
HAL Id: hal-03507819
https://hal.science/hal-03507819v1

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering secure systems: Models, patterns and
empirical validation

Brahim Hamid, Donatus Weber

To cite this version:
Brahim Hamid, Donatus Weber. Engineering secure systems: Models, patterns and empirical valida-
tion. Computers & Security, 2018, 77, pp.315-348. �10.1016/j.cose.2018.03.016�. �hal-03507819�

https://hal.science/hal-03507819v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24828

To cite this version: Hamid, Brahim and Weber, Donatus
Engineering secure systems: Models, patterns and empirical
validation. (2018) Computers & Security, 77. 315-348. ISSN 0167-
4048

Official URL
DOI : https://doi.org/10.1016/j.cose.2018.03.016

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/24828
https://doi.org/10.1016/j.cose.2018.03.016

Engineering secure systems: Models, patterns
and empirical validation

Brahim Hamid

a , ∗, Donatus Weber

b

a IRIT, University of Toulouse, 118 Route de Narbonne, Toulouse Cedex 9 31062 France
b Chair for Embedded Systems, University of Siegen, Hoelderlinstrasse 3, D-57076 Siegen, Germany

Keywords:

Security

System engineering

Pattern

Meta-modeling

Model driven engineering

a b s t r a c t

Several development approaches have been proposed to handle the growing complexity of

software system design. The most popular methods use models as the main artifacts to con-

struct and maintain. The desired role of such models is to facilitate, systematize and stan-

dardize the construction of software-based systems. In our work, we propose a model-driven

engineering (MDE) methodological approach associated with a pattern-based approach to

support the development of secure software systems. We address the idea of using patterns

to describe solutions for security as recurring security problems in specific design contexts

and present a well-proven generic scheme for their solutions. The proposed approach is

based on metamodeling and model transformation techniques to define patterns at dif-

ferent levels of abstraction and generate different representations according to the target

domain concerns, respectively. Moreover, we describe an operational architecture for de-

velopment tools to support the approach. Finally, an empirical evaluation of the proposed

approach is presented through a practical application to a use case in the metrology domain

with strong security requirements, which is followed by a description of a survey performed

among domain experts to better understand their perceptions regarding our approach.

1. Introduction

System and software security engineering (Anderson, 2008;
Barnabe et al., 2011; Devanbu et al., 2000) has become a cru-
cial business aspect because organizations are completely de-
pendent on computer-based systems and invest substantial
resources in maintaining them. Standards are available for se-
curing IT systems, such as NIST 800-60, and Control Systems
(ICS), such as NIST 800–82. Although they give little guidance
to software engineers on how to implement them, they should
be applied from the early stages of the conception of a system.
Most work must be done manually because only a few tools
are available to aid in the implementation. This causes exten-
sive work and incurs substantial extra costs. Thus, there is a
∗ Corresponding author.
E-mail address: hamid@irit.fr (B. Hamid).

https://doi.org/10.1016/j.cose.2018.03.016

need to support the engineering of secure system processes
with as much automation as possible. Therefore, developers
of these systems need to “design for security”. This includes
defining the current structure of the system, i.e., the system
architecture, finding abstract risks and concrete vulnerabili-
ties, and implementing the appropriate countermeasures to
mitigate risks and vulnerabilities to meet the security require-
ments of these systems. Our contribution to this challenge is
to make the system security engineering process manageable
and understandable through novel methods and tools that en-
sure that system security solutions are built by design.

Security experts, practitioners and researchers from dif-
ferent international organizations, associations and academia
have agreed that for security, “it’s not just the code”
(Fernandez, 2013; M. Howard, 2007; Neumann, 2004). The
most popular and well-known software security vulnerabili-
ties are design issues, particularly architecture design issues.
From the system developer perspective, security issues need

https://doi.org/10.1016/j.cose.2018.03.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.03.016&domain=pdf
mailto:hamid@irit.fr
https://doi.org/10.1016/j.cose.2018.03.016

t
t

w
a
d
i
f
v
b
p
e
o
m
d
t
a
o
p

g
r
i
a
s
w
d
a
d
c
p
m
e
u
d
o
t

t
w
d
s
s
s
m
t
r
g
v
n
f

o
c
(
m
m
t

2

w
a

l
r

w

b
t
b
b
i
n
a
r
(

I
I
t
(

f
S

d
t
d
h
t

T
c
r
d

W
t
m

n
m
p
m

t
f
p
j
(
t
t
t
v
a

s
n

o
t
s
t
S
b
s

1 https://eclipse.org/modeling/emft/ .
2 http://www.eclipse.org/cdo/ .
3 http://www-03.ibm.com/software/products/en/ratirhapfami .
o be identified early in the first development steps and at
he highest levels, primarily in the architecture design stage,
here their semantics are clear. When security requirements

re determined, architecture and design activities are con-
ucted using modeling techniques and tools for higher qual-

ty and seamless development. The integration of security
eatures using this approach requires high expertise for de-
eloping the architecture and design and the availability of
oth application-domain-specific knowledge and security ex-
ertise. Because few experts with this diverse set of experi-
nces exist, capturing and providing this expertise by means
f security patterns (Anwar et al., 2006; Hafiz et al., 2007; Schu-
acher, 2003; Yoder and Barcalow, 1998) can enhance system

evelopment by integrating them into different stages of sys-
ems engineering. Therefore, security solutions are described

s security patterns, and the application-domain specific use
f these patterns is provided in terms of security technological
roducts that are already established in that domain.

In this paper, we present a model-based approach for en-
ineering secure systems that uses patterns to represent secu-
ity solutions and knowledge, which fosters reuse. This work
s conducted within the context of a model-based security
nd dependability research project, and our collaboration with

ecurity-critical system suppliers suggested a need for this
ork. The security solutions used by security-critical system

evelopers are based on the application domain and occasion-
lly on the software development environment, including the
esign and coding stages. There is a need to link these con-
epts to security. The lack of appropriate links between ap-
lication domain concepts and security concepts poses three
ain challenges. First, the security engineer must re-engineer

xisting solutions. Second, the application designer may not
nderstand domain-specific security solutions. Finally, it is
ifficult for a system developer to guarantee the availability
f security solutions to cover the security requirements of the
argeted application using application domain concepts.

To provide a concrete example, we use smart meter sys-
ems. In these systems, there are a number of subsystems
orking together to communicate and exchange the up to
ate sensing and measurement of energy consumed with the
mart grid. Within these large systems, we focus only on a
mart meter gateway as the communication unit of modern

mart meters. A gateway is capable of connecting to several
eters for different commodities, such as electricity, gas, wa-

er or heat, and communicating with households and other
emote entities, such as regulations. Smart meters and their
ateways generate security and safety relevant, as well as pri-
acy sensitive data and transmit them over possibly insecure
etworks. Therefore, a special kind of protection is required

or this data.
To address the above problem, we promote a new method-

logy for system engineering using a pattern as its first-
lass citizen: Pattern-based System and Software Engineering
PBSE). We use MDE (Atkinson and Kühne, 2003) abstraction

echanisms to define and handle security patterns through a
etamodel that unifies those concepts. Moreover, we use MDE

ransformation mechanisms (France and Rumpe, 2007; Selic,
003) that can adapt and generate different representations,
here patterns are clearly related to domain models. Such

n MDE-based approach utilizes domain-specific modeling
anguages (DSMLs) (Gray et al., 2007) built on an integrated

epository of modeling artifacts that function as a group,
here a pattern is at the heart of development - its role should
e specified in all lifecycle stages of development. In addi-
ion, we aim to provide formal security semantics for pattern-
ased system models. As a result, patterns can be used as
ricks to build applications through a model-driven engineer-

ng approach. In this work, Eclipse Modeling Framework Tech-
ology (EMFT) 1 is used to build the support tools for our
pproach. All metamodels are specified using the EMF. The
epository is implemented using the approach described in

 Hamid, 2017), which is based on the Eclipse CDO

2 framework.
n our work, the target domain development environment is
BM Rational Rhapsody 3 , and the descriptions of the model
ransformations are based on the QVT operational language
 OMG, 2011). However, our vision is not limited to the EMF plat-
orm. Other modeling tools conforming to the requirements of
ection 5 can also be used.

The main goal of this work is to define a modeling and

evelopment framework to support the specifications, defini-
ions and adaptation of a set of modeling artifacts to assist the
evelopers of secure applications. The patterns that are at the
eart of our system engineering process reflect design solu-
ions at the domain-independent and domain-specific levels.
he envisioned modeling framework offers an integrated con-
eptual design for the specification and development of secu-
ity patterns and a concrete and coherent methodology for the
evelopment of software systems based on security patterns.
e provide evidence of its benefits and applicability through

he example of a representative industrial case, i.e., the smart
eter gateway application.
We have previously studied various facets of PBSE to engi-

eer secure and dependable systems. Our prior work includes
odeling languages for the specification of security and de-

endability patterns (Hamid et al., 2011), design and imple-
entation of a reuse model repository (Hamid, 2014). Further,

he basic formulation of the need to have a strong approach

or supporting the engineering of secure systems has been

reviously published in a research paper in the international
ournal of Innovations in Systems and Software Engineering
 Hamid et al., 2016). This article brings together and extends
he ideas described in the earlier papers and presents a holis-
ic approach to the modeling of pattern-based software sys-
ems with strong security requirements. Specifically, we pro-
ide a more comprehensive and complete description of our
pproach (Section 4) and tool support (Section 5), along with
ubstantial new validation to show the feasibility and useful-
ess of our approach (Section 6).

The remainder of the paper is organized as follows. An

verview of the challenges faced in engineering secure sys-
ems in the context of industry standards and practices is pre-
ented in Section 2 . Section 3 provides a motivating example
hat models a software architecture for a web application. In

ection 4 , we present our approach for supporting the pattern-
ased system and software security engineering. Section 5 de-
cribes the architecture of the tool suite and presents an

https://eclipse.org/modeling/emft/
http://www.eclipse.org/cdo/
http://www-03.ibm.com/software/products/en/ratirhapfami

example implementation. In Section 6 , we present an empiri-
cal evaluation of our approach through the TERESA metrology
case study and a survey. Section 7 presents experimental re-
sults in the context relevant to security goals and threat analy-
sis. Then, Section 8 discusses our contribution. Section 9 com-
pares our work with related work. Finally, Section 10 concludes
and sketches future work directions.

2. Generalities and background

The engineering of secure systems with security require-
ments typically requires the certification of such products
according to generic standards (e.g., Common Criteria (CC)
15408-1 (ISO/IEC, 2007), ISO 31000 (Dali and Lajtha, 2012; ISO,
2009)) or domain-specific standards (e.g., NIST 800-60 (Stine et
al., 2008), ISO/IEC 27001 (ISO, 2013), Protection Profile (PP) (BSI,
2014)). They support system engineers in the development of
secure systems recommending a set of techniques and mea-
sures to achieve the desired level of security of an application.
For instance, the CC standard provides support when build-
ing a secure system by offering classes of functional security
components to address well-known security principles (e.g.,
authenticity, encryption, and audit) and a set of guidelines
to support security experts. Through the aforementioned PP
standard it is possible to add domain specific to the general
approach in extending and refining requirements and knowl-
edge to the targeted domain (e.g., encryption standards, hash
functions, SSL, and TPM).

The engineering of information systems with security has
been well established via standards and general methods.
However, they provide little guidance to software engineers
on how to implement them. Most work must be done manu-
ally, as only a few tools are available to aid in the implemen-
tation. Most of these techniques and measures are provided
in the form of design decisions targeting one stage of the de-
velopment lifecycle without effective realization. They should
be applied from the very beginning stage of the conception of
the system. In addition, the format in which the techniques
and measures are presented must be improved to ensure that
the provided solutions are storable, reusable and appropriate
for the automation of software development and analysis. Fur-
thermore, the cost-effective development and certification of
the targeted products is a challenge, and the reusability of
proven solutions enables cost and time-to-market reductions.
Our work aims to provide new methodological tool support
that enables these solutions (techniques and measures) to be
reused for development within the same application domain
or in a cross-domain scenario. As described below, a subset of
techniques and measures proposed in the standards can be
used to define several security patterns.

2.1. Model-based software systems security engineering

A general methodology for developing security-critical soft-
ware using models has been proposed in (Jürjens, 2001; Jür-
jens, 2006). It uses a UML extension (profile) called UMLSec to
include security-relevant information in the existing model
and diagrams. The approach is supported by extensive au-
tomated tool support for performing a security analysis of
the UMLSec models against security requirements and has
been used in a variety of industrial projects (J. Jürjens and R.
Rumm, 2008). We can also cite two other system design model-
driven software security engineering processes based on UML
profiles: SecureUML (Lodderstedt et al., 2002) and SecureMDD
(Moebius et al., 2009). SecureUML provides a UML profile based
on role-based access controls (RBAC), enabling specification of
access control in the overall system design. This information
can be used to generate access control infrastructures, helping
the developers to improve productivity and the quality of the
system under construction. SecureMDD proposes a method-
ology that enables the generation of platform-specific mod-
els (e.g., JavaCard) from a high-level stereotyped UML model.
In addition to guidelines for modeling security aspects, the
framework offers verification based on a formal approach for
the produced models (Grandy et al., 2006). In addition to the
above approaches, Lee et al. (Lee et al., 2002; 2000) propose
an integration model for integrating security engineering ap-
proaches into software lifecycle standards, mapping the con-
cepts of the software lifecycle (IEEE 12207) to security engi-
neering concepts (a set of concepts collected from various
security engineering approaches (Lee et al., 2000)). The ap-
proach attempts to provide an understanding to stakehold-
ers of where and when security activities intervene and inter-
act with standard process lifecycle activities. In the develop-
ment of secure systems, Basin et al. (Basin et al., 2009) use a
metamodel called SecureUML+ComponentUML, which com-
bines SecureUML (Lodderstedt et al., 2002) and Componen-
tUML (a system design modeling language for component-
based systems). This metamodel is used to model security de-
sign models and security scenarios starting from an informal
security policy. A pattern-oriented approach for modeling se-
cure component-based software systems combining patterns
and UMLsec (Jürjens, 2006) was presented in (Schmidt and Jür-
jens, 2011).

2.2. Pattern-based software systems security engineering

Patterns are encapsulated solutions to recurrent system prob-
lems and define a vocabulary that concisely expresses require-
ments and solutions as well as provide a communication vo-
cabulary for designers (Gamma et al., 1995; Henninger et al.,
2007). Patterns are triples that describe solutions for commonly
occurring problems in specific contexts . Pattern-based develop-
ment has recently gained more attention in software engi-
neering by addressing new challenges that had not been tar-
geted in the past (Henninger et al., 2007). The idea of design
patterns was introduced by an architect (Urbanist), Christo-
pher Alexander (Alexander et al., 1977). The first objective was
to enhance architectural quality, beauty, elegance and har-
mony to avoid dehumanization of the living environment. In
GoF (Gamma et al., 1995), a design pattern extracts the key ar-
tifacts of a common design structure that renders it useful for
creating a reusable object-oriented design. We now recall the
definition of the term “security pattern” that we found in the
literature (Schumacher, 2003).

Definition 1 (security pattern) . A security pattern describes a
particular recurring security problem that arises in specific

c
s

t

D
r
c
i
r
s

p
s

2
t
2
t
a
a
t
c

2

A
r
c
c
t
a
o
t

g
c
a
o
d
a
b

H
a
e
c
o
t

e
t
c
m
s
u
d

t

t
i

t
t
c
s
c

c
s

2
m
s
(

o
a
a
t
c
m

3

T
b
t

a
w
q
b

b
a

u
m
r
p

T
n

T
t
t
c
e
T
d
O

o

H
e
t
t
(
m

ontexts and presents a well-proven generic scheme for its
olution.

Adapting the definitions of Schumacher (2003) , we propose
he following:

efinition 2 (System of security patterns) . A system of secu-
ity patterns is a collection of security patterns forming a vo-
abulary. Such a collection may be skillfully woven together
nto a cohesive whole that reveals the inherent structures and

elationships of its constituent parts toward fulfilling a shared

ecurity objective.

Security patterns enable the development of secure ap-
lications and liberate the developer from having to address
ecurity-related technical details. MDE (Atkinson and Kühne,
003; Selic, 2003) also provides a very useful contribution

o the design of security-critical systems (Basin et al., 2009;
006; Jürjens, 2006; Lucio et al., 2014) because it reduces the
ime/cost required for understanding and analyzing system

rtifact descriptions due to the abstraction mechanisms. It
lso reduces the development process cost due to the genera-
ion mechanisms. Hence, security pattern integration must be
onsidered during the MDE process.

.3. Security analysis and evaluation

 typical evaluation approach in software system secu-
ity engineering is to compare an implementation with a
omprehensive list of categories agreed upon by an expert
ommunity. An example is the OWASP (Open Web Applica-
ion Security Project) list (OWASP, 2017b). On the one hand, the
nalysis discovers potential risks and areas for improvement;
n the other hand, it can raise confidence in the chosen archi-
ectural approaches.

The current practice to formulate security statements is
iven through expressing attacker capabilities to e.g. gain ac-
ess to a protected data from a message observation (i.e., neg-
tive statements). Microsoft for example uses a threat tax-
nomy from the attacker’s perspective called STRIDE 4 . To
efine the security architecture of the system, we need an

nalysis of the possible threats; security patterns can then

e introduced to stop or mitigate them (Fernandez, 2013; S.T.
alkidis et al., 2008). As opposed to this, the property-based

pproaches(Fuchs et al., 2010; J. Jürjens and R. Rumm, 2008)
xpress security statements in terms of a set of desirable se-
urity properties (i.e., positive statements) using common tax-
nomies such as CIA

5 . Patterns then are introduced according
o expected security properties.

During the security application design time, formal mod-
ling of patterns can prove some of the properties of a pat-
ern solution (security mechanisms), which may require a spe-
ialized and costly verification process (e.g., based on formal
ethods (Hamid et al., 2016; Paulson, 1996)). At system de-

ign time, we can evaluate the security risk of systems that
sed specific security patterns by seeing how well they han-
led a set of threats by a simple matching of threats to pat-
4 STRIDE stands for Spoofing, Tampering, Repudiation, Informa-
ion disclosure, Denial of service, and Elevation of privilege.
5 CIA stands for Confidentiality, Integrity and Authenticity.

t

t
s
erns (Fernandez, 2013). Often, an attack on a system results
n the not-fulfillment of specific security properties. Therefore,
hreats can be stopped by the fulfillment of security proper-
ies. If we have a pattern for each security property, we can

onsider the system secure at the model level. Since then, it is
till remains vulnerabilities at code level. However, attacks at
ode level are reduced by an appropriate architectural design.

