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ABSTRACT: Laser-induced breakdown spectroscopy (LIBS) imaging is an innovative technique that 

associates the valuable atomic, ionic and molecular emission signals of the parent spectroscopy with spa-

tial information. LIBS works using a powerful pulse laser as excitation source, to generate a plasma ex-

hibiting emission lines of atoms, ions and molecules present in the ablated matter. The advantages of LIBS 

imaging are potential high sensitivity (in the order of ppm), easy sample preparation, fast acquisition rate 

(up to 1 kHz) and µm scale spatial resolution (weight of the ablated material in the order of ng). Despite 

these positive aspects, LIBS imaging easily provides datasets consisting of several million spectra, each 

containing several thousand spectral channels. Under these conditions, the current chemometric analyses 

of the raw data are still possible, but require too high computing resources. Therefore, the aim of this work 

is to propose a data compression strategy oriented to keep the most relevant spectral channel and pixel 

information to facilitate, fast and reliable signal unmixing for an exhaustive exploration of complex sam-

ples. This strategy will apply not only to the context of LIBS image analysis, but to the fusion of LIBS 
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with other imaging technologies, a scenario where the data compression step becomes even more manda-

tory. The data fusion strategy will be applied to the analysis of a heterogeneous kyanite mineral sample 

containing several trace elements by LIBS imaging associated with plasma induced luminescence (PIL) 

imaging, these two signals being acquired simultaneously by the same microscope. The association of 

compression and spectral data fusion will allow extracting the compounds in the mineral sample associ-

ated with a fused LIBS/PIL fingerprint. This LIBS/PIL association will be essential to interpret the PIL 

spectral information, which is nowadays very complex due to the natural overlapped signals provided by 

this technique.

GRAPHICAL ABSTRACT 

 

 

INTRODUCTION 

Laser-induced breakdown spectroscopy (LIBS) imaging is nowadays a very powerful technique 

for the elemental analysis of complex samples used in many different scientific fields [1–7]. This tech-

nique uses a pulse laser beam focused on the sample surface to generate a plasma that atomizes and excites 

the ablated matter. As a consequence, the excited atoms, ions and molecules release the excess of energy 

with electronic relaxations, and a characteristic emission spectrum for each element present in the matrix 
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can be acquired using an optical microscope coupled with a spectrometer. In LIBS imaging, the sample 

surface is usually explored in a scanning configuration mode, acquiring one spectrum at a time for each 

spatial position of a predefined grid. Then, using a classical integration of the acquired signal at a partic-

ular wavelength (i.e. an emission line of a given element), it is possible to generate a distribution image 

of the considered element present in the sample. LIBS technique shows many advantages, such as multi-

elemental capabilities including light elements (<Mg), a high acquisition rate (up to 1000 spectra/s), high 

sensitivity most of the time, high dynamic range (major elements to traces can be observed), and compat-

ibility with optical microscopy. Nevertheless, even if the high acquisition rate of LIBS imaging allows 

analyzing large sample areas of several cm2 in a very reasonable time, this advantage becomes a major 

limitation because a huge amount of data is naturally produced due to both the many spectral channels 

explored by LIBS and the massive number of sampling points – the pixels – scanned. In fact, it is nowa-

days common to get images with millions of pixels associated with thousands of spectral channels [8,9]. 

Another important aspect in the LIBS exploration of a sample is the possibility to obtain an additional 

plasma induced luminescence (PIL) [10] response using the same instrument. Indeed, the plasma gener-

ated by the LIBS laser shot acts as an excitation source and produces the emission of a luminescence 

response for specific elements present on the sample surface [11]. Nevertheless, despite the relative sim-

plicity of acquiring these additional PIL spectra, the interpretation of such signals remains uncertain [12]. 

Chemometrics and multivariate data analysis are very suitable approaches for the exploration of this com-

plex kind of imaging datasets. However, the use of these tools for the study of LIBS and/or PIL images is 

nowadays still limited. Understanding the concept of hyperspectral imaging, finding appropriate tools for 

data exploration to deal with millions of spectra and able to provide interpretable outputs is still a very 

complex task, which can be of invaluable help for the LIBS community members. 

