatively 

good initial guess of the PSF in Fig. 4(a), our proposed CSBD 

method can preserve the shape and calibrate the accuracy of the 

PSF at the same time.

4. Conclusions

The main objective of this paper is to propose an algo-

rithm dedicated to reconstruct enhanced ultrasound images 

from compressed measurements with an unknown PSF, namely 

compressive semi-blind deconvolution. Compared to the non-

blind compressive deconvolution method, the proposed method 

can achieve better reconstructions on both TRF and PSF. In 

addition to more validations with experimental data, our fu-

ture work will also include the consideration of the parametric 

model of US PSF, to incorporate the prior information on its 

shape. Moreover, some existing non-convex optimization tech-

niques with convergence guarantee, such as coordinate descent, 

would be of great interest to this problem.
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Appendix A

For the purpose of online PSF estimation, we write the con-

volution model as below [37]:

r = XPh + n (10)

where r, h, n are the observation, the PSF and the noise in vec-

tor forms respectively, r, n ∈ R
N , h ∈ R

n. We should note that 

in practical situations the size of the PSF is much smaller than 

the image size, i.e. n << N . X ∈ R
N×N is the BCCB matrix 

representing the original image x and P ∈ R
N×n is a matrix 

defined to extend h to N . Let us denote the size of x and Hx

as N = S × T , and the size of the PSF kernel h as n = s × t .

X has exactly the same structure as H , classically used in 

deconvolution problems. The matrix P can be written as

P =

[

P ′

©

]

where © ∈ R
S(T −t)×n is a zero matrix and P ′ ∈ R

St×n has the 

following structure

P ′ =























Is Os . . . Os

O(S−s)s O(S−s)s . . . O(S−s)s

Os Is . . . Os

O(S−s)s O(S−s)s . . . O(S−s)s

...
...

. . .
...

Os Os . . . Is

O(S−s)s O(S−s)s . . . O(S−s)s























where Os represents a zero square matrix of size s × s and 

O(S−s)s is a zero matrix of size (S − s) × s, Is is an identity 

square matrix of size s × s.

Appendix B

In Section 2, the analytical solution for PSF estimation is

hk+1 = [(Xk+1P)tXk+1P + γ In]
−1(Xk+1P)t9a (11)

To simplify the notations, we will ignore the iteration num-

ber k and denote 9a by z. The key to solve this equation is to 

find an efficient way to compute (XP )tXP and (XP )tz.

Firstly, for the term of (XP )tz, Xt is actually the BCCB ma-

trix of the transformed x. Let us denote the transformed x by x′. 

Xtz is then the convolution between x′ and z. While x repre-

sents the 2D image x2D in a vectorized version, x′ corresponds

to the transformed 2D image x′
2D . We define the pixels of x in

2D by:

x2D =















x11 x12 x13 . . . x1T
x21 x22 x23 . . . x2T
x31 x32 x33 . . . x3T
...

...
...

. . .
...

xS1 xS2 xS3 . . . xST















The transformation from x2D to x′
2D usually includes flips

both in horizontal and vertical directions. However, the exact 

details of these flips depend also on the way the convolution 

product is defined, including its boundary conditions and the 

way the full convolution product is cropped to the size of the 

original image. Hereafter we will detail the transformation in 

the case of circular convolution with periodic boundary exten-

sions, and we consider the center part of the full convolution. 

Thus x2D can be obtained by flipping x twice: the first row to 

the last second and first column to the last second, which gives

x′
2D =















x(S−1)(T −1) x(S−1)(T −2) . . . x(S−1)1 x(S−1)T

x(S−2)(T −1) x(S−2)(T −2) . . . x(S−2)1 x(S−2)T

...
...

. . .
...

...

x1(T −1) x1(T −2) . . . x11 x1T
xS(T −1) xS(T −2) . . . xS1 xST















According to the analysis on P above, P t multiplying a vec-

tor is actually equivalent to choosing several elements from a 

vector. In our case, P t aims picking up the first s elements from 

every S elements until we get n elements.

Secondly, concerning the term P tXtXP , its result is actually 

a matrix of size n ×n. To avoid constructing the big matrix P or 

X during implementation, we can find a way to compute these 

n × n elements instead.

Let us denote U = XtX, U is a symmetric matrix following 

the structure:

U =















U1 U2 U3 . . . UT

U2 U1 U2 . . . UT −1

U3 U2 U1 . . . UT −2

...
...

...
. . .

...

UT UT −1 UT −2 . . . U1















where Ui (i = 1, 2...T ) is a matrix of size S ×S. Let us analyse 

the elements in this relative small matrix.

We know that every column in X is a transformed x. This 

kind of transformation includes circulation both in horizontal 



and vertical directions. Let us denote the image which is cir-

culated i times in horizontal direction and j times in vertical 

direction as x
(ij)

2D . Take an example, x
(12)
2D is equal to

x(12) =















x(S−1)T x(S−1)1 x(S−1)2 . . . x(S−1)(T −1)

xST xS1 xS2 . . . xS(T −1)

x1T x11 x12 . . . x1(T −1)

...
...

...
. . .

...

x(S−2)T x(S−2)1 x(S−2)2 . . . x(S−2)(T −1)















As a result, every element in XtX is an inner product be-

tween two x(ij) (vectorized image x
(ij)

2D ). Now we can present

every detail of Ui . Here we use x(ij) as the vectorized image.

Ui =











x(00)x(i0) x(00)x(i1) . . . x(00)x(i(S−1))

x(01)x(i0) x(01)x(i1) . . . x(01)x(i(S−1))

.

..
.
..

. . .
.
..

x(0(S−1))x(i0) x(0(S−1))x(i1) . . . x(0(−1)S)x(i(S−1))











As we can see, Ui is also a symmetric matrix. Moreover, 

since x00xij = x00xi(S−j), there are several elements with the 

same values even in the same row.

After understanding every detail about the XtX, now we can 

try to choose several elements out of the matrix to get the final 

result of P tXtXP . According to the definition of P we men-

tioned before, the structure of P tXtXP can be written as

P tXtXP =















U ′
1 U ′

2 U ′
3 . . . U ′

t

U ′
2 U ′

1 U ′
2 . . . U ′

t−1

U ′
3 U ′

2 U ′
1 . . . U ′

t−2
...

...
...

. . .
...

U ′
t U ′

t−1 U ′
t−2 . . . U ′

1















where U ′
i ∈ R

s×s is

U ′
i =











x(00)x(i0) x(00)x(i1) . . . x(00)x(i(s−1))

x(01)x(i0) x(01)x(i1) . . . x(01)x(i(s−1))

...
...

. . .
...

x(0(s−1))x(i0) x(0(s−1)x(i1) . . . x(0(s−1))x(i(s−1))











In conclusion, an efficient way to solve P tXtXP is to com-

pute the s × s matrix U ′
i . Since P

tXtXP is symmetric, we will

need only to compute U ′
i (i = 1, 2, .., t). Moreover, for each

and U ′
i , only the calculations of x00xij (j = 0, 1, ...s − 1) are

required, the computational cost is thus further reduced.
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