Further, for systems requiring standardization and certifi-
ation, we can rely on existing security risk analysis methods
uch as EBIOS (McDonald et al., 2013), CORAS (Braber et al.,
007) and security-HAZOP (Srivatanakul et al., 2004). In these
ethods, a threat and risk analysis is executed using methods

uch as the threat modeling with attack trees, as described in

 Schneier, 1999). The output of these methods is a set of rec-
mmendations and guidelines to detect possible risks, evalu-
te them and then mitigate them. Patterns enable the implicit
pplication of policies and in the same time pattern is a sys-
ematic approach to describe best practices. Further, pattern

an describe standards and regulations in a precise way and

ake them more understandable and usable.

. A motivating example

he example is based on an OWASP example of a college li-
rary website (OWASP, 2017a). Fig. 1 shows the overall architec-
ure description of the web application. It consists of a client,
 web server and a database server software components. The
ebsite provides online services for searching for and for re-
uesting books. The users are students, college staff and li-
rarians. Staff and students will be able to log in and search for
ooks, and staff members can request books. Librarians will be
ble to log in, add books, add users, and search for books. We
se UML class diagram to describe the high level architecture
odel of the web application, where software components are

epresented by classes, and relationships between these com-
onents are represented by associations.

Fig. 1 depicts the corresponding software architecture.
here are implicit security design decisions, because inter-
al and external connections use public or private networks.
here is also an ad-hoc subcomponent for “authorization”

hat groups three entities (Webserver, Database and Administra-
or) that collaborate in order to ensure that the application has
learly defined the user types and the rights of said users. Nev-
rtheless, several controls related to security are outlined in

able 1 . These controls may be found in each respective stan-
ard of each domain (BSI, 2014; ISO, 2013; Stine et al., 2008;
WASP, 2017a).

Fig. 2 shows the class diagram that adds security controls
f Table 1 . Each one represents a specification (blue boxes).
owever, effective realizations of these controls are not mod-
led in the UML class diagram; they may be subject to cer-
ain changes and/or adaptations (new security solutions, dele-
ions, modifications of realization, for instance), verifications
formal and empirical, for instance) and reuse (in the same do-

ain or across domains, for instance) while the structure of
he main software architecture can be maintained.

Fig. 3 shows the class diagram that adds new components
o realize the security controls of Table 1 . Each one repre-
ents a pattern (red boxes), which secure software developers,

Fig. 1 – A motivating example.

Fig. 2 – Motivating example with security controls.

Fig. 3 – Motivating example with security patterns.

mainly architects would like software modeling and analysis
languages may easily express.

At this point, several questions were raised: If existing
modeling languages (Basin et al., 2009; J. Jürjens and R. Rumm,
2008; Moebius et al., 2009) provide support for engineering se-
cure systems, how can we define these patterns in terms of
their constructs? Must we modify and overload the existing
software engineering process to define these patterns? Are
there alternatives to specify these patterns while maintain-
ing the overall structure of the software engineering process?
Do the existing software modeling languages have enough ex-
pressiveness to seriously address these issues? What ideas
are researchers proposing to incorporate security in model-
based software system engineering ? What advantages and
disadvantages have their proposals? Further, we attempt to
add more formality to improve parts of the system design. In

Table 1 – List of security controls (OWASP, 2017a).

Security
property

Security controls

Authenticity sc1 Ensure all internal and external
connections go through an appropriate
and adequate form of authentication.

sc2 Ensure all pages enforce the requirement
for authentication.

Confidentiality sc3 Ensure no sensitive data is transmitted in
the clear, internally or externally.

sc4 Ensure that authentication credentials do
not traverse the wire in clear text form.

Authorization sc5 Ensure that there are authorization
mechanisms in place.

sc6 Ensure that the application has clearly
defined the user types and the rights of
said users.

o
t
c
s

p
o
v
o
i
b
d
s
p
d
s

4

T
(
F
o
t
c
p

a
t
p
a

c
c
f
t
a
s
s
g
d
a

u
a
r

d
a
f

a
s
b
c
o
o
q
s
d
d

4

A
e
m
s
o
r
a
p
a

t
r
d
a
t
n
a
r
c
r
t

P

s

s
c

W

t
t

i
e
d
t
p
i
s
t
s

s
ur context, we have identified two dimensions: a global sys-
em viewpoint (e.g., does the system provide a sufficient se-
urity level?) and an individual functional viewpoint (e.g., is a
pecific security function effective?).

Therefore, there are two main prerequisites to defining the
attern-based software system security engineering method-
logy. The first is that it must be compatible with current de-
elopment processes. The objective is not to change the habits
f engineers; instead, easing the acceptance of the approach

n industry is the goal. The second prerequisite is that it must
e flexible enough to adapt to other specific processes in other
omains. We seek a solution based on the reuse of software
ubsystems, i.e., so-called security patterns that have been

re-engineered to adapt to a specific domain. The approach

escribed in Section 4 uses MDE techniques to handle the is-
ues described above.

. Approach

he proposed approach (Fig. 4) is composed of six main steps
the numbers in parentheses correspond to the numbers in

ig. 4). Step 1 is responsible for creating the conceptual model
f security patterns. The resulting conceptual model is used

o build a DSML to specify security patterns (step 2). The se-
urity expert, with the system and a software engineering ex-
ert, uses this DSML to define security patterns (step 3). Then,
 domain process expert creates and adapts the security pat-
erns into a version that is suitable in its system development
rocess (step 4). An example is adaptation for compliance with

n appropriate standard. Moreover, in the context of our work,
ertain patterns have a meaningful representation only for a
ertain domain. We then develop and apply appropriate trans-
ormations of a pattern representation in a suitable format for
he development environment (step 5). Pattern instantiation

s the initial activity to apply a pattern is performed during
tep 4 and step 5. Finally, the domain engineer reuses the re-
ulting adapted and transformed patterns for the given en-
ineering environment (development platform) to develop a
omain application (step 6). Pattern integration in the design

ctivity is applied during this step. In addition, we attempt to
se formal description (e.g, formal modeling) of security and

rchitecture for the purpose of the development of an accu-
ate analysis, for evaluation and/or certification.

The first two steps (1 and 2) are performed once for a set of
omains. The inputs of these steps are expertise, standards
nd best practices from the security expert. Step 3 is per-
ormed once for a set of domains. Step 4 is performed once per
pplication domain. Performing Step 3 requires knowledge of
ecurity engineering, whereas Step 4 requires knowledge of
oth security engineering and the system development pro-
ess for a specific application domain. Step 5 is performed

nce for each development environment. Step 6 is performed

nce for every system in the application domain. This step re-
uires the availability of knowledge on the specific targeted

ystem and dedicated tools that are customized for a given

evelopment platform. In the rest of this section, we present
etailed descriptions of the six steps in our approach.

.1. Step 1: Conceptual model of security patterns

t the beginning of this paper, we indicated the need for an

xplicit interpretation of security in architecture design and

otivated why patterns are a useful tool for designing secure
ystems architectures. We achieve this task in the first step of
ur approach via the creation of a conceptual model of secu-
ity patterns. A conceptual model of security patterns provides
 common understanding of all concepts employed in this pa-
er to ensure a precise description of the addressed problems
nd solution approaches.

A conceptual model of a security pattern should capture
he main concepts and relationships to describe the secu-
ity pattern models in the context of different standards and

omain-specific practices. To maintain the current audience
nd awareness, we retain part of the terminology defining sec-
ions in the template to document patterns (Alvi and Zulker-
ine, 2011; Buschmann et al., 2007). We employ UML class di-
grams to describe the conceptual model, where concepts are
epresented by classes, concept attributes are represented by
lass attributes, and relationships between concepts are rep-
esented by associations. When an attribute’s value belongs
o a predefined set of possible values, we use enumerations.
ackage notation is used to create groupings of concepts.

A graphical representation of the concepts and relation-
hips from the excerpt is given in Fig. 5 . To improve under-
tanding and readability, the attributes of the different con-
epts and the links between the concepts are not described.
e note that the model in Fig. 5 is a partial representation of

he concepts and relationships relevant to the pattern defini-
ion and usage.

The context package contains all concepts for describ-
ng the environment in which the pattern will be built and

mployed, including security policy statements, the system

evelopment lifecycle, and the type of system assets to pro-
ect (e.g., applications, distributions, and data). The problem
ackage contains all concepts that are employed for describ-

ng the security problem, including the threat catalog, threat
cenario, vulnerabilities, types of attacks, security objec-
ives, functional security requirements and other forces. The
olution package regroups security technology concepts,
uch as best practices, controls, safeguards, countermeasures,

Fig. 4 – Methodology for the creation of the PBSE modeling framework.

Fig. 5 – Security pattern concepts and their relationships.

design solutions, security mechanisms and COTS (Commer-
cial of the Shelf) components. The usage package regroups
all activities for integration-application in the designs and
classification information to support search mechanisms that
surpass keyword-based search and retrieval, including guide-
lines for pattern application, known uses and examples. The
system of patterns package contains all concepts for
describing the collection of patterns and patterns’ relation-
ships with other patterns, including composition, dependen-
cies and conflicts. The verification package regroups
concepts to check security properties, which ensures the qual-
ity of the solution including properties, assumptions and
constraints. The evaluation package regroups concepts
for evaluating patterns, including concepts to describe the

impact on other architecture quality attributes, including per-
formance, cost, usability and feedback.

These concepts and their related observations are em-
ployed as a basis for our conceptual pattern modeling lan-
guage (refer to Section 4.2).

4.2. Step 2: Creation of a DSML from a conceptual model
of security patterns

In this section, we emphasize software patterns as a way
to design a secure software architecture (Fernandez, 2013),
which builds on a semi-component patterns representa-
tion. In software engineering, the separation of concerns
promotes the separation of general-purpose services from

i
t
p
f
r
m
a
t
(
m
s
d
a
d
i
c
r
t
a
d
e
a

v
S
i
s
b
d
o
s
i
d
s
t
p

i
i
p
g

a

H
(
U

4
T
t
s
t
C
l
a
v
a
m

t

T
a
i
b
s

2

H
R
c
s
c
c
c
b
A

c
h

a
s
v
u
f
(
t

a
d
o
s
a

4
W
O
g
a
a
c
t
i
r
a
t
t
p
t
F
t
l

mplementations. In our context, we target the separation of
he general purpose of a pattern from the mechanisms em-
loyed to implement the pattern. This is an important issue
or understanding the use of patterns in the scope of secu-
ity engineering. The layer in which patterns and their related

echanisms are integrated is dependent on the assurance of
 client in the services of other concerned layers. Security pat-
erns are defined from a platform-independent perspective
i.e., they are independent of their dedicated implementation

echanisms); they are consistently expressed with domain-
pecific models. Consequently, they are much easier to un-
erstand and validate by application designers in a specific
rea. To capture this vision, we introduce the concept of the
omain perspective , where a security pattern at the domain-
ndependent level exhibits an abstract solution without spe-
ific knowledge of how the solution is implemented with

egard to the application domain. The objective is to reuse
he domain-independent model security patterns for several
pplication domains and enable them to customize these
omain-independent patterns with their domain knowl-
dge and/or requirements to produce their domain-specific
rtifacts.

To model security patterns, a modeling language was de-
eloped based on the conceptual model created in Step 1. The
ystem and software Engineering Pattern Metamodel (SEPM)

s constructed based on an additional analysis of different
tandards from different domains that focus on software-
ased systems. The set of concepts that were employed to
evelop the modeling language to capture these two levels
f details to represent security patterns were identified: ab-
tract pattern concepts to define a pattern at the domain-
ndependent level (DIPM) and concrete pattern concepts to
efine a pattern at the domain-specific level (DSPM). For in-
tance, abstract pattern concepts include policies and best prac-
ices , whereas concrete pattern concepts include domain best
ractices and mechanisms .

For our purpose, we propose using a well-known approach

n MDE: a DSML. This approach is useful because we are stor-
ng a library of design patterns in a common repository and

roviding one or more adaptations of each pattern to tar-
et several application domains, e.g., the metrology industry,
nd different development environment domains, e.g., UML.
owever, our vision is not limited to DSML. For example, in

 Radermacher et al., 2013), we defined a UML profile under the
ML papyrus tool 6 to specify patterns.

.2.1. Informal description of the motivating pattern example
he problem addressed in our example is how to ensure that

he data transmitted over any public network is secure in tran-
it, particularly how to guarantee data authenticity. We show

he feasibility of our approach through the example of Secure
ommunication Pattern (SCP). On the domain-independent

evel, this pattern uses abstract send and receive actions and

bstract communication channels that are assumed to pro-
ide authenticity. However, on the domain-specific level, SCPs
re slightly different in the application domain. A system do-
ain may have its own mechanisms, means and protocols
6 http://eclipse.org/papyrus/ .
hat can be employed to implement this pattern include SSL,
LS, Kerberos, IPSec, SSH, and WS-Security. In summary, they
re similar in goal but different in implementation issues. This
s the motivation to handle the modeling of security patterns
y the following abstraction. As an example, on the domain-
pecific level we use the TLS mechanism (Dierks and Rescorla,
008) as a concrete implementation of the SCP.

The TLS mechanism is composed of two phases: the TLS
andshake that establishes a secure channel, and the TLS
ecord in which this channel can be used to exchange data se-
urely. The client initiates the TLS handshake by providing the
erver with a random number and information regarding the
ryptographic algorithms it can handle. The server replies by
hoosing the actual algorithm to use, optionally requiring the
lient to authenticate itself, and by sending a random num-
er of its own and its certificate issued by some Certification

uthority trusted by both the server and the client.
To authenticate itself, in the final handshake message, the

lient includes its own certificate, a signature on all three
andshake messages generated with the client’s private key,
nd a third random number that is encrypted using the
erver’s public key contained in the server’s certificate. After
erifying the certificates and signature, both client and server
se the exchanged random numbers to generate session keys

or generating and verifying message authentication codes
MACs) and for encrypting and decrypting messages during
he TLS record phase.

Since the key used by the client to generate a MAC / encrypt
 message is used by the server only for MAC verification /
ecryption and vice versa, and since these keys are based on

ne random number that is confidential to the client and the
erver, the keys establish a channel that provides authenticity
nd confidentiality for both client and server.

.2.2. Abstract syntax
e propose an abstract syntax (a metamodel) by means of an

MG-style metamodel to construct the SEPM modeling lan-
uage. The abstract syntax is based on previous requirements
nd describes various concerns, such as engineering, reuse
nd integration aspects. In our vision, we build on a semi-
omponent pattern representation. Therefore, a security pat-
ern is a subsystem that exposes pattern functionalities by
nterfaces and target security properties to enforce the secu-
ity system requirements. Interfaces are employed to exhibit
 pattern’s functionality and manage its application. In addi-
ion, interfaces support interactions between security primi-
ives and protocols within a specific application domain. The
rincipal classes of the system and software engineering pat-
ern metamodel (SEPM) are described with Ecore notations in

ig. 6 (not all classes and attributes are shown on the diagram

o avoid cluttering). Their meanings are explained in the fol-
owing paragraphs.

• SepmPattern. This block represents a security pattern as a
subsystem that describes a solution for a recurring secu-
rity design problem arising in a specific design context. A
SepmPattern defines its behavior in terms of provided and
required interfaces. Larger pieces of a system’s functional-
ity may be assembled by reusing patterns as components
of an encompassing pattern or an assembly of patterns;

http://eclipse.org/papyrus/

Fig. 6 – An overview of the SEPM.

the required and provided interfaces are wired together. A
SepmPattern may be manifested by one or more artifacts.

• SepmDIPattern. This is a SepmPattern that denotes an ab-
stract representation of a security pattern at the domain-
independent level. This is the key entry artifact to model
patterns at the domain-independent level (DIPM).

• SepmInterface. A SepmPattern interacts with its environment
via SepmInterfaces , which are composed of operations. A
SepmOperation represents the functional interface of the
pattern. A SepmPattern represents the provided and re-
quired interfaces. A provided interface highlights the ser-
vices exposed to the environment. A required interface cor-
responds to services required by the pattern to function
properly.
We consider two interface types:

– SepmExternalInterface. This enables the implementation
of interactions to integrate a pattern into an application
model or to compose patterns.

– SepmTechnicalinterface. This enables the implementa-
tion of interactions with security primitives and proto-
cols, such as encryption, and specialization for specific
underlying software and/or hardware platforms during
the deployment activity. A SepmDIPattern does not have
SepmTechnicalInterfaces .
For our example, one may identify the following external
interfaces:

– send (P, Q, ch (P, Q), m),
– receive (P, Q, ch (P, Q), m),

with P and Q denoting the application sender S and appli-
cation receiver R , respectively, ch (P, Q) their communication
channel, and m a message.

• SeReference. This link is used to specify the relationship be-
tween patterns with regard to the domain and software
lifecycle stage in the form of a pattern language. For ex-
ample, a pattern at a certain software lifecycle stage uses
another pattern at the same or different software lifecycle
stage. SeReferenceKind contains examples of these links.

• SeArtifact. We define a modeling artifact as a formal-
ized piece of knowledge for understanding and commu-
nicating ideas produced and/or consumed during certain
activities of system engineering processes. The modeling
artifact may be classified in accordance with engineering
process levels.

• SeLifecycleStage. A SeLifecycleStage defines the development
lifecycle stage in which the artifact is used. In our study, we
focus on security pattern models. In this context, we use
the pattern classification of Riehle and Züllighoven (1996) ,
Buschmann et al. (2007, 1996) .

4
T
m
m
s
t
d
t
a
s
i
a
l
o

T
i
u
r
t
m
e

i
r
f
a

4
F

c
h
t
e
f

2
r

• SepmProperty. This is a particular characteristic of a pat-
tern related to the concern the pattern is addressing and
dedicated to capturing its intent in a certain manner. The
concept is employed to describe the security aspects of the
subsystem to enforce the security system requirements.
An example is security properties. The concept is used to
describe the security aspects of the subsystem to enforce
the security system requirements. A SepmProperty is de-
fined through a name, a semantic, an expression and a cat-
egory. The security attributes from (Avizienis et al., 2004)
are categories of security properties. Each property of a pat-
tern is validated at the time of the pattern validating pro-
cess, and the assumptions are compiled as a set of con-
straints that must be satisfied by the domain application
(Hamid et al., 2016). For our example, we define the follow-
ing security properties:

– authenticity of action a and action b for an application entity
P. Thus, each time action b occurs, it must be authentic
for an application entity that action a has occurred as
well. For example, each time an application receiver R
receives data d , it must be authentic for him that these
are the same data d as the data sent by a specific ap-
plication sender S , i.e., the action of sending these data,
performed by a specific application sender S , must be
authentic for the application receiver R .

