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Grain Boundary Characterisation From Particle Coordinates

We present a method to locate and characterise grain boundaries in polycrystalline materials from the real space coordinates of their constituent particles. The method is robust against imperfections such as thermal noise and vacancies. We apply the algorithm to experimentally found real space coordinates to explicitly measure local misorientations and structure at grain boundaries. We consider particle coordinates obtained from an epitaxially templated colloidal Σ17 bicrystal, finding that, even though the bicrystal is predominately Σ17 and face centered cubic, small volumes of hexagonally closed packed structure generate a mosaic of grain boundaries, increasing the complexity of the templated grain boundary. We also consider a homogeneously nucleated colloidal polycrystal and apply our method with no prior knowledge of grain boundary structure. Accordingly, we reveal detailed misorientation distributions and grain boundary structures. The method may be applied to any set of coordinates of atoms or particles in a polycrystalline system.

I. INTRODUCTION

Most crystalline materials in nature are polycrystalline, consisting of differently oriented crystallites packed together to create a network of grain boundaries at their interfaces. The structure of the grain boundary network has a profound impact on the macroscopic material properties and underlie much of our understanding of ductility, brittleness, electrical conductivity, deformation and fracture mechanisms [START_REF] Shan | Grain boundarymediated plasticity in nanocrystalline nickel[END_REF], melting kinetics [START_REF] Alsayed | Premelting at defects within bulk colloidal crystals[END_REF][START_REF] Lipowsky | Melting at grain boundaries and surfaces[END_REF][START_REF] Broughton | Thermodynamic criteria for grain boundary melting -a molecular dynamics study[END_REF], and transport properties [START_REF] Hilgenkamp | Grain boundaries in high-T-c superconductors[END_REF] in a wide range of materials [START_REF] Gokhale | Grain growth and grain boundary dynamics in colloidal polycrystals[END_REF][START_REF] Nagamanasa | Confined glassy dynamics at grain boundaries in colloidal crystals[END_REF]. Much effort has been made in recent decades to tune the grain boundary structure within materials by so called 'grain boundary engineering' which can involve sintering, rolling and annealing of metals, alloys and ceramics. In some cases, materials with small grains and many grain boundaries are desirable as they cause a dramatic increase in strength following the Hall-Petch law [START_REF] Hall | The deformation and ageing of mild steel: III Discussion of results[END_REF][START_REF] Petch | The cleavage strength of polycrystals[END_REF]. In other cases, large single crystals are required, with examples including structure solution in single crystal crystallography and for the manufacture of photonic band gap crystals [START_REF] Busch | Photonic band gap formation in certain self-organizing systems[END_REF][START_REF] Ozin | The Race for the Photonic Chip: Colloidal Crystal Assembly in Silicon Wafers[END_REF][START_REF] Napolskii | Fabrication of artificial opals by electric-field-assisted vertical deposition[END_REF].

The properties of the grain boundaries themselves are governed by their degrees of freedom. In three dimensions (3D) these consist of: three for position, three for the orientation difference between the different crystallites, termed misorientation, and two for the plane of the boundary relative to the crystal lattice, known as inclination [START_REF] Sutton | The fivedimensional parameter space of grain boundaries[END_REF]. The distribution and type of grain boundary has been shown to affect the migration kinetics of boundaries under stress [START_REF] Rupert | Experimental observations of stress-driven grain boundary migration[END_REF] and during grain growth [START_REF] Thomas | When twins collide: Twin junctions in nanocrystalline nickel[END_REF][START_REF] Han | Grainboundary kinetics: A unified approach[END_REF]. Additionally, grain boundary mobility, surface tension and roughening transitions are affected by the interplay between misorientation and inclination [START_REF] Gottstien | Grain Boundary Migration in Metals[END_REF].

A wealth of research on materials yields structural information in reciprocal space using scattering techniques such as orientation imaging microscopy [START_REF] Adams | Orientation imaging -the emergence of a new microscopy[END_REF][START_REF] Adams | Orientation imaging microscopy: Emerging and future applications[END_REF], diffraction contrast microscopy [START_REF] Johnson | X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case[END_REF][START_REF] Ludwig | X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case[END_REF][START_REF] Echlin | A New Femtosecond Laser-Based Tomography Technique for Multiphase Materials[END_REF][START_REF] Reischig | Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials[END_REF], electron backscatter diffraction [START_REF] Uchic | 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM[END_REF][START_REF] Bozzolo | Misorientations induced by deformation twinning in titanium[END_REF] and 3D X-ray diffraction [START_REF] Dake | Direct observation of grain rotations during coarsening of a semisolid Al-Cu alloy[END_REF][START_REF] King | Grain mapping by diffraction contrast tomography: extending the technique to the sub-grain information[END_REF]. However, one is either required to destroy the sample by serial sectioning, preventing dynamic measurements, or to prioritise between spatial, angular or time resolution [START_REF] Poulsen | An introduction to three-dimensional Xray diffraction microscopy 1[END_REF]. The spatial resolution of these techniques limits the size of the grains to roughly 1 µm [START_REF] Reischig | Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials[END_REF][START_REF] Poulsen | An introduction to three-dimensional Xray diffraction microscopy 1[END_REF], orders of magnitudes larger than the size of the atoms themselves, making it impossible to comment on how the behaviour of specific boundaries are tied to atomistic dynamics or arrangements. Furthermore, achieving measurements of grain boundaries in the bulk is difficult as one must have a sample thick enough to render surface effects negligible, but not so thick that scattering peaks from multiple grains overlap [START_REF] Poulsen | An introduction to three-dimensional Xray diffraction microscopy 1[END_REF]. Thus, there are significant advantages to studying the real space coordinates of atoms, molecules or mesoscopic particles over space. Real space coordinates are increasingly widely available, from electron microscopy studies [START_REF] Lucadamo | Geometric origin of hexagonal close packing at a grain boundary in gold[END_REF] and simulations [START_REF] Race | Role of the mesoscale in migration kinetics of flat grain boundaries[END_REF][START_REF] Race | Mechanisms and kinetics of the migration of grain boundaries containing extended defects[END_REF], to mesoscopic model systems such as colloidal dispersions [START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF][START_REF] Liu | Core-Shell Particles for Simultaneous 3D Imaging and Optical Tweezing in Dense Colloidal Materials[END_REF], where optical microscopy can give the coordinates of all particles in bulk within a field of view [START_REF] Crocker | Methods of digital video microscopy for colloidal studies[END_REF]. There are advantages to the latter two techniques over electron microscopy techniques. Firstly, three-dimensional reconstruction of structure using electron microscopy once more requires serial sectioning which destroys the sample, preventing dynamic measurements; and secondly, electron microscopy is necessarily a surface technique meaning that surface effects must be ruled out from measurements.

