
MPC Flight Control for a
Tilt-Rotor VTOL Aircraft

LEONARD BAUERSFELD
LUKAS SPANNAGL
Institute for Dynamic Systems, and Control, ETH Zürich, Switzerland

GUILLAUME J. J. DUCARD
University Cote d’Azur, Centre national de la recherche scientifique, I3S,
Sophia Antipolis, France

CHRISTOPHER H. ONDER
Institute for Dynamic Systems, and Control, ETH Zürich, Switzerland

This article presents a model predictive control (MPC) controller
and its novel application to a hybrid tilt-quadrotor fixed-wing aircraft,
which combines vertical takeoff and landing (VTOL) capabilities with
high-speed forward flight. The developed MPC controller takes a
velocity command from the pilot and then computes optimal atti-
tude setpoints and propeller-tilt angles that are supplied to a fast
inner attitude controller. A control allocation algorithm then maps
the output of the inner attitude loop to actuator commands. The
proposed MPC and control allocation of this article constitute a unified
nonlinear control approach for tilt-rotor VTOL aircraft, valid in
all flight modes and transitions in between. The whole approach is
verified both in simulations and in real-world outdoor experiments
with a remote controlled VTOL aircraft transitioning from hover to
high speed and vice versa in a stable and controlled manner. Results
show superior performance compared to the common binary-switch
transition strategy between multicopter flight mode and the fixed-wing
flight mode. The MPC controller also consistently performs better
than a previously developed fused-PID control architecture in our
tests.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become increas-
ingly popular among researchers, industry professionals
and hobbyists for carrying out a variety of tasks ranging
from inspection of power lines to racing competitions. Most
vehicles can either be categorized as fixed-wing aircraft or
multirotor aircraft (multicopters). Fixed-wing aircraft gen-
erate the required lift with their wings whereas multirotor
aircraft have upwards pointing propellers generating the
force needed to support their weight. Fixed-wing aircraft are
very efficient during high-speed long-distance flight. How-
ever, despite being much less energy efficient, multicopters
can operate in tight spaces. A vertical takeoff and landing
(VTOL) aircraft with wings and tilting propellers combines
the advantages of both aircraft designs. The key design
aspect is that the propellers can be tilted upward for takeoff
and landing (multicopter configuration) and can be tilted
forward for long-distance flight (fixed-wing configuration).
Fig. 1 shows such a tilt-rotor VTOL aircraft.

Controlling hybrid vehicles like the tilt-rotor VTOL
aircraft is challenging because the vehicle’s dynamics in
a fixed-wing configuration are very different to those in a
multicopter configuration. To illustrate this, consider the
situation, where the vehicle is flying at low forward speed
and tasked to accelerate and climb: a) a multicopter needs
to pitch down to accelerate and increases the thrust of its
propellers to climb, whereas b) a fixed-wing aircraft needs
to pitch up and to increase thrust to execute the same
maneuver. Another challenge stems from the fact that a
tilt-rotor VTOL aircraft is overactuated, which means it
has more actuators (rotors, control surfaces) than degrees
of freedom. The process of mapping the desired forces and
torques to actuator outputs is thereafter referred to as control
allocation. To fully use the potential of the tilt-rotor VTOL
aircraft, not only a smooth transition from the multicopter
configuration to the fixed-wing configuration is important,
but the use of all in-between flight states (partially tilted
propellers) must be possible as well.

The main contribution of this article is the development
and the successful flight testing of a model predictive control
(MPC) flight control system for a tilt-rotor VTOL aircraft,
such as the one shown in Fig. 1. Although MPC is a
known control approach, its integration and formulation
to the problem of tilt-rotor VTOL aircraft, as a unified
control approach, i.e., valid in all flight modes, is new.
Indeed, to the best of our knowledge, this article is the first
to report successful real-world outdoor flight in extensive
experiments for a tilt-rotor VTOL UAV with the following.

1) A smooth and seamless transition from hover to high-
speed flight and vice versa, autonomously performed
by the flight controller.

2) A flight controller that is able to control the tilt-rotor
VTOL aircraft throughout its whole flight envelope,
without the need to switch between several flight
controllers.

3) A flight stack (control allocator, low-level control,

Authors’ addresses: Leonard Bauersfeld, Lukas Spannagl, and Christopher
H. Onder are with the Institute for Dynamic Systems, and Control, ETH
Zürich, 8092 Zürich, Switzerland, E-mail: (leonardb@student.ethz.ch;
spalukas@student.ethz.ch; onder@idsc.mavt.ethz.ch); Guillaume J. J.
Ducard is with the I3S, University Cote d’Azur, Centre national de
la recherche scientifique, 06903 Sophia Antipolis, France, E-mail:
(ducard@i3s.unice.fr). (Corresponding author: Leonard Bauersfeld.)

 MPC) that runs in real-time and onboard the vehicle.

1

This is the accepted version of the paper : L. Bauersfeld, L. Spannagl, G. Ducard, C. Onder, “MPC Flight Control for a Tilt-rotor VTOL Aircraft,”
in IEEE Transactions on Aerospace and Electronics Systems, Vol. 57, Issue 4, August 2021, pp. 2395 – 2409. 15 pages.
https://doi.org/10.1109/TAES.2021.3061819
This paper is under IEEE Copyright and is accessible on IEEE Xplore at :
https://ieeexplore.ieee.org/document/9369016

https://orcid.org/0000-0002-7400-4915

Fig. 1. Tilt-rotor VTOL aircraft used in this work is from WingCopter.
The design features four tilting propellers where the propellers on the

same side of the fuselage are always tilted together. Additionally, a pitot
tube, a GPS receiver, a telemetry transmitter and a Pixhawk autopilot

were fitted to the vehicle.

These achievements were possible due to the specific
MPC formulation used as follows:

1) the design of a cost function with soft constraints
custom-tailored to the vehicle at hand;

2) the use of a soft �1-norm tracking cost to achieve fast
computation times;

3) the choice of a suitable receding horizon compatible
with the vehicle dynamics and available computa-
tional power onboard the vehicle’s small form-factor
computer;

4) an efficient-to-evaluate nonlinear model of the vehi-
cle dynamics.

The presented control approach also uses a custom
control allocator (CA) originally developed in [1]. Over-
all, satisfactory and reliable flight performance have been
successfully demonstrated in outdoor real flights at speeds
up to 22 m/s.

The remainder of this article is organized as follows.
First, a review of common vehicle designs and control
strategies for VTOL aircraft is presented. Then, an overview
of the control architecture is given followed by a detailed
discussion of its components in the subsequent sections.
Emphasis is placed on the choice of equations, states, and
constraints. Finally, Section VI presents the experiments in
simulation and with the real vehicle.

II. RELATED WORK

Research about VTOL UAVs is a broad topic due to the
various existing vehicle designs. The vehicles can roughly
be divided into three categories. 1) Tilt-rotor, 2) tilt-wing,
and 3) tail-sitter vehicles. In the case of the first two, the
fuselage remains horizontal during the vertical takeoff and

landing as well as during forward flight. Tail-sitters on the
other hand transition back and forth between a vertical
(takeoff, landing and hover) and a horizontal (forward flight)
configuration.

Some recent control approaches [2], [3] split the control
problem into several control regimes with discrete switches
between them and focus on the transition phase between the
individual modes. For instance, Li et al. [3] controlled the
transition phase of a tail-sitter using optimization and Liu
et al. [2] applied robust nonlinear control. MPC has also
been successfully applied to a ducted tail-sitter in [4]. The
tail-sitter described in [5] uses a lookup table of optimal
control inputs to implement an MPC-like control architec-
ture. Verling et al. [6] used a combination of model-based
optimization and an attitude controller to solve the same
problem. Overall, the tail-sitter type vehicle has been well
studied in the MPC context, both theoretically and in prac-
tice.

