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We present a method to locate and characterise grain boundaries in polycrystalline materials from
the real space coordinates of their constituent particles. The method is robust against imperfec-
tions such as thermal noise and vacancies. We apply the algorithm to experimentally found real
space coordinates to explicitly measure local misorientations and structure at grain boundaries. We
consider particle coordinates obtained from an epitaxially templated colloidal Σ17 bicrystal, find-
ing that, even though the bicrystal is predominately Σ17 and face centered cubic, small volumes of
hexagonally closed packed structure generate a mosaic of grain boundaries, increasing the complexity
of the templated grain boundary. We also consider a homogeneously nucleated colloidal polycrystal
and apply our method with no prior knowledge of grain boundary structure. Accordingly, we reveal
detailed misorientation distributions and grain boundary structures. The method may be applied
to any set of coordinates of atoms or particles in a polycrystalline system.

I. INTRODUCTION

Most crystalline materials in nature are polycrys-
talline, consisting of differently oriented crystallites
packed together to create a network of grain boundaries
at their interfaces. The structure of the grain boundary
network has a profound impact on the macroscopic ma-
terial properties and underlie much of our understanding
of ductility, brittleness, electrical conductivity, deforma-
tion and fracture mechanisms [1], melting kinetics [2–4],
and transport properties [5] in a wide range of materials
[6, 7]. Much effort has been made in recent decades to
tune the grain boundary structure within materials by
so called ‘grain boundary engineering’ which can involve
sintering, rolling and annealing of metals, alloys and ce-
ramics. In some cases, materials with small grains and
many grain boundaries are desirable as they cause a dra-
matic increase in strength following the Hall-Petch law
[8, 9]. In other cases, large single crystals are required,
with examples including structure solution in single crys-
tal crystallography and for the manufacture of photonic
band gap crystals [10–12].

The properties of the grain boundaries themselves are
governed by their degrees of freedom. In three dimen-
sions (3D) these consist of: three for position, three for
the orientation difference between the different crystal-
lites, termed misorientation, and two for the plane of the
boundary relative to the crystal lattice, known as incli-
nation [13]. The distribution and type of grain boundary
has been shown to affect the migration kinetics of bound-
aries under stress [14] and during grain growth [15, 16].
Additionally, grain boundary mobility, surface tension
and roughening transitions are affected by the interplay
between misorientation and inclination [17].

A wealth of research on materials yields structural in-
formation in reciprocal space using scattering techniques

such as orientation imaging microscopy [18, 19], diffrac-
tion contrast microscopy [20–23], electron backscatter
diffraction [24, 25] and 3D X-ray diffraction [26, 27].
However, one is either required to destroy the sample
by serial sectioning, preventing dynamic measurements,
or to prioritise between spatial, angular or time reso-
lution [28]. The spatial resolution of these techniques
limits the size of the grains to roughly 1 µm [23, 28],
orders of magnitudes larger than the size of the atoms
themselves, making it impossible to comment on how
the behaviour of specific boundaries are tied to atom-
istic dynamics or arrangements. Furthermore, achieving
measurements of grain boundaries in the bulk is difficult
as one must have a sample thick enough to render sur-
face effects negligible, but not so thick that scattering
peaks from multiple grains overlap [28]. Thus, there are
significant advantages to studying the real space coordi-
nates of atoms, molecules or mesoscopic particles over
space. Real space coordinates are increasingly widely
available, from electron microscopy studies [29] and sim-
ulations [30, 31], to mesoscopic model systems such as
colloidal dispersions [32, 33], where optical microscopy
can give the coordinates of all particles in bulk within
a field of view [34]. There are advantages to the lat-
ter two techniques over electron microscopy techniques.
Firstly, three-dimensional reconstruction of structure us-
ing electron microscopy once more requires serial section-
ing which destroys the sample, preventing dynamic mea-
surements; and secondly, electron microscopy is necessar-
ily a surface technique meaning that surface effects must
be ruled out from measurements.

With the availability of three-dimensional coordinates,
there is an increasing need for a robust means to extract
the location and properties of grain boundaries from real
space data. However, existing grain and boundary detec-
tion schemes offer only a partial analysis. Some schemes
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use order parameters to locate grain boundaries [35, 36]
and by doing so neglect to measure orientation. Polyhe-
dral template matching [37], used in the OVITO software
[38], allows orientation measurement and grain resolution
but neglects grain boundary surfaces or local resolution
of misorientations at the grain boundaries [39]. Many
detection schemes are only useful in specific contexts e.g.
where a system is constrained to only one or one type of
grain boundary and the orientation of one or more of the
grains is known beforehand [31, 32, 40–43]. Taming grain
boundaries like this is beneficial because it reduces their
complexity. However, the resulting boundary properties
only apply to themselves [16] because forces associated
with ever present neighbouring grain boundaries are ne-
glected.