The central point of this work is to provide a data analysis pipeline capable to drastically decrease the 

amount of imaging data (both the spectral channels and the pixels) used for the investigation of a complex 

and heterogeneous sample in order to perform a simpler unmixing analysis of the essential information 

selected for LIBS images or for fused LIBS/PIL data configurations. To do the unmixing task, Multivari-

ate Curve Resolution – Alternating Least Squares (MCR-ALS) analysis [13–15] will be applied on the 

selected small amount of data coming from the previous compression step. We will demonstrate that ap-

plying MCR-ALS on such compressed dataset is sufficient to reconstruct high quality full maps and spec-

tral signatures of the compounds in the imaged sample without losing the initial spectral and spatial reso-

lution [16]. The methodology proposed will be tested to study a heterogeneous kyanite mineral sample 

containing several trace elements analyzed by LIBS and PIL imaging. The results of the analysis of fused 
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LIBS and PIL datasets will provide the identification and distribution of the different elements present in 

the sample but, most importantly, will shed light for a better understanding of the luminescence phenom-

enon in this kind of complex samples. To the best of our knowledge, this is the first time that this data 

analysis pipeline (data compression and fusion) is used on LIBS/PIL imaging platforms.  

MATERIAL AND METHODS 

Experimental setup and spectral data acquisition 

The LIBS experimental setup has been already described elsewhere [3,11,17,18]. It included a 

Nd:YAG laser source operating at 100 Hz and emitting at the fundamental wavelength (i.e. 1064 nm) with 

an 8 ns pulse duration (Centurion, Quantel laser by Lumibird). The laser beam was focused onto the 

sample using a 15× magnification objective as shown in Figure 1a. All the measurements were conducted 

in ambient atmosphere with an argon flow of 0.8 l/min acting on the plasma region. A laser line scanning 

was performed in raster scan mode with the use of a motorized XYZ stage. In this configuration and 

considering the laser frequency rate, about 360,000 laser shots were produced in 1 hour. The ablation 

craters, observed afterward with optical microscopy, were less than 8 μm in diameter. Two spectrometers 

(Shamrock 500 and Shamrock 303, Andor Technology) equipped with intensified charge-coupled device 

(ICCD) cameras (iStar, Andor Technology) were used to probe simultaneously two spectral ranges in 

different temporal domains. The Shamrock 500 was used for LIBS experiments and was equipped with a 

2400 l/mm grating (Holographic, peak at 220 nm) covering the 425-440 nm spectral range with a resolu-

tion of ∼0.04 nm. This range was selected to detect primarily iron (Fe), chromium (Cr), vanadium (V) and 

titanium (Ti), although calcium (Ca) and zirconium (Zr) lines could also be detected (as can be seen on 

the mean LIBS spectrum in Figure 1b). The Shamrock 303 was used for PIL experiments. It was equipped 

with a 1200 l/mm grating and setup in the 680-720 nm spectral range, where intense luminescence lines 

were detected. The mean PIL spectrum is presented in Figure 1c. Both ICCD cameras were synchronized 

to the Q-switch of the laser. The LIBS acquisition was performed with a delay of 1200 ns and a gate of 

4000 ns, while the PIL acquisition was performed with a delay of 100 µs and a gate of 2.2 ms. The light 

emitted by the plasma was collected by two quartz lenses and focused onto the entrance of round-to-linear 

fiber bundles connected to each spectrometer. Each fiber bundle was formed by 19 fibers, each with a 200 

μm core diameter. Spectra were acquired in full vertical binning mode for the two spectrometers. The 

laser energy was stabilized throughout the experiment and was fixed to 1 mJ per pulse. Finally, a home-

made software developed under the LabVIEW environment was used to control the entire setup, allowing 

automatic sequences of any selected regions of interest with a preset lateral resolution. 
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Figure 1. a) Experimental setup. b) Mean LIBS spectrum of the considered sample. c) Mean PIL spectrum of the considered 

sample. 

Sample and dataset description 

The sample selected for this study is a section of blue kyanite cristal (also called disten or cyanite) 

approximately 3 by 1.5 centimeters in size, which isa low temperature - high pressure metamorphic phase 

mainly formed by Al2SiO5 with many heterogeneities and several trace elements (mainly iron, calcium, 

vanadium, titanium and chromium), collected in Siberia. For LIBS and PIL imaging, the characterized 

cross-section was embedded in epoxy resin, cut, and finally polished with SiC paper under water to obtain 

a clean flat surface ready to be scan. The LIBS and PIL images acquired from this sample are sized each 

1100 x 2000 pixels (i.e. a total of 2,200,000 spectra) x 2048 spectral channels with a spatial resolution of 

20 µm per pixel. The size occupied in terms of storage by the two datasets is equal to 8 gigabytes for the 

LIBS dataset and more than 6 gigabytes for the PIL one. 