The tilt-wing vehicles have their propellers rigidly at-
tached to their tiltable wings. Tran et al. [7] utilized a robust
control augmentation system to improve the transition be-
havior of a quadrotor-tilt-wing VTOL aircraft and validate
their design on a real vehicle. MPC has also been applied
to such a system in [8]. This approach uses a linearized
model and only simulation experiments were presented. The
third type of VTOL UAVs—tilt-rotors—represent a very
popular field of research. Various geometries with two to six
propellers and with and without wings have been studied.
H∞ and MPC have been applied to bicopters in [9] and [10],
respectively. Ryll et al. [11] designed a control framework
for a fully actuated quad-tilt-copter. In [12] and [13], two
more types of fully actuated multicopters are developed.
Because they are fully actuated, position and orientation can
be decoupled. Ryll et al. [14] described a control approach
that is capable of switching between an underactuated and
a fully actuated configuration with just a single additional
actuator which tilts the propellers.

The vehicle described in this article is also a tilt-rotor
vehicle, but has the aerodynamic actuators in addition to
the tiltable propellers. This category is called tilt-rotor
aircraft. A common approach for VTOL UAVs in gen-
eral and especially tilt-rotor aircraft is to use two or three
separate controllers [15], [2], [16], [10], [3], a multicopter
controller, a fixed-wing aircraft controller and a transition
controller. This approach is very prominent for tilt-rotor
aircraft because the multicopter and fixed-wing controllers
are well researched. One then needs to switch between the
two flight configurations, and the most simple solution is a
preprogrammed feed-forward transition controller, as done
on the commercial PixHawk autopilot. Such open-loop
controllers are not robust and research on how to improve
them dates back to 1971 when Nardizzi et. al [17] studied
how to perform transitions in minimum time with open and
closed-loop control.

Mehra et al. [18] applied MPC to an XV-15 aircraft, but
has to use fuzzy logic to make the problem computationally
feasible and does not show experimental results. Tilt-duct

2

Fig. 2. Front-right-down body frame is attached to the vehicle. The
aircraft has five aerodynamic actuators, namely two ailerons, two

rudders, and one elevator. The propeller-tilt angle is measured w.r.t. the
body x-axis and the propellers on the same side of the fuselage tilt

simultaneously.

type aircraft are analyzed in [19] and [20], where [20]
also shows experimental results, but does not apply MPC.
Allenspach et al. [21] applied MPC to a quadrotor-tilt
aircraft but do not provide experimental results. Finally,
Papachristos et al. [22] applied MPC to improve position
control near hover and provide experimental results. Their
setting, however, is quite different compared to ours as they
use MPC to improve the disturbance rejection near hover
and do not focus on fast forward flight or a transition.

Overall, the body of research is focused on the math-
ematical modeling of VTOL aircraft and the subsequent
controller synthesis based on those models. For tail sitters,
MPC has been successfully developed and validated on a
series of real vehicles. For tilt rotor vehicles, however, the
research so far only either develops an MPC and does not
validate it in experiments on a real vehicle or validates
control strategies that are not based on optimization. To
the best of the authors’ knowledge, the only experimentally
validated MPC on a tilt rotor UAV was specifically designed
to reject position disturbances near hover [22]. Therefore,
a next step to further advance tilt-rotor VTOL research is
to apply MPC to the considered vehicle and validate the
approach for all flight scenarios. This is the goal of this
article: to present a unified control approach that can be
used throughout the whole flight envelope of the tilt-rotor
VTOL aircraft.

III. OVERVIEW

A. Notation and Coordinate Systems

In this article, vector quantities are represented by bold
symbols. Most calculations are carried out in the front-right-
down frame that is attached to the vehicle, as shown in Fig. 2,
and it is denoted by a subscript “B” in ambiguous cases. The
deflection angles of the aerodynamic actuators are given by
δa, δe, and δr for the aileron, the elevator, and the rudder,
respectively. The left and right propeller pair (e.g., 1©, 2©
and 3© 4©) can be tilted independently. The tilt anglesχL and
χR of the left and right propeller pair are measured w.r.t. the
body x-axis xB. This means that χL = χR = 0 corresponds
to “multicopter mode” whereas χL = χR = π

2 corresponds
to the fixed-wing aircraft configuration. The total thrust of
all four propellers is denoted by T. Due to the geometry

of the vehicle, a thrust in the body-yB direction cannot be
generated

T =
[
TxB 0 TzB

]�
. (1)

To control the attitude of the vehicle, torques around
the xB, yB, and zB axes are required. Such torques can be
generated by the propellers as well as by deflecting the
aerodynamic actuators, The vector of all torques is defined
as

τ =
[
L M N

]�

where L is the roll torque, M is the pitch torque, and N is
the yaw torque.

The inertial or global frame used in this work is a
north-east-down (NED) frame. The attitude � of the vehicle
relative to that inertial frame is described by the three Euler
angles roll φ, pitch θ , and yaw ψ

� =
[
φ θ ψ

]�
.

The velocity v is given in the inertial frame whereas vB

is given in the body frame. Let Rξ (α) denote the rotation
matrix around the axis ξ by an angle α. Then, the following
relation holds:

v = Rz(ψ)Ry(θ)Rx(φ)vB = GRBvB, vB = GR�
B v. (2)

B. Vehicle Specifications

The vehicle at hand is a modified WingCopter v1 as
shown in Fig. 1 that has been equipped with a GPS antenna,
a three-axis accelerometer, three-axis gyroscope, and three-
axis magnetometer, a telemetry transmitter, a pitot tube, a
Pixhawk autopilot, and an Intel UpBoard small form-factor
computer. The physical and aerodynamic specifications are
listed in Table I. To obtain the moment of inertia of the
vehicle around its principal axes, it was suspended by a
metal wire. With a known torsional spring constant of the
wire, the moment of inertia can be calculated from the
oscillation frequency. The aerodynamic parameters were
obtained with xFoil as detailed in [23].

The Pixhawk with the PX4 firmware is a very common
autopilot among researchers and hobbyists alike as it
open-source and can easily be adapted to the task at hand.
The so-called “fused-PID” controller, the attitude controller
and control allocation described in the following sections
are custom-built modules that have been implemented into
the firmware (based on version v1.10.0b4). The computer
aboard the vehicle (referred to as companion computer)
is an Intel UpBoard, which runs the MPC controller. It
features an Intel Atom x5-Z8350 (4 × 1.44 GHz) processor
and is running Ubuntu 18.04 LTS. It communicates with
the Pixhawk autopilot using a serial interface. Popular
alternatives to the Intel UpBoard would be the NVidia
Jetson or Raspberry Pi 4.

3

TABLE I
Physical Parameters of the Aircraft

C. Control Architecture

After presenting the notation and the coordinate systems
as well as the vehicle, this section gives an overview of the
control architecture. The MPC controller and the control al-
location will be explained in greater detail in the subsequent
sections. The control architecture as a whole is summarized
in Fig. 3.

1) Velocity Loop: The outer loop controller takes the
vehicle’s state and a velocity setpoint vsp from the pilot
through a RC transmitter as an input. A velocity setpoint is
chosen for the outer loop for two reasons. 1) There is no
straightforward way to map the RC-joystick space to the
real vehicle’s three-dimensional space. 2) The approach is
general in the sense that any global path planner could be
used to supply velocity setpoints and extend the controller.
It outputs an attitude setpoint �sp and a thrust setpoint
Tsp. There are two possible choices for the velocity-loop
controller and either the MPC controller or the fused-PID
(FPID) controller can be used. The MPC controller relies
on a model of vehicle dynamics to control the aircraft,
which enables it to utilize the full potential of the hybrid
vehicle. Due to the computational demand of the numerical
optimization involved in MPC, the controller runs on the on-
board companion computer. The communication between
the companion computer and the autopilot is handled using
the robot operating system (ROS).

The FPID outer loop controller runs on the Pixhawk
autopilot itself since it needs few computational resources.
It was developed in an earlier work and the reader is referred
to [24] for details. In the context of this article, it can be seen
as a fusion between a multicopter PID velocity controller
and a fixed-wing aircraft PID velocity controller. Based on
the airspeed of the vehicle, the tilt-angle χ̄ of the propellers
is computed. This tilt-angle is then used to determine how
the thrust and attitude setpoints generated by the separate
multicopter and fixed-wing velocity controllers need to be
combined. The FPID controller acts mainly as a fail-safe in
case the MPC controller fails to send data to the Pixhawk
autopilot (see Section V-E for details).