Here, we present a generally applicable method to
fully identify and characterise crystalline grains, crys-
talline structures and to render grain boundaries using
real space particle coordinates. We apply the method to
real space coordinates of colloidal particles in dense crys-
talline dispersions. The method is shown to be robust
against thermal noise as well as defects in the crystals,
and to provide exhaustive information on both the lo-
cation and orientation of several kinds of boundary. Im-
portantly, we also provide a means to locally characterise
the degree of misorientation between grains at different
locations on the grain boundary surface, giving unprece-
dented access to the range of structures present. This
paper is organised as follows. Section II details the grain
and grain boundary characterisation method. Section
III then shows its application where we uncover unprece-
dented detail in the grain and grain boundary structure of
both a templated colloidal bicrystal and a polycrystalline
colloidal crystal from experimentally obtained particle
coordinates.

II. GRAIN AND GRAIN BOUNDARY
CHARACTERISATION METHOD

To characterise grains and grain boundaries, we start
with real space coordinates of particles in a region of in-
terest, and apply an analysis consisting of 4 steps: (A)
the nearest neighbours of each particle are identified; (B)
the orientation and structure of each nearest neighbour
cluster is identified; (C) grains are identified and sepa-
rated; (D) grain boundary locations and misorientations
are found and visualised. The method is compatible with
periodic boundary conditions, so may be directly applied
to computational as well as experimental data.

A. Nearest neighbour identification

Correct identification of the nearest neighbour shell is
essential for accurate structure and orientation assign-
ment. For a given particle, the parent, we locate up to
Nmax nearest neighbours within a cut off distance using

a k-d tree [44] to determine neighbour distances. For
close packed monodisperse spheres, Nmax = 12 due to
geometrical constraints. The cut off distance is typically
the first minimum in the radial distribution function of
the particle coordinates. Each ‘cluster’ that is formed
by a parent particle’s nearest neighbours is referred to
as the nearest neighbour cluster (NNC). The number of
particles in an NNC may be fewer than Nmax to account
for crystal vacancies.

B. Registration, orientation, and structure
assignment

To identify the orientation and structure of each NNC,
we require a quantitative comparison of experimentally
observed specimen NNCs and a set of reference NNCs
from perfect crystal structures. To do this, each point
in a specimen NNC must be paired with their corre-
sponding point in a reference NNC by aligning the two
point sets. This process is known as point set regis-
tration and is a common procedure in computer vision
processes [45]. Methods for point set registration that
involve only translation and orientation transformations
are called rigid registrations, which we will use here to
dramatically simplify the process. This approach is valid
because other small transformations have little effect on
orientation measurements. In fact, the registration pro-
cess can be further simplified by using the translational
invariance property of crystal lattices. This is achieved
by aligning the central point from the specimen NNC
and the reference NNC. In doing so, the translation is re-
moved from the registration calculation and the central
parent points are registered. This simplification is valid
for small displacements of the points from their lattice
sites in the specimen NNC.

Point set registration is challenging because in order
to align two point sets, the corresponding pairs of points
must be known, but to find the corresponding pairs of
points the sets must be aligned. Only by chance will the
reference and specimen sets align, and if we wish to cal-
culate the orientations for many different crystallites, it
is almost guaranteed that there will be some specimen
sets that do not align with the reference set. There are
two options for registration: (1) trials over orientations
and (2) trials over corresponding pair permutations. It-
erative methods are unreliable for NNC set alignment
because there are many local maxima in set alignment,
where one point is aligned and others are not. Therefore,
a registration scheme must span all possibilities to find
the global maximum set alignment. Trials over orienta-
tions, considering option 1, requires a large number of
trials for good angular resolution which makes the com-
putation prohibitively costly. It is important to have as
small a number of trials as possible, particularly for large
sets of real space coordinates. For example, recent confo-
cal microscopy studies have regions of interest containing
in excess of 10,000 particles (and therefore 10,000 NNCs).
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Thus, we propose a method using option 2: trials over
corresponding pair permutations. We increase the effi-
ciency by significantly reducing the number of permuta-
tion trials.

The method proceeds as follows. Let the reference
NNC and the specimen NNC have Nr and Ns elements,
respectively. Note that the central parent points are
registered from the translation step so they are not in-
cluded. Set alignment is quantified by the sum of the
Ns smallest distances between the point sets of the spec-
imen NNC and the reference NNC. Maximum set align-
ment is achieved for the minimum value of this sum. A
brute force approach would require trailing all permuta-
tions of pairs of points between the specimen and refer-
ence sets, equal to Ns!. For a close packed crystal this is
12! ≈ 4.8 × 108, which is prohibitively costly. However
this number may be significantly reduced by taking ad-
vantage of the fact that for an orientation to be specified
in D dimensions it is enough to select only D linearly
independent vectors [46]. If the reference NNC and spec-
imen NNC are related by a rigid transformation, as is
the case for a perfect polycrystal where the reference and
specimen NNC have the same structure, the sets can be
aligned by considering only three corresponding pairs of
points. Thus, in three dimensions, instead of Ns! tri-
als, the number is reduced to the permutations of three
from Nr,