– integrity of data. When data d are received by the appli-
cation receiver R , those same data d are sent out by the
application sender S .

– confidentiality of data. It denotes that only specific sys-
tem entities are enabled to know the value of data d .
For example, the private key is confidential to its owner
and the application sender S trusts the confidentiality
of the certificate authorities’ (CA) private key.

• SepmConstraint. This is a set of requisites of the pattern. If
the constraints are not met, the pattern is not able to de-
liver its properties. A constraint is a condition that holds or
must hold during the application of a pattern. It is based on
the notion of pre and post condition specification as com-
monly used in many formal methods. In our context, the
assumptions derived during the formalization and verifi-
cation processes of the pattern will be compiled as a set
of constraints, for instance, resource constraints that will
have to be satisfied by the domain application before the
pattern application can be performed and after the pattern
is applied. For our example, we specify constraints on the
cryptographic algorithms, on the size of the cryptographic
key, on the use of a security library and on the resources
consumed by a security library.

• SepmInternalStructure. This constitutes the implementation
of the solution proposed by the pattern: how the partici-
pants collaborate to carry out their responsibilities for the
realization of the solution. Thus, the InternalStructure can
be considered as a white box that exposes the details of
the SepmDIPattern and the SepmDSPattern . One pattern can
have several possible implementations, providing support
for pattern variability.

• SepmParticipant. A listing of the components used in the
pattern and their responsibilities in the design. In our con-
text, a participant is a component type with a security-
specific purpose. It’s role is to add new functionality to the
system that is specific to a security requirement the sys-
tem should uphold.

• SepmDSPattern. This is a refinement of SepmDIPattern . It
is used to build a pattern at the domain-specific level
(DSPM). Because most known techniques that address se-
curity ability are cryptography-based models, we introduce
the SepmDSPattern with a mechanism attribute to capture
such notions in the SepmDIPattern model. In the example
introduced in Section 4.2.1 , TLS is one technique to achieve
secure communication, and there are alternative ways to
achieve the same goal. Furthermore, a SepmDSPattern has
Technical Interfaces to interact with the platform. This is the
key entry artifact to model the pattern at the DSPM.

.2.3. Concrete syntax
o create model instances of the proposed metamodels, we
ust provide concrete syntaxes. In our context, we use a
ixed syntax that combines structured-tree syntax, textual

yntax and a UML-based diagrammatic syntax to describe
he SEPM’s concrete syntax. The basic idea is that the former
efines problems and objectives, the textual defines proper-
ies and constraints, and the diagrammatic part defines roles
nd solutions (SepmInternalStructure). The objective behind this
eparation is that a solution defined in the pattern can be
ntegrated (without losing information) into the application

rchitecture only if both are specified in the same modeling
anguage, e.g., UML. Conversely, the problem statement and

bjectives are independent of the chosen modeling language.
his separation enables solutions defined in different model-

ng languages to share the same problem definition, which is
seful because we are storing design patterns in a common

epository, whereas model specifications in the structured-
ree syntax are separately managed and stored. A pattern

ight eventually have multiple solutions defined in differ-
nt modeling languages. The pattern discovery approaches,
.e., the mechanisms to browse or search patterns within the
epository, are based on the non-diagrammatic part. There-
ore, from a DSML construction perspective, design patterns
re composed of two parts:

• Structured-tree component. Pattern definition that defines
pattern properties and attributes, such as safety proper-
ties, resource constraints, development phases, and rela-
tionships. These data are used to ease pattern search and
analysis.

• UML-based diagrammatic component. Pattern internal struc-
ture design files generated via additional tools, e.g., Rhap-
sody or Papyrus (UML editors), which are stored as XMI
files and can be attached to the pattern description file
(SepmDocument).

.2.4. Pattern verification process
ormal modeling of patterns, combined with model checking,
an prove some of the properties of a pattern’s solution. We
ave made some experimentations (Hamid et al., 2016; 2011)

o apply the techniques for formally proving security prop-
rties of security patterns provided by the security modeling
ramework (SeMF) developed by Fraunhofer SIT(Gürgens et al.,
005), following the two abstraction levels of the pattern rep-
esentations. In contrast to other formal security engineering

methods (Devanbu et al., 2000; Landwehr, 1981; Paulson, 1996),
the used formal security framework, referred to as SeMF, is
not following the attack nor the risk based approaches. Its
basis are a set of desired security properties and associated
assumptions. With SeMF it is possible to validate if proper-
ties like trust, authenticity or confidentiality hold under given
assumptions. The side benefit is case a stated assumption
does not hold is that possible consequences in regard to secu-
rity properties can be estimated. The proof itself is conducted
mostly with pencil and paper and the resulted proof artifacts
will be utilized by the designer as input to the pattern-based
development process. For more information regarding the for-
mal framework and the definitions of security properties we
refer the reader to Fuchs et al. (2010) and Hamid et al. (2016) .

Here, we report on an experiment to apply SeMF to the
DIPM and DSPM for the secure communication pattern target-
ing the security property each time the server side of the commu-
nication channel receives a message on the channel, for the server it
authentically originates from the client side of the channel.

4.3. Step 3: Definition of security patterns

Once we have developed the DSML’s concrete syntax in Step
2, we can create the set of security patterns to share the secu-
rity expertise within the domain of interest. During this step,
the patterns are constructed such that they conform to the
metamodel description adopted in Step 2. To foster technol-
ogy reuse across domains, the patterns are stored in a reposi-
tory, such as that described in Hamid (2017) , thus reducing the
amount of effort and time needed to design a complex system.

The target representation is the domain-independent level
(DIPM), while still conforming to the SEPM metamodel. At the
DIPM level, this description reveals the following elements: in-
terfaces of type SepmExternalInterface , security properties of type
SepmProperty and solutions of type SepmInternalStructure . More-
over, for classification and relationship definition purposes,
additional information may be defined, e.g., lifecycle stages
of type SeLifecycleStage and relationships of type SeReference ,
respectively.

The first task is to create a basic pattern subsystem as an
instance of the SepmPattern . The instance is given a name
and a set of attributes that correspond to the pattern. The
description, with varying levels of abstraction, is managed by
inheritance. Once the basic pattern subsystem is specified, in-
terfaces are added to expose some of the pattern’s functional-
ities. For each interface, an instance of SepmExternaInterface is
added to the pattern’s interface collection. The next step after
creating interfaces is the creation of property instances. An in-
stance is created in the pattern’s property collection to specify
every identified security property. A property is given a name
and an expression based on external interfaces in a property
language.

We continue our illustration using the example of the se-
cure communication pattern . For the sake of simplicity, we spec-
ify only those elements related to both Step 2 and Step 3 that
are required to explain our approach. The secure communi-
cation pattern enables a secure data exchange between com-
ponents over a non-secure communication channel (e.g., Eth-
ernet), thus ensuring the integrity and confidentiality of the
data and the authenticity of the sender. Messages sent among
distributed system functions (components) shall arrive from
authorized sender(s) without data modification. If any at-
tacker sends a message or modifies an existing one, this mes-
sage should be discarded by the receiver security communi-
cation layer, and the destination function might be informed
of this action.

The domain-independent pattern uses an abstract chan-
nel and provides message authenticity under specific assump-
tions, particularly with regard to the trust of the server with
the precedence of its own receive action via a send action per-
formed by the respective client. The channel authentication
layer uses a proprietary key to authenticate itself in the com-
munication. On the receiving side, the channel authentication
performs necessary checks to ensure that the received mes-
sage is authentic and that the data receiving function trusts
the channel authentication. In our example, we identified two
external interfaces, one for the client and one for the server,
providing the following functions:

• establCh (P, ch k (P, Q)): P establishes a channel ch k with Q ,
• send (P, ch k (P, Q), m): P sends message m on the channel ch k

shared with Q ,
• recv (P, Q, ch k (P, Q), m): P receives and accepts message m on

the channel ch k shared with Q ,
• closeCh (P, ch k (P, Q)): P closes the channel ch k shared with Q .

with P ∈ { C 1 , . . . , c n } and Q = S or vice versa, ch k (C, S) = ch k (S, C)
and k ∈ N .

The next concern of the process is the definition of the
pattern security properties. The supporting activities require
the availability of a set of property libraries. For the example
of the secure communication pattern at the DIPM level, we
specify the security property: “authenticity of receiving for the
server”. For this we note that the server sees its own actions,
thus the action of receiving a message is particularly authen-
tic for the server itself. Further, the server will never accept a
message on a channel it has already closed: Every receive ac-
tion for a particular message m occurs within an active chan-
nel. This means that receipt and acceptance of a message by
the server occur authentically for the server within the phase
that corresponds to the active channel ch k (P, Q) being estab-
lished and closed, respectively. To type the category of this
property we use a category from the ones defined in the secu-
rity category library “Authenticity”. For the other types of prop-
erties, we have to consider a concrete solution. There exist var-
ious different possibilities for such patterns that refine the ab-
stract communication channel and thus the abstract pattern.
One possibility is, e.g., to execute a Diffie Hellman based key
exchange algorithm. Another possibility that we will focus on
in the next section is the establishment of a TLS channel.

Furthermore, each pattern is studied to identify its rela-
tionships with other patterns belonging to the same appli-
cation domain based on the engineering process activity in
which it is utilized. The purpose of this activity is to orga-
nize patterns into a set of pattern systems. Moreover, this step
should include all activities that support pattern producers
in managing the relationships among these patterns, which
can be defined in pattern relationship model libraries. At each
stage (phase) n of the system engineering development pro-
cess, the patterns identified in the previous stage (phase) n −1

Fig. 7 – Tree-shaped pattern refinement and specialization.

c

S

A
c
p

c
t
t
d
fi
o
l

B
c
t
t
p
a
w

2
p
fi
c

i
t
(
n
c
c
s
c
s

t
c
a
d
t
fl
m
i
c
t
c
t

4
d

A
s

O
f
S

T
l
f
c

s
s
s
d
a

i
t

S
t
f
w
t
o
a
t
r
c
t
d
u
D
c
t
e
e
n
t
r
t
l
s

t

an assist in the selection process during the current phase.
imilarly, we specify model libraries for patterns classification.
t each stage of the system engineering development pro-
ess, the appropriate patterns are identified via a classification

rocess.
After an initial analysis of the various artifact sources, in-

luding standards and existing applications, the designer de-
ermines the stage of the engineering process lifecycle (sys-
em concept, system architecture, software architecture, and

etailed module design) in which each pattern can be de-
ned; moreover, whether the pattern is domain-independent
r domain-specific can be determined. For this purpose, we se-

ect the pattern classification of Riehle and Züllighoven (1996) ,
uschmann et al. (2007, 1996) , who defined system patterns, ar-
hitectural patterns, design patterns and implementation patterns
o create the SeLifecycleStage model library. In addition, a pat-
ern may be linked with other patterns and associated with

roperty models using a predefined set of reference types, at
 very high-level (Noble, 1998) or including details regarding
hat part of a pattern is used, refined, or combined (Hauge,

014). Here, we create the SeReferenceKind model library to sup-
ort the specification of relationships across artifacts (e.g., re-
nes, specializes and uses) as an extension of the relationship

lassification proposed in (Noble, 1998).
In the context of our work, certain patterns have a mean-

ngful representation at the system level, at which general sys-
em blocks are defined and domain concepts are expressed

e.g., system skeleton). However, their representations might
ot be directly refined in later phases because they represent
oncepts that are meaningful at only the architectural level. In

ontrast, other patterns might be meaningful only in later de-
ign phases as indirect specializations of an architectural con-
ept, e.g., a secure remote read out (SRR) software pattern is a
pecialization of an architectural skeleton pattern. In addition,
he same pattern may have multiple instantiations and spe-
ializations in each phase (e.g., a Wakeup Service is linked to
 hardware component). Therefore, as shown in Fig. 7 , a given

esign pattern (secure communication pattern) in the reposi-
ory might follow a tree-shaped refinement and specialization

ow, representing different lifecycle phases, different refine-
ents and specializations, and new pattern representations

n later phases. For instance, TLS provides the mechanisms for
onfidential information exchange through ECC (NIST-P256)
o support secure channel definition and content data en-
ryption and the authentication of communication partners
hrough digital signatures using ECDSA (NIST-P256).
.4. Step 4: Definition of security patterns for a specific
omain

t the domain-specific level (DSPM), the security pattern and

ome of its related elements are also created by inheritance.
nce a SepmDSPattern is created, every pattern external inter-

ace is identified and modeled as a refinement of the DIPM’s
epmExternalInterface in the pattern’s interfaces collection.
hen, following the pattern’s description of the particular so-

ution that is represented, each of the pattern’s technical inter-
aces is identified and modeled by an instance of SepmTechni-
alInterface in the pattern’s interfaces collection.

In the context of our experiment, the metrology domain-
pecific pattern must be compliant not only with the generic
ecurity standards but also with metrology-specific security
tandards. Some patterns, for example Wakeup Service are
efined exclusively for the metrology domain and others
re adapted from generic security standards. For instance,
n the Common Criteria Protection Profile of the smart me-
er gateway (BSI, 2014), the use of the TLS protocol (refer to
ection 4.2.1) providing a secure communication channel be-
ween two communication partners is marked as mandatory
or all connections between a gateway and wide area net-
ork. Therefore, the domain specific secure communication pat-

ern as a refinement of the domain independent one is based

n TLS. It implements the abstract channel by establishing
 TLS channel based on shared secrets. The TLS channel in

urn provides the server’s trust into precedence of message
eceipt via sending of messages performed by the respective
lient, again under certain assumptions. The TLS pattern uses
he server’s public and private keys for RSA encryption and

ecryption (which is part of the pattern itself and does not
se a further RSA pattern) and an additional pattern such as
RBG for random number generation that must satisfy spe-
ific properties. A client and a server establish a communica-
ion channel by exchanging three random numbers (two gen-
rated by the client and one generated by the server) and gen-
rating a set of different session keys based on these random

umbers. Because the client’s second random number is sent
o the server encrypted with the server’s public RSA key, this
andom number, if generated confidentially, stays confiden-
ial, and hence all session keys are confidential, thus estab-
ishing an authentic and confidential channel for client and

erver.
For instance, when using TLS as a mechanism related to

he application domain to refine the secure communication

 :

pattern at DSPM, we manage the following artifacts. The ex-
ternal interfaces are defined as a refinement of the DIPM ex-
ternal interfaces. In addition to the refinement of the concepts
used at DIPM, the process involves the definition of technical
interfaces. These two activities are complementary and can
be mutually reinforcing when undertaken simultaneously. For
instance, the establishment of a channel using the TLS mech-
anism is a refinement of the DIPM action establCh (P, ch (P, Q)):
We add the random numbers generated by P and Q using
the corresponding technical interfaces (genRnd (P, Q)), which
results into est abl Ch (P, ch (P, rnd P , preMS P , Q, rnd Q)) . A subset of
the functions provided by the external interfaces is:

• establCh (P, ch (P, rnd P , preMS P , Q, rnd Q)): P establishes a chan-
nel ch (. . .) with Q ,

• send(P, ch (P, rnd P , preMS P , Q, rnd Q) , m, mac (preMS P , . . . , m)) : P
sends m and the corresponding MAC to Q on the channel
ch (. . .) ,

• recv (P, ch (P, rnd P , preMS P , Q, rnd Q) , m, mac (preMS P , . . . , m)) : P
receives m and the corresponding MAC from Q on the chan-
nel ch (. . .) ,

• closeCh (P, ch (P, rnd P , preMS P , Q, rnd Q)): P closes the channel
ch (. . .) shared with Q .

with P, Q as defined above, rnd P and preMS P denoting a random
number and the premaster secret, respectively, generated by
P, m denoting a message and mac (preMS P , . . . , m) the message
authentication code generated using the premaster secret.

The technical interfaces are defined as a set of functions
related to the use of TLS to refine the secure communication
pattern. A subset of the functions provided by the internal in-
terfaces is

• genRnd (P, rnd P): P generates a random number rnd P ,
• getCert (P, cert): P has access to its certificate,
• getKey (P, PuK CA): P has access to the CA

′ s public key,
• verifyCert (P, PuK CA , cert): P verifies the certificate cert ,
• genMac (P, ch (P, rnd P , preMS P , Q, rnd Q) , m, mac (preMS P , . . . , m))

P generates the message authentication code (MAC) for
a message using its own TLS shared secret for MAC
generation

At the DSPM level, we define several concrete security prop-
erties, including “authenticity of sending and receiving for the
server.” Other properties related to the usage of TLS may also
be defined, such as “confidentiality of the session key.”

4.5. Step 5: Adaptation for a specific domain development
environment

The final steps (5 and 6) are performed to support the devel-
opment of a specific system. Step 5 identifies appropriate pat-
terns and creates tailored versions that represent model con-
cepts in the domain of interest and that can be adapted to both
the system development process and the development envi-
ronment. The selection of a pattern is primarily the choice of
the developer. There are various considerations that may nar-
row and simplify this choice. The first is the purpose of the
pattern application. Although this purpose cannot be gener-
ally formalized, certain patterns address requirements that
are defined by domain standards (e.g., security). If these re-
quirements are stored in a model library and referenced in
the definitions of the patterns, then the selection of patterns
could be driven by the selection of (domain) requirements. The
second consideration is that patterns can be classified with re-
spect to several properties, one of which is the stage of the en-
gineering process lifecycle discussed in Section 4.3 - a pattern
may be relevant to the system, its architecture, or to aspects
of its design or implementation. Thus, it must be possible to
filter available modeling artifacts based on this classification.

In the context of our work, the target domain develop-
ment environment is IBM Rational Rhapsody, and the descrip-
tions of the model transformations are based on the QVT op-
erational language. Therefore, the design of a given pattern
can be regarded as a single package that contains one sub-
package per lifecycle phase of the engineering process; each
of these phases can contain design modules and additional
sub-packages associated with particular specializations and
refinements. Thus, imported patterns are stored inside a ded-
icated package that facilitates searching within the package
tree of each design. Moreover, to foster reuse, the pattern ar-
tifacts related to that phase are instantiated from the reposi-
tory to the vehicular modeling tool as a reference package. The
right part of Fig. 9 shows a pattern design deployed in pack-
ages using the IBM Rational Rhapsody tool. Each pattern de-
sign package generally contains the following items:

• Any information that is required by the end-user pattern
integrator, e.g., a UML class or SysML block, with interfaces
that enable the interconnection of patterns with a given
system design.

• Additional detailed information of interest, e.g., a “struc-
ture” package that contains the static internal structure
(e.g., class diagram) and the dynamic structure (e.g., se-
quence diagram).