With the availability of three-dimensional coordinates, there is an increasing need for a robust means to extract the location and properties of grain boundaries from real space data. However, existing grain and boundary detection schemes offer only a partial analysis. Some schemes use order parameters to locate grain boundaries [START_REF] Steinhardt | Bondorientational order in liquids and glasses[END_REF][START_REF] Padston | Structure and dynamics of colloidal grain boundaries[END_REF] and by doing so neglect to measure orientation. Polyhedral template matching [START_REF] Larsen | Robust structural identification via polyhedral template matching[END_REF], used in the OVITO software [START_REF] Stukowski | Visualization and analysis of atomistic simulation data with OVITO -the Open Visualization Tool[END_REF], allows orientation measurement and grain resolution but neglects grain boundary surfaces or local resolution of misorientations at the grain boundaries [START_REF] Wagih | Spectrum of grain boundary segregation energies in a polycrystal[END_REF]. Many detection schemes are only useful in specific contexts e.g. where a system is constrained to only one or one type of grain boundary and the orientation of one or more of the grains is known beforehand [START_REF] Race | Mechanisms and kinetics of the migration of grain boundaries containing extended defects[END_REF][START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF][START_REF] Van Blaaderen | Templatedirected colloidal crystallization[END_REF][START_REF] Priedeman | Quantifying and connecting atomic and crystallographic grain boundary structure using local environment representation and dimensionality reduction techniques[END_REF][START_REF] Frolov | Structural phase transformations in metallic grain boundaries[END_REF][START_REF] Yamanaka | Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal[END_REF]. Taming grain boundaries like this is beneficial because it reduces their complexity. However, the resulting boundary properties only apply to themselves [START_REF] Han | Grainboundary kinetics: A unified approach[END_REF] because forces associated with ever present neighbouring grain boundaries are neglected.

Here, we present a generally applicable method to fully identify and characterise crystalline grains, crystalline structures and to render grain boundaries using real space particle coordinates. We apply the method to real space coordinates of colloidal particles in dense crystalline dispersions. The method is shown to be robust against thermal noise as well as defects in the crystals, and to provide exhaustive information on both the location and orientation of several kinds of boundary. Importantly, we also provide a means to locally characterise the degree of misorientation between grains at different locations on the grain boundary surface, giving unprecedented access to the range of structures present. This paper is organised as follows. Section II details the grain and grain boundary characterisation method. Section III then shows its application where we uncover unprecedented detail in the grain and grain boundary structure of both a templated colloidal bicrystal and a polycrystalline colloidal crystal from experimentally obtained particle coordinates.

II. GRAIN AND GRAIN BOUNDARY CHARACTERISATION METHOD

To characterise grains and grain boundaries, we start with real space coordinates of particles in a region of interest, and apply an analysis consisting of 4 steps: (A) the nearest neighbours of each particle are identified; (B) the orientation and structure of each nearest neighbour cluster is identified; (C) grains are identified and separated; (D) grain boundary locations and misorientations are found and visualised. The method is compatible with periodic boundary conditions, so may be directly applied to computational as well as experimental data.

A. Nearest neighbour identification

Correct identification of the nearest neighbour shell is essential for accurate structure and orientation assignment. For a given particle, the parent, we locate up to N max nearest neighbours within a cut off distance using a k-d tree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF] to determine neighbour distances. For close packed monodisperse spheres, N max = 12 due to geometrical constraints. The cut off distance is typically the first minimum in the radial distribution function of the particle coordinates. Each 'cluster' that is formed by a parent particle's nearest neighbours is referred to as the nearest neighbour cluster (NNC). The number of particles in an NNC may be fewer than N max to account for crystal vacancies.

B.