NrP3, lowering the number of trials by a fac-
tor of (Nr − 3)!. Therefore, corresponding pair trials are
generated from the permutations of three points from
the Nr reference NNC points paired with the same three
randomly selected points from the specimen NNC. For
a close packed crystal, (Nr − 3)! = 9! ≈ 105, cutting
the computational cost by 5 orders of magnitude. This
number may be reduced further with consideration of the
symmetry of the reference NNCs, as certain permutations
of 3 particles from Nr are equivalent. For example, the
number of trials required for face centered cubic (FCC),
hexagonal close packed (HCP) and body centered cubic
(BCC) NNCs reduces to 39, 223 and 17, respectively.

The point set registration is laid out in the following
sequence and illustrated in the flow diagram in Fig.1a
where Y and N represent yes and no, respectively.

1. Input trials of in-equivalent permutations of three
corresponding pairs.

2. Is the number of completed loops equal to the num-
ber of trials of corresponding pairs? If no go to 3,
if yes go to 5.

3. The next trial of three corresponding pairs is con-
verted to an orientation by the Kabsch algorithm
[47, 48], which minimises the squared distance be-
tween the pairs of corresponding points. Note we
modify the Kabsch algorithm to fix the centre of
rotation to the parent particle. Each orientation
is applied to all points in the specimen set in an
attempt at set alignment.

4. Calculate the sum of the Ns smallest distances be-
tween pairs of points, one from each NNC set. Re-
turn to 2.

5. The trial that produced an alignment with the min-
imum sum of the Ns smallest distances between
pairs of points, one from each NNC set, establishes
the corresponding pairs. Points are paired when
the distance between them is one of the Ns small-
est. The registration is formed by this set of pairs
where every point in the specimen NNC has a cor-
responding point in the reference NNC.

6. Is any point paired with more than one other? If
no go to 7, if yes go to 8. To enhance the accuracy
of the method, registrations are only accepted if
no point is paired with more than one other. This
means that only specimen NNCs with a structure
approximately equal to the reference are registered.

7. Output accepted registration.

8. Registration fails.

Although success in finding the global minimum in
the sum of Ns smallest distances between the specimen
and registered NNC points is only guaranteed for perfect
polycrystals, this approach will still pair corresponding
points in each set for specimen NNCs with small devi-
ations from a perfect structure. The global minimum
is found by using the accepted registration from step 7,
where corresponding pairs for all points in the specimen
NNC are used (instead of just three) as the input for the
Kabsch algorithm [47]. Again, we modify the Kabsch
algorithm so the rotation centre is fixed to the central
parent particle, regardless of the centre of mass of the
NNC, to allow for robust orientation measurement when
vacancies create incomplete NNCs. Furthermore, using
all points ensures that deviations from perfect crystal po-
sitions in the specimen NNCs caused by thermal noise are
accounted for. The reported orientation for each NNC is
calculated from this complete registration.

Structure assignment is performed by minimising the
sum of the Ns smallest distances between corresponding
pairs of points from the accepted registrations over ref-
erence NNC structures of interest. For example, a hard
sphere system may have an FCC or HCP crystal struc-
ture, whereas a BCC crystal structure is expected for
spheres with long range repulsion. Therefore, one may
wish to assign the set of references to contain three ref-
erence NNCs, one each for FCC, HCP and BCC where
Nr = 12, 12, or 8, respectively. The reference NNCs
for FCC, HCP and BCC are shown in Fig.1c, d and e,
respectively. The procedures in section B can be paral-
lelised over each specimen NNC individually for efficient
computation.
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FIG. 1. (a) Flow chart of the point set registration process. Ovals denote the start or end, parallelograms are inputs or
outputs, diamonds represent decisions, where Y and N stand for yes and no, respectively, and rectangles indicate processes.
The detail for each number is given in the text. (b) Cartoon showing the grain boundary rendering process. The positions of
particles in two different grains in three dimensions are shown by white and grey circles, respectively. They are not positioned
in a crystalline arrangement for the purpose of clarity. Delaunay triangulation edges are shown as dotted lines (thickness for
perspective) and grain boundary points are shown as black crosses. The grain boundary lines are shown in two colours, either
side of a perpendicular bisector. (c), (d) and (e) show the NNCs for FCC, HCP and BCC, respectively. The black crosses mark
the positions of particles and the black circle, the parent particle.