2) Attitude Controller: The velocity-loop controller
supplies attitude setpoints �sp at a rate of 25 Hz (MPC) or
50 Hz (FPID) to the attitude loop. This inner control loop
calculates a torque-triplet τsp to ensure that the attitude of
the vehicle follows the attitude setpoint closely. This torque
setpoint is then supplied to the control allocation. Internally,
the attitude controller is implemented as a cascaded P/PID
controller where the outer P-loop calculates an attitude-
rate setpoint �̇sp, which is used as an input to the inner
attitude-rate PID control loop. This design allows a high
update rate of 200 Hz and a high bandwidth in turn. The
gains of the controller need to be tuned, which can, either,
be done in simulation and experimentally. For the former
approach, the vehicle’s known mass and inertia (see Table I)
are used to set up a second-order model of the vehicle
dynamics. This model can be used subsequently to design
and validate the initial controller gains before flight, e.g., by
checking Bode plots for well selected inputs/outputs of the
attitude loop. Those initial gains are then refined iteratively
in experiments to yield satisfactory reference tracking be-
havior without inducing high-frequency oscillations. Note
that tilting the propellers has negligible influence on the
inertia of the vehicle as the inertia difference between fixed
wing and multicopter configuration is less than 4 % for
all axes.

3) Control Allocation: The control allocation receives
a torque setpoint τsp from the attitude controller and a
thrust setpoint Tsp from the velocity controller. The control
allocation maps those high-level commands to actuator

outputs. For example, if τ =
[
0 1 0

]�
(“pitch up”) it

could command a positive elevator deflection δe > 0.
The velocity loop and attitude controller can be rather

generic and the ones presented in this article are suitable
for all tilt-rotor VTOL aircraft with wings. This is possible
because the exact number of propellers and aerodynamic
control surfaces is unknown to the higher control loops.
Only the control allocation needs to be specifically tailored
to match the vehicle’s set of actuators. This also makes it
possible to adapt to system failures. Active fault-tolerant
control can be achieved without the need to change the
velocity or attitude control loop. Only a suitable control
allocation that takes the given failure into account [25] is
required.

4

Fig. 3. Control diagram gives an overview over the whole control architecture of the vehicle. The user can choose between using the MPC controller
(running on the onboard companion computer) and the Fused-PID controller (running on the Pixhawk) as an outer loop controller that calculates an

attitude setpoint �sp and a thrust setpoint Tsp based on the pilot’s velocity command. The fast inner attitude control loop then outputs a set of torques τ

to ensure that the vehicle tracks the attitude setpoint. Together with the thrusts, the torques are supplied to the control allocation algorithm to calculate
the actuator commands S. All modules run on the Pixhawk except for the MPC which runs on the companion computer.

IV. CONTROL ALLOCATION

The control allocation is a central building block of the
presented control system and, for example, determines the
output of the MPC controller. First, a model, which de-
scribes the total thrust and torque based on the actuator states
is required. This model is inverted to obtain the actuator
states based on the current desired thrust and torque. In
Section IV, the body frame is used for all calculations.

A. Actuator Model

The total thrust T is modeled as the vector sum of the
individual thrusts ti

T =

⎡
⎢⎣

Tx

0

Tz

⎤
⎥⎦=

2∑
i=1

ti

⎡
⎢⎣

sin(χR)

0

− cos(χR)

⎤
⎥⎦ +

4∑
i=3

ti

⎡
⎢⎣

sin(χL)

0

− cos(χL)

⎤
⎥⎦ .

(3)
The moments are independently created by the aerody-

namic surfaces and the propellers. The chosen model for
the rotor moment τr is

τr =
∑
i=1,3

[
C̃ ti + dri × ti

] +
∑
i=2,4

[−C̃ ti + dri × ti
]

whereC̃ = CQ/CT andCT andCQ are the thrust and resisting
torque coefficients, respectively. The distances between the

center of gravity and the center of the ith propeller is
dri = di + RχL|R dei. Here, RχL|R describes a rotation around
the body y-axis by the angle χL or χR depending on i. The
dis and deis are

d1 = [−l3 L0 − h0]�, de1 = [−l1 0 − h1]�

d2 = [l4 L0 − h0]�, de2 = [l1 0 − h1]�

d3 = [l4 − L0 − h0]�, de3 = [l1 0 − h1]�

d4 = [−l3 − L0 − h0]�, de4 = [−l1 0 − h1]�.

The chosen model for the aerodynamic moment is

τa = q̄ S
[
bCL,a δa c̄ CM,e δe bCN,r δr

]�
(4)

where S, c̄, b, andC(·) are defined in Table I, q̄ is the dynamic
pressure and δ j (j = a, e, r) are the deflections of the aero-
dynamic actuators. Both rudders are operated in parallel
(δr,L = δr,R = δr) and the two ailerons are operated with the
same magnitude but opposite sign (−δaL = δaR = δa).

The total torque τ generated by the actuators is

τ = τr + τa. (5)

5

Fig. 4. Control allocation utilizes differential propeller tilting as
depicted here. The left and right propellers are tilted independently to

produce a thrust matching the setpoint Tsp and the desired torque along
this thrust vector τproj simultaneously. Due to this independent tilting, the
total thrusts on the left and right side of the vehicle (i.e. t1 + t2 or t3 + t4)
point in different directions. Therefore, the projections of these (t̃1,2 and
t̃3,4) onto a plane normal to the thrust setpoint are nonzero and point in

opposite directions. This generates a torque along the thrust vector, whose
magnitude is a function of �χ and the thrust of the individual propellers.

B. Algorithm

As seen in Fig. 3, the control allocation algorithm con-
verts

Tsp =
[
Tsp,x 0 Tsp,z

]�
, τsp =

[
Lsp Msp Nsp

]�

to the control vector

S =
[
t1 t2 t3 t4 χL χR δa δe δr

]�
.

The control allocation calculates the actuator commands
in the following three steps:

1) aerodynamic actuator deflections δa, δe, δr ;
2) tilt angles χL, χR;
3) individual propeller thrust t1, t2, t3, t4.

The aerodynamic actuators can generate torques inde-
pendently of the propellers as soon as there is airflow over
the control surfaces. Generating torques using different pro-
peller speeds requires more energy and, thus, as much of the
desired torque as possible is realized with the aerodynamic
actuators. Once the aerodynamic torque τa is known, it is
subtracted from the setpoint τsp to obtain the residual torque
τr , which has to be generated by the propellers. A part of
this torque can be generated through differential tilt, i.e., by
choosing a different tilt angle for the left and right propeller
pair (see Fig. 4). Calculating the individual tilt angles is
done in step 2. In the final step, the individual propeller
thrusts are calculated such that the desired overall torque is
achieved.

1) Aerodynamic Actuator Deflections: The deflections
are determined as

δa = Lsp/(CLa S b q̄)

δe = (Msp − l3 − l4

2
Tsp,z + h0 Tsp,x︸ ︷︷ ︸
τθ

)/(CMe S c̄ q̄)

δr = Nsp/(CNr S b q̄).

This represents an inversion of (4) with an added pitch-
torque term τθ , which arises because the propellers’ thrust
is not applied at the center of mass. At low air speeds vair

the dynamic pressure q̄ = 0.5ρairv
2
air tends to zero. To avoid

aggressive actuator movements at these low speeds, the
deflections are multiplied with a ramp function f1, which is
zero near hover and one at larger air speeds

f1(q̄) = min(max(0, ar1 · (q̄ − br1) + 0.5), 1).

The coefficients ar1 and br1 can be found in Table I.
Once the deflections are multiplied by this ramp, they
are saturated and used to determine the residual torque

τr =
[
Lr Mr Nr

]�

Lr = Lsp − CLa S b q̄ δa,sat

Mr = Msp − CMe S c̄ q̄ δe,sat

Nr = Nsp − CNr S b q̄ δr,sat.

2) Propeller Tilt Angles: The propeller tilt angles are
chosen such that the thrust set point Tsp and the residual
torque along Tsp are realized by a symmetric differential
tilt, as shown in Fig. 4. The mean tilt angle χ̄ is computed
as

χ̄ = arctan

(
Tsp,x

−Tsp,z

)
.