Registration, orientation, and structure assignment

To identify the orientation and structure of each NNC, we require a quantitative comparison of experimentally observed specimen NNCs and a set of reference NNCs from perfect crystal structures. To do this, each point in a specimen NNC must be paired with their corresponding point in a reference NNC by aligning the two point sets. This process is known as point set registration and is a common procedure in computer vision processes [START_REF] Cheng | Registration of Laser Scanning Point Clouds: A Review[END_REF]. Methods for point set registration that involve only translation and orientation transformations are called rigid registrations, which we will use here to dramatically simplify the process. This approach is valid because other small transformations have little effect on orientation measurements. In fact, the registration process can be further simplified by using the translational invariance property of crystal lattices. This is achieved by aligning the central point from the specimen NNC and the reference NNC. In doing so, the translation is removed from the registration calculation and the central parent points are registered. This simplification is valid for small displacements of the points from their lattice sites in the specimen NNC.

Point set registration is challenging because in order to align two point sets, the corresponding pairs of points must be known, but to find the corresponding pairs of points the sets must be aligned. Only by chance will the reference and specimen sets align, and if we wish to calculate the orientations for many different crystallites, it is almost guaranteed that there will be some specimen sets that do not align with the reference set. There are two options for registration: (1) trials over orientations and (2) trials over corresponding pair permutations. Iterative methods are unreliable for NNC set alignment because there are many local maxima in set alignment, where one point is aligned and others are not. Therefore, a registration scheme must span all possibilities to find the global maximum set alignment. Trials over orientations, considering option 1, requires a large number of trials for good angular resolution which makes the computation prohibitively costly. It is important to have as small a number of trials as possible, particularly for large sets of real space coordinates. For example, recent confocal microscopy studies have regions of interest containing in excess of 10,000 particles (and therefore 10,000 NNCs).

Thus, we propose a method using option 2: trials over corresponding pair permutations. We increase the efficiency by significantly reducing the number of permutation trials.

The method proceeds as follows. Let the reference NNC and the specimen NNC have N r and N s elements, respectively. Note that the central parent points are registered from the translation step so they are not included. Set alignment is quantified by the sum of the N s smallest distances between the point sets of the specimen NNC and the reference NNC. Maximum set alignment is achieved for the minimum value of this sum. A brute force approach would require trailing all permutations of pairs of points between the specimen and reference sets, equal to N s !. For a close packed crystal this is 12! ≈ 4.8 × 10 8 , which is prohibitively costly. However this number may be significantly reduced by taking advantage of the fact that for an orientation to be specified in D dimensions it is enough to select only D linearly independent vectors [START_REF] Morawiec | Orientations and Rotations[END_REF]. If the reference NNC and specimen NNC are related by a rigid transformation, as is the case for a perfect polycrystal where the reference and specimen NNC have the same structure, the sets can be aligned by considering only three corresponding pairs of points. Thus, in three dimensions, instead of N s ! trials, the number is reduced to the permutations of three from N r , Nr P 3 , lowering the number of trials by a factor of (N r -3)!. Therefore, corresponding pair trials are generated from the permutations of three points from the N r reference NNC points paired with the same three randomly selected points from the specimen NNC. For a close packed crystal, (N r -3)! = 9! ≈ 10 5 , cutting the computational cost by 5 orders of magnitude. This number may be reduced further with consideration of the symmetry of the reference NNCs, as certain permutations of 3 particles from N r are equivalent. For example, the number of trials required for face centered cubic (FCC), hexagonal close packed (HCP) and body centered cubic (BCC) NNCs reduces to 39, 223 and 17, respectively.

The point set registration is laid out in the following sequence and illustrated in the flow diagram in Fig. 1a where Y and N represent yes and no, respectively.

1. Input trials of in-equivalent permutations of three corresponding pairs.

2. Is the number of completed loops equal to the number of trials of corresponding pairs? If no go to 3, if yes go to 5.

3. The next trial of three corresponding pairs is converted to an orientation by the Kabsch algorithm [START_REF] Kabsch | A solution for the best rotation to relate two sets of vectors[END_REF][START_REF] Schreiber | Kabsch algorithm[END_REF], which minimises the squared distance between the pairs of corresponding points. Note we modify the Kabsch algorithm to fix the centre of rotation to the parent particle. Each orientation is applied to all points in the specimen set in an attempt at set alignment.

4. Calculate the sum of the N s smallest distances between pairs of points, one from each NNC set. Return to 2.

5. The trial that produced an alignment with the minimum sum of the N s smallest distances between pairs of points, one from each NNC set, establishes the corresponding pairs. Points are paired when the distance between them is one of the N s smallest. The registration is formed by this set of pairs where every point in the specimen NNC has a corresponding point in the reference NNC.

6. Is any point paired with more than one other? If no go to 7, if yes go to 8. To enhance the accuracy of the method, registrations are only accepted if no point is paired with more than one other. This means that only specimen NNCs with a structure approximately equal to the reference are registered.

7. Output accepted registration.

Registration fails.

Although success in finding the global minimum in the sum of N s smallest distances between the specimen and registered NNC points is only guaranteed for perfect polycrystals, this approach will still pair corresponding points in each set for specimen NNCs with small deviations from a perfect structure. The global minimum is found by using the accepted registration from step 7, where corresponding pairs for all points in the specimen NNC are used (instead of just three) as the input for the Kabsch algorithm [START_REF] Kabsch | A solution for the best rotation to relate two sets of vectors[END_REF]. Again, we modify the Kabsch algorithm so the rotation centre is fixed to the central parent particle, regardless of the centre of mass of the NNC, to allow for robust orientation measurement when vacancies create incomplete NNCs. Furthermore, using all points ensures that deviations from perfect crystal positions in the specimen NNCs caused by thermal noise are accounted for. The reported orientation for each NNC is calculated from this complete registration.