C. Separation of grains

After the orientation of all NNCs have been measured,
these may be used to separate different grains. Firstly, a
Delaunay triangulation between all parent particles with
NNCs assigned the same structure forms a graph where
each particle is a node and each pair of connected par-
ticles is a link. Since each link connects two different
particles each with their own NNC orientation, a misori-
entation may be found. Like an orientation, a misorien-
tation may be expressed as a rotation θ about an axis.
Two thresholds are then applied to eliminate links, and
separate grains. The first is a distance cut off Rcut for
NNCs with the same orientation but separated in space.
The second is θcut, a maximum misorientation angle for
adjacent NNCs in the same grain. This leaves disparate
‘clusters’ of links between particles; each of these clus-
ters form a single grain. A high θcut runs the risk of in-

cluding particles that have intermediate orientation and
position between grains, thus, preventing grain separa-
tion. However, a low θcut may split grains to produce
low angle grain boundaries within. Particles with no
neighbours within these thresholds are not assigned to
a grain; they are not considered as a grain themselves.
As a result, the smallest grain possible consists of two
particles. Note that this is much smaller than the typ-
ical size of critical crystal nuclei (hundreds of particles)
[49, 50] demonstrating that this method may be useful
in nucleation studies. This step also serves to confirm or
reject the structure assigned in section II B and supresses
the spurious identification of orientation and structure.
Any particles not belonging to a grain are considered to
have a structure different to the reference NNCs consid-
ered, which may include particles with a liquid-like local
environment. Thus, this method also provides a way to
distinguish crystalline from non crystalline particles.
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D. Grain boundary location, misorientation and
visualisation

Boundaries between grains may be resolved using a
method similar to that used by Lavergne et al. [51],
but extended to three dimensions. Firstly, a Delaunay
triangulation over particles belonging to a grain is cal-
culated. The midpoints of Delaunay edges which con-
nect particles in different grains form a surface of grain
boundary points. Fig.1b shows a schematic of a trian-
gulation of particles in two grains where the members
of each grain are shown as white or grey circles, respec-
tively. The dotted lines show the triangulation edges and
the black crosses show the grain boundary points. Note
that these points do not lie on a particle coordinate. Fur-
thermore, a ‘local’ misorientation may be calculated for
each grain boundary point using the orientation of the
particles on either end of the triangulation edge, yielding
a spatial map of misorientations over the boundary sur-
face. Grain boundary particles may be identified as those
within a cut off distance to a grain boundary point and
not a member of a grain. In this way, grain boundary
particles may be identified without searching for a par-
ticular arrangement of particles at the boundary, which
is especially useful when searching for unstructured grain
boundaries.

The geometry of the surface may be visualised in more
detail by again considering the Delaunay traingulation.
For every tetrahedron with vertices in two grains, the
grain boundary points formed from its edges may be
linked by lines to form edge-sharing triangles, as shown
in Fig.1b. It is convenient to render the local misorienta-
tion by colouring the lines instead of the grain boundary
points. This is done by bisecting each line and colour-
ing each half by the misorientation of the closest grain
boundary point. This can be seen in Fig.1b where each
line has two colours, one either side of the bisecting line.
In this way grain boundaries are rendered as a trian-
gle mesh where local misorientation information is rep-
resented by colour. In this work we choose to map the
colour to the misorientation angle from an angle axis rep-
resentation.

Note that the location of misorientations in three-
dimensional rotation space may be presented using vec-
torial representation. Here we use Rodigues-Frank vec-

tors, ~RF = (RFx, RFy, RFz) within fundamental zones
containing the smallest misorientation angle, within a
standard stereographic traingle as defined in Ref.[52].
Rodrigues-Frank vectors are built from angle axis rep-

resentation of rotations as ~RF = ~A tan( θ2 ), where ~A is a
normalised vector parallel to the rotation axis and θ is
the rotation (misorientation) angle.

III. RESULTS AND DISCUSSION

To demonstrate the utility and capabilities of this
method, we study two colloidal crystals, a templated

bicrystal using a patterned surface, and a homogeneously
nucleated polycrystal. We characterise misorientations
of grain boundaries with particle level detail; one should
note that single-particle resolution is often presented as a
key strength of colloidal model system, and our method
broadens this strength to grain boundary studies.

A. Grain boundary structure in a templated
colloidal bicrystal

Here, we re-purpose particle coordinates from a col-
loidal bicrystal produced to study grooves at grain-
boundary–liquid triple junctions [32]. We use this data as
a test case to demonstrate the method on a grain bound-
ary of known location and misorientation. The sample
was produced by slowly sedimenting a colloidal disper-
sion of monodisperse, 1.6µm diameter silica spheres onto
a glass slide [32]. The glass slide was pre-templated us-
ing stereolithography, drilling dimples in positions corre-
sponding to the first plane of a Σ17 (a type of coincident
site lattice) grain boundary between two compact planes.
During slow sedimentation, the first layer of deposited
particles sits in the dimples; subsequent layers grow by
epitaxy by completing compact planes. The aqueous dis-
persion is index matched to allow deep penetration of
the light without scattering; it also contains fluorescein
so that the matrix can be easily distinguished from the
non fluorescent glass spherical particles. The sediment is
imaged using 3D laser scanning confocal microscopy. Ap-
propriate post processing finally allows the determination
of the center of mass of each colloidal particle [32]. The
cut off distance for nearest neighbours is set to 2.0µm, the
first minimum of the radial distribution function, which
sits at roughly 1.25 times the particle diameter. The dis-
tribution for the number of nearest neighbours is found
in section II of the supplemental material [53]. All NNCs
with at least 3 neighbours of the parent particle were con-
sidered for orientation measurement, comparing against
both FCC and HCP reference NNCs, which were scaled
such that the average nearest neighbour separation was
1.63µm, the same as the first peak in the radial distri-
bution function. The misorientation angle cut off was
set empirically to be θcut = 2◦, which is small enough to
separate the grains in this data set. Section IV of the
supplemental material [53] provides a discussion on the
effects of different values of θcut. The distance cut off for
grain boundaries was set to be the same as for nearest
neighbour detection i.e. Rcut = 2.0µm. The total com-
putation time for the grains and grain boundaries in the
following discussion from 38977 particle coordinates was
172 s using a quadcore Intel Core i5-6500 with 16 GB of
RAM. The rendering was performed using open source
PyMol software [54].