The symmetric deviation from the mean tilt angle �χ is
then computed as

�χ = arctan

(
τproj f2(||Tsp||)

||Tsp|| L0

)

where τproj = τ�
r Tsp/||Tsp|| is the projection of the residual

torque onto the thrust set point and f2(||Tsp||) is a second
ramp function, which limits the amount of differential tilt
while the thrust is low

f2(||Tsp||) = min(max(0, ar2 · (||Tsp|| − br2)), 1).

The coefficients ar2 and br2 can be found in Table I. Now,
the tilt angles χL and χR can be computed as

χL = χ̄ −�χ (6)

χR = χ̄ +�χ . (7)

Finally, �χ is reduced such that both tilt angles χL and χR

are within the valid range (−7◦ to 90◦). This guarantees
that the total thrust points in the direction commanded by
the velocity controller.

3) Individual Propeller Thrust: Once the tilt angles
are known, the thrust and torque model of the propellers
becomes linear in the individual thrust components

⎡
⎢⎢⎢⎢⎢⎣

Tsp,x

Tsp,z

Lr

Mr

Nr

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣ A

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

t1

t2
t3

t4

⎤
⎥⎥⎥⎦ (8)

6

with

A =

⎡
⎢⎢⎢⎢⎣

sin(χR sin() χR)

− cos(χR) − cos(χR)

−L0 cos(χR)+ CQ
CT

sin(χR) −L0 cos(χR)− CQ
CT

sin(χR)

−l1−l3 cos(χR)−h0 sin(χR) l1+l4 cos(χR)−h0 sin(χR)

−L0 sin(χR)− CQ
CT

cos(χR) −L0 sin(χR)+ CQ
CT

cos(χR)

sin(χL sin() χL)

− cos(χL) − cos(χL)

L0 cos(χL)+ CQ
CT

sin(χL) L0 cos(χL)− CQ
CT

sin(χL)

l1+l4 cos(χL)−h0 sin(χL) −l1−l3 cos(χL)−h0 sin(χL)

L0 sin(χL)− CQ
CT

cos(χL) L0 sin(χL)+ CQ
CT

cos(χL)

⎤
⎥⎥⎥⎥⎦ .

In this last step of the algorithm, (8) is solved to obtain the
individual thrusts ti.

C. Optimality

The proposed algorithm is an approximation of the
optimal mapping of thrust and torque to the control vector.
To show the effectiveness of the differential tilt and the
performance of the algorithm in general, the following three
control allocations are compared:

1) control allocation based on nonlinear optimization;
2) the proposed algorithm;
3) the proposed algorithm without differential tilt.

To compare these, a variety of sample thrust and torque
setpoints are sent to all of these algorithms and their outputs
are compared (see Fig. 5).

The control allocation algorithm based on nonlinear
optimization minimizes the sum of squared thrusts

JCA = t2
1 + t2

2 + t2
3 + t2

4

subject to the actuator model described in Section IV-A. For
the control allocation without differential tilt, the second
step of the described algorithm is replaced by setting �χ
to zero. Fig. 5 shows the total cost JCA produced by all
three algorithms and compares the propeller tilt angles of
the proposed algorithm with the optimal ones. Without the
differential tilt, the cost is much higher compared to the
optimal cost. When the differential tilt is enabled, the cost
is almost identical to the optimal cost. However, the com-
putation time required to solve the optimization problem is
much higher compared to the developed algorithm.

A rare corner-case where the approximation deviates
minimally from the optimal solution are maneuvers where
both propellers are at a tilt limit (i.e., −7◦ or 90◦) and a
very large roll and yaw torque is demanded simultaneously.
In these cases it might be suboptimal to tilt the propellers
symmetrically. However, such a scenario is an artificial
example as it is highly unlikely to occur during a real flight.

V. MODEL PREDICTIVE CONTROL

This section presents the velocity MPC controller, which
takes a velocity setpoint from the pilot as an input. The goal
of predictive control, is to use a mathematical model of
the vehicle dynamics in order to achieve optimal control
performance. The MPC controller computes an optimal

Fig. 5. Performance measure, the described algorithm is compared to
the algorithm without differential tilt and the optimal solution. The top
diagram shows the resulting cost of all three algorithms. The bottom

graph compares the calculated tilt angles of the proposed algorithm with
the optimal tilt angles.

sequence U of inputs u�k that minimize a cost function
J (x, u) over a horizon of N time steps. The solution respects
constraints on the state vector x and the input vector u

U = arg min
uk

N∑
k=0

J (xk, uk)

s.t. xk+1 = f (xk, uk)

xk ∈ X
uk ∈ U (xk).

(9)

The state vector x will be discussed along with the
input vector u in the following section. Then, the con-
straints, objective function J (·) and dynamic model f (·)
are explained. Finally, an efficient implementation on the
companion computer is presented.

A. Input and State Vectors

Choosing a suitable input u and state x is a crucial part
of the controller design. Typically, one chooses physically
meaningful quantities and hence a straightforward possibil-
ity would be to use the velocity, the attitude and the attitude
rate as well as the tilt angle as a part of the state. The input

7

would consequently be the thrust magnitude T and change
in tilt angle χ̇ together with the torque triplet

τ =
[
L M N

]�

x =
[
v � �̇ χ̄

]�
∈ R

10×1

u =
[
T ˙̄χ L M N

]�
∈ R

5×1. (10)

This choice would allow the controller to optimize the
torques and thrust that are required to control the aircraft to
yield good performance. Note that choosing the propeller-
tilt angle as a state and using the tilt rate as an input simplifies
constraining ˙̄χ , which corresponds to the physically limited
motor speed of the actuator servo. The velocity is given
in the NED-frame as this makes it easier to use a global
trajectory planner.

However, this choice of x and u is not very well suited
to the problem at hand since the MPC controller does not
directly send torque setpoints to the control allocation, but
instead needs to supply attitude setpoints to the inner loop.
Directly sending torques is not possible due to the too slow
rate of the MPC (25 Hz) and the time delay introduced by
the communication between the companion computer and
the autopilot. A possible way to compensate the delay would
be to use the computed attitude trajectory as a setpoint and,
thus, assume that the attitude controller perfectly tracks this
reference. In a real application, however, this assumption
is invalid. Consequently, the torques applied to the system
by the inner attitude controller do not match the MPC’s
trajectory, which degrades the control performance.

By incorporating the inner attitude controller into the
MPC formulation, the above issue can be resolved. In effect,
this inverts the inner attitude controller such that the torques
required by the MPC are sent to the control allocation. This
can be thought of as increasing the effective rate of the MPC
since the inner control loop operates at 200 Hz. Based on
these insights, the vector u is chosen to match the input to
the inner control loop (see Fig. 3), i.e., the elements are the
thrust T , propeller-tilt rate ˙̄χ , and attitude solution �MPC

u =
[
T ˙̄χ �MPC

]�
∈ R

5×1. (11)

The yaw-angle setpoint ψMPC would be unconstrained but
the vehicle’s yaw dynamics are 2π -periodic, which can be a
problem for the optimizer. Thus, the yaw attitude setpoint is
expressed relative to the current yaw of the vehicle and the
following equation converts the solution of the MPC into
the actual attitude setpoint:

�sp = �MPC +
[
0 0 ψ

]�
. (12)

The state needs to be expanded by the previous (e.g.,
from the last iteration of the MPC controller) attitude rates
�̇

− to include the P/PID attitude control loop. The dynamics
of the integral part are slow and thus neglected in the
state. Furthermore, a smooth thrust curve is desirable and
therefore the last thrust setpoint T − is added to the state.
This allows penalizing large thrust changes in the objective

function. The state vector is then given by

x =
[
v � �̇ χ̄ �̇

− T −
]�

∈ R
14×1. (13)

B. Constraints

The main advantage of model predictive control over
other types of controllers is that MPC allows to incorporate
constraints. Typically, such constraints represent either the
physical limits of the plant that is controlled or safety lim-
itations. In contrast to these hard constraints, one can also
specify soft constraints, which are not strict limits but incur
high cost when “violated”. The chosen hard constraints for
the considered vehicle are given below, where | · | denotes
the elementwise absolute value

|v| ≤
[
35 35 10

]�
ms−1 T ∈ 40][0 N

|�| ≤
[
π
4

π
4 ∞

]�
T − ∈ [0 40] N

|�̇| ≤
[
π π π

]�
degs−1 χ̄ ∈ [−7 90] deg

|�MPC| ≤
[
π
3

π
3

π
2

]�
˙̄χ ∈ [−45 45]degs−1.