Structure assignment is performed by minimising the sum of the N s smallest distances between corresponding pairs of points from the accepted registrations over reference NNC structures of interest. For example, a hard sphere system may have an FCC or HCP crystal structure, whereas a BCC crystal structure is expected for spheres with long range repulsion. Therefore, one may wish to assign the set of references to contain three reference NNCs, one each for FCC, HCP and BCC where N r = 12, 12, or 8, respectively. The reference NNCs for FCC, HCP and BCC are shown in Fig. 1c, d ande, respectively. The procedures in section B can be parallelised over each specimen NNC individually for efficient computation. 

C. Separation of grains

After the orientation of all NNCs have been measured, these may be used to separate different grains. Firstly, a Delaunay triangulation between all parent particles with NNCs assigned the same structure forms a graph where each particle is a node and each pair of connected particles is a link. Since each link connects two different particles each with their own NNC orientation, a misorientation may be found. Like an orientation, a misorientation may be expressed as a rotation θ about an axis. Two thresholds are then applied to eliminate links, and separate grains. The first is a distance cut off R cut for NNCs with the same orientation but separated in space. The second is θ cut , a maximum misorientation angle for adjacent NNCs in the same grain. This leaves disparate 'clusters' of links between particles; each of these clusters form a single grain. A high θ cut runs the risk of in-cluding particles that have intermediate orientation and position between grains, thus, preventing grain separation. However, a low θ cut may split grains to produce low angle grain boundaries within. Particles with no neighbours within these thresholds are not assigned to a grain; they are not considered as a grain themselves. As a result, the smallest grain possible consists of two particles. Note that this is much smaller than the typical size of critical crystal nuclei (hundreds of particles) [START_REF] Leoni | Nonclassical Nucleation Pathways in Stacking-Disordered Crystals[END_REF][START_REF] Ten Wolde | Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling[END_REF] demonstrating that this method may be useful in nucleation studies. This step also serves to confirm or reject the structure assigned in section II B and supresses the spurious identification of orientation and structure. Any particles not belonging to a grain are considered to have a structure different to the reference NNCs considered, which may include particles with a liquid-like local environment. Thus, this method also provides a way to distinguish crystalline from non crystalline particles.

D. Grain boundary location, misorientation and visualisation

Boundaries between grains may be resolved using a method similar to that used by Lavergne et al. [START_REF] Lavergne | Anomalous grain growth in a polycrystalline monolayer of colloidal hard spheres[END_REF], but extended to three dimensions. Firstly, a Delaunay triangulation over particles belonging to a grain is calculated. The midpoints of Delaunay edges which connect particles in different grains form a surface of grain boundary points. Fig. 1b shows a schematic of a triangulation of particles in two grains where the members of each grain are shown as white or grey circles, respectively. The dotted lines show the triangulation edges and the black crosses show the grain boundary points. Note that these points do not lie on a particle coordinate. Furthermore, a 'local' misorientation may be calculated for each grain boundary point using the orientation of the particles on either end of the triangulation edge, yielding a spatial map of misorientations over the boundary surface. Grain boundary particles may be identified as those within a cut off distance to a grain boundary point and not a member of a grain. In this way, grain boundary particles may be identified without searching for a particular arrangement of particles at the boundary, which is especially useful when searching for unstructured grain boundaries.

The geometry of the surface may be visualised in more detail by again considering the Delaunay traingulation. For every tetrahedron with vertices in two grains, the grain boundary points formed from its edges may be linked by lines to form edge-sharing triangles, as shown in Fig. 1b. It is convenient to render the local misorientation by colouring the lines instead of the grain boundary points. This is done by bisecting each line and colouring each half by the misorientation of the closest grain boundary point. This can be seen in Fig. 1b where each line has two colours, one either side of the bisecting line. In this way grain boundaries are rendered as a triangle mesh where local misorientation information is represented by colour. In this work we choose to map the colour to the misorientation angle from an angle axis representation.

Note that the location of misorientations in threedimensional rotation space may be presented using vectorial representation. Here we use Rodigues-Frank vectors, RF = (RF x , RF y , RF z ) within fundamental zones containing the smallest misorientation angle, within a standard stereographic traingle as defined in Ref. [START_REF] Heinz | Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals[END_REF]. Rodrigues-Frank vectors are built from angle axis representation of rotations as RF = A tan( θ 2 ), where A is a normalised vector parallel to the rotation axis and θ is the rotation (misorientation) angle.

III. RESULTS AND DISCUSSION

To demonstrate the utility and capabilities of this method, we study two colloidal crystals, a templated bicrystal using a patterned surface, and a homogeneously nucleated polycrystal. We characterise misorientations of grain boundaries with particle level detail; one should note that single-particle resolution is often presented as a key strength of colloidal model system, and our method broadens this strength to grain boundary studies.