Fig.2a shows a reconstruction of the coordinates of all
particles. A boundary may be roughly identified by eye.
Applying our method, the two largest FCC grains de-
tected are shown in Fig.2b, coloured by grain, sitting
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(a) (b)

(c) (d)

FIG. 2. Templated colloidal bicrystal. (a) Rendering of the colloidal crystal from particle coordinates. (b) Two largest
FCC grains, either side of the Σ17 boundary. (c) Normal projection of the Σ17 boundary. (d) Rodrigues-Frank fundamental
zone of misorientation containing the local misorientation for the boundary. The black cross shows the mean misorientation
~RFM = (0.2497, 0.0088, 0.0002).

on either side of the nominal Σ17 boundary. Initially,
we consider only these two major grains, and identify
a grain boundary between them. The misorientation is

found to be ~RFM = (0.2497, 0.0088, 0.0002); in agree-
ment with the value for a Σ17 boundary in an FCC crys-

tal, ~RFΣ17 = (0.25, 0, 0) [55]. Note that this average
misorientation is calculated from the average orientation
of each large FCC grain using an implementation [56] of
the rotational averaging method described in ref.[57]. If
we render the geometry of the grain boundary surface
and colour code misorientations over the edges (see sec-
tion II D) as shown in Fig.2c, a broad spatial variation
in misorientation is revealed. This is accordingly seen in
the Rodrigues-Frank misorientation fundamental zone in
Fig.2d, where points are scattered around the misorienta-
tion expected for a Σ17 boundary, shown as a black cross.
Thus, we show the method characterises grain boundaries
correctly and resolves spatial variation in misorientation
at the particle level. Details of the grain boundary par-
ticles within Rcut of the Σ17 boundary may be found in
section III of the supplemental material [53]; the follow-
ing grain boundary discussions will focus on the grain
boundary surfaces, rather than the particles themselves.

Templating techniques such as those used to create this
bicrystal [32] are designed to create a single boundary
with a pre-engineered misorientation. However, the two
major grains and the boundary between them do not
account for all the grain and grain boundary structures
present: this manufactured boundary is far more complex
than a single surface with a single misorientation and
contains both FCC and HCP crystal structures. Using
our method we proceed to identify all FCC and HCP
grains composed of 50 or more particles and characterise
the multitude of unique boundaries which are present.

We firstly consider the range of FCC-FCC boundaries
present in the system, in particular the twin bound-
aries. Twinning is of interest as particular twin geome-
tries have consequences for grain growth kinetics [15]. To
this end, HCP grains are omitted during the FCC-FCC
grain boundary generation (as explained in section II D)
so that triangulation edges connect FCC grains on ei-
ther side of a stacking fault. This prevents FCC twin
boundaries being replaced by two grain boundaries be-
tween the two twinned FCC grains and the bisecting HCP
layer. A particularly salient example of a twin boundary
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is shown in Fig.3a, where a smaller FCC grain, labelled
Gt is surrounded by one of the major FCC grains. It
is wrapped in an envelope-like grain boundary, whose

misorientation is located around ~RF = ( 1
3 ,

1
3 ,

1
3 ) in the

FCC-FCC Rodrigues-Frank misorientation fundamental
zone (see inset in Fig.3a), close to those expected for a
twin boundary in an FCC crystal. This boundary is com-
posed of two different inclinations, one where the bound-
ary plane has a normal perpendicular to the hexagonal
plane direction, marked i in Fig.3a, and another where
the normal is contained in the hexagonal plane, marked
ii. Here we see how the spatial resolution of our method
reveals the fine details of grain boundaries. If we add
the HCP stacking, we indeed find that the parts of the
boundary parallel to the hexagonal planes, i, are coinci-
dent with single, isolated HCP layers. However, this is
not case for the parts of the boundary that wrap around
the small twin grain to connect these planes, ii. In prin-
ciple, one might also identify isolated FCC-HCP bound-
aries, as we will see below, but the ability to freely calcu-
late the misorientation angle between grains of selected
structure makes the detection of twin grain boundaries
much simpler.