(14)

C. Objective Function

The most important part of any predictive controller
is the objective function that it minimizes. The objective
determines, which control actions and flying states are desir-
able (thus, “cheap”), how well the reference will be tracked
and which flying maneuvers are better avoided. To achieve
the latter, soft constraints Jsoft incurring large cost when
violated are incorporated into the objective function. To
ensure reference tracking, the objective includes a cost Jref

that grows as the tracking error increases. To avoid excessive
actuator usage and overly aggressive flying maneuvers (e.g.,
very high attitude rates) a cost term Jx,u that depends on the
state and input is introduced. Overall, the objective function
has the following form:

J (xk, uk) = Jref(v, vsp) + Jx,u(xk, uk) + Jsoft(xk).

1) Reference Tracking: A typical cost function for
reference tracking is a squared-error objective with
a weight matrix Qref = diag(qx, qy, qz), i.e., Jref = (v −
vsp)�Qref(v − vsp). The shortcoming of this approach is that
the vehicle will not maintain its altitude in order to reduce
the velocity error cost. Consider the following situation: the
vehicle is at rest and the velocity setpoint changes to 20 m/s.
The objective function will then attain the value 400qx .
However, by descending the vehicle can accelerate much
faster while only incurring a minor cost (e.g., vz = 2 m/s
with cost 4qz). Therefore, the vehicle will not maintain its
altitude.

To resolve this problem, an �1 objective is used instead
of the �2 objective

Jref(v, vsp) = ||q�
ref × (

v − vsp
)
ψ

||1. (15)

8

TABLE II
Weights for the State and Input Cost

The vector of weights qref =
[
qx qy qz

]�
=[

5 5 10
]�

determines how “costly” a deviation from

the velocity setpoint is. The safety-critical z direction gets
more weight than the x and y direction. Minimizing the �1

norm is known to reduce the cardinality [26], which makes
a NED coordinate frame unsuitable. The vehicle would
first try to minimize the velocity error along either of the
coordinate axes and, therefore, turn exactly north, east,
etc. Choosing the body frame to perform the calculation is
equally unsuitable as the value of Jref would then depend
on the pitch and roll of the vehicle due to the larger cost in
the z direction. Therefore, the velocity error is calculated in
a coordinate frame, which is only rotated by the yaw angle
ψ but not the other two Euler angles corresponding to roll
and pitch. In this coordinate frame, reducing the cardinality
corresponds to holding the altitude and the course.

To improve the performance of the numerical solver, a
soft, continuously differentiable approximation |x|s of the
absolute value function is used in the �1 norm

|x|s = 2α log(1 + exp(x/α) − x − 2α log(2) .

The parameter α = 0.1 controls the softness of the approx-
imation and needs to be tuned empirically to yield good
numerical performance.

2) State and Input Cost: The state and input costs are
given by quadratic functions in each element of the state
and input vector

Jx,u(xk, uk) = ��Q�� + �̇
�Q�̇�̇

+ u�
k Quuk + qt (T − − T)2

(16)

where the matrices Q are diagonal matrices with entries
according to Table II. Initially, the weights have been chosen
such that all states and inputs have a cost of about one during
typical operating conditions of the vehicle. To improve
the performance of the controller, the weights have been
empirically tuned during the testing process.

3) Soft Constraints: The use of soft constraints can
either be interpreted as a “suggestion” to the controller or
as an actual constraint that does not render the optimization
problem infeasible when it is violated. Soft constraints are
used to recommend a sensible tilt angle and to constrain the
velocity.

For safety reasons, it is undesirable to have the pro-
pellers tilted forwards at low speeds, but there is no strict
limit that needs to be enforced. At high speeds all configu-
rations are allowed. Hence, a soft constraint Jsoft,χ̄ that en-
codes the “recommendation” to keep the propellers pointed

TABLE III
Some Values of the Cost Function

upwards at low forward speeds vx,B is used

Jsoft,χ̄ (vx,B, χ̄) = qχ̄ exp(a · vx,B · χ̄ + b · χ̄ + c · vx,B + d)

a = −0.332, b = 13.35, c = −0.477, d = −2.303.

For a more intuitive understanding, some values of this
function are given below in Table III.

Soft constraints are also applied to the velocity. The box
constraints given in (14) act on the velocity of the vehicle in
the inertial frame, and thus, the aerodynamic limitations of
the vehicle are not modeled. To resolve this, a soft constraint
Jsoft,v that depends on the velocity vB (in the body frame) is
introduced. The aerodynamic characteristics of the vehicle
do not allow it to fly sideways at high speeds and also do
not permit fast backward-flying. Therefore, the applied soft
constraints are

vx,B > −1 ms−1, |vy,B| ≤ 2 ms−1, |vz,B| ≤ 2 ms−1.

They are implemented using a weighted sum of exponential
functions as follows:

Jsoft,v = qx
(
exp

(−3(vx,B + 1)
) + kxvx,B − cx

)
+ qy

(
exp

(−vy,B − 2
) + exp

(
vy,B − 2

) − cy
)

+ qz
(
exp

(−vz,B − 2
) + exp

(
vz,B − 2

) − cz
)
.

The coefficient kx and the offsets c[x,y,z] are chosen such
that the cost function and its derivative are zero when the
vehicle is at rest. Otherwise, the vehicle would move in some
direction even if the pilot does not input such a command.

D. Vehicle Dynamics

The dynamics model in the MPC framework is used to
predict how the state of the system will evolve when a series
of control inputs is applied to it. The aerodynamic model
and the model of the PID attitude controller are explained
below.

1) Aerodynamic Model: Accurate aerodynamic mod-
els are quite complex and require a lot of computing power
to evaluate, which makes them unsuited for an application
in a real-time controller onboard the vehicle. Instead, a
simplified model that only accounts for the most important
dynamics has been implemented. The surfaces [i.e., wing
(W), horizontal (H) and vertical (V) stabilizer, and fuselage
(F)] need to be taken into account here. The model assumes
that a surface generates a drag force F[W,H,V,F]

D opposite to
the incoming airflow. A wing or flat plate (stabilizers) also
generates a lift force F[W,H,V]

L perpendicular to the direction
of the airflow. The fuselage is assumed to produce no lift.

9

The lift and drag force can, then, be calculated as

FL|D = 1

2
ρv2

⊥Acl|d (α) · el|d (17)

where ρ is the air density, A the surface area of the compo-
nent, cl the coefficient of lift, cd the coefficient of drag, v⊥
the airspeed perpendicular to the front edge of the wing, and
el|d the unit vector in the direction of the lift or drag. Note
that the angle of attack α in (17) for the vertical stabilizer
is the side-slip angle β and not the usual angle between the
chord of a horizontal wing and the air stream.

The coefficients of lift and drag for the main wing of the
aircraft are given in [23] and a continuously differentiable
approximation of cW

l (α) and cW
d (α) is provided as well. The

MPC uses this approximation with modified parameters for
improved numerical performance. It is reproduced below
for the sake of completeness

σ (α) = (1 − tanh(−1.030 + 20α2))

cW
d (α) = 0.5637σ (α) · (0.03 + 0.2α2)

+ (1 − 0.5637σ (α)) · (0.025 + 2 sin(α)2)

cW
l (α) = 0.5637σ (α) · (0.25 + 5.62α)

+ (1 − 0.5637σ (α) · sin(2α).

The horizontal and the vertical stabilizers of the aircraft are
assumed to be flat plates, whose prestall lift and drag can
be roughly approximated by [27]

c[H,V]
d (α) = 0.8625|α|, c[H,V]

l (α) = 0.885α.

The fuselage of the aircraft is approximated as a square
beam with an aspect ratio of 4.35, which only produces
drag during side slipping. The drag coefficient cF

d = 1.28
is obtained by interpolating the values given for different
aspect ratios in [28]. The surface areas of the aircraft’s
components are given in Table I.

The aerodynamic model also includes the torques τaero

caused by the lift and drag forces using the cross product
between the force and the vector r from the center of gravity
to the center of lift of the respective component/wing

τLD = r × (FL + FD).