A. Grain boundary structure in a templated colloidal bicrystal

Here, we re-purpose particle coordinates from a colloidal bicrystal produced to study grooves at grainboundary-liquid triple junctions [START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF]. We use this data as a test case to demonstrate the method on a grain boundary of known location and misorientation. The sample was produced by slowly sedimenting a colloidal dispersion of monodisperse, 1.6µm diameter silica spheres onto a glass slide [START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF]. The glass slide was pre-templated using stereolithography, drilling dimples in positions corresponding to the first plane of a Σ17 (a type of coincident site lattice) grain boundary between two compact planes. During slow sedimentation, the first layer of deposited particles sits in the dimples; subsequent layers grow by epitaxy by completing compact planes. The aqueous dispersion is index matched to allow deep penetration of the light without scattering; it also contains fluorescein so that the matrix can be easily distinguished from the non fluorescent glass spherical particles. The sediment is imaged using 3D laser scanning confocal microscopy. Appropriate post processing finally allows the determination of the center of mass of each colloidal particle [START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF]. The cut off distance for nearest neighbours is set to 2.0µm, the first minimum of the radial distribution function, which sits at roughly 1.25 times the particle diameter. The distribution for the number of nearest neighbours is found in section II of the supplemental material [53]. All NNCs with at least 3 neighbours of the parent particle were considered for orientation measurement, comparing against both FCC and HCP reference NNCs, which were scaled such that the average nearest neighbour separation was 1.63µm, the same as the first peak in the radial distribution function. The misorientation angle cut off was set empirically to be θ cut = 2 • , which is small enough to separate the grains in this data set. Section IV of the supplemental material [53] provides a discussion on the effects of different values of θ cut . The distance cut off for grain boundaries was set to be the same as for nearest neighbour detection i.e. R cut = 2.0µm. The total computation time for the grains and grain boundaries in the following discussion from 38977 particle coordinates was 172 s using a quadcore Intel Core i5-6500 with 16 GB of RAM. The rendering was performed using open source PyMol software [START_REF]The PyMOL Molecular Graphics System[END_REF].

Fig. 2a shows a reconstruction of the coordinates of all particles. A boundary may be roughly identified by eye. Applying our method, the two largest FCC grains detected are shown in Fig. 2b, coloured by grain, sitting on either side of the nominal Σ17 boundary. Initially, we consider only these two major grains, and identify a grain boundary between them. The misorientation is found to be RF M = (0.2497, 0.0088, 0.0002); in agreement with the value for a Σ17 boundary in an FCC crystal, RF Σ17 = (0.25, 0, 0) [START_REF] Grimmer | Coincidence-site lattices and complete pattern-shift in cubic crystals[END_REF]. Note that this average misorientation is calculated from the average orientation of each large FCC grain using an implementation [START_REF]averaging quaternions[END_REF] of the rotational averaging method described in ref. [START_REF] Markley | Averaging Quaternions[END_REF]. If we render the geometry of the grain boundary surface and colour code misorientations over the edges (see section II D) as shown in Fig. 2c, a broad spatial variation in misorientation is revealed. This is accordingly seen in the Rodrigues-Frank misorientation fundamental zone in Fig. 2d, where points are scattered around the misorientation expected for a Σ17 boundary, shown as a black cross. Thus, we show the method characterises grain boundaries correctly and resolves spatial variation in misorientation at the particle level. Details of the grain boundary particles within R cut of the Σ17 boundary may be found in section III of the supplemental material [53]; the following grain boundary discussions will focus on the grain boundary surfaces, rather than the particles themselves.

Templating techniques such as those used to create this bicrystal [START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF] are designed to create a single boundary with a pre-engineered misorientation. However, the two major grains and the boundary between them do not account for all the grain and grain boundary structures present: this manufactured boundary is far more complex than a single surface with a single misorientation and contains both FCC and HCP crystal structures. Using our method we proceed to identify all FCC and HCP grains composed of 50 or more particles and characterise the multitude of unique boundaries which are present.

We firstly consider the range of FCC-FCC boundaries present in the system, in particular the twin boundaries. Twinning is of interest as particular twin geometries have consequences for grain growth kinetics [START_REF] Thomas | When twins collide: Twin junctions in nanocrystalline nickel[END_REF]. To this end, HCP grains are omitted during the FCC-FCC grain boundary generation (as explained in section II D) so that triangulation edges connect FCC grains on either side of a stacking fault. This prevents FCC twin boundaries being replaced by two grain boundaries between the two twinned FCC grains and the bisecting HCP layer. A particularly salient example of a twin boundary is shown in Fig. 3a, where a smaller FCC grain, labelled G t is surrounded by one of the major FCC grains. It is wrapped in an envelope-like grain boundary, whose misorientation is located around RF = ( 13 , 1 3 , 1 3 ) in the FCC-FCC Rodrigues-Frank misorientation fundamental zone (see inset in Fig. 3a), close to those expected for a twin boundary in an FCC crystal. This boundary is composed of two different inclinations, one where the boundary plane has a normal perpendicular to the hexagonal plane direction, marked i in Fig. 3a, and another where the normal is contained in the hexagonal plane, marked ii. Here we see how the spatial resolution of our method reveals the fine details of grain boundaries. If we add the HCP stacking, we indeed find that the parts of the boundary parallel to the hexagonal planes, i, are coincident with single, isolated HCP layers. However, this is not case for the parts of the boundary that wrap around the small twin grain to connect these planes, ii. In principle, one might also identify isolated FCC-HCP boundaries, as we will see below, but the ability to freely calculate the misorientation angle between grains of selected structure makes the detection of twin grain boundaries much simpler.