We proceed to consider the HCP crystalline regions
and FCC-HCP boundaries. As shown in Fig.3b, the nom-
inally ‘simple’ Σ17 boundary has a significant number of
HCP layers extending into the FCC grains. The corre-
sponding misorientations are plotted in the Rodrigues-
Frank fundamental zone in Fig.3c with a colour depend-
ing on the misorientation angle, θ. Projecting the dis-
tribution of points in misorientation space onto a prob-
ability distribution in misorientation angle, P (θ), (see
Fig.3d), we see that there are multiple peaks. The dis-
tribution is magnified in the inset so that the peaks with
smaller probabilities may be seen more clearly. The
largest peak at misorientation angle θ ≈ 56.6◦ corre-
sponds to Blackburn [58] boundaries between HCP and
FCC grains either side of a stacking fault. The energy
associated with stacking fault creation is very low so
it is no surprise to see the highest probability at this
position. Fig.3c shows the local misorientation distri-
bution of these boundaries, scattered about the Black-
burn position marked with an black cross at position
~RFB = (0.414, 0.318, 0.132).

Note the presence of a smaller peak at θ ≈ 49◦, marked
iii in Fig.3d. In fact, these correspond to the portion of
the boundaries running approximately perpendicular to
the hexagonal planes, which wrap around the HCP grains
to connect two in-plane FCC-HCP boundaries. They are
marked iii in Fig.3b, where they appear a lighter shade of
red. Their location in the Rodrigues-Frank misorienta-
tion fundamental zone is also marked iii in Fig.3c. Fig.3e
shows how particle positions vary across this FCC-HCP
boundary, where the boundary adopts this lower misori-
entation angle. There is no abrupt change from HCP to
FCC; instead, the hexagonal planes gradually shift rela-
tive to one another. This results in NNCs in the vicinity
of the boundary being distorted. Here, NNC particles

move in a concerted manner with their counterparts from
the same hexagonal plane, but differently from members
in other hexagonal planes. This results in a net rotation
of the NNCs near the boundary. Note that the Blackburn
boundaries have the maximum misorientation possible
i.e. the full misorientation between the two structures.
Thus, the misorientation angle is necessarily reduced for
the distorted NNCs. This kind of boundary has been
identified before in colloidal crystals by Hilhorst et al.
[59], although without a specific detection scheme.

Having located both FCC-FCC and FCC-HCP bound-
aries over all grains in the system, we are now in a po-
sition to characterise the Σ17 boundary in more depth.
The ‘single’ boundary identified in Fig.2c using the two
major FCC grains now looks very different (see Fig.3f).
The blue portion marked as Σ17 corresponds to FCC-
FCC boundaries, nominally the ‘remnants’ of the original
Σ17 boundary. However, there are now other contribu-
tions including FCC-HCP boundaries with different mis-
orientation where the HCP grains meet FCC grains at
the boundary. These are marked iv and shown in yellow;
they also appear as surfaces in Fig.3b and in the misori-
entation distribution Fig.3c. The misorientation angles
of these boundaries peak at θ ≈ 39◦, marked iv in the
misorientation angle distribution in Fig.3d.

Another contribution to the boundary in Fig.3f is the
FCC-HCP boundary between the twin grain Gt from
Fig.3a and HCP layers on the other side of the Σ17 plane.
This is shown in green on the left hand side and marked
v. This is also visible at peak v at θ ≈ 30◦ in Fig.3d. Fi-
nally, there is a contribution from the junction between
Gt and the major FCC grain on the other side of the Σ17
plane, marked vi.

With our method we have characterised the grain and
grain boundary structure of a pre-templated Σ17 bound-
ary [32] in great detail. Despite the misorientation be-
tween the major grains being as designed, the microstruc-
ture of the boundary itself is far more complex, with a
combination of defects and highly curved grain bound-
aries with misorientations that do not exactly conform
to the angles predicted for simple stacking faults. Fur-
thermore, the difference in structure of the boundary can
contribute to a difference in the properties, which may go
unexamined without particle level structural characteri-
sation.