The total force Faero and torque τaero (in the body frame) are
then given by the sum of the forces FL|D and torques τLD

over all components.
2) P/PD Attitude Controller: As shown in Fig. 3, the

MPC supplies attitude setpoints to the inner-loop controller.
Thus, this attitude controller needs to be incorporated in the
dynamic model as well. A P controller first computes an
attitude rate setpoint �̇sp based on the current attitude and
the setpoint given to it

�̇sp = diag
(
kp,roll, kp,pitch, kp,yaw

) × (
�sp − �

)
.

Based on this setpoint a PD controller calculates a torque
that will be generated by the vehicle

τ = diag(kp,rollrate, kp,pitchrate, kp,yawrate) × (�̇sp − �̇)

+ diag(kd,rollrate, kd,pitchrate, kd,yawrate) × (�̇
− − �̇).

3) State-Update Equation: With known aerodynamic
forces and torques as well as the attitude controller, the
state-update equation from (9) can be written in continuous
time as

ẋ =

⎡
⎢⎢⎢⎣

1
m · GRB(T + Faero) + 9.81ez

�̇

I−1(τ + τaero)
˙̄χ

⎤
⎥⎥⎥⎦ (18)

where m is the mass of the vehicle and the inverse its inertia
matrix I−1 = diag(11.236, 14.925, 8). The states �̇

− and
T − are simply copied from the last iteration and (18) is
numerically integrated using a fourth order Runge–Kutta
scheme to arrive at the discrete-time formulation.

E. Implementation

The MPC implementation relies on the commercial
FORCES Pro solver by Embotech [29], [30], which is used
because of its ability to solve nonlinear MPC problems
quickly. For the presented MPC architecture, the average
runtime is 33 ms with a standard deviation of 5 ms on the
4 × 1.44 GHz Intel UpBoard CPU. The problem is coded in
MATLAB and the software then outputs an optimized solver
as a C object file. This solver is then interfaced through
the ROS with a custom node, as shown in Fig. 3: the Pix-
hawk autopilot’s inner-loop constantly publishes the state
of the aircraft. The ROS node receives the data and sends
the current state and user command to the MPC solver. The
results of the MPC solver are then sent back to the Pixhawk.
On the MPC side, the communication and computation are
running on different threads to avoid interference. The com-
munication between the UpBoard and the PixHawk is done
using MAVLink, which is a very lightweight serial protocol.
Internally, the Pixhawk uses asynchronous communication
to minimize the computational load of the communication.
Overall, the computation has no measurable impact on the
system performance.

The main difficulty is that the optimizer takes a varying
amount of time to solve the problem whereas the autopilot
needs to receive new setpoints periodically. This is achieved
with a two-thread architecture where the main thread han-
dles the communication and the second thread interfaces
and runs the optimizer. If the optimizer finishes in less than
40 ms, the newly computed solution is sent to the attitude
controller. If the optimizer does not finish, the next iterate
from the last solution is used (case a). This is possible
because the MPC always computes an optimal solution
over N = 20 time steps. Only if the optimizer finds no
solution after 20 time steps (equivalent to 0.8 s), the Pixhawk
automatically switches to the backup FPID controller (case
b), as shown in Fig. 3. In about 9.1 % of the iterations, the
MPC did not finish within 40 ms (case a), but the emergency
switching to the backup controller (case b) never happened.

At each time step, the MPC controller with horizon
length N computes a trajectory of length N . If the optimizer
does not find a solution fast enough, the trajectory from
the last solution is used to send setpoints to the Pixhawk.

10

However, after N steps this is not possible anymore and
the system would automatically switch to the backup FPID
controller. Note that this has not been observed in any
experiment.

The two-thread architecture also makes it possible for
the second thread to efficiently manage the memory re-
quired by the optimizer. By only allocating the memory
once and reusing it fully in each iteration, memory band-
width is saved. Furthermore, proper memory alignment is
guaranteed when allocating the memory in the beginning.

VI. EXPERIMENTAL RESULTS

In order to verify the performance of the MPC controller,
experiments in simulation and with a remote-controlled
VTOL airplane have been performed. The simulator was
especially useful to test maneuvers that would have been
very difficult in an outdoor environment due to space con-
straints and official UAV regulations. First the simulation
setup is described and a flight to validate the simulation is
presented. Then, the results from simulation and outdoor
experiments are shown. For the outdoor flights, localiza-
tion is done by fusing the inertial navigation unit data
(accelerometer, gyroscope, magnetometer) with GPS and
airspeed measurements from a pitot tube with an extended
Kalman filter.

A. Simulation

1) Environment: The firmware of the Pixhawk autopi-
lot is equipped with a software-in-the-loop feature that can
be interfaced with the Gazebo1 simulator for the dynamics
simulation and a visualization. The MPC controller runs,
like on the real vehicle, on the companion computer, which
communicates with the simulated Pixhawk via a network
connection. Apart from the dynamics simulation done by
Gazebo, the simulator is identical to the real vehicle (identi-
cal code, only compiled for x86 architecture), which greatly
facilitates developing and testing. The simulation has been
tuned based on numerous experiments in order to closely
match the actual aircraft’s behavior.

2) Verification: To be able to use the simulator not
only for testing, but also as a substitute to actual outdoor
experiments, its accuracy needs to be validated. This was
done by conducting an identical flight in simulation and with
the remote-controlled vehicle. The flight profile chosen for
this task is a velocity step from 0-20 m/s because this covers
a large velocity range and all of the flight configurations
between, and including, the multicopter and fixed-wing
modes are contained. The deceleration could not be part of
this comparison, as a steep climb had to be flown manually
to stop within the available range and line of sight.

The results of the test are shown in Fig. 6, where the
dashed lines correspond to the simulation and the solid lines
represent the real-world experiment. As soon as the veloc-
ity reference jumps to 20 m/s, the airplane accelerates as

1[Online]. Available: http://gazebosim.org/

Fig. 6. Plot shows a comparison between the actual aircraft flight (solid
lines) and the simulation flight (dashed lines). The horizontal velocity
setpoint is shown in black, the vertical velocity setpoint in green. The

experiment shows that the simulation flight matches the
remote-controlled aircraft flight very well.

quickly as possible and reaches the velocity target after 8.5 s
while maintaining close-to-zero vertical velocity. One can
see that the two flight profiles match within less than 1.5 m/s,
which proves the accuracy of the simulation. The outdoor
flight has a slightly noisier vertical velocity vz, which is
most likely due to the presence of a light wind2 (1 m/s,
direction 280◦ w.r.t. north) and the turbulence induced by
the propellers.

3) MPC Versus FPID Controller: In a previous work,
the FPID control architecture was developed [24], which
is used in this article. The most prominent shortcoming
of the FPID controller is its inability to slow down the
vehicle at high speeds while flying approximately level
(i.e., not climbing or descending). The MPC, on the other
hand, should be able to track the reference more closely,
because it can fully utilize the nonlinear dynamics of the
VTOL aircraft. To compare both controllers, a ramp with
an acceleration of 2 m/s2 to a velocity of 20 m/s and sub-
sequent deceleration is tested in simulation. The results are
summarized in Fig. 7. The curves corresponding to the MPC
are drawn with solid lines, whereas the FPID is shown in
dashed lines.

When the vehicle is asked to accelerate, the MPC con-
troller does so without having to pitch down because it tilts
the propellers forward. This allows it to immediately begin
tracking the reference without descending. The vehicle
continues with nearly constant acceleration until it slightly
overshoots 20 m/s. The FPID controller on the other hand
is unable to use the tilting mechanism to its advantage and
pitches down to gain forward momentum. It eventually
overshoots the ramp and is yet unable to reach the target
speed. However, both controllers track the vertical velocity
reference vz,sp = 0 m/s very well.

2[Online]. Available: https://kachelmannwetter.com/de/messwerte/
loerrach/windmittel-10 min/20 200 709-1830z.html

11

http://gazebosim.org/
https://kachelmannwetter.com/de/messwerte/loerrach/windmittel-10min/20200709-1830z.html

Fig. 7. Comparison between the FPID (dashed lines) and MPC
controller (solid lines): the top plot shows the velocity tracking

capabilities of the controllers and the bottom plot compares the pitch and
tilt angles of the vehicle during the same flight. The MPC uses the tilting

mechanism fully to accelerate and decelerate more smoothly. The
tilt-angle limits are indicated with dotted lines.