We proceed to consider the HCP crystalline regions and FCC-HCP boundaries. As shown in Fig. 3b, the nominally 'simple' Σ17 boundary has a significant number of HCP layers extending into the FCC grains. The corresponding misorientations are plotted in the Rodrigues-Frank fundamental zone in Fig. 3c with a colour depending on the misorientation angle, θ. Projecting the distribution of points in misorientation space onto a probability distribution in misorientation angle, P (θ), (see Fig. 3d), we see that there are multiple peaks. The distribution is magnified in the inset so that the peaks with smaller probabilities may be seen more clearly. The largest peak at misorientation angle θ ≈ 56.6 • corresponds to Blackburn [START_REF] Krakow | On threedimensional misorientation spaces[END_REF] boundaries between HCP and FCC grains either side of a stacking fault. The energy associated with stacking fault creation is very low so it is no surprise to see the highest probability at this position. Fig. 3c shows the local misorientation distribution of these boundaries, scattered about the Blackburn position marked with an black cross at position RF B = (0.414, 0.318, 0.132).

Note the presence of a smaller peak at θ ≈ 49 • , marked iii in Fig. 3d. In fact, these correspond to the portion of the boundaries running approximately perpendicular to the hexagonal planes, which wrap around the HCP grains to connect two in-plane FCC-HCP boundaries. They are marked iii in Fig. 3b, where they appear a lighter shade of red. Their location in the Rodrigues-Frank misorientation fundamental zone is also marked iii in Fig. 3c. Fig. 3e shows how particle positions vary across this FCC-HCP boundary, where the boundary adopts this lower misorientation angle. There is no abrupt change from HCP to FCC; instead, the hexagonal planes gradually shift relative to one another. This results in NNCs in the vicinity of the boundary being distorted. Here, NNC particles move in a concerted manner with their counterparts from the same hexagonal plane, but differently from members in other hexagonal planes. This results in a net rotation of the NNCs near the boundary. Note that the Blackburn boundaries have the maximum misorientation possible i.e. the full misorientation between the two structures. Thus, the misorientation angle is necessarily reduced for the distorted NNCs. This kind of boundary has been identified before in colloidal crystals by Hilhorst et al. [START_REF] Hilhorst | Variable Dislocation Widths in Colloidal Crystals of Soft Thermosensitive Spheres[END_REF], although without a specific detection scheme.

Having located both FCC-FCC and FCC-HCP boundaries over all grains in the system, we are now in a position to characterise the Σ17 boundary in more depth. The 'single' boundary identified in Fig. 2c using the two major FCC grains now looks very different (see Fig. 3f). The blue portion marked as Σ17 corresponds to FCC-FCC boundaries, nominally the 'remnants' of the original Σ17 boundary. However, there are now other contributions including FCC-HCP boundaries with different misorientation where the HCP grains meet FCC grains at the boundary. These are marked iv and shown in yellow; they also appear as surfaces in Fig. 3b and in the misorientation distribution Fig. 3c. The misorientation angles of these boundaries peak at θ ≈ 39 • , marked iv in the misorientation angle distribution in Fig. 3d.

Another contribution to the boundary in Fig. 3f is the FCC-HCP boundary between the twin grain G t from Fig. 3a and HCP layers on the other side of the Σ17 plane. This is shown in green on the left hand side and marked v. This is also visible at peak v at θ ≈ 30 • in Fig. 3d. Finally, there is a contribution from the junction between G t and the major FCC grain on the other side of the Σ17 plane, marked vi.

With our method we have characterised the grain and grain boundary structure of a pre-templated Σ17 boundary [START_REF] Maire | Imaging grain boundary grooves in hardsphere colloidal bicrystals[END_REF] in great detail. Despite the misorientation between the major grains being as designed, the microstructure of the boundary itself is far more complex, with a combination of defects and highly curved grain boundaries with misorientations that do not exactly conform to the angles predicted for simple stacking faults. Furthermore, the difference in structure of the boundary can contribute to a difference in the properties, which may go unexamined without particle level structural characterisation.

B. Characterisation of homogeneously nucleated polycrystalline structures

We extend the analysis to a sample where we have no pre-knowledge of the position or misorientation of the grain boundaries. We demonstrate this by analysing a homogeneously nucleated colloidal polycrystal. The finer grain structure showcases the spatial resolution of our method for grain and grain boundary detection. We apply the algorithm to coordinates of particles in a polycrystalline colloidal sample composed of ≈ 2.4µm, 3% polydisperse, polydimethylsiloxane stabilized core-shell PMMA spheres. The synthesis of the particles is based on the methods presented in references [START_REF] Dullens | Monodisperse core-shell poly (methyl methacrylate) latex colloids[END_REF][START_REF] Klein | Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer[END_REF]. The particles are suspended in a density and index matching mixture of cyclohexyl bromide and cis-decahydronaphthalene saturated with tetrabutylammonium bromide (TBAB) to achieve electrostatic screening. The particles are dyed with trace amounts of Rhodamine B in the particle core for laser scanning confocal microscopy imaging with a Leica SP5 scanhead. The particle coordinates are recovered from the confocal images using conventional particle identification software [START_REF] Crocker | Methods of digital video microscopy for colloidal studies[END_REF].