4.6. Step 6: Reuse for a specific system development

This section focuses on the use of patterns in a software de-
velopment process. The integration of a pattern involves the
application of a solution provided by that pattern in an exist-
ing application architecture to take advantage of its benefits.
We cannot simply copy such a solution into the architecture
under development. Instead, we must account for the inter-
play between elements that previously exist in the application
and the elements of the pattern.

To address this issue, a specific activity called Integration ,
which was previously studied in Hamid et al. (2012) , is used
herein. In the context of our example, by executing a tailor-
ing activity, the pattern is exported in an XMI file. Then, it
must be imported from Rhapsody. As shown in the right part
of Fig. 9 , once the pattern is imported in Rhapsody as a pack-
age, a project tree is generated and its artifacts are available in
the project. Therefore, in each phase, the system developer ex-
ecutes the search/select task on the repository to tailor appro-
priate patterns for the modeling environment using the iden-
tification and the tailoring processes described in Section 4.5 .
The developer then integrates them into the application
models following an incremental process. In the software

a
t

l
d
t
t
a
p
f
p
d
t
v
c

c
o
u
t
r
f
t
n
s
i
o
t
c

T
s

a
e
t

5

I
p
p

t
m
a
a
f

t
m
a

7 http://www.semcomdt.org.
rchitecture phase, our process flow can be summarized by
he following steps:

1. The software architect searches for different specializa-
tions (at the software architecture-definition level) of
the patterns to complement the design.

2. The software architect selects the appropriate set of
identified patterns.

3. The software architect imports the software architec-
ture design perspective of each pattern into the vehic-
ular modeling environment (Rhapsody) as a reference
package. The application developer is responsible for
linking the pattern interfaces to integrate the pattern
at that specific level.

4. The software architect integrates the pattern into the
existing software architecture design diagrams.

Moreover, in our work we consider the definition of guide-
ines to correctly use security patterns. At security application

esign-time, formal modeling of patterns can prove some of
he properties of a pattern solution. It must be ensured that
he assumptions used to prove the correctness of the pattern

re indeed satisfied by the particular environment of the ap-
lication, following the unified modeling and formal design

ramework for pattern definition and verification processes
roposed in Hamid et al. (2016) . Stored in a repository, vali-
ated security patterns are then made available for integra-
ion into an MDE process to develop secure applications for
arious domains. Beyond this, we store in the repository asso-
iated verification artifacts, i.e., properties and assumptions.

When using the pattern, an application developer will be
oncerned with the security requirements expressed in terms
f the external interface, i.e., in terms of the function calls
sed by the application. Thus, any formal proof needs to refer
o these function calls. Alternately, the solution described in a
espective DSPM pattern must be modeled in terms of refined

unction calls. Intuitively, we propose handling the assump-
ions that the proof is based on as a set of constraints that
eed to be satisfied in order for the pattern and the solution it
pecifies to provide the proven pattern properties in terms of
ts interfaces. In other words, we execute the different steps
f the proof and the related assumptions as requirements on

he external and technical interfaces. This is the basis of the
orrect integration of patterns

For example, when proving the authenticity property the
LS Handshake (Hamid et al., 2016), we used the following as-
umptions:

• A ss1. The client does not encrypt the premaster secret with
two different public keys (it might encrypt it twice using
the same key).

• A ss2. The receiver application entity must not accept a
message after having closed the respective channel.

• A ss3. The shared secrets must be deployed in such a way
that they are only known to the sender and the receiver
application entities.

• A ss4. The receiver will not use the shared secret of the
sender to compute HMACs.

• A ss5. The random number generator produces unpre-
dictable random numbers.
We now introduce some constraints derived from theses
ssumptions that the application developer needs to verify to
nsure that the pattern used indeed provides the required au-
henticity property:

• Implementation of sender and receiver (i.e. client and
server) application entities. The sender application entity
must be implemented adhering to assumption Ass.1. The
receiver application entity must be implemented in com-
pliance with assumption Ass.2.

• Key Handling. The HMAC algorithm works with shared se-
crets deployed according to Ass.3. Further, it must be en-
sured that the receiver satisfies Ass.4. This also means that
the same shared secret must not be used for bi-directional
transmissions.

• Random number generation. The sender application entity
must ensure that it uses a random number as basis for the
premaster secret and that the random number generator
adhere to Ass.5.

. Tool support

n this section, we propose an MDE tool chain to support the
roposed approach and to assist the developers of model- and

attern-based secure software systems. As discussed below,
he proposed tool chain is designed to support the proposed

etamodels; hence, the tool chain and the remainder of the
ctivities involved in the approach may be developed in par-
llel. The appropriate tools for supporting our approach must
ulfill the following key requirements:

• Enable the creation of the UML class diagrams used to de-
scribe the pattern metamodel in our approach.

• Enable the creation of a concrete syntax.
• Support the implementation of a repository to store pat-

tern models and the related model libraries for classifica-
tion and relationships.

• Enable the creation of pattern models and the related
model libraries and the publication of the results into the
repository.

• Support the administration and the internal management
of the repository.

• Enable the creation of visualizations of the repository to
facilitate its access.

• Enable the creation of application models.
• Enable transformations of the models from the repository

format into that of the target modeling environment.
• Enable the integration of application models and imported

patterns.
• Support application-specific code generation.

To satisfy the above requirements, we develop an MDE
ool chain on top of the current version of Semcomdt 7 (SEMCO

odel development tools) to support all the steps in our
pproach.

http://www.semcomdt.org

Fig. 8 – Designing a pattern.

The repository is implemented using the Eclipse CDO

8

framework. We use the same process flows for the design
and implementation of a reuse model repository such as the
one described in Hamid (2017) . We apply metamodeling tech-
niques that enable the specification of the repository structure
and interfaces to content in the form of modeling artifacts and
model transformation techniques for the purpose of genera-
tion. To populate the repository, we construct a pattern design
tool (Arabion) to be used by a pattern designer. Arabion in-
teracts with the repository for publication purposes. The pat-
tern design environment is presented in Fig. 8 . A design palette
is shown on the right, a tree view of the project is shown on
the left, and the main design environment is presented in the
middle. Furthermore, Arabion includes mechanisms for veri-
fying the conformity of the pattern with the SEPM metamodel
and for publishing the results to the repository.

Rhapsody is used as the domain-specific design software
tool to design (and implement) the system using UML/SysML
modeling languages. For example, it can be used to design sys-
tems based on packages, where one package might contain
design diagrams and/or additional packages. Based on this ap-
proach, the design of a given pattern can be considered a sin-
gle package that contains one sub-package per safety engi-
neering process lifecycle phase; each of these phases might
contain design modules and additional sub-packages associ-
ated with specializations and refinements. Thus, the access
tool provides the option to export patterns in a format that can
be imported by the Rhapsody tools. Therefore, a customized
access tool, such as the one shown in Fig. 9 , is developed to
construct connections between the metrology development
8 http://www.eclipse.org/cdo/ .

environment and the repository of patterns. The access tool
provides a set of functions to assist in the search, selection
and sorting of patterns:

Rhapsody is used as the domain-specific design software
tool to design (and implement) the system using UML/SysML
modeling languages. For example, Rhapsody can be used to
design systems based on packages, where one package might
contain design diagrams and/or additional packages. Based on
this approach, the design of a given pattern can be considered
as a single package that contains one subpackage per secu-
rity engineering process lifecycle phase; each of these phases
might contain design modules and additional subpackages as-
sociated with specializations and refinements. Thus, the ac-
cess tool provides the option to export patterns in a format
that can be imported by the Rhapsody tools. Therefore, a cus-
tomized access tool, such as the one shown in Fig. 9 , is de-
veloped to construct connections between the metrology de-
velopment environment and the repository of patterns. The
access tool provides a set of functions to assist in the search,
selection and sorting of patterns:

1. Keyword based search for patterns: Feedback from en-
gineers of companies with a line of business in the
metrology domain revealed a clear preference for a
keyword-based search when querying the repository for
patterns.

2. Context based search for patterns: In some cases, en-
gineers need to find specializations or linked patterns
for the solution provided by an already instantiated
pattern.

3. Pattern browser for manual pattern search: The ac-
cess tool provides a dedicated pattern browser tab for

http://www.eclipse.org/cdo/

Fig. 9 – Metrology access tool.

a
s
p
s

t
t

p
m
c
i
t
m
c
t
o

a
t
c
a
e
r

a
f

6

I
f
a
m
a
m
n

w
p
b

6

W
p

t
m
m
a
r
t
t
s

c
d
i
m

manually browsing the pattern repository for new pat-
terns or for obtaining an overview of the solutions avail-
able.

4. History of already exported and instantiated patterns
(project related): To ensure consistency, it is important
to know which patterns have already been instantiated
and integrated during the different phases of the devel-
opment process.

For example, as shown in the left part of Fig. 9 , the tool
ssists in selecting appropriate patterns through key word

earches and lifecycle stage searches. The results are dis-
layed in the search result tree as system, architecture, de-
ign and implementation patterns. When a pattern is selected,
he access tool instantiates the pattern in the domain-specific
ool, as shown in the right part of Fig. 9 . Because this task is
erformed during product development, the selected pattern

ust be compliant with the current phase of the domain pro-
ess and with the user tools. By accessing the repository, we
ntroduce features based on model transformation techniques
o adapt the pattern model to the target development environ-

ent. In our work, the target format is a subset of UML that
an be imported using Rhapsody and the model transforma-
ions, which was developed using the Eclipse implementation

f QVTO.
As shown in Fig. 9 , the system architect types in a query

nd searches the readout to find the most suitable design pat-
ern instantiation for the corresponding phase. The system ar-
hitect analyzes all possible options, selects “SRR_ Metrology”
nd clicks Export . By clicking the Export button, the pattern is
xported as a Rhapsody-referenced package to the selected di-
ectory. Once the pattern is imported into Rhapsody as a pack-
ge, a project tree is generated, and its artifacts are available
or use in the project.

. Evaluation

n this section, we first report an industrial case study per-
ormed in the metrology domain (Section 6.1), followed by
 description of a survey performed among metrology do-
ain experts to better understand their perceptions of our

pproach (Section 6.2). The case study enables us to deter-
ine whether the pattern-based approach leads to a reduced

umber or to a simplification of the engineering process steps,
hereas the survey assists in assessing whether domain ex-
erts agree regarding the benefit of adopting the pattern-
ased approach in a real industrial context.

.1. Case study

e use smart meter gateway systems to exemplify the pro-
osed approach. A smart meter gateway (BSI, 2014), is a sys-
em capable of connecting to several meters for different com-

odities, such as electricity, gas, water or heat, and com-
unicating with households and other remote entities, such

s regulations. It enables additional services, such as accu-
ate monthly bills and consumption information regarding
he actual time of use. Smart meters utilize embedded sys-
ems providing network connectivity to the backend. In this
cenario, communicating different information (e.g., readouts,
onsumption data, parameters) with several entities raises ad-
itional security concerns. It is important to have authentic

nformation about the energy consumed at different measure-
ent points. Hence, security for metering has become an im-

portant question, and security functionality has been shifted
completely to the gateway. To address these security concerns,
several design techniques from related standards and other
techniques, such as digital signatures to ensure the authen-
ticity and integrity of measurements, have been introduced to
the metrology domain.

In this subsection, the adaptation of metrology processes
to incorporate the pattern-based approach is described. We
evaluate the proposed approach in the construction of a
methodology that is adapted for engineering secure systems
by combining the MDE process and security patterns. Further-
more, we evaluate the usefulness of the patterns with respect
to increasing engineering productivity. The goal of the case
study was to determine the feasibility of the approach and the
level of effort involved in its application for this case study. In
the presentation of the case study and its results, we do not
show the complete resulting model because it contains pro-
prietary information from our industrial partner.

6.1.1. Nature of the case study
The aim of this case study is providing a methodology to
improve existing approaches to engineering secure systems
using MDE. Therefore, the case study can be seen as an im-
provement case study (Runeson and Höst, 2009). To obtain sci-
entifically sound results that enable comparison with current
practice, it is necessary to perform a study in which compa-
rable systems are designed in parallel by equivalent engineer-
ing teams. This method is not feasible within the scope of our
work because of a lack of resources required to develop the
system addressed in the case study twice. Note, however, that
the stakeholders’ perceptions discussed in Section 6.2 could
be used for comparison.

The smart meter gateway demonstrator, which is a simpli-
fied version of a real gateway PP that enables connecting to
several meters for different commodities, such as electricity,
gas, water or heat, and communicating data with remote en-
tities in a WAN (Wide Area Network) or HAN (Home Area Net-
work), is visualized in Fig. 10 . Additionally, for confidentiality
reasons, we use a small but realistic setting to illustrate the
security pattern-based approach proposed herein. The meter
in the LMN (Local Metrological Network) is an electricity meter
that is located in the same housing as the gateway. The com-
bined gateway/meter housing is sealed and defined as a se-
cure environment. The electricity meter communicates mea-
surement information with the gateway.

The main function of this demonstrator is to ensure that
the measurement information is processed in the gateway
and exchanged with the remote readout center in the WAN.
The remote readout center (RRC) functions as an authorized
external entity, as depicted in Fig. 10 . The gateway acts as
the connecting piece between three different networks: WAN,
LMN and HAN. For consumer interaction, the gateway pro-
vides a display and several LEDs for status indication. The dis-
play can be seen as part of the home area network. Further-
more, a hardware security module (HSM) is part of the gate-
way. This is required by the protection profile to provide hard-
ware cryptographic functionality and a secure storage for the
gateway system. More detailed information regarding the sce-
nario and the roles involved is given in Gonzalez and Weber
(2013) .
In our context, the term smart meter gateway is a synonym
for the communication unit of modern smart meters. In con-
trast to the communication units of classical meters, gateways
offer a wide range of new functions needed for a secure smart
grid operation. Most of their functionalities address the pro-
cessing and exchange of information between the different
actors and networks. Smart meters and their gateways gener-
ate security- and safety-relevant, as well as privacy-sensitive,
data and transmit them over possibly insecure networks. A
special kind of protection is required for these data. Among
other approaches, the German Federal Office for Information
Security issued a common criteria protection profile (PP) for
the communication unit of a smart meter (BSI, 2014). The se-
curity requirements of the proposed case study are extracted
from a simplified analysis of the PP standard with the consid-
eration that the objective of the case study is not the devel-
opment of complete, certifiable and interoperable metrology
system but the provision of a case study that is as realistic as
possible and that can be developed within the scope our study.

6.1.2. Research questions
The purpose of this study was to address the following two
research questions:

• RQ1. Is the approach feasible? More precisely, this ques-
tion concerns (1) whether the developed conceptual model
allows capturing security patterns, and (2) whether the
proposed methodology, modeling language and tool suite
allow the engineering of secure systems using patterns
based upon a security pattern’s conceptual model. For
answering RQ1 , we do not consider the creation of the
domain models and the development of a reuse mode
repository required in our approach. These activities are
technically realizable and do not require a feasibility in-
vestigation (Hamid, 2014).

• RQ2. Is the effort involved in the application of the approach
acceptable? The ultimated goal is the adoption of the ap-
proach in industry. Effort required in the usage of a new
approach is an important factor for its successful adoption.
For RQ2 , we measure the effort spent throughout the case
study, including the development of the methodology and
tool suite for PBSE. The goal is to assess whether experts
find the level of effort reasonable.

6.1.3. Description of the application

Fig. 11 provides a diagram of the selected cases of the devel-
oped smart meter system, illustrating their relationships and
identifying them as either security-relevant or non-security-
relevant cases. These cases can be described as follows

1. Exchange measurement data and information on actual
consumption and generation of electricity: (1) Gateway
establishes a remote connection with the authorized
external entity; (2) gateway sends measurement infor-
mation; and (3) gateway closes the remote connection
with the authorized external entity.

2. Exchange status data and parameters and administrate
the device.

3. Exchange measurement data on consumed and gen-
erated commodities: gateway sends command to read

Fig. 10 – Smart meter system diagram.

Fig. 11 – Part of a smart meter use-case diagram.

g
t
t
a
t

i
g

c
w
fi
s
t
m

data from the meter; (2) meter sends requested data to
the gateway; and (3) gateway processes and stores data.

4. Read information on actual electricity consumption and
total amount of energy consumed: (1) acquire measure-
ment and (2) display measurement on the LCD.

Furthermore, a direct connection between the smart meter
ateway and the remote readout center is assumed. In prac-
ice, different communication and networking topologies be-
ween a gateway and authorized external entities in a WAN

re deployed. Some of them use data concentrators or substa-
ions in their nodes. According to the protection profile and its
ntended end-to-end security, the topology is invisible for the
ateway and will not influence the described scenario.

The security characteristics of the smart meter gateway
an be easily extracted from the protection profile of the gate-
ay of a smart metering system provided by the Federal Of-
ce of Information Security (BSI, 2014). The requirements de-
cribed below are a summary (with some revisited informa-
ion) of the security requirements and are defined as require-

ents to protect the corresponding assets:

1. Meter data. Meter readings that allow calculation of the
quantity of a commodity, e.g., electricity consumed over
a period.

Table 2 – List of patterns.

Pattern Origin

Authorization (AZ) (BSI, 2014; Fernandez, 2013)
Secure Communication

(SC)
(Dierks and Rescorla, 2008; Rescorla
and Modadugu, 2012; Schumacher et
al., 2005)

Key Manager (KM) (Callas et al. 2007; Schumacher et al.,
2005)

Random Number
Generator (RNG)

(Barker and Kelsey, 2012)

(a) Integrity and authenticity (comparable to the classi-
cal meter and its security requirements)

(b) Confidentiality (due to privacy concerns)
2. Consumption data. Billing-relevant part of meter data.

(a) Integrity and authenticity (comparable to the classi-
cal meter and its security requirements)

(b) Confidentiality (due to privacy concerns)
3. Status data . Grid status data, subset of meter data that

is not billing-relevant.
(a) Integrity and authenticity
(b) Confidentiality (due to privacy concerns)

6.1.4. Data collection procedure
The procedure used for developing these demonstrators
closely followed the approach described in Section 4 . Given
the domain requirements, a conceptual model of security pat-
terns was built by studying the state-of-the-art with respect
to pattern modeling and formalization and by analyzing stan-
dards. This work was done by the two authors. The model was
presented to a group of 8 security experts during a TERESA
advisory board meeting workshop. During this workshop, the
concepts were presented and explained in detail. Taking into
account some of the feedback, the model was subsequently
revised. The next step was the creation of the modeling lan-
guage (abstract and concrete syntaxes) for the specification of
security patterns. We proposed an abstract syntax (a meta-
model) by means of an OMG-style metamodel. The abstract
syntax is based on the conceptual model of security patterns.
We then reviewed and refined this DSML over several meet-
ings with an expert in security engineering at the partner
company where we were conducting the case study. This work
was done by the first author. Then, we proceeded with the im-
plementation of the MDE tool chain, including the develop-
ment of a customized access tool (see Section 5). This work
was performed by the first author in close collaboration with
two PhD students.