The advantage of the MPC becomes more obvious
during the deceleration phase of the flight: initially the
FPID perfectly tracks the ramp, but is only able to do so
by rapidly climbing. There is not enough drag to slow
the vehicle down quickly enough and thus the only option
is to trade vertical velocity tracking error for horizontal
velocity tracking error. The MPC on the other hand tilts
its propellers back fully (−7◦). After t = 25 s this becomes
an advantage as the backwards tilted propellers can, now,
be used to gradually compensate the decreasing lift of the
main wing while pointing back slightly and thus improving
deceleration. The FPID controller needs to pitch up much
more aggressively during the deceleration and is not able to
maintain close-to-zero vertical velocity.

This simulated experiment shows that the MPC con-
troller indeed has an advantage over the FPID controller.
It is able to track the reference more closely during the
acceleration and is able to decelerate much more smoothly.
Being able to slow down without flying the aircraft at
poststall angles of attack is an important safety feature.

B. Outdoor Flights

In order to properly demonstrate the MPC controller’s
capabilities, outdoor flights with the tilt-rotor VTOL aircraft

Fig. 8. Plot shows the control performance of the inner loop: it can
track the roll and pitch reference accurately even when larger angles are

demanded.

are presented. The pilot uses the remote control to send
velocity setpoints only and is not able to “manually” fly the
aircraft unless an emergency-override switch is activated
first. All pilot velocity commands are clearly indicated in
the plots below, e.g., vx,sp and vz,sp. First, a flight showing the
inner-loop attitude control performance is shown and then
two flights with the MPC controller are presented: a hover
test where no wind (<1 bft) was present and an accelera-
tion/deceleration flight in 1 bft (≈ 1 m/s) average wind and
2 bft (≈ 2.5 m/s) gust conditions. A short video montage of
the flights is available at https://youtu.be/LhqsPZrddw4

1) Attitude Controller: The inner-loop attitude con-
troller is a P/PID controller that needs to be tuned to
properly track the attitude reference computed by the MPC
controller. Fig. 8 shows the roll and pitch reference tracking
while flying maneuvers in the xy plane at low speeds.
Despite the large wings that damp the roll of the vehicle,
the controller is able to track the reference with minimal
delay. The pitch tracking is very similar, but there is a
steady offset between the reference and the actual pitch.
This is because the inner-loop controller of the Pixhawk
autopilot does not feature an integrator in the attitude loop,
but only in the attitude-rate loop. An offset center of gravity
(e.g., due to battery placement), thus, leads to the observed
behavior.

2) Hover: To verify the controller’s ability to reject
disturbances, a hover test with a zero-velocity setpoint was
conducted. Fig. 9 shows the velocities along all three axes of
the body frame. They are within 0.1 m/s of their reference.
This shows that the predictive controller is able to stabilize
the vehicle and hover accurately.

3) Acceleration/Deceleration: The test flight that was
used to validate the simulation already shows the con-
troller’s ability to accelerate the vehicle to high velocities.
To also show that the controller can utilize intermediate
flight configurations, another flight with a lower top speed
was conducted. The result is shown in Fig. 10. The measured
values are represented by solid lines whereas setpoints are
plotted with dashed lines.

12

https://youtu.be/LhqsPZrddw4

Fig. 9. Velocity reference was set to zero for all three axes. The MPC
controller tracks this reference very well under low wind conditions

(<1 bft).

Fig. 10. Plots show measurement data from an outdoor flight with the
remote-controlled VTOL aircraft. The lower tilt angle limit χmin is also
shown to highlight the constraint-awareness of the MPC architecture.

First a step in the xB and then in the zB direction (body frame) is
commanded. The vehicle is able to perform such maneuvers.

When the vehicle is tasked to accelerate, it tilts the
propellers forward and maintains zero vertical speed while
gaining forward velocity. This behavior is identical to what
could be observed in the MPC/FPID comparison in sim-
ulation (see Fig. 6). The vehicle also overshoots the given
reference in the outdoor flight. Because this overshoot could
already be observed in the simulation, it is most likely
not caused by a wind gust. A possible explanation is an
overestimate of the drag in the dynamics model of the MPC
when compared to the actual aircraft. Fig. 10 also shows

the roll and pitch of the vehicle during the flight. The pitch
reference is tracked very well throughout most phases of
the flight. Especially during the deceleration phase pitch
angles around 15◦ are commanded and tracked with little
error by the inner-loop attitude controller. This result nicely
shows that the developed control allocation works very well
as it is able to implement the desired body torques even
in challenging flight conditions. The roll angle tracking
is less accurate and shows oscillatory behavior. Note that
no oscillations were observed in any flights in the verified
simulation environment. Also, the real-world roll and pitch
tracking tests plotted in Fig. 8 show few signs of oscillations.
Given that the roll angle is off by 2◦ during hover, one
possible explanation for the observed behavior is that the
PixHawk autopilot was not properly attached to the airframe
and, thus, became slightly loose. Due to the geometry of the
mounts inside the aircraft, this would lead to some play in
the roll axis.

During the deceleration phase the propellers are fully
tilted backwards and the vehicle is able to stop after 5 s
while maintaining zero vertical speed to within 1 m/s. As
soon as the vehicle stops, it tilts the propellers forward to
compensate the pitch of the aircraft. The second part of the
flight shows the vehicle’s ability to track a vertical velocity
setpoint. It descends with 1.6 m/s and tracks that reference
to within 0.3 m/s. The deviations in the horizontal velocity
vx are most likely due to the mild wind.

Overall, the experiments on the real VTOL aircraft
successfully demonstrate the MPC controller’s capability
to stabilize the aircraft and track a given velocity reference.
The flights in simulation further show that the controller’s
performance extends to flights at higher speeds and that
it consistently outperforms the FPID controller. For this
reason, the results—although not yet perfect—are very
relevant to the community.

VII. CONCLUSION

This article presented the novel application of a MPC
controller for VTOL aircraft and demonstrated the perfor-
mance of the proposed controller in various experiments.
The controller is able to fully utilize the vehicle’s poten-
tial: it is able to operate in both “multicopter mode” or
“fixed-wing mode” and it takes advantage of the full range
of possible configurations. The model predictive controller
is running on a companion computer aboard the vehicle,
which communicates with the autopilot. This architecture
makes the setup extremely potent since no ground station
is needed to run the MPC, and the Pixhawk autopilot runs
the attitude controller and custom control allocation at a
very high rate. Additionally, a backup controller to cope
with MPC failure is present on the autopilot. Experiments
in a validated simulation environment and experiments with
a real remote-controlled tilt-rotor VTOL aircraft in various
scenarios demonstrate the MPC’s capability to use the tilting
propellers effectively and to outperform the FPID controller.
Our work shows that model predictive control is very ap-
plicable to tilt-rotor VTOL aircraft. Although challenging,

13

the changing and nonlinear flight characteristics make a this
type of vehicle ideal prospects for MPC. To the best of the
authors’ knowledge, the presented experimental verification
is a first for tilt-rotor fixed-wing VTOL MPC control.

REFERENCES

[1] L. Spannagl and G. Ducard
Control allocation for an unmanned hybrid aerial vehicle
In Proc. 28th Mediterranean Conf. Control Automat. Saint-
Raphaël, France, 2020, pp. 709–714.

[2] H. Liu, F. Peng, F. L. Lewis, and Y. Wan
Robust tracking control for tail-sitters in flight mode transitions
IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 4,
pp. 2023–2035, Aug. 2019.

B. Li, J. Sun, W. Zhou, C.-Y Wen. , K. H. Low, and C.-K Chen[3]
Transition optimization for a VTOL tail-sitter UAV

Trans. MechatronicsIEEE/ASME 5,no.25,vol.,
pp. 2534–2545, Oct. 2020.

[4] S. A. Emami and A. Rezaeizadeh
Adaptive model predictive control-based attitude and trajectory
tracking of a VTOL aircraft
IET Control Theory Appl., vol. 12, no. 15, pp. 2031–2042,
2018.