To prevent heterogeneous nucleation, the glass walls of the sample cell were coated with polydisperse colloidal PMMA particles to create a uniform but rough surface on the length scale of the colloidal particle. To this end, a 22 × 22 mm number 1 cover slip was spin coated with a dense, polydisperse suspension of PMMA particles (20% volume fraction, 30% polydispersity in size) in cis-decahydronaphthalene, taking care to avoid bulges on the outer rim of the cover slip. This is immediately transferred to a 120 • Celsius hot plate to dry the solution rapidly to avoid de-wetting. This cover slip forms the imaging wall of a glass sample cell. A small glass bottle with the bottom removed is attached to the cell to allow the placement of the colloidal dispersion via pipette. The cell is sealed by attaching screw top lid with a teflon liner to the bottle top. The colloidal sample is left for several hours to crystallise, after which a field of view far away from the flat walls of the container is investigated.

As in the case of the templated bicrystal, the nearest neighbour and grain boundary cut off distances are set to equal the first minimum of the radial distribution function, in this instance, R cut = 3.0 µm (once more roughly 1.25 times the particle diameter), and the reference NNCs are scaled to have a nearest neighbour distance equal to the first peak of the radial distribution function (2.35 µm). The distribution of numbers of nearest neighbours for the particles is given in section II of the supplemental material [53]. The misorientation angle cut off is set to θ cut = 2 • . However, this time we do not impose a cut off for the size of grains; thus, the smallest grains can now consist of as few as two NNCs. The total computation time was 234 s for 44025 particle coordinates on the same quadcore Intel Core i5-6500 with 16 GB of RAM.

Fig. 4a and Fig. 4b show the FCC and HCP grains, respectively, where each grain is assigned a unique colour. Some colours may appear indistinguishable because there are many colours for the many grains: 866 FCC grains and 964 HCP grains, with grain sizes range from 2 to approximately 500 particles. The number of particles in FCC and HCP grains, respectively, are 8606 and 5368, showing a random hexagonal close packed structure with a slight preference for FCC and, in general, HCP grains that are smaller than FCC grains. A striking feature of both Fig. 4a and Fig. 4b are the planar gaps, and flat, narrow grains. These are formed by faults, where FCC changes to HCP or vice versa and serve to break up the crystallites parallel to the hexagonal layers. We may subsequently identify FCC-FCC, FCC-HCP and HCP-HCP boundaries. Each row of Fig. 4 from 4c to e contains three panels that present from left to right the location of grain boundaries, the misorientation within the fundamental zone and a misorientation angle distribution, respectively. As before, grain boundaries and their distributions are coloured by their misorientation angle, θ, and the colours are consistent for each row. The colour maps used to label the boundary points in Fig. 4c to e in both real and misorientation space span angles between 0 • and the maximum misorientation angle.

Again, we start by looking at FCC-FCC boundaries, omitting the HCP grains (see Fig. 4c). The boundary structure is dominated by low angle and twin grain boundaries, in approximately equal measure. They occur where an even or odd number of HCP stacked hexagonal layers, respectively, separate two FCC grains. Accordingly, these boundaries are flat and lie parallel to the local hexagonal plane direction as seen in Fig. 4c 1 . The corresponding misorientation distribution is shown in Fig. 4c 2 where the misorientations at low angle and twin boundaries are concentrated around the points RF 0 = (0, 0, 0) and RF T = 1 3 , 1 3 , 1 3 , respectively in the Rodrigues-Frank fundamental zone. Accordingly, these boundaries appear as peaks in the misorientation angle distribution in Fig. 4c 3 at θ ≈ 0 • and θ ≈ 60 • . The peak at θ ≈ 0 • and the twin peak at θ ≈ 60 • have approximately equal probabilities relative to the random misorientation distribution, showing that stacking faults contain an equal proportion of even and odd hexagonally close packed layers. Note that the form of the misorientation distribution highlights the single particle resolution, resolving stacking faults that separate FCC grains of the same orientation and that separate twin FCC grains. Note that all these twin boundaries are planes, unlike the example shown in the templated bicrystal where an FCC-FCC boundary bends around to encapsulate an FCC crystallite as in Fig. 3a. None of the grains in this sample are large enough to support the in-plane stacking fault required to generate such a boundary. Fig. 4c 2 and 4c 3 show that there are also a significant proportion of misorientations located between the peaks at θ ≈ 60 • and θ ≈ 0 • . These misorientations are a hallmark of a polycrystalline sample, displaying many differently oriented grains. The surface area of these boundaries is far smaller than the twin and low angle boundaries so they appear with lower probabilities.

We may also look at HCP-HCP boundaries by omitting the FCC grains (see Fig. 4d). Again, the structure is dominated by boundaries arising from stacking sequence changes of hexagonal planes. The most probable peak appears at θ ≈ 0 • in Fig. 4d 3 and the corresponding boundaries are shown in blue in Fig. 4d 1 and 4d 2 . These boundaries are created where one or more FCC layers intersect two HCP grains, exposing a gap between two HCP grains of the same orientation. The other dominating feature of the distribution in 4d 3 is at θ ≈ 70 • . This is again a consequence of stacking sequence changes, only this time along different hexagonal plane normal directions. Specifically, they are the different hexagonal plane normal directions in the FCC structure. The angle between these planes is equal to 70.53 • and accordingly, boundaries with misorientation θ ≈ 70 • appear with a significant probability.