The third and fourth steps involved the definition of secu-
rity patterns for populating the repository. This included the
(one-time) effort made to identify and understand security
patterns and the relationships between them, reading each
pattern’s standard documentation and creating the pattern
models using the MDE tool chain. The resulting patterns are
specialized with respect to the needs of the supplier and in-
clude concepts specific to the smart meter gateway systems
developed by the supplier. Steps 3 and 4 were carried out by
the second author, and the results were reviewed by the ex-
perts at the partner company.

The next steps involved the development of an applica-
tion using patterns. To this end, we first created a generic do-
main model (i.e., smart meter gateway system model) using a
description found in BSI (2014) . Once the domain model had
been created, the pattern-based process was carried out. As
mentioned earlier in Section 4 , the integration phase of our
approach requires finding and tailoring suitable patterns to a
form that is appropriate for the targeted development envi-
ronment using the MDE tool chain. Steps 5 and 6 were carried
out by the two authors, and the results were reviewed by the
experts at the partner company.
6.1.5. Results
Here, we present the results of our case study. Because ele-
ments of this study were discussed in Sections 4 and 5 to ex-
plain our approach, we provide only an overview of the out-
comes of the case study (Step 3, Step 4, Step 5 and Step 6).

6.1.5.1. Definition of security patterns (Step 3) In this step,
the architects analyze the system security requirements and
identify possible security patterns to be used. Table 2 presents
the list of patterns to be used in the metrology demonstra-
tor. This list populates the repository of security patterns for
the metrology domain through the MDE tool set presented in
Section 5 .

6.1.5.2. Definition of security patterns for a specific domain (Step
4) The domain-specific perspective of a pattern is dependent
on the solution/product; each (commercial) implementation
provides different characteristics and features. In the context
of our work, a metrology-specific model is constructed based
on previous patterns using the tool suite. We use the same
process flows as applied for the domain-independent repre-
sentation, although the appropriate features of the toolset are
used to create and deposit the corresponding domain-specific
representations of these patterns into the repository. Here,
we present a subset while focusing on the specific metrology
realizations.

• Smart Meter Gateway (SMGW). The protection profile for
the smart meter gateway requires an absolute separation
of the communication interfaces at the logical as well as
physical level. For an application engineer, it is very im-
portant to pay attention to this requirement in an early
high-level design phase to avoid problems. The smart me-
ter gateway pattern provides a component diagram, as de-
picted in Fig. 12 , to integrate the separated interfaces at the
architecture level. An alternative to the BSI proposal for the
architecture of the interconnection of smart metering de-
vices, as shown in Fig. 10 , was proposed by the Department
of Energy and Climate Change in the UK (DECC, 2015). The
“Communications Hub” in both architectures are similar.
The only difference is that the HAN includes the LMN as
well as the end user devices.

• Secure Remote Readout (SecureRR). This pattern is defined
exclusively for the metrology. According to the PP (BSI,
2014), the data to be remotely read out (measurement
data and compulsory relevant log for meters) is protected
against manipulation with the help of digital signatures.

Fig. 12 – Component diagram of the gateway’s WAN, HAN and LMN interfaces.

6
p
S
g
c
i

f
g
s
t
p
a
f
fi
n
t
t
p

o
s
p
c
f
F
s
g

I
f
i
t
c

l
q
c
o
t

At the moment the measurement data becomes available,
a timestamp is appended, and a digital signature is cre-
ated over the data and the timestamp. These three parts
(data, timestamp, signature) are concatenated into a tuple.
Any of the later processing steps (e.g., saving to persistent
memory, transferring to the remote readout center) works
on the tuple as a whole.

• Wakeup Service (Wakeup). This pattern is an absolutely
smart-meter-gateway-specific pattern. It implements the
secure wakeup functionality, as required by the gateway
protection profile (BSI, 2014). The remote entity sends a
probe to the gateway. The gateway verifies the probe and
responds with its own connection initiation to the remote
entity if the authenticity of the probe is satisfied. If the
probe is found to be unauthentic, the gateway simply drops
the probe without any response.

• Secure Communication (SC). In the common criteria protec-
tion profile of the smart meter gateway, a TLS protocol
(Dierks and Rescorla, 2008) providing a secure communi-
cation channel between two communication partners is
deemed mandatory for all connections between a gateway
and a wide area network. TLS ensures that a handshake
is performed between the gateway and the remote entity
before any communication can occur. All the communica-
tion that occurs afterwards is encrypted using the algo-
rithms and keys, etc., negotiated during the handshake.
Thus, the data transmission occurs with authentic enti-
ties and is confidential. An important issue to note here
is that DTLS (Datagram Transport Layer Security) (Rescorla
and Modadugu, 2012) protocol can be used as alternative
solution in the context of resource constrained systems.

• Key Manager (KM). Within the gateway scenario, different
keys have to be handled. The key manager pattern provides
assistance to the application engineer to design a secure
solution. The key manager uses different key rings, such
as the public key ring and the private key ring. The keys
from the key ring are used exclusively for their intended
purposes.

.1.5.3. System developer perspective: reuse of existing security
atterns (Step 5 and Step 6) This process is relevant to both

tep 5 (patterns identification and tailoring) and Step 6 (inte-
ration). The first activity in this process is to construct an ac-
ess tool for the metrology domain, such as the one presented

n Fig. 9 .
In the security metrology process model, which is adapted

rom the IEC 61508 V-model (IEC, 2010), the developer be-
ins with engineering requirements and subsequent system

pecifications. In each phase, the system developer executes
he search/select task on the repository to tailor appropriate
atterns to the modeling environment using the access tool
nd integrates these patterns into the application models by
ollowing an incremental process. Fig. 13 shows the simpli-
ed flow for an iteration within a software architecture defi-
ition phase. Moreover, the system developer can use the pat-

ern designer tool (Arabion) to develop custom solutions when

he repository fails to yield appropriate patterns during this
hase.

The system design phase is the first phase impacted by
ur approach. In this phase, the high-level abstract system de-
ign is accomplished. The main task is to find solutions to the
roblem statement expressed by the requirements set. Use-
ase diagrams are defined to cover all the desired scenarios
or which the future system has to provide functionality (see
ig. 11). For valuable insight regarding patterns that could pos-
ibly be used for the smart meter gateway, the application en-
ineer uses the repository access tool to search for candidates.
n this stage, no pattern has yet been instantiated; only in-
ormation about the patterns is retrieved. An important step

n the system design phase is the preparation of the security
arget document. This document is the basis for the common

riteria evaluation in the certification phase.
The security concept diagram (see Fig. 14) provides a high-

evel architectural perspective in which major security re-
uirements, techniques and concepts used to augment the se-
urity of the system are represented. The practical application

f our approach begins at this point, where the system archi-
ect and security architect open the access tool and log in.

1. Both the system architect and the security architect
analyze the system security requirements and identify
the possible architectures and security techniques to be
used. They begin defining the smart metering system.
They identify the Smart Meter Gateway (SMGW) as a de-
sign pattern of interest to reach an EAL4+ via a security
module technique (protection profile (BSI, 2014)). An in-
terface separation (physically and logically), is explicitly
required by the common criteria protection profile. To
guarantee this mandatory separation, the smart meter
gateway pattern provides the necessary system archi-

Fig. 13 – Simplified process flow using our approach in the software architecture definition phase.

Fig. 14 – Overview of the smart meter security concept.

tecture skeleton, which is already included in high-level
system design (see Fig. 12).

2. Both the system architect and the security architect
continue refining the security concept (see Fig. 14),
searching for design patterns in the access tools and
importing them whenever a suitable design pattern is
found:
(a) The gateway requires an external security hardware

module (IG_GW_SM) implemented with two inde-
pendent security modules.
(b) Initial decisions regarding the internal structure of
the gateway (see Fig. 15):

(a) A secure communication is selected to enable
communication between the gateway and the
AuthorizedExternalEntity. Therefore, a secure
channel pattern (also known as a secure commu-
nication pattern) has to be integrated.

(b) A wakeup service can be used to initiate a re-
mote connection between the AuthorizedEx-

Fig. 15 – Overview of the smart meter system architecture.

T
m
b
l
s
t
e
a
a
i

A
d
p
R
s
a
t

c
F
i
a
i
s
p
t
t
c
t
v
c
t
m
t
f
a

ternalEntity and the gateway. Therefore, a
wakeup service pattern has to be integrated.

(c) There are many roles requesting access to me-
tering devices and the components of the me-
tering system: It is necessary to execute ac-
cess control for each function or action, which
can be activated. For each function, it has to
be specified which role is allowed to send a
command. Therefore, an authorization pattern
has to be integrated.

he system architecture shown in Fig. 15 specifies the smart
eter gateway system decomposition and the relationship

etween the different blocks that compose the system. It fol-
ows the “separation of security-related systems from non-
ecurity-related systems” technique described in the protec-
ion profile. At this stage, the system architect makes sev-
ral architectural decisions (based on the security concept
nd requirements) and accesses the repository to search for
nd import suitable refined and specialized design patterns of
nterest:

1. The SMGW is implemented with the following features:
(a) The gateway’s internal display (I_IF_DP): The data

transmitted are the (1) overall amount of energy con-
sumed; (2) actual consumption information (power);
(3) version of the operating system; and (4) version
of the gateway application.

(b) The gateway LEDs (I_IF_LED): These provide infor-
mation about the status, including (1) device on-
line/offline; (2) secure channel established; and (3)
wakeup mode.

(c) The security module as a hardware component, such
as that recommended in the protection profile.

(d) A software application (“communicationModule”)
executed at the computing unit that integrates the
secure channel as a pattern to support secure com-
munication between the gateway and the remote
read out center (RRC).

2. The wakeupservice as a pattern.
3. The secureChannel as a pattern.
4. The (security) remote readout center (IF_GW_RRC) as a

pattern: This pattern provides information to the au-
thorized external entities, including (1) values of the
overall amount of energy consumed and (2) information
about the actual power consumption. The remote read-
out center executes the remote readout security func-
tion and security techniques (“wakeupservice” and “se-
cure channel”). The system remote readout function is
based on three main functionalities (push a measure-
ment of the actual consumption to the gateway, pull
a measurement from the gateway, and wakeup service
functionality).

fter the specification of the abstract system design and the
efinition of use cases, the architecture design is accom-
lished as high-level class diagrams using the IBM Rational
hapsody Developer. These diagrams are used to specify the
tatic architecture of the gateway’s software. In this phase, the
pplication engineer queries the repository for suitable pat-
erns using the access tool and the keyword-based search.

The software architect continues refining the software ar-
hitecture. The secure remote readout function shown in

ig. 15 is refined, leading to the software architecture shown

n Fig. 16 . Then, additional software architectural decisions
nd analyses are made, and additional security techniques are
dentified. The software architect accesses the repository to
earch for and import suitable refined and specialized design

atterns according to the identified techniques and integrates
hem. For instance, TLS is chosen as a domain-specific realiza-
ion of the domain-independent secure channel. Hence, this
hoice results in the use of a random number generator pat-
ern. Moreover, new patterns that are not represented in pre-
ious phases are initially introduced in this phase. This is the
ase of the key manager pattern, which is only of interest in

his stage. When the software architect must define how to
anage the required security keys, he/she can use the access

ool to determine whether there is a pattern to implement this
unctionality. The key manager pattern is selected, imported

nd integrated into the software architecture diagrams.

Fig. 16 – Overview of the smart meter software architecture.

6.1.6. Discussion

We discuss the results of the case study by answering the re-
search questions introduced in Section 6.1.2 .

6.1.6.1. RQ1 Is the approach feasible? In this paper, we pre-
sented some outcomes of our methodology for the creation
of the PBSE modeling framework, as a set of methods and
a set of modeling languages, for describing and modeling
pattern-based system and software security development
processes.

We show the feasibility of the approach through the con-
struction of three artifacts: (1) the conceptual model - a set
of concepts resulting from a security standard and best prac-
tices analysis; (2) the pattern modeling language - a domain-
specific modeling language for defining patterns and for spec-
ifying the application of patterns for security design; (3) the
PBSE method - a process for pattern-based development, in-
cluding the selection and integration of patterns. These arti-
facts are complementary, and their integration represents a
holistic approach to pattern-based development. We use MDE
to describe these artifacts.

The development of these artifacts is not organized in
chronological order, but we reported only the current versions.
The methodologies for the creation of the modeling frame-
works behind these artifacts follow the design science re-
search method (Peffers et al., 2007). During design framework
development, we define a set of main iteration cycles, includ-
ing all key steps (which are described for each topic of con-
cern) that are related to the three artifacts. Within each main
iteration, micro-iterations between the different steps are em-
ployed to achieve our research goals. In the first main itera-
tion, we deliver the first version of the conceptual model of
security patterns. In the second main iteration, the modeling
language is designed, and appropriate tools are developed to
support these concepts. The results of these efforts are ap-
plied during the third main iteration to specify and define the
set of patterns (e.g., in the form of models). The last main iter-
ation is devoted to obtaining and tailoring suitable models to
a form that is appropriate for the development/enactment en-
vironment. The results undergo a final complete evaluation at
the end of each iteration, but each micro-iteration is also sub-
ject to evaluations. Based on the background of our research
project partners, we start with an existing approach, such as
the technology acceptance model (TAM) (Davis, 1989).

The conceptual model was presented at a workshop where
the participants agreed that we had captured the most impor-
tant concepts within security pattern practices. The DSMLs
are discussed over several meetings with an expert in engi-
neering software systems at the partner company where we
were conducting the case study. After modification based on
comments from the experts, these artifacts were used as in-
puts for the next steps.

The connecting piece between the security pattern repos-
itory and the development environment is the access tool.
It can be customized for the existing development tools by
deploying an appropriate back-end for pattern transforma-
tion. The back-end itself is composed of a transformation en-
gine and transformation rules that transform pattern artifacts
from the repository internal metamodel representation into
that of the target environment model structure. The prereq-
uisite for instantiating the patterns in the work space of the
target tool is an import interface. Environments that provide
import interfaces include, for instance, the Rational Rhap-
sody Developer from IBM and the Eclipse IDE with EMF sup-
port. Both offer a standard XML Metadata Interchange (XMI)
interface for the import of modeling artifacts into the work
space. The exchangeable back-end solution guarantees con-
formity of the pattern-based security engineering methodol-
ogy with the existing tooling in companies. Companies do not
need to change processes and tooling by equipping the access
tool with an appropriate back-end for already existing devel-
opment tool sets. This is very much appreciated since it has
been stated as a requirement towards a possible solution. The
methodology would not find wide acceptance in companies if

m
h
t

s
p
t
p
t
t
i
c
i

t
i
t
t
c
g
g
a

6
p
q
e
c
s
o
p
g
t
t
m

p
s
i
n
c
c
m
t
m
v
o
d
d
h
E

t
n
v

(
p
t
w

l
M
t

p
p
t
o

e
t
r

S
a
a
e
a
n
b
t
t
t
w
i
s

t
a
a
i
e
v
m
t
m
m
t
c
e

w
e
t
t

S
t
t
s
m
f
d
s
s
g
r
o
f
p
p
d

ajor parts of the existing engineering process and tool sets
ad to be aligned or changed. These results are confirmed by

he survey presented in Section 6.2 .
The proposed approach is non-intrusive with respect to the

oftware engineering process because engineering roles that
articipate in the project (e.g., system architect) can develop

he system with or without the use of our approach. If our ap-
roach is used, they can search for and import design patterns
hat have already developed for the tools already being used in

he system and software engineering process. The engineer-
ng of a smart meter gateway demonstrates that all these con-
erns are feasible in a concrete industrial context. This finding
s confirmed by the survey that we present in Section 6.2 .

In summary, the feasibility in our study covers the ability
o construct the conceptual model of security patterns, its use
n creating DSMLs to specify patterns and the development of
ools to support the development of pattern-based secure sys-
ems. Furthermore, we show how the proposed methodology
an be adapted to the existing engineering process and inte-
rated into the existing tool chains. Through the smart meter
ateway case study we have shown that the construction of
ll these artifacts are feasible in a concrete industrial context.

.1.6.2. RQ2 Is the effort involved in the application of the ap-
roach acceptable? The creation of the conceptual model re-
uired approximately 4 person months. The majority of the
ffort was spent on eliciting, defining and then modeling the
oncepts and their relationships based on the standards and

tate-of-the-art pattern modeling and formalization. The rest
f the time was mainly used to review and revise the pro-
osed conceptual model. The creation of the modeling lan-
uage (abstract and concrete syntaxes) for the security pat-
ern required approximately 6 person months. This included

he effort made to understand the usage of EMFT to specify
etamodels in Ecore and to generate other representations.
The implementation of the MDE tool chain required 12

erson months. The most important part of the effort was
pent on understanding the CDO repository platform, includ-
ng the architecture, functionalities and deployment mecha-
isms. The remaining time was primarily used to develop a
ustomized access tool for the metrology development pro-
ess, including the development of a set of model transfor-
ations. The proposed tool chain was designed to support

he proposed metamodels; hence, the tool chain and the re-
ainder of the activities involved in the approach could be de-

eloped in parallel. This activity needed to be performed only
nce for the development of a given set of applications. In ad-
ition, we expect the effort for the creation of a DSML and the
evelopment of tools to be less for future applications, as we
ad to address several technical details in relation to using
MFT and CDO in our first application.

The process of populating the repository using the MDE
ool chain took approximatively three months. It should be
oted, though, that most of these steps may be re-used to de-
elop other systems.

The next task was the construction of the domain model
i.e., smart meter gateway system model), which was com-
leted within 3 person months. Finally, the process of iden-
ifying, tailoring and integrating the patterns was completed

ithin three months. This process required comparatively
ess effort. This is partly due to the features provided by the
DE tool chain and to the support provided by the experts at

he partner company.
There are several degrees of reuse in our work. Some com-

onents of the approach itself may be reused, such as ex-
lained during the high-level description of the approach at
he beginning of Section 4 . For example, Step 3 is performed

nce for a set of domains, while Step 5 is performed once for
ach development environment. We believe that the specifica-
ion and packaging of security patterns will foster technology
euse across domains (the reuse of models at different levels).
uch reuse would involve, in the first instance, customizing
nd reinstantiating the patterns in new contexts (which, in

ny case, would have to be similar, e.g., the patterns for an

lectricity meter gateway would apply to other smart meter
pplications with additional features), as well as introducing
ew patterns as befits the situation. In addition, our model-
ased specification and packaging of patterns and its related

ooling are more useful in identifying suitable security pat-
erns to be used in the software architecture of an applica-
ion than the security solutions documentation itself. This
as also reflected during the survey (see Section 6.2). The goal

s to improve software design automation using patterns in-
tead of just imitating them during the design.