[5] R. Ritz and R. D’Andrea
, A Global Strategy for Tailsitter Hover Control. Cham,
Switzerland: Springer, 2018 pp. 21–37. [Online]. Available:
https://doi.org/10.1007/978-3-319-51532-8_2

S. Verling, T. Stastny, G. Bättig, K. Alexis, and R. Siegwart[6]
Model-based transition optimization for a vtol tailsitter
In Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 3939–3944.

[7] A. T. Tran, N. Sakamoto, M. Sato, and K. Muraoka
Control augmentation system design for quad-tilt-wing un-
manned aerial vehicle via robust output regulation method
IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 1,
pp. 357–369, Feb. 2017.

[8] K. Benkhoud and S. Bouallegue
Model predictive control design for a convertible quad tilt-wing
UAV
In Proc. 4th Int. Conf. Control Eng. Inf. Technol., 2016, pp. 1–6.

R. Donadel, G. V. Raffo, and L. B. Becker[9]
Modeling and control of a tiltrotor UAV for path tracking
In Proc. 19th World Congr., 2014, pp. 3840–3844.

[10] C. Papachristos, K. Alexis, G. Nikolakopoulos, and A. Tzes
Model predictive attitude control of an unmanned tilt-rotor
aircraft
In Proc. IEEE Int. Symp. Ind. Electron., 2011, pp. 922–927.

[11] M. Ryll, H. H. Bulthoff, and P. R. Giordano
A novel overactuated quadrotor unmanned aerial vehicle: Mod-
eling, control, and experimental validation
IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 540–556,
Mar. 2015.

[12] M. Kamel et al.
The voliro omniorientational hexacopter: An agile and maneu-
verable tiltable-rotor aerial vehicle
IEEE Robot. Automat. Mag., vol. 25, no. 4, pp. 34–44,
Dec. 2018.

[13] S. Rajappa, M. Ryll, H. H. Bülthoff, and A. Franchi
Modeling, control and design optimization for a fully-actuated
hexarotor aerial vehicle with tilted propellers
In Proc. IEEE Int. Conf. Robot. Automat., vol. 93, no. 1, 2015,
pp. 4006–4013.

[14] M. Ryll, D. Bicego, and A. Franchi
Modeling and control of fast-hex: A fully-actuated by
synchronized-tilting hexarotor
In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
pp. 1689–1694.

X. Fang, Q. Lin, Y. Wang, and L. Zheng[15]
Control strategy design for the transitional mode of tiltrotor
UAV
In Proc. 10th IEEE Int. Conf. Ind. Informat., 2012, pp. 248–253.

F. Cakici and M. K. Leblebicioglu[16]
Control system design of a vertical take-off and landing fixed
wing UAV
IFAC-PapersOnLine, vol. 49, no. 3, pp. 267–272, 2016.

L. R. Nardizzi, M. Y. Tarng, and R. J. Parker[17]
Optimal and suboptimal control synthesis for minimum time
VTOL transition
IEEE Trans. Aerosp. Electron. Syst., vol. AES- 7, no. 3,
pp. 506–520, May 1971.

R. Mehra, R. Prasanth, and S. Gopalaswamy[18]
Xv-15 tiltrotor flight control system design using model pre-
dictive control
In Proc. IEEE Aerosp. Conf., Aspen, CO, USA, Mar. 21–28,
1998, vol. 2, pp. 139–148.

O. Tekinalp, T. Unlu, and I. Yavrucuk[19]
Simulation and flight control of a tilt duct UAV
In Proc. Model. Simul. Technol. Conf., 2009.

Z. Liu, S. Tang, M. Li, and J. Guo[20]
Optimal control of thrust-vectored VTOL UAV in high-
manoeuvering transition flight
Aeronautical J., vol. 122, no. 1250, pp. 598–619, 2018.

M. Allenspach and G. J. J. Ducard[21]
Model predictive control of a convertible tiltrotor unmanned
aerial vehicle
In Proc. 28th Mediterranean Conf. Control Autom., 2020,
pp. 715–720.

C. Papachristos, K. Alexis, and A. Tzes[22]
Model predictive hovering-translation control of an unmanned
tri-tiltrotor
In Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 5425–5432.

G. Ducard and M.-D. Hua[23]
Modeling of an unmanned hybrid aerial vehicle
In Proc. IEEE Conf. Syst. Control, 2014, pp. 1011–1016.

L. Bauersfeld and G. Ducard[24]
Fused-PID control for tilt-rotor VTOL aircraft
In Proc. 28th Mediterranean Conf. Control Autom. Saint-
Raphaël, France, 2020, pp. 703–708.

K. Rudin, G. J. J. Ducard, and R. Y. Siegwart[25]
Active fault tolerant control with imperfect fault detection
information: Applications to UAVs
IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 4,
pp. 2792–2805, Aug. 2020.

“[26] �1-norm methods for convex-cardinality problems
Univ. Stanford, Stanford, CA, USA. [Online]. Available: https:
//stanford.edu/class/ee364b/lectures/l1_slides.pdf

M. Okamoto, K. Yasuda, and A. Azuma[27]
Aerodynamic characteristics of the wings and body of a drag-
onfly
J. Exp. Biol., vol. 199, no. Pt 2, pp. 281–294, 1996.

B.-C Wang[28]
Immersed body flow
Univ. Manitoba: Fluid Mechanics Appl.
Ch. 4, 2017. [Online]. Available: https://home.cc.umanitoba.
ca/∼wang44/Courses/MECH3492/Handout_Ch4.pdf

A. Zanelli, A. Domahidi, J. Jerez, and M. Morari[29]
FORCES NLP: An efficient implementation of interior-point
methods for multistage nonlinear nonconvex programs
Int. J. Control, vol. 93, no. 1, pp. 13–29, 2020.

A. Domahidi and J. Jerez[30]
Forces professional
Embotech AG, 2014–2019. [Online]. Available: https://
embotech.com/FORCES-Pro

14

https://doi.org/10.1007/978-3-319-51532-8_2
https://stanford.edu/class/ee364b/lectures/l1_slides.pdf
https://home.cc.umanitoba.ca/~wang44/Courses/MECH3492/Handout_Ch4.pdf
https://embotech.com/FORCES-Pro

Leonard Bauersfeld received the B.S. degree in mechanical engineering from ETH Zürich,
Zürich, Switzerland, in 2018. He is currently working toward the master’s degree in
robotics, systems and control from Robotics and Perception Group, University of Zurich.

Within the context of this article, he was affiliated with the Institute of Dynamic Systems
and Control, ETH Zürich. His current research interests include aerodynamic modeling
and flight control for UAVs.

Lukas Spannagl received the B.Sc. degree in mechanical engineering, in 2018 from ETH
Zürich, Zürich, Switzerland, where he is currently working toward the M.Sc. degree in
robotics, systems and control with Institute for Dynamic Systems and Control.

He is currently affiliated with the Institute for Dynamic Systems and Control . His
current research interests include optimal guidance and control as well as thrust vectored
vehicles.

Guillaume J. J. Ducard received the master’s degree in electrical engineering and the
Doctoral degree focusing on flight control for unmanned aerial vehicles (UAVs) from ETH
Zürich, Zürich, Switzerland, in 2004 and 2007, respectively.

He completed his two-year Postdoctoral course in 2009 from ETH Zürich, focused
on flight control for UAVs. He is currently an Associate Professor with the University
Côte d’Azur, France, and guest scientist with ETH Zürich. His research interests include
nonlinear control, estimation, and guidance applied to UAVs.

Christopher H. Onder received the Diploma in mechanical engineering and Doctoral
degree in Doctor of technical sciences from ETH Zürich, Zürich, Switzerland.

He is a Professor with the Institute for Dynamic Systems and Control, Department of
Mechanical Engineering and Process Control, ETH Zürich. He heads the Engine Systems
Laboratory. He has authored and coauthored numerous articles and a book on modeling and
control of engine systems. His research interests include engine systems modeling, control
and optimization with an emphasis on experimental validation, and industrial cooperation.

Dr. Onder was the recipient of the BMW scientific award, the ETH medal, the
Vincent Bendix award, the Crompton Lanchester Medal, and the Arch T. Colwell award.
Additionally, he received several times the Watt d’Or, the energy efficiency price of the
department of energy of Switzerland, for his projects.

15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