Finally, considering FCC-HCP boundaries (see Fig. 4e), we see a grain boundary structure dominated by the Blackburn misorientation relationship, corresponding to very high stacking disorder. Again, this is evidence for the random close packing structure of the polycrystal. Fig. 4e 1 shows mostly planar boundaries coloured in red corresponding to a Blackburn misorientation of RF B = (0.414, 0.318, 0.132) as shown in Fig. 4e 2 . The distribution has a proportionately large peak at θ ≈ 56 • in Fig. 4e 3 . However, there is now no small peak at θ ≈ 49 • , due to the absence of in-plane stacking faults. These grains are smaller than in the bicrystal discussed in section III A. Much like the absence of any curved FCC-FCC twin boundaries in the polycrystalline sample there is also an absence of curved FCC-HCP boundaries. In the templated bicrystal of section III A, the stacking changes over roughly six particle spacings as shown in Fig. 3f, similar in length scale to the in-plane stacking faults of Hilhorst et al. [START_REF] Hilhorst | Variable Dislocation Widths in Colloidal Crystals of Soft Thermosensitive Spheres[END_REF]; this is too large a length scale for the finer grains of the polycrystal. Hence, no boundaries due to in-plane stacking faults are seen in either FCC-HCP boundaries or indeed FCC-FCC boundaries as presented earlier.

IV. CONCLUSION

A complete method is presented to convert real space particle coordinates of polycrystalline materials to the location and character of grains and grain boundaries. Heterogeneity in misorientations may be characterised with single-particle resolution over boundaries without a priori knowledge of local crystal structure, giving unprecedented insight into a wide range of faults and defects, and how the degree of misorientation might affect physical properties. Here, we apply this to colloidal crystals, finding an unexpected degree of structural complexity in a nominally 'tame' [START_REF] Han | Grainboundary kinetics: A unified approach[END_REF] templated system and how the distribution of misorientations change when similar particles are instead allowed to homogeneously nucleate crystals and grow. Importantly, we identify features such as twin boundaries, the Blackburn orientation relationship and low angle grain boundaries without targeting different portions of the structure. Our method may be applied to both experimental and numerical data with minimal knowledge of crystal orientations in a region of interest and would serve as a useful tool in future studies of polycrystals, nucleation and grain growth. The routines are freely available [62] to other users.
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 1 FIG. 1. (a) Flow chart of the point set registration process. Ovals denote the start or end, parallelograms are inputs or outputs, diamonds represent decisions, where Y and N stand for yes and no, respectively, and rectangles indicate processes. The detail for each number is given in the text. (b) Cartoon showing the grain boundary rendering process. The positions of particles in two different grains in three dimensions are shown by white and grey circles, respectively. They are not positioned in a crystalline arrangement for the purpose of clarity. Delaunay triangulation edges are shown as dotted lines (thickness for perspective) and grain boundary points are shown as black crosses. The grain boundary lines are shown in two colours, either side of a perpendicular bisector. (c), (d) and (e) show the NNCs for FCC, HCP and BCC, respectively. The black crosses mark the positions of particles and the black circle, the parent particle.

FIG. 2 .

 2 FIG. 2. Templated colloidal bicrystal. (a) Rendering of the colloidal crystal from particle coordinates. (b) Two largest FCC grains, either side of the Σ17 boundary. (c) Normal projection of the Σ17 boundary. (d) Rodrigues-Frank fundamental zone of misorientation containing the local misorientation for the boundary. The black cross shows the mean misorientation RF M = (0.2497, 0.0088, 0.0002).

FIG. 3 .

 3 FIG. 3. A selection of other grain and grain boundary structures within the templated colloidal bicrystal, the numbered labels, i through v, included in several panels are explained in the main text. (a) FCC twin boundary and twin grain Gt. The inset shows the local misorientation distribution. (b) HCP grains and FCC-HCP grain boundaries. The particles are coloured by grain identity and the grain boundaries by local misorientation angle, θ (see colour bar in panel(c)). (c) Rodrigues-Frank misorientation distribution within the fundamental zone for boundaries between FCC and HCP grains, coloured by misorientation angle (see colour bar). (d) Local misorientation angle distribution for FCC-HCP boundaries. The inset shows a magnified portion. (e) In-plane stacking sequence change from FCC to HCP. The black line is a visual guide. (f) A mosaic of grain boundary structures including the Σ17 boundary and the contributions of other boundaries.

FIG. 4 .

 4 FIG. 4. The grain and grain boundary structures within the colloidal polycrystal. (a) and (b) show FCC grains and HCP grains, respectively. Each grain is given a unique colour. The remaining panels of the image are organised as follows. Rows (c), (d) and (e) show characterisation for grain boundaries between FCC grains omitting HCP grains, between HCP grains omitting FCC grains, and between FCC and HCP grains, respectively. Column (1) shows the spatial distribution of grain boundaries. Column (2) shows the misorientation distribution in the Rodrigues-Frank fundamental zone. Column (3) contains probability distributions of misorientation angles. The dotted lines show distributions for randomly oriented grains. The colour bar extends from the smallest rotation angle to the largest and governs the colours for the panels in the same row.
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