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The Smart Factory paradigm represents the "fourth industrial revolution" in the field of manufacturing industry, 

through the implementation of "intelligent systems" consisting of physical systems and software to control and 

improve manufacturing processes (Zuehlke 2010). These intelligent systems typically include various components, 

such as sensors for signal acquisition, communication units for data transmission between components, control units 

for components, control and management units for decision making, and actuators to perform appropriate actions 

(Lezoche and Panetto 2018).  In recent years, the emergence of cyber-physical systems (CPSs) has amplified the 

ability to sense the world through a network of connected devices using the existing network infrastructure. Cyber-

physical system (CPS) aims at embedding computing, communication and controlling capabilities (3C) into physical 

assets to converge the physical space with the virtual space (Monostori et al. 2016).  The combination of intelligent 

systems and sensing systems forming a large-scale distributed cyber-physical system is a key element in the 

development of the distributed cyber-physical system. However, they suffer from a lack of modelling techniques that 

take into account not only their technological parameters but also their high degree of information and functional 

interrelationships. As the complexity of these systems continues to grow, the challenge of developing intelligent and 

sensing systems has exceeded the design complexity of their individual components (Lee, Bagheri, and Kao 2015). 

The main problem in developing intelligent systems is the complexity of integrating and managing these different 

components, technologies, and objectives across a broad spectrum.  In this sense, the concepts defined in the field of 

Systems Engineering are relevant to the challenge of shared knowledge formalization. It is necessary to define a 

modelling method that helps to analyse a new form of intelligent systems (smart) and detection in a sustainable 

perspective. The representation of shared knowledge is a branch of artificial intelligence that studies the way human 

reasoning occurs and defines symbols or languages. This representation allows the formalisation of knowledge to 

make it understandable to machines, aligned with reference models. An important prerequisite for the cyber–physical 

integration is a proper and highly-accurate digital model (Semeraro et al. 2021a). Considering the complexity of 

digital modelling, this work aims to identify and formalise elements that contribute to the construction of 

informational and functional models of systems to improve and simplify the modelling of manufacturing processes 

and products, based on networked components.   

The idea is to propose a series of modelling patterns aimed at identifying automatically, in the masses of data, 

invariant behaviours that can be modelled for the emulation of these cyber-physical systems and thus contribute to 

the digital transformation of industrial production companies. This work aims to define an approach to formalize 

data-driven patterns for improving the smartness of manufacturing processes and products, involving networked 

components. Firstly, the use formal concept analysis (FCA) (Valtchev, Missaoui, and Godin 2004) allows the 

extraction of tacit knowledge included in the masses of data, as shown in Figures 1-3. Formal Concept Analysis 

(FCA) is a mathematical theory oriented at applications in knowledge representation and data analysis. It provides 

tools to group the data and to discover formal patterns by representing it as a hierarchy of formal concepts organized 

in a semi-ordered set named lattice. The discovered patterns are concretised through the modelling of systems and 

procedures in system modelling language (SysML) (Figure 4). The idea behind data-driven patterns is to permit the 

re-use of predefined functional patterns for designing digital models based on the specific application. The approach 

makes the shared knowledge more easily reusable, and it is the basis of some standardization efforts.  
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Fig.4: SysML Representation (Semeraro et al. 2019a) 

In view of the above, a list of data-driven patterns has been presented in (Semeraro 2020) according to the 

methodology described in  (Semeraro et al. 2019a).  The detected data-driven patterns are listed as follow: Filling 

pattern (P1); Re-start machine pattern (P2); Clamping force pattern (P3); Pression control pattern (P4); State pattern 

(P5). The filling pattern (P1) can be used whenever it is necessary to model the behaviour of a plunger or an injection 
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system. The re-start machine pattern (P2) can be applied for describing the machine restart after machine downtimes. 

The clamping force pattern (P3) can be instantiated for describing the behaviour of a clamping system (e.g., the 

clamping of a mould) or for describing and preventing mechanical breakdowns. The pression control pattern (P4) 

can be useful for modelling hydraulic systems (e.g., the clamping of a mould) and related problems. The state pattern 

(P5) can be instantiated for simulating different states of the machine based on the evaluation of a set of parameters 

(Semeraro et al. 2021b). 

The idea has been explored and validated on a real case study Master Italy s.r.l by using a set of patterns to create a 

digital twin model prototype to control and optimize a die casting aluminium process (Semeraro et al. 2019b). A 

Digital Twin (DT) is a “virtual” image of the reality constantly synchronized with the real operating scenario (Negri, 

Fumagalli, and Macchi 2017). The digital twin has received strong interests from researchers and industries since it 

allows the predictive manufacturing by integrating the cyber and the physical space. The digital twin requires the 

building and the applying digital models representing the set of resources and processes knowledge. A generic DT 

can be thought as consisting of several components organised into three main layers above recognised:  

1. The physical layer, consisting of entities identified based on the stage of the product life cycle. 

2. The network layer, connecting the physical domain to the virtual one. It shares data and information.  

3. The computing layer, consisting of virtual entities emulating the corresponding real entities, including 

data-driven models and analytics, physic-based models, application, and user. 

The design criteria of a Digital Twin are not well assessed or even standardised. In our approach, the digital twin 

prototype is implemented as shown Figure 5 applying three data-driven patterns: filling pattern (P1), re-start machine 

pattern (P2) and the clamping force pattern (P3) to create the digital model of the die casting process. The resulting 

tool can exploit the existing knowledge and the information from the real process to emulate its behaviour and thus 

diagnose and even predict problems and propose potential improvements. The prototype can analyse the online data 

collected from the physical line for searching the optimal solution to the physical line. It can evaluate the production 

line real-time and optimize the resource allocation autonomously (Rosen et al. 2015). With our approach, the physical 

settings interact with the digital space, according to specific properties and rules, to understand the behaviour of the 

process and the correlations between technological parameters. The digital twin has been designed to support the 

employees in decision-making process to identify autonomously the several quality problems of the components, 

compared to the standards (dimensions, tolerances, finishes, quantity), alert operators through proper alarm systems 

about abnormal or out of tolerance situations and support the choice of corrective actions to eliminate the detected 

failures and defects. It is currently being used by the company, which now wants to extend it to other manufacturing 

systems in its plant. Compared with existing approaches with a barrier of high design complexity, this study proposes 

a modular solution for designing cyber-physical systems.  

 

 
Fig.5: Digital Twin Prototype (Semeraro 2020) 



 

     

 

 

The core idea of the present work is to extract patterns automatically from data and model these to design CPSs. The 

contribution has been tested trough a real implementation on an industrial case-study. A web platform and a digital 

twin prototype have been presented for showing how to instantiate and use a pattern. The future research direction is 

to enrich the pattern’ semantics to create a comprehensive library of formalized data-driven patterns. It means to 

select different production lines to apply the same patterns for designing digital models for different applications and 

scopes. Other sets of data need to be selected such as logistic data, product data, customers’ data to extract new data-

driven constructs. In this way it is possible to create a consistent library of patterns.  
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