B. Characterisation of homogeneously nucleated
polycrystalline structures

We extend the analysis to a sample where we have no
pre-knowledge of the position or misorientation of the
grain boundaries. We demonstrate this by analysing a
homogeneously nucleated colloidal polycrystal. The finer
grain structure showcases the spatial resolution of our
method for grain and grain boundary detection. We ap-
ply the algorithm to coordinates of particles in a poly-
crystalline colloidal sample composed of ≈ 2.4µm, 3%
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FIG. 3. A selection of other grain and grain boundary structures within the templated colloidal bicrystal, the numbered
labels, i through v, included in several panels are explained in the main text. (a) FCC twin boundary and twin grain Gt.
The inset shows the local misorientation distribution. (b) HCP grains and FCC-HCP grain boundaries. The particles are
coloured by grain identity and the grain boundaries by local misorientation angle, θ (see colour bar in panel(c)). (c) Rodrigues-
Frank misorientation distribution within the fundamental zone for boundaries between FCC and HCP grains, coloured by
misorientation angle (see colour bar). (d) Local misorientation angle distribution for FCC-HCP boundaries. The inset shows
a magnified portion. (e) In-plane stacking sequence change from FCC to HCP. The black line is a visual guide. (f) A mosaic
of grain boundary structures including the Σ17 boundary and the contributions of other boundaries.
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polydisperse, polydimethylsiloxane stabilized core-shell
PMMA spheres. The synthesis of the particles is based
on the methods presented in references [60, 61]. The par-
ticles are suspended in a density and index matching mix-
ture of cyclohexyl bromide and cis-decahydronaphthalene
saturated with tetrabutylammonium bromide (TBAB) to
achieve electrostatic screening. The particles are dyed
with trace amounts of Rhodamine B in the particle core
for laser scanning confocal microscopy imaging with a
Leica SP5 scanhead. The particle coordinates are recov-
ered from the confocal images using conventional particle
identification software [34].

To prevent heterogeneous nucleation, the glass walls of
the sample cell were coated with polydisperse colloidal
PMMA particles to create a uniform but rough surface
on the length scale of the colloidal particle. To this
end, a 22 × 22 mm number 1 cover slip was spin coated
with a dense, polydisperse suspension of PMMA parti-
cles (20% volume fraction, 30% polydispersity in size)
in cis-decahydronaphthalene, taking care to avoid bulges
on the outer rim of the cover slip. This is immediately
transferred to a 120◦ Celsius hot plate to dry the solu-
tion rapidly to avoid de-wetting. This cover slip forms the
imaging wall of a glass sample cell. A small glass bottle
with the bottom removed is attached to the cell to allow
the placement of the colloidal dispersion via pipette. The
cell is sealed by attaching screw top lid with a teflon liner
to the bottle top. The colloidal sample is left for several
hours to crystallise, after which a field of view far away
from the flat walls of the container is investigated.

As in the case of the templated bicrystal, the nearest
neighbour and grain boundary cut off distances are set to
equal the first minimum of the radial distribution func-
tion, in this instance, Rcut = 3.0 µm (once more roughly
1.25 times the particle diameter), and the reference NNCs
are scaled to have a nearest neighbour distance equal to
the first peak of the radial distribution function (2.35
µm). The distribution of numbers of nearest neighbours
for the particles is given in section II of the supplemental
material [53]. The misorientation angle cut off is set to
θcut = 2◦. However, this time we do not impose a cut off
for the size of grains; thus, the smallest grains can now
consist of as few as two NNCs. The total computation
time was 234 s for 44025 particle coordinates on the same
quadcore Intel Core i5-6500 with 16 GB of RAM.

Fig.4a and Fig.4b show the FCC and HCP grains, re-
spectively, where each grain is assigned a unique colour.
Some colours may appear indistinguishable because there
are many colours for the many grains: 866 FCC grains
and 964 HCP grains, with grain sizes range from 2 to
approximately 500 particles. The number of particles in
FCC and HCP grains, respectively, are 8606 and 5368,
showing a random hexagonal close packed structure with
a slight preference for FCC and, in general, HCP grains
that are smaller than FCC grains. A striking feature
of both Fig.4a and Fig.4b are the planar gaps, and flat,
narrow grains. These are formed by faults, where FCC
changes to HCP or vice versa and serve to break up the

crystallites parallel to the hexagonal layers. We may sub-
sequently identify FCC-FCC, FCC-HCP and HCP-HCP
boundaries. Each row of Fig.4 from 4c to e contains
three panels that present from left to right the location
of grain boundaries, the misorientation within the fun-
damental zone and a misorientation angle distribution,
respectively. As before, grain boundaries and their dis-
tributions are coloured by their misorientation angle, θ,
and the colours are consistent for each row. The colour
maps used to label the boundary points in Fig.4c to e in
both real and misorientation space span angles between
0◦ and the maximum misorientation angle.

Again, we start by looking at FCC-FCC boundaries,
omitting the HCP grains (see Fig.4c). The boundary
structure is dominated by low angle and twin grain
boundaries, in approximately equal measure. They occur
where an even or odd number of HCP stacked hexagonal
layers, respectively, separate two FCC grains. Accord-
ingly, these boundaries are flat and lie parallel to the local
hexagonal plane direction as seen in Fig.4c1. The corre-
sponding misorientation distribution is shown in Fig.4c2

where the misorientations at low angle and twin bound-

aries are concentrated around the points ~RF 0 = (0, 0, 0)

and ~RFT =
(

1
3 ,

1
3 ,

1
3

)
, respectively in the Rodrigues-

Frank fundamental zone. Accordingly, these boundaries
appear as peaks in the misorientation angle distribution
in Fig.4c3 at θ ≈ 0◦ and θ ≈ 60◦. The peak at θ ≈ 0◦