The criterion used by the experts for answering RQ2 was
hat the (perceived) cost savings arising from the using of the
pproach should reasonably exceed the cost of applying the
pproach. Therefore, the estimations given for the engineer-
ng of secure systems using patterns took into account sev-
ral factors. These included the current time span for the de-
elopment of a typical security component (between 2 and 6
onths), the effort required to be invested into the prepara-

ion of secure system project description documents and the
anagement processes, the costs associated with the involve-
ent of an external security expert, and the side benefits that

he models built in our approach could helps to shorten down

ertification process and training periods of newly employed

ngineers.
The purpose of this research question was to assess

hether the cost savings arising from the use of the approach

xceed the cost of applying the approach. Therefore, the es-
imations given for the metrology domain took into account
wo different scenarios with associated argumentations.

cenario 1: International metrology manufacturing company In

he first scenario, an international smart meter and smart me-
er component manufacturing company is the main focus. It
erves the metrology market worldwide, including its main

arkets: the USA and Europe. The company produces meters
or different commodities (electricity, gas, water, heat, etc.) in

ifferent sizes (from private households to large-scale con-
umers) for the mentioned markets. It has specialized divi-
ions for the different meters. The different legislative back-
rounds of the company’s main markets play an important
ole in the development of new devices to serve the needs
f the markets. Different development teams work on meters
or these markets. The company has a team of security ex-
erts. They are part of the development team for most of the
roducts since security plays a more important role in this
omain. However, security experts are expensive, and their

role in the development process is sometimes only to offer
minor assistance regarding a specific security question. Nev-
ertheless, they are part of the team and have to take part
in all the meetings. This could be optimized through effi-
cient use of their time, having them concentrate only on se-
curity problems and provide their expertise without taking
part in every meeting. Another reason is that the market of
experienced security experts is small and that the company is
not always able to employ enough experts for their different
product lines. Therefore, the reuse of components (hardware
and software) throughout the development processes of the
devices is of main importance. To serve this need, the com-
pany owns a proprietary kind of repository for sharing doc-
uments and knowledge between the different divisions. It is
used to reduce the development time and costs and to avoid
reinventing existing solutions for every new product.

The experts involved in the use case felt that the effort
spent on creating the conceptual model of security patterns
and on the development of the DSMLs was slightly high.
However, these two tasks were performed one time for a set
of domains. Therefore, they found the level of effort to be
acceptable. The argumentation here was that the resulting
modeling framework (1) reduces the time/cost of product de-
velopment, with the reuse of design patterns to address se-
curity issues; (2) reduces the time to market for new metering
devices since evaluation and certification are time-consuming
processes, which may be sped up by having detailed and clear
product development documentation. This may be directly at-
tributed to the type approval of a device. The type approval
procedure may be sped up by providing detailed product doc-
umentation, especially for the security-related parts; and (3)
reduces the number of full time security experts by providing
security knowledge with patterns since experienced security
experts in this domain are rare and cost intensive. Thus, this
effort can be spread over a number of projects, as the same
set of security patterns are used for a large number of smart
meter production systems.

Scenario 2: SME company In contrast to the international me-
ter manufacturing company of scenario 1, the second scenario
presents an SME meter manufacturer specializing in electric-
ity meters. The company mainly serves a single country mar-
ket. It has experienced engineers for voltage and current sen-
sors and embedded systems but no security experts. The com-
pany is highly interested in developing a smart meter gateway
and to be one of the first providers in the market. However, en-
gineers are expensive. The company is in direct competition
with other meter manufacturers and needs to optimize and
reduce time and cost for product development. The develop-
ment team is able to work on the functional part of a gateway
device, but it needs profound security knowledge to success-
fully implement the requested security functionality. Another
problem is the availability of experienced engineers. It may
occur that one of the engineers leaves the company during
an unfinished development cycle of a product. In this case,
his gained knowledge is obsolete with respect to the com-
pany and cannot be handed over to his successor to reduce
the training period. To address this kind of situation, a kind
of repository that can store structured knowledge is of great
benefit.
As in the previous scenario, the experts involved in the use
case generally found the level of effort spent creating the mod-
eling framework to be acceptable. The argumentation here
was that the resulting modeling framework (1) reduces prod-
uct development cost and time, with the reuse of design pat-
terns to address security issues; (2) offers a competitive advan-
tage to other manufacturers and market participants in terms
of having expert security solutions in their products that have
been evaluated in depth; (3) reduces the time to market for
new metering devices since evaluation and certification are
time-consuming processes, which may be sped up by having
detailed and clear product development documentation. This
may be directly attributed to the type approval of a device.
The type approval procedure may be sped up by providing
detailed product documentation, especially for the security-
related parts; and (4) keeps structured expert knowledge
inside the company, even if employees change, by using a
repository with patterns. This also helps to shorten the train-
ing periods of newly employed engineers.

6.2. Survey

After the completion of our case study, we conducted an ex-
periment in which we presented our approach and the solu-
tion of our case study to collect feedback from industry practi-
tioners through a survey. We employed the factors developed
in Rogers’ theory of innovation diffusion (Rogers, 2003), which
were involved in technology adoption: (1) Trialability; (2) com-
patibility; (3) relative advantage; (4) observability; and (5) com-
plexity. Twenty people attended the TERESA MDE workshop in
Toulouse, where the experiment was initiated. All participants
were recognized as experts in their domains, with a high-level
of skill in engineering secure systems, who had already partic-
ipated in the development of several projects related to their
skills.

6.2.1. Context and data generation method
To carry out the survey, an MDE workshop is organized to
provide a reasonably thorough overview of the proposed ap-
proach to the experts. The participants were trained to use
our method and the tool suite. The training was conducted in
two sessions on the same day. The first session was 3 hours
long and was managed by two instructors. The first instructor
introduced MDE and presented a pattern-based development
methodology and how it might be used to support the devel-
opment of secure applications. In addition, a 1-hour practice
session on Eclipse and the EMFT environment was presented
by the second instructor as a laboratory exercise. During the
second hour-long session, several operating examples, with
detailed explanations, were introduced to the participants by
two additional instructors who participated in the develop-
ment of the tool suite. Finally, a set of materials was provided
to the participants: the tool suite and its accompanying in-
stallation and user documentation, a detailed textual descrip-
tion of the patterns and their properties, a detailed require-
ments document, a set of models describing the system under
development and the used patterns in the form of UML dia-
grams. Finally, the participants were given a subjective post-
experiment questionnaire consisting of a set of questions, as
described in the following section, and space for comments.

p
D
p
q
i
e
t
l
e
a
p

S
v
d
a
o

6
W
t
t
v
o
a

1
s
g
t
c
q

l
l
c
e

e
w
c
w

o
c
s

r
e

6
O
i
c
n
M
g
i
p
p
w
w
j
o

g
p

h
g
s

v

The questionnaire was anonymous and divided into four
arts. The questionnaire was uploaded online using Google
ocs, and the link to the questionnaire was forwarded to the
articipants. All of the registered participants received the
uestionnaire link in this manner. The context of the exper-

ment, including the description of the methodology for the
xperiment, participant selection, data collection and statis-
ical analyses, was clearly defined to exclude bias due to re-
ations to the authors. The participants also knew that the
xperimenter did not have any influence on their job evalu-
tion scores or their career evolution and progress, as the ex-
erimenter was external with respect to their organizations.
tatistical analyses, mainly for the averages of the values pro-
ided by the participants, were performed by peers (indepen-
ent of the experimenter) on anonymized data (both subjects
nd scales). Moreover, the researcher agreed to use the survey
nly for research purposes as anonymized results.

.2.2. Questionnaire
e developed a simple questionnaire to address and measure

he interest of practitioners regarding engineering secure sys-
ems using patterns and models. The questionnaire was di-
ided into four parts. The following items present an excerpt
f the questionnaire presented to the participants, who were
sked to rate their satisfaction on a Likert-like scale (Likert,
932). In the context of this experiment, we have defined a
cale from 1 to 5, 1 being the lowest value of satisfaction or the
reatest difficulty (i.e., Very Difficult, Very Likely Not) and 5 being
he highest value of satisfaction regarding the presented con-
epts or the greatest ease in realizing a solution to the given

uestion (i.e., Very Easy, Definitely).
The first section, which consisted of Q1-Q2 , as shown be-

ow, was concerned with the backgrounds of the subjects re-
ated to software engineering practices in general and to se-
urity in particular to show on what kind of experience these
xperts based their answers.

• Q1: Is security in software engineering an important aspect of
your job?
� Yes
� No

• Q2: How much experience do you have with security in software-
engineering-related activities?
� Less than 6 Months
� More than 6 months but less than 12 months
� More than 1 year but less than 2 years
� More than 2 years

The second part, Q3-Q7 , was concerned with the subjects’
xperience with the engineering of secure systems. Although

e based our work on prior knowledge regarding the diffi-
ulty in using existing methods, practices and standards, we
anted to ensure that this was also the case in this group.

� Q3: Is your own work (current or past) related to the development
of secure systems?
� Yes
� No

• Q4: Have you participated in the development/purchase process
of a secure system?
� Development
� Purchase
� Both
� Neither

• Q5: Based on your experience, how easy it is to build a secure
system?

• Q6: Do you have skills in some non-model-driven engineering-
related approaches to support the development of secure sys-
tems?
� Yes
� No

• Q7: Based on your experience, is this approach easy to use for
developing secure systems?

The third part, Q8-Q11 , was concerned with the modeling
f secure systems. In particular, we wanted to assess the per-
eption of using the modeling approaches to develop a secure
ystem.

• Q8: Was the presented conceptual model easy to understand?
• Q9: Do you find the models simple enough to use for communi-

cation within an overall engineering secure system project?
• Q10: How easy was it to integrate the resulting concepts (tool

suite) into your favorite development environment?
• Q11: Would you like to use the entire approach or some of its

steps in the future?

The final part, Q12-Q14 , was concerned with the feedback
egarding the overall approach and the use of model-driven

ngineering.

• Q12: Overall, how easy was it to follow the steps of our approach?
• Q13: Would you see value in adopting the presented approach at

your company for the development/purchase of a secure system?
• Q14: Does the presented tool suite provide useful assistance in

the development of secure systems?

.2.3. Survey results
ut of the 20 invitees, 16 completed the questionnaire, yield-

ng a response rate of approximately 80%. 75% had practi-
al experience in security critical system development. Sixty-
ine percent had practical experience in the application of
DE to engineering software in general, and 62%, to en-

ineering secure systems. Moreover, six software engineer-
ng experts participated in the survey. Six security experts
articipated in the survey. In addition, four project managers
articipated in the survey. A broad range of industry sectors
as represented, with respondents from the metrology, rail-
ay, automotive and software development sectors. The ma-

ority of respondents belong to organizations with 50 people
r more.

Based on the responses obtained, security in software en-
ineering was an important aspect of the job for all but two
articipants (Table 3 , row a). Overall, 56% of the participants
ad over two years of experience with security in software en-
ineering, while 13% had at least one year of experience with

ecurity in software engineering (Fig. 17).
Regarding the experience of the participants with the de-

elopment/purchase of secure systems, all except three had

Table 3 – Answers to questions Q1, Q3 and Q6.

Questions Answers

Yes (%) No (%)

a (Q1) Is security in software engineering an
important aspect of your job?

88 13

b (Q3) Is your own work (current or past)
related to the development of secure
systems?

81 19

c (Q6) Do you have skills in some
non-model-driven engineering-related
approaches to support the development of
secure systems?

69 31

Fig. 17 – (Q2) How much experience do you have with

security in software engineering related activities?.

Fig. 18 – (Q4) Have you participated in the
development/purchase process of a secure system?.

worked in this context (Table 3 , row b). From the set of par-
ticipants who had participated in the development/purchase
of a secure system, 31% had participated in the development
of a secure system, 31% had participated in the purchase of
a secure system, and 19% had participated in both activities
(Fig. 18).

Table 4 , row a shows that 63% of the participants felt that
building a secure system was difficult, while the rest thought
that it was of average difficulty. Regarding the skills related
to engineering secure system approaches, 69% of the par-
ticipants had worked with non-model-driven engineering-
related approaches to support the development of secure sys-
tems (Table 3 , row c).

Table 4 , row b reveals that 31% of the participants perceived
this approach to be very easy to follow, whereas 50% thought
it was easy, and the remaining 19% experienced average diffi-
culty. When presented with the conceptual models of the ap-
proach, 31% of the participants perceived the approach to be
being very easy to understand, whereas 44% thought it was
easy to understand, and the remaining 13% experienced aver-
age difficulty (Table 4 , row c).

All participants agreed that the models created during the
application of a pattern-based and a model-driven engineer-
ing approach were simple enough to use in communication
within an overall engineering secure system project (Table 5 ,
row a). Moreover, the participants thought that it would be
beneficial to use within their industries (Table 4 , row d).

Table 5 , row b shows the extent to which the participants in-
dicated that they would likely use the pattern-based approach
in the future for the development of other kinds of secure sys-
tems. Of the participants in the experiment, 25% of them indi-
cated that they would definitely continue their application of
the approach, whereas 56% said that they would very probably
do so.

Table 4 , row e reveals that 31% of the participants perceived
the approach to be very easy to follow, whereas 50% thought
that it was easy, and the remaining 19% experienced average
difficulty.

With regard to the adoption of the approach, 25% of the
participants thought that there definitely was value in adopt-
ing the approach, and a further 56% thought that the approach
was very likely worth adopting (Table 5 , row c). The current tool
suite based on EMFT was also thought to be useful: 31% of the
participants believed that the tool would definitely be useful
for engineering a secure system and a further 50% thought
that it would very likely be useful. The remaining 19% of the
participants thought that it would probably be useful (Table 5 ,
row d).

6.2.4. Discussion

In summary, the answers received in our survey suggest that
the proposed approach was overall regarded as easy to learn
and follow. These responses indicate that a pattern- and
model-based development method for addressing secure sys-
tems through a model-driven engineering approach should
be investigated further. Because the pattern conceptual model
can be applied to multiple problems through a simple exten-
sion, these results suggest that our work has wider applicabil-
ity and usefulness.

7. Fulfillment of the security objectives

This section proves that the set of identified security patterns
is suited to fulfill the desired security objectives defined in
form of requirements to protect the assets. This suggested the
following question, raised as a third research question:

• RQ3. Can we show that a system built based on the use of secu-
rity patterns is secure? .

Table 4 – Answers to questions Q5, Q7, Q8, Q10 and Q12.

Questions Answers

Very Difficult (%) Difficult (%) Average (%) Easy (%) Very Easy (%)

a (Q5) Based on your experience, how

easy it is to build a secure system?
63 25 13 0 0%

b (Q7) Based on your experience, is this
approach easy to use for developing
secure systems?

0 0 19 50 31

c (Q8) Was the presented conceptual
model easy to understand?

0 13 13 44 31

d (Q10) How easy was it to integrate the
resulting concepts (tool suite) into
your favorite development
environment?

0 6 19 50 25

e (Q12) Overall, how easy was it to
follow the steps of our approach?

0 0 19 50 31

Table 5 – Answers to questions Q9, Q11, Q13 and Q14.

Questions Answers

Very probably (%) Probably not (%) Probably (%) Very probably (%) Definitely (%)

a (Q9) Do you find the models (patterns) simple
enough to use for communication within an
overall engineering secure system project?

0 0 19 63 19

b (Q11) Would you like to use the entire
approach or some of its steps in the future?

0 0 19 56 25

c (Q13) Would you see value in adopting the
presented approach at your company for the
development/purchase of a secure system?

0 0 19 56 25

d (Q14) Does the presented tool suite provide
useful assistance in the development of
secure systems?

0 0 19 50 31

m
e
s
p
P
a
m
s
p
w
d
j
t

c
l
t
r
t
n

I
p
c
t

u
n
m
s
p

s
r
c
c
t
w
t

s
i
u
o
i
r
p
c
a
n
s

In the context of our experiment, the security require-
ents are specified in terms of a set of desirable security prop-

rties (i.e., positive statements) using common taxonomies
uch as CIA. Patterns are then introduced according to ex-
ected security properties. For instance, the Common Criteria
rotection Profile (BSI, 2014) recommends a set of measures
nd techniques that can be employed as patterns to stop or
itigate the identified threats for the whole smart metering

ystem and the threats against the smart meter gateway, in

articular. In this way we can build, for example, secure gate-
ay systems in an integrated way, including measurement
ata, configuration data, and other related information, not

ust isolated networks; the same is true for safety-critical sys-
ems or other types of applications.

As described above, the smart meter gateway serves as
onnection piece between different networks. Seen as first
ine of defense, communication channel between smart me-
er gateway and an authorized external entity, e.g., the remote
eadout center (RRC), is a main point of attack. The informa-
ion transmitted and received via the above mentioned chan-
el or the channel itself may be manipulated by an attacker.

ndeed, communication channels are main attack point, but
hysical attacks on the gateway and its security module in-
luding the key material are also possible. Note that these
hreats include external and internal attacks. In Table 6 , we
sed STRIDE taxonomy to describe some of the possible sce-
arios of software and network attacks. More detailed infor-
ation on the gateways security threats, attack paths and

ecurity objectives can be found in the smart meter gateway
rotection profile (BSI, 2014).

To limit the threats listed in Table 6 , we have two types of
ecurity mechanisms. For the CIA the use of encryption algo-
ithms and message authentication code is mandatory; this
an be partially found in the SSL/TLS specification for appli-
ation level security, such as that recommended in the pro-
ection profile. For protection against unauthorized access, we
ill rely mainly on access control techniques (e.g., authoriza-

ion pattern).
The case study in Section 6.1 was conducted to demon-

trate that a non-trivial system, that was initially developed

ndependently of our approach can retroactively be modeled

sing our pattern-based methodology. During the application

f the approach, presented in Section 4 , a number of threats
n the initial models have been found and mitigated using al-
eady defined patterns. We provide analyzes approach of stop-
ing the attack by enumerating possible security patterns that
an be applied for this purpose. Our added value is that the
nalysis does not only check if the needed security mecha-
isms exist but also that they are correctly used in form of
ecurity patterns to stop or mitigate the threats. This is an

Table 6 – Incomplete attack scenarios against communication channel between the Gateway and an authorized external
entity.

Attack scenario Threat type Security property

An attacker pretends to be the RRC. Spoofing Authenticity
An attacker changes the measurement data or configuration data when transmitted

between the Gateway and an external entity in the WAN.
Tampering Integrity

An attacker gains access to the measurement data or configuration data or parts of it
when transmitted between Gateway and external entities in the WAN.

Information disclosure Confidentiality

An attacker gains customer access to the Gateway, due to missing authorization. Elevation of privileges Authorization

important benefit, as the proposed approach can help to im-
prove the quality of a system’s current documentation. It also
demonstrated that each of the patterns were variable enough
to deal with multiple contexts, where the respective concrete
patterns were applicable (e.g., secure communication pattern).
Note that compared to other safety-critical areas, such as de-
fense or nuclear power generation, no injuries are caused if
the smart meter gateway is offline. However, our vision is
not limited to engineering secure systems. We have also de-
signed secure architectures for SIL4 safety-critical embedded
systems for railway signaling (ERTMS/ETCS) (Hamid and Perez,
2016).

8. Recapitulation and synthesis

From the system developer perspective, security issues not
only are detected in code and need to be identified early in the
first development steps and at the highest levels, primarily in
the architecture design stage, where their semantics are clear,
they are also mapped to lower levels, where they are enforced
by the corresponding concrete mechanisms. For instance, the
MDSN SDLC (Microsoft, 2012) addresses some of these issues
and provides support for using threat models and abuse case
modeling during the design stage of the SDLC. To build secure
systems, Neumann (2004) expressed the need to develop prin-
cipled systems that are based on solid conceptual approaches.
Recently, Fernandez (2013) adapted Neumann’s discovery to
stress that building secure systems requires the careful appli-
cation of well-defined principles. Patterns enable the implicit
application of principles, and at the same time, patterns pro-
vide a systematic approach to describing best practices. The
design framework that we built helps in this respect. We em-
ploy the MDE and DSML technologies and attempt to add more
formality to improve parts of the system design.

Security solutions can be described as security patterns,
and the use of these patterns results in products that are
already established in that domain, usually in the form of
COTS components. Patterns define best practices, and the
goal is to help designers reuse them in new designs. Security
requirements are specified independent from patterns and
technological products at a very early stage of system design
and then refined using the system model until they can be
matched with security patterns. The main problem for a de-
veloper is to select and connect security patterns with the rest
of an application. Making some aspects of the pattern descrip-
tion precise would make these aspects more convenient. Even
if a pattern requires tailoring, starting from a precise descrip-
tion facilitates its selection and application. A security pattern
targets some particular properties that characterize it, and the
integration, composition and application of a security pattern
should maintain these properties.

In our work, we propose a pattern- and model-based de-
velopment method for addressing security through a model-
driven engineering approach. The approach is composed of
several steps and is based on metamodeling techniques that
enable the specification of patterns. It is also based on model
transformation techniques for the purposes of generation.
The defined conceptual model points to a common represen-
tation for several contexts of use. First, this approach aims to
allow design automation through the reuse of security appli-
cations captured in the form of patterns. Second, it aims to
overcome the lack of formalism in a conventional text-based
approach, supporting model-based analysis and verification
techniques. The approach empowers system and software en-
gineers to reuse solutions for the engineering of secure sys-
tems without specific knowledge of how the solution is de-
signed and implemented. The resulting modeling framework
reduces the time/cost of understanding and analyzing system
artifact descriptions by virtue of its abstraction mechanisms
and reduces the cost of the development process by virtue of
its generation mechanisms.

The pattern formalization approach is very ambitious. In
fact, a rigorous treatment of security properties needs to be
based on clear formal semantics that enable system devel-
opers to precisely specify security requirements. Thus, the
precise but flexible specification and description of security
patterns are pre-requisites to their successful integration and
composition for their application. The ultimate goal of our ap-
proach is to ensure that the defined patterns are applied in a
way that has previously been demonstrated to be correct and
useful in secure design. Analysis of patterns can be performed
on a more abstract level, where their security properties’ se-
mantics are clear, and then more refined security properties
corresponding to a more concrete level can be derived through
transformation techniques. In our work, we design a modeling
language supporting two complementary types of represen-
tations: a semi-formal representation through metamodeling
techniques and a rigorous formal representation through for-
mal language. It provides a generic setup to formalize a sub-
stantial number of security patterns. It introduces much (for-
mal) machinery, where the actual usefulness is demonstrated
through a set of experimental evaluation scenarios. The appli-
cation of a PBSE methodology requires a relatively complete

c
a
p
w
t
s
c
s
h
e
fl
i

9

O
o
t
(

s
i
p
v
t

2
p
m
p
l
d
l
a
f

2

T
a
a
m
o
f
i
t
v
c

e
e
e
g
d
m
t
d
m
s
n
q
e
a

i
a
a
i
i
p
s

c
a
s
t
s
t

1
d
a
i
a
fi
a

s
d
t

s
p
s
b
a

1

n
t
f
p
n
(
m
s

d
t
v
s
c
t

T
e
a

S
p
a
e
p
d
(
m
e
a
a
p

atalog of patterns, covering all architectural levels, as well
s computation, communications, and control aspects. An im-
ortant number of security patterns have been produced, but
e need to tailor them and to provide more. This will raise

he abstraction levels to design and reason regarding security
olutions for the developers of security applications and/or se-
urity application practices and thus make it easier to apply
ecurity solutions correctly, even with limited technical know-
ow. End users (e.g., security management operators) will ben-
fit from MDE automation of the patterns and consequent of-
oading of the security tasks to the application and platform

nfrastructure.

. Related work

ver the years, research efforts have been invested in method-
logies and techniques for secure software engineering, al-
hough dedicated processes have been proposed only recently
 B. De Win et al., 2009; Barnabe et al., 2011). A survey is pre-
ented in Uzunov et al. (2013) . In our work, our aim is captur-
ng and providing this expertise by the way of adding security
atterns directly into application models, targeting the (i) de-
elopment of an extendible design language for modeling pat-
erns in secure distributed embedded systems (Hamid et al.,
011) and (ii) a methodology to improve existing development
rocesses using patterns (Hamid et al., 2013). The language
ust capture the core elements of the pattern to support its (a)

recise specification, (b) appropriate selection and (c) seam-
ess integration and use. The first aspect is related to pattern

efinition, whereas the second and third aspects are more re-
ated to problem definition. From the pattern-based system

nd software engineering methodological perspective, only a
ew works (Abowd et al., 1995; Soundarajan and Hallstrom,
004; Zdun and Avgeriou, 2008) have addressed this concern.
hey are harmonized with the use of patterns in each system

nd software development lifecycle stage. However, existing
pproaches using patterns often target one stage of develop-
ent (architecture, design or implementation) due to the lack

f formalisms ensuring (1) the specification of a pattern at dif-
erent levels of abstraction, (2) relationships that govern their
nteractions and complementarity and (3) the relationship be-
ween patterns and other artifacts manipulated during the de-
elopment lifecycle and those related to the assessment of
ritical systems.

Several approaches exist in the security design pattern lit-
rature (Cheng et al., 2003; Fernandez et al., 2011; Giacomo
t al., 2008; Hatebur et al., 2007; Jürjens et al., 2002; Katt
t al., 2013; Schumacher, 2003). They allow solutions to very
eneral problems that appear frequently as sub-tasks in the
esign of systems with security and dependability require-
ents. These elementary tasks include secure communica-

ion and authorization. In Hatebur et al. (2007) , authors have
efined a pattern-based security requirements engineering
ethod that is applicable after the security goals and an initial

et of security requirements are elicited. The approach does
ot consider the elicitation of the initial set of security re-
uirements, since only dependent security requirements are
licited. Works from authors in Schumacher (2003) present
 detailed description of patterns used in security engineer-
ng in different domain. These include patterns on risk man-
gement such as patterns on Enterprise Security Approaches
nd Threat Assessment. These patterns are to be integrated

n methodologies and will, for example, guide an enterprise
n selecting security approaches or lead the engineer to use
atterns during the development life cycle to resolve recurring
ecurity challenges. In a previous work (Hamid et al., 2013), we
onsidered building a security-oriented Pattern-Based System

nd Software Engineering life cycle based on a repository of
ecurity patterns. The central idea of the approach is to assist
he system designer through interactions with a repository of
ecurity patterns in resolving recurrent security problems at
he right moment in a model-based development life cycle.

Existing formalization attempts for patterns (Mikkonen,
998; Soundarajan and Hallstrom, 2004) fall short in han-
ling the inherent variability in pattern descriptions (Zdun

nd Avgeriou, 2008), and they focus primarily on a very lim-
ted design and architecture pattern scope. They do not yet
ddress specific domains, such as security and safety. For the
rst type of approach (Gamma et al., 1995), design patterns
re usually represented by diagrams with specific notations,
uch as UML object diagrams, that are accompanied by textual
escriptions and examples of code to complete the descrip-
ion. Furthermore, their structure is rigid (context, structure,
olution, etc.). Unfortunately, the use and/or application of a
attern can be difficult or inaccurate. In fact, the existing de-
criptions are not formal definitions and sometimes leave am-
iguities regarding the exact meaning of the patterns. There
re some promising and well-proven approaches (Douglass,
998) based on Gamma et al. (1995) . However, this type of tech-
ique does not afford the high degree of flexibility in the pat-

ern structure that is required to reach our objectives. Thus
ar, patterns have been used in systematic engineering ap-
roaches for various tasks, such as classification and orga-
ization, pattern selection based on security requirements
 Hafiz et al., 2007; Weiss and Mouratidis, 2008), analyzing and

odeling security requirements (Cheng et al., 2003), and mea-
uring the introduced security level (Fernandez et al., 2010).

The recently completed FP6 SERENITY project has intro-
uced a new notion of security and dependability (S&D) pat-
erns. SERENITY’s S&D patterns are precise specifications of
alidated S&D mechanisms including a precise behavioral de-
cription, references to the S&D properties, constraints on the
ontext required for deployment, information describing how

o adapt and monitor the mechanism, and trust mechanisms.
he S&D SERENITY pattern is specified following several lev-
ls of abstraction to bridge the gap between abstract solution

nd implementation. These abstraction levels are S&D classes,
&D patterns and S&D implementation. Such validated S&D

atterns and the formal characterization of their behavior
nd semantics can also be the basic building blocks for S&D

ngineering in embedded systems. Serrano et al. (2008) ex-
lained how this can be achieved using a library of precisely
escribed and formally verified security and dependability

S&D) solutions, i.e., S&D classes, S&D patterns, S&D imple-
entation and S&D integration schemes. Moreover, Giacomo

t al. (2008) reported an empirical experience regarding the
doption and elicitation of S&D patterns in the air traffic man-
gement (ATM) domain, demonstrating the power of using
atterns as guidance to structure the analysis of operational

aspects when used at the design stage. Conceptually, our mod-
eling framework is similar to that proposed in the SERENITY
project. Nevertheless, the pattern structure is rigid (a pattern
is defined as quadruplet) and is thus unusable for capturing
specific characteristics of S&D patterns. However, the SEREN-
ITY project proposes several levels of abstraction to bridge the
gap between abstract solution and implementation, which in-
tends to not capture a common representation of patterns for
several domains.

Usually, these design artifacts are provided as a library of
models (sub-systems) and as a system of patterns (framework)
in the more elaborate approaches. However, there remains
a lack of modeling languages and/or formalisms dedicated
to specifying these design artifacts and understanding their
reuse in software development automation. More precisely, a
gap between the development of systems using patterns and
the pattern information remains. Most patterns are expressed
in a textual form, as informal indications on how to solve indi-
vidual design problems. Some of them use more precise rep-
resentations based on UML diagrams, although these patterns
do not include sufficient semantic descriptions to automate
their processing and to extend their use. Furthermore, the cor-
rect application of a pattern is not guaranteed because the
description does not consider the effects of interactions,
adaptation and combination, making them inappropriate for
automated processing within a tool-supported development
process. Finally, due to manual pattern implementation, the
problem of incorrect implementation (the most important
source of safety issues) remains unresolved.

10. Conclusion

The proposed approach for engineering secure systems is de-
pendent on patterns and models as first-class citizens to spec-
ify applications within a particular domain and focuses on the
problem of software system engineering using a design phi-
losophy that fosters reuse. This approach may significantly
reduce the cost of engineering a system because it enables
security issues to be addressed early in the system develop-
ment process while simultaneously relieving the developer
of the technical details. We begin by specifying a conceptual
model of the desired patterns and proceed by designing mod-
eling languages that are appropriate for the content. The re-
sults of these efforts are subsequently employed to specify
and define a security solution as a pattern (e.g., in the form
of design diagrams). Developing an application using pattern-
based development processes and reusing existing patterns
requires finding and tailoring suitable patterns to a form that
is appropriate for the targeted development environment. The
integration phase of our approach enables a domain engi-
neer to reuse the resultant patterns that have been previ-
ously adapted and transformed for a given engineering envi-
ronment (development platform) to develop a domain-specific
application.

In addition, we provide an operational architecture for a
tool suite to support the proposed approach. An example of
this tool suite, which is termed Semcomdt, is constructed us-
ing EMFT and a CDO-based repository and is currently pro-
vided in the form of Eclipse plugins. In addition, the tool
suite promotes the separation of concerns during the devel-
opment process by distinguishing the stakeholder roles. Ac-
cess to the repository is customized with regard to the devel-
opment phases, the stakeholders’ domain and system knowl-
edge. We evaluate the usefulness of the patterns for increasing
engineering productivity. We intend to demonstrate that the
security pattern-based approach generates a reduced num-
ber or a simplification of the engineering process steps. The
design solutions that are provided should support developers
regarding security issues and reduce the error frequency. We
demonstrate that the application of the proposed approach
yields important benefits to development engineers. This fact
is demonstrated via the implementation of a demonstrator.
Initial evidence from a survey reveals that domain experts per-
ceived the approach to be extremely useful and agreed regard-
ing the benefits of adopting the approach in a real industrial
context.

In our future work, we plan to study the automation of the
model search and tailoring tasks. Our vision is for patterns to
be inferred from the browsing history of users and constructed
from a set of previously developed applications. As we look to
the future, we can employ existing studies on reuse scenar-
ios and design space exploration (Hamid, 2015; Hegedüs et al.,
2015; Tomer et al., 2004). We would also like to study the inte-
gration of our tools with other MDE tools. The objective is to
show the process flow and the integration of the tools in the
domain tool chains, whereas the intention is not to resolve the
low-level details of the approach integration. We must imple-
ment other types of software and means of generating vali-
dated artifacts, such as programming language code and cer-
tification artifacts, which are capable of producing a restrictive
set of artifacts that comply with domain standards.

Concurrently, more sophisticated techniques for deriving
artifact relationships can be implemented using different do-
mains to reduce the complexity of designing systems of pat-
terns. We will seek new opportunities to apply the proposed
approach to other domains. This task requires an instantia-
tion of the complete software engineering tool and method
and an evaluation of the experiences of many users across
many domains. We would like to enhance the proposed in-
tegration process by automating the detection of conflicts be-
tween the pattern structure and the existing application ar-
chitecture and propose solutions in a manner similar to the
way in which merging tools operate.

Another short-term objective is to teach the engineering
of secure systems and the effect of using patterns and mod-
els to design these systems, as well as the effect of security
and reuse practices on the total system and software quality,
which is related to further assessment and usability testing in
industry, industry-like and research projects.

Acknowledgments

This work was initiated within the context of the SEMCO
project. It was supported by the European FP7 TERESA project
and by the French FUI 7 SIRSEC project. Particular thanks go to
Adel Ziani and Jacob Geisel for their valuable assistance in the
implementation and development of the SEMCO tools. In ad-
dition, we would like to thank the TERESA consortium mem-

b
s

R

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

C

C

D

D

D

D

D

D

D

F

F

F

F

F

G

G

G

G

G

G

H

H

H

H

H

ers for their participation in the implementation of the case
tudy and the survey.

E F E R E N C E S

bowd G , Allen R , Garlan D . Formalizing style to understand

descriptions of software architecture. ACM Trans Softw Eng
Methodol 1995;4(4):319–64 .

lexander C , Ishikawa S , Silverstein M . Center for Environmental
Structure Series, 2. Oxford University Press; 1977 . ISBN

9780195019193
lvi AK , Zulkernine M . A natural classification scheme for

software security patterns. Proceedings of IEEE ninth

international conference on dependable, autonomic and

secure computing (DASC). IEEE; 2011. p. 113–20 .
nderson R . Security engineering: a guide to building dependable

distributed systems. 2nd. Wiley; 2008 .
nwar Z , Yurcik W , Johnson RE , Hafiz M , Campbell RH . Multiple

design patterns for voice over IP (VOIP) security. Proceedings
of 2006 IEEE international performance computing and

communications conference; 2006. p. 485–92 .
tkinson C , Kühne T . Model-driven development: a

metamodeling foundation. IEEE Softw 2003;20(5):36–41 .
vizienis A , Laprie JC , Randell B , Landwehr C . Basic concepts and

taxonomy of dependable and secure computing. IEEE Trans
Depend Secur Comput 2004;1:11–33 .

arker E, Kelsey J, 2012. Recommendation for Random Number
Generation Using Deterministic Random Bit Generators.
National Institute of Standards and Technology.

arnabe D , Goodnight J , Hamilton D , Bayuk JL . Systems security
engineering. IEEE Secur Priv Mag 2011;9:72–4 .

asin D , Clavel M , Doser J , Egea M . Automated analysis of
security-design models. Inf Softw Technol 2009;51:815–31 .

asin D , Doser J , Lodderstedt T . Model driven security: From UML
models to access control infrastructures. ACM Trans Softw

Eng Methodol (TOSEM) 2006;5(1):39–91 .
raber F , Hogganvik I , Lund M , Stølen K , Vraalsen F . Model-based

security analysis in seven steps - a guided tour to the CORAS
method. BT Technol J 2007;25(1):101–17 .

SI, 2014. Protection Profile for the gateway of a smart metering
system (Smart Meter Gateway PP), Version 1.3. Bundesamt für
Sicherheit in der Informationstechnik.

uschmann F , Henney K , Schmidt D . Pattern-oriented software
architecture, volume 4: a pattern language for distributed

computing. Wiley; 2007 . ISBN 978–0470059029.
uschmann G , Meunier R , Rohnert H , Sommerlad P , Stal M , 1.

John Wiley and Sons; 1996 . ISBN 978–0471958697.
allas J, Donnerhacke L, Finney H, Shaw D, Thayer R, 2007.