and the twin peak at θ ≈ 60◦ have approximately equal
probabilities relative to the random misorientation dis-
tribution, showing that stacking faults contain an equal
proportion of even and odd hexagonally close packed lay-
ers. Note that the form of the misorientation distribution
highlights the single particle resolution, resolving stack-
ing faults that separate FCC grains of the same orien-
tation and that separate twin FCC grains. Note that
all these twin boundaries are planes, unlike the example
shown in the templated bicrystal where an FCC-FCC
boundary bends around to encapsulate an FCC crystal-
lite as in Fig.3a. None of the grains in this sample are
large enough to support the in-plane stacking fault re-
quired to generate such a boundary. Fig.4c2 and 4c3

show that there are also a significant proportion of mis-
orientations located between the peaks at θ ≈ 60◦ and
θ ≈ 0◦. These misorientations are a hallmark of a poly-
crystalline sample, displaying many differently oriented
grains. The surface area of these boundaries is far smaller
than the twin and low angle boundaries so they appear
with lower probabilities.

We may also look at HCP-HCP boundaries by omit-
ting the FCC grains (see Fig.4d). Again, the structure is
dominated by boundaries arising from stacking sequence
changes of hexagonal planes. The most probable peak
appears at θ ≈ 0◦ in Fig.4d3 and the corresponding
boundaries are shown in blue in Fig.4d1 and 4d2. These
boundaries are created where one or more FCC layers
intersect two HCP grains, exposing a gap between two
HCP grains of the same orientation. The other domi-
nating feature of the distribution in 4d3 is at θ ≈ 70◦.
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FIG. 4. The grain and grain boundary structures within the colloidal polycrystal. (a) and (b) show FCC grains and HCP
grains, respectively. Each grain is given a unique colour. The remaining panels of the image are organised as follows. Rows
(c), (d) and (e) show characterisation for grain boundaries between FCC grains omitting HCP grains, between HCP grains
omitting FCC grains, and between FCC and HCP grains, respectively. Column (1) shows the spatial distribution of grain
boundaries. Column (2) shows the misorientation distribution in the Rodrigues-Frank fundamental zone. Column (3) contains
probability distributions of misorientation angles. The dotted lines show distributions for randomly oriented grains. The colour
bar extends from the smallest rotation angle to the largest and governs the colours for the panels in the same row.
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This is again a consequence of stacking sequence changes,
only this time along different hexagonal plane normal di-
rections. Specifically, they are the different hexagonal
plane normal directions in the FCC structure. The angle
between these planes is equal to 70.53◦ and accordingly,
boundaries with misorientation θ ≈ 70◦ appear with a
significant probability.

Finally, considering FCC-HCP boundaries (see Fig.4e),
we see a grain boundary structure dominated by the
Blackburn misorientation relationship, corresponding to
very high stacking disorder. Again, this is evidence
for the random close packing structure of the polycrys-
tal. Fig.4e1 shows mostly planar boundaries coloured
in red corresponding to a Blackburn misorientation of
~RFB = (0.414, 0.318, 0.132) as shown in Fig.4e2. The

distribution has a proportionately large peak at θ ≈ 56◦

in Fig.4e3. However, there is now no small peak at
θ ≈ 49◦, due to the absence of in-plane stacking faults.
These grains are smaller than in the bicrystal discussed
in section III A. Much like the absence of any curved
FCC-FCC twin boundaries in the polycrystalline sample
there is also an absence of curved FCC-HCP boundaries.
In the templated bicrystal of section III A, the stacking
changes over roughly six particle spacings as shown in
Fig.3f, similar in length scale to the in-plane stacking
faults of Hilhorst et al. [59]; this is too large a length
scale for the finer grains of the polycrystal. Hence, no
boundaries due to in-plane stacking faults are seen in ei-
ther FCC-HCP boundaries or indeed FCC-FCC bound-
aries as presented earlier.

IV. CONCLUSION

A complete method is presented to convert real space
particle coordinates of polycrystalline materials to the
location and character of grains and grain boundaries.
Heterogeneity in misorientations may be characterised
with single-particle resolution over boundaries without
a priori knowledge of local crystal structure, giving un-
precedented insight into a wide range of faults and de-
fects, and how the degree of misorientation might affect
physical properties. Here, we apply this to colloidal crys-
tals, finding an unexpected degree of structural complex-
ity in a nominally ‘tame’ [16] templated system and how
the distribution of misorientations change when similar
particles are instead allowed to homogeneously nucleate
crystals and grow. Importantly, we identify features such
as twin boundaries, the Blackburn orientation relation-
ship and low angle grain boundaries without targeting
different portions of the structure. Our method may be
applied to both experimental and numerical data with
minimal knowledge of crystal orientations in a region of
interest and would serve as a useful tool in future studies
of polycrystals, nucleation and grain growth. The rou-
tines are freely available [62] to other users.
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