OpenPGP message format (RFC 4880). Internet Engineering
Task Force.

heng BHC , Konrad S , Campbell LA , Wassermann R . Using
security patterns to model and analyze security. Proceedings
of IEEE workshop on requirements for high assurance
systems; 2003. p. 13–22 .

ali A , Lajtha C . Iso 31000 risk management: the gold standard.
EDPACS 2012;45(5):1–8 .

e Win B, Scandariato R, Buyens K, Grgoire J, Joosen W. On the
secure software development process: CLASP, SDL and

Touchpoints compared. Inf Softw Technol 2009;51(7):1152–71.
doi: 10.1016/j.infsof.2008.01.010 .

avis F . Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q 1989;13(3):319 .

ECC. Smart metering communications hub, Department of
Energy and Climate Change, UK. 2015.
evanbu P , Stubblebine S , Premkumar SS , Devanbu T . Software
engineering for security - a roadmap. Proceedings of the
conference on the future of software engineering, ICSE ’00.
ACM; 2000. p. 227–39 .

ierks T, Rescorla E, 2008. The TLS Protocol Version 1.2 (RFC

5246). Internet Engineering Task Force.
ouglass BP . Real-time UML: developing efficient objects for

embedded systems. Addison-Wesley; 1998 . ISBN

0-201-32579-9.
ernandez E . Software design patterns. Security patterns in

practice: building secure architectures using software
patterns. Wiley; 2013 . ISBN 978-1-119-99894-5.

ernandez E , Yoshioka N , Washizaki H , Jurjens J , VanHilst M ,
Pernul G . Using security patterns to develop secure systems.
Software engineering for secure systems: industrial and

research perspectives. IGI Global, 2011 .
ernandez E , Yoshioka N , Washizaki H , VanHilst M . Measuring the

level of security introduced by security patterns. Proceedings
of international conference on availability, reliability, and

security (ARES). IEEE Computer Society; 2010. p. 565–8 .
rance R , Rumpe B . Model-driven development of complex

software: a research roadmap. Future of software engineering
(FOSE). IEEE Computer Society; 2007. p. 37–54 .

uchs A , Gürgens S , Rudolph C . A formal notion of trust –
enabling reasoning about security properties. Proceedings of
fourth IFIP WG 11.1 international conference on trust
management. Springer; 2010. p. 200–15 .

amma E , Helm R , Johnson RE , JVlissides . Design patterns:
elements of reusable object-oriented software.
Addison-Wesley; 1995 . ISBN 978-0-470-05902-9

iacomo VD , Felici M , Meduri V , Presenza D , Riccucci C ,
Tedeschi A . Using security and dependability patterns for
reaction processes. Proceedings of the 2008 nineteenth

international conference on database and expert systems
application. IEEE Computer Society; 2008. p. 315–19 .

onzalez D, Weber D, 2013. Specification of Platform. Deliverable
D6.1 TERESA/WP6/D6.1. IST Project IST-248410, TERESA

Consortium.
randy H , Haneberg D , Reif W , Stenzel K . Developing provable

secure m-commerce applications. Emerging trends in

information and communication security. Springer; 2006.
p. 115–29 .

ray J , Tolvanen JP , Kelly S , Gokhale A , Neema S , Sprinkle J .
Domain-specific modeling. In: Fishwick P, editor. Handbook of
dynamic system modeling. Chapman & Hall/CRC; 2007.
p. 1–20 .

ürgens S , Ochsenschläger P , Rudolph C . On a formal framework
for security properties. Int Comput Stand Interface J (CSI)
2005;27(5):457–66 . Special issue on formal methods,
techniques and tools for secure and reliable applications.

alkidis ST , Tsantalis N , Chatzigeorgiou A , Stephanides G .
Architectural risk analysis of software systems based on

security patterns. IEEE Trans Depend Secur Comput
2008;5(3):129–42 .

oward M. Lessons Learned from Five Years of Building More
Secure Software.2007 https://msdn.microsoft.com/en-us/
magazine/cc163310.aspx#S1 [Accessed: June 2015].

afiz M , Adamczyk P , Johnson RE . Organizing security patterns.
IEEE Softw 2007;24:52–60 .

amid B . A model-driven methodology approach for developing
a repository of models. Proceedings of the fourth

international conference on model and data engineering -
(MEDI). Springer; 2014. p. 29–44 .

amid B . Interplay of security & dependability and resource
using model-driven and pattern-based development.
Proceedings of IEEE international conference on trust, security
and privacy in computing and communications (TrustCom).
IEEE Computer Society; 2015. p. 254–62 .

http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0016
https://doi.org/10.1016/j.infsof.2008.01.010
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0071
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0071
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0071
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0071
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0071
https://msdn.microsoft.com/en-us/magazine/cc163310.aspx#S1
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0032

Hamid B. A model-driven approach for developing a model
repository: methodology and tool support. Future Generation

Computer Systems. Elsevier; 2017. p. 473–90 .
Hamid B , Geisel J , Ziani A , Bruel J , Perez J . Model-driven

engineering for trusted embedded systems based on security
and dependability patterns. Proceedings of sixteenth

international SDL forum. Springer; 2013. p. 72–90 .
Hamid B, Gürgens S, Fuchs A. Security patterns modeling and

formalization for pattern-based development of secure
software systems. Innov Syst Softw Eng 2016;12(2):109–40.
doi: 10.1007/s11334-015-0259-1 . Springer.

Hamid B , Gürgens S , Jouvray C , Desnos N . Enforcing S&D pattern

design in RCES with modeling and formal approaches.
Proceedings of ACM/IEEE international conference on model
driven engineering languages and systems (MODELS).
Springer; 2011. p. 319–33 .

Hamid B , Percebois C , Gouteux D . A methodology for integration

of patterns with validation purpose. Proceedings of european

conference on pattern language of programs (EuroPlop). ACM

DL; 2012. p. 1–14 .
Hamid B, Perez J. Supporting Pattern-based dependability

engineering via model-driven development: approach,
tool-support and empirical validation. J Syst Softw

2016;122:239–73. doi: 10.1016/j.jss.2016.09.027 . Elsevier
Hatebur D , Heisel M , Schmidt H . A pattern system for security

requirements engineering. Proceedings of the second

international conference on availability, reliability and

security (ARES). IEEE; 2007. p. 356–65 .
Hauge A . SaCS: A Method and a Pattern Language for the

Development of Conceptual Safety Design. University of Oslo;
2014 [Doctoral thesis] . [Accessed: June 2016].

Hegedüs A , Horváth A , Varró D . A model-driven framework for
guided design space exploration. Autom Softw Eng
2015;22(3):399–436 .

Henninger S , Corrêa V . Software pattern communities: current
practices and challenges. Proceedings of the fourteenth

conference on pattern languages of programs. ACM; PLOP ’07,
2007 . p. 14:1–14:19

IEC, 2010. IEC 61508: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related
Systems.

ISO, 2009. ISO 31000 Risk management – Principles and

guidelines.
ISO, 2013. ISO 27001 Information technology – Security

techniques – Information security management systems –
Requirements.

ISO/IEC, 2007. ISO 5408-1 Information technology – Security
techniques – Evaluation criteria for IT security – Part
1:Introduction and general model.

Jürjens J , Rumm R . Model-based security analysis of the german

health card architecture. Methods Inf Med 2008;47(5):409–16 .
Jürjens J . Towards development of secure systems using UMLsec.

Fundamental approaches to software engineering. Springer;
2001. p. 187–200 .

Jürjens J . Foundations for designing secure architectures. Electron
Notes Theor Comput Sci 2006;142:31–46 .

Jürjens J , Popp G , Wimmel G . Towards using security patterns in

model-based system development. Proceedings of EuroPLoP
2002 conference, 2002 .

Katt B , Gander M , Breu R , Felderer M . Enhancing model driven

security through pattern refinement techniques. Formal
methods for components and objects; 2013. p. 169–83 .

Landwehr CE . Formal models for computer security. ACM

Comput Surv 1981;13:247–78 .
Lee Y , Lee J , Lee Z . Integrating software lifecycle process

standards with security engineering. Comput Secur
2002;21(4):345–55 .
Lee Y , Lee Z , Lee C . A study of integrating the security
engineering process into the software lifecycle process
standard (IEEE/EIA 12207). Annual Meeting of the Association

for Information Systems Americas Conference on

Information Systems (AMCIS), 2009 .
Likert R . A technique for the measurement of attitudes. Arch

Psychol 1932(140):5–55 .
Lodderstedt T , Basin D , Doser J . SecureUML: A UML-Based

Modeling Language for Model-Driven Security. Proceedings of
the fifth international conference on the unified modeling
language. London, UK: Springer-Verlag; UML ’02; 2002.
p. 426–41 .

Lucio L , Zhang Q , Nguyen PH , Amrani M , Klein J , Vangheluwe H ,
Traon YL . Advances in model-driven security. Adv Comput
2014;93:103–52 .

McDonald J , Oualha N , Puccetti A , Hecker A , Planchon F .
Application of EBIOS for the risk assessment of ICT use in

electrical distribution sub-stations. Proceedings of PowerTech

(POWERTECH). IEEE; 2013. p. 1–6 .
Microsoft. Microsoft Security Development Lifecycle (SDL) Process

Guidance - Version 5.2. 2012. [Accessed: November 2015].
Mikkonen T . Formalizing Design Patterns. Proceedings of the

twentieth international conference on software engineering
(ICSE). IEEE Computer Society; 1998. p. 115–24 .

Moebius N , Stenzel K , Grandy H , Reif W . SecureMDD: a
model-driven development method for secure smart card

applications. Proceedings of international conference on

availability, reliability and security, 2009. ARES’09. IEEE; 2009.
p. 841–6 .

Neumann P. Principled assuredly trustworthy composable
architectures. Technical Report SRI Project P11459; DARPA;
2004.

Noble J . Classifying relationships between object-oriented design

patterns. Proceedings of the Australian software engineering
conference (ASWEC). IEEE Computer Society; 1998. p. 98–107 .

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation

(QVT), Version 1.1. 2011. http://www.omg.org/spec/QVT/1.1/
[Accessed: January 2013].

OWASP. Application threat modeling. 2017a. https://www.owasp.
org/index.php/Application _ Threat _ Modeling [Accessed:
December 2017].

OWASP. Owasp top ten project. 2017b. https://www.owasp.org/
index.php/Category:OWASP _ Top _ Ten _ Project [Accessed:
December 2017].

Paulson L.. Proving Properties of Security Protocols by Induction.
Technical Report 409; Computer Laboratory, University of
Cambridg; 1996.

Peffers K , Tuunanen T , Rothenberger M , Chatterjee S . A design

science research methodology for information systems
research. J Manage Inf Syst 2007;24(3):45–77 .

Radermacher A , Hamid B , Fredj M , Profizi JL . Process and tool
support for design patterns with safety requirements.
Proceedings of European conference on pattern language of
programs (EuroPlop). ACM DL, 2013 . p 8:1–8:16

Rescorla E, Modadugu N, 2012. Datagram Transport Layer Security
Version 1.2 (RFC 6347). Internet Engineering Task Force.

Riehle D , Züllighoven H . Understanding and using patterns in

software development. Theor Pract Object Syst 1996;2(1):3–13 .
Rogers E . Diffusion of innovations. fifth ed. New York, USA: Free

Press; 2003 .
Runeson P , Höst M . Guidelines for conducting and reporting case

study research in software engineering. Empir Softw Eng
2009;14(2):131–64 .

Schmidt H , Jürjens J . Connecting security requirements analysis
and secure design using patterns and UMLsec. Proceedings of
twenty third international conference on advanced

information systems engineering (CAiSE). Springer; 2011.
p. 367–82 .

http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0034
https://doi.org/10.1007/s11334-015-0259-1
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0037
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0037
https://doi.org/10.1016/j.jss.2016.09.027
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0039
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0040
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0041
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0042
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0043
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0044
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0045
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0046
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0047
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0048
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0048
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0049
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0050
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0051
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0051
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0052
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0053
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0054
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0055
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0055
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0056
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0056
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0056
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0056
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0056
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0057
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0057
http://www.omg.org/spec/QVT/1.1/
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0058
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0058
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0058
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0058
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0058
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0059
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0059
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0059
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0059
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0059
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0059
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0060
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0060
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0060
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0061
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0061
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0062
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0062
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0062
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0063
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0063
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0063

S

S

S

S

S

S

S

S

T

U

W

Y

Z

D
T
A

a
p
e
g

p
r
a
s
a
f
e
o
e
o
s
e

S
f
w
n
i
t
i
o
a

D
c
t
a
p
w
s
s
h

b
n
s
r

chneier B . Attack trees, modeling security threats. Dr Dobb’s
Journal 1999 (December 1999) .

chumacher M . Lecture Notes in Computer Science, 2754.
Springer; 2003 . ISBN 978-3-540-45180-8.

chumacher M , Fernandez E , Hybertson D , Buschmann F .
Security patterns: integrating security and systems
engineering. John Wiley & Sons; 2005 . ISBN 978-0-470-85884-4.

elic B . The pragmatics of model-driven development. IEEE Softw

2003;20(5):19–25 .
errano D , Mana A , Sotirious AD . Towards precise and certified

security patterns. Proceedings of second international
workshop on secure systems methodologies using patterns
(Spattern). IEEE Computer Society; 2008. p. 287–91 .

oundarajan N , Hallstrom J . Responsibilities and rewards:
specifying design patterns. Proceedings of the twenty sixth

international conference on software engineering. IEEE
Computer Society; 2004. p. 666–75 .

rivatanakul T , Clark JA , Polack F . Effective security requirements
analysis: HAZOP and use cases. Information Security (ISC).
Lecture Notes in Computer Science, vol 3225 of LNCS.
Springer; 2004. p. 367–82 .

tine, K., Kissel, R., C. Barker, W., Fahlsing, J., Gulick, J., 2008. Guide
for Mapping Types of Information and Information Systems to
Security Categories. National Institute of Standards and

Technology.
omer A , Goldin L , Kuflik T , Kimchi E , Schach S . Evaluating

software reuse alternatives: a model and its application to an

industrial case study. IEEE Trans Softw Eng 2004;30(9):601–12 .
zunov AV , Fernandez E , Falkner K . Engineering security into

distributed systems: a survey of methodologies. J Univers
Comput Sci 2013;18(20):2920–3006 .

eiss M , Mouratidis H . Selecting security patterns that fulfill
security requirements. Proceedings of the sixteenth IEEE
international requirements engineering conference. IEEE
Computer Society; 2008. p. 169–72 .

oder J , Barcalow J . Architectural patterns for enabling
application security. Proceedings of conference on pattern

languages of programs (PLoP), 1998 .
dun U , Avgeriou P . A catalog of architectural primitives for

modeling architectural patterns. J Inf Softw Technol
2008;50(9–10):1003–34 .
r Brahim HAMID is an associate professor at the University of
oulouse Jean-Jaurés (France) and he is a member of the IRIT-
RGOS team. He got his PhD degree in 2007 in the area of depend-
bility from the University of Bordeaux. He has been an assistant
rofessor at ENSEIRB. Then he worked as a post-doc in the mod-
ling group at the CEA. His main research topics are software lan-
uages engineering, at both the foundations and application level,
articularly for resource constrained systems. He works on secu-
ity, dependability and software architecture. Furthermore, he is
n expert in model-driven development approaches both in re-
earch and teaching. He has participated in a number of national
nd European research projects. In particular, he has led success-
ully the IRIT effort on the TERESA FP7 European project, and sev-
ral national projects. Brahim Hamid is author or co-author of
ver 50 internationally reviewed publications, mostly on software
ngineering and IT security and dependability, and he has co-
rganized several international workshops (DANCE, SD4RCES). He
erves as a reviewer in numerous leading journals of the software
ngineering domain (SOSYM, ADHOC networks, JSA, JSS, JSME,
PE, DIST, etc.c), and as a member of various international con-
erence program committees. He has been invited to do expertise
ork for various organizations: FWF, FIT (Austria) and for various
ational research programs (ANR, CIR, etc.). He is also participating

n several working groups and involved in several teaching activi-
ies related to security and system engineering, as well as engag-
ng technology transfer to other organizations and other bodies
r agencies, and more generally through consulting and training
ctivities.

onatus Weber , studied Applied Computer Science Minor Electri-
al Engineering. He finished in 2007 with a thesis on implemen-
ation of control algorithms in embedded systems for unmanned

erial vehicles. During his work at the Microdrones GmbH, a com-
any developing and producing unmanned aerial vehicles with a
ide range of usage, he gained a lot of experience on embedded

ystems engineering. In 2008 he started to work as Scientific As-
istant at the Institute for Data Communications Systems. He got
is PhD degree in 2013 in the area of Security Engineering for Em-
edded Systems in Metering. He has participated in a number of
ational and European research projects. In particular, he has led

uccessfully the University of Siegen effort on the TERESA FP7 Eu-
opean project.

http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0064
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0064
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0065
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0065
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0065
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0066
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0066
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0066
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0066
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0066
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0066
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0067
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0067
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0068
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0068
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0068
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0068
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0069
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0069
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0069
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0070
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0070
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0070
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0070
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0072
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0072
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0072
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0072
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0072
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0072
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0073
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0073
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0073
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0073
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0074
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0074
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0074
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0075
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0075
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0075
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0076
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0076
http://refhub.elsevier.com/S0167-4048(18)30304-3/sbref0076

	Engineering secure systems: Models, patterns and empirical validation
	1 Introduction
	2 Generalities and background
	2.1 Model-based software systems security engineering
	2.2 Pattern-based software systems security engineering
	2.3 Security analysis and evaluation

	3 A motivating example
	4 Approach
	4.1 Step 1: Conceptual model of security patterns
	4.2 Step 2: Creation of a DSML from a conceptual model of security patterns
	4.2.1 Informal description of the motivating pattern example
	4.2.2 Abstract syntax
	4.2.3 Concrete syntax
	4.2.4 Pattern verification process

	4.3 Step 3: Definition of security patterns
	4.4 Step 4: Definition of security patterns for a specific domain
	4.5 Step 5: Adaptation for a specific domain development environment
	4.6 Step 6: Reuse for a specific system development

	5 Tool support
	6 Evaluation
	6.1 Case study
	6.1.1 Nature of the case study
	6.1.2 Research questions
	6.1.3 Description of the application
	6.1.4 Data collection procedure
	6.1.5 Results
	6.1.6 Discussion

	6.2 Survey
	6.2.1 Context and data generation method
	6.2.2 Questionnaire
	6.2.3 Survey results
	6.2.4 Discussion

	7 Fulfillment of the security objectives
	8 Recapitulation and synthesis
	9 Related work
	10 Conclusion
	 Acknowledgments

	Reference