A first idea of the chemical information related to this sample can be obtained observing the mean spectra 

of the two datasets using LIBS and PIL (Figure 1b and 1c respectively). Thus the observation of the mean 

PIL spectrum shows a first line near 706 nm that looks not symmetric and evidently has a shoulder at its 

left side. In fact, under UV excitation, the literature indicates that two close lines with similar intensities 

can be observed depending on the orientation of the sample at 706.2 and 704.6 nm respectively. This 
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statement is quite surprising in our case because the line at 704.6 nm is supposed to have a much shorter 

decay than the one at 706.2 nm (75 µs and 1.2 ms, respectively) and therefore our acquisition parameters 

should not allow us to see the former. On the other hand, the line near 689 nm seems to be symmetrical 

and also corresponds to UV excitation. Once again, the literature indicates the presence of two lines this 

time even closer at 688.9 and 690.1 nm, the second being of very low intensity which finally explains the 

observation of a single line at first sight. Comparing the two mean spectra, it is clear that LIBS is repre-

sented by a larger number of emission signals compared to PIL, which is mainly formed by two broad 

spectral contributions. Figure 2 shows distribution images of elements present in the sample obtained 

from the signal integration method classically used on specific wavelengths of the LIBS spectra. Thus, 

even if this approach takes only into account individual wavelengths and not the full spectra, the spatial 

distribution of the elements presents some interesting aspects. For instance, while elements Cr and V seem 

to be strongly correlated and distributed in a very large area, Fe, Ca and Ti are more specific to small 

zones of the mineral. Note that no distribution image of Al and Si are proposed, although kyanite is an 

aluminosilicate because this element does not present LIBS emission in the considered spectral range. 

The two PIL images generated from the two spectral contributions at 689.315 (P1) and 706.865 nm (P2) 

also show slight spatial locations. However, from a general point of view, it can be seen that it is rather 

difficult to find spatial correlations between all the LIBS and PIL images by simple visual inspection. The 

only thing clearly seen is that the luminescence at 689 and 706 nm does not come from the Ti element 

since we observe some inverse correlation among LIBS and PIL images. Even if the generation of these 

integration images remains an easy first step to observe the chemical contributions of the sample, it is 

obvious that the characterization of the correlations between images remains delicate. Unfortunately, this 

is not the only constraint since the information of elements that can coexist to form mineral phases is lost 

or, in the best of the cases, incomplete using this univariate approach. Similarly, minor compounds asso-

ciated with weak signal and small localized areas may be missed. For all these reasons, we propose in this 

work a multivariate data processing pipeline combining compression, fusion, and signal unmixing for an 

exhaustive and simultaneous exploration of LIBS and PIL spectroscopies. 
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Figure 2. Distribution images of elements generated from the classical signal integration method from LIBS and PIL spectra. 
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DATA TREATMENT 

Data compression and signal unmixing 

The massive nature of the datasets to be analyzed demands a mandatory step of data compression 

to save computational resources and analysis time. The whole process of compression and multivariate 

resolution (signal unmixing) is described below in several successive steps. For convenience, this section 

of the text will illustrate the application of the methodology to the LIBS dataset, due to the complexity 

and rich information provided by this measurement. However, the same procedure was applied to both 

LIBS and PIL datasets, except for some specificities, that will be described, discussed and shown in Figure 

3.  

 

Figure 3. The data fusion and signal unmixing procedure. 

Thus the proposed data processing pipeline is divided into the following steps: 

1) Image blocking: first of all, the whole dataset was divided into 16 subimages. In this way, every 

single subimage had a reduced size of 780 x 125 pixels and provides an unfolded submatrix Di of 

97500 spectra. Blocking allows performing data analysis tasks much faster in each Di subset of 
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97500 spectra than if the work was carried out in the initial D matrix of 2 million spectra of the 

full image. Each subsequent step described was applied separately to each of the Di submatrices 

(Figure 3a). 

2) Spectral and spatial preprocessing: heterogeneous samples analyzed by LIBS imaging often con-

tain saturated spectra in the acquired datasets. Recent works have shown the importance of cor-

recting these signals prior to any data processing by proposing effective but relatively complex 

correction strategies [19,20]. In this work, we have proposed a simple procedure for managing the 

saturated spectra. First, the use of a threshold on the spectra (set by the maximum A/D converter 

dynamic range) was used to identify and locate the saturated pixels in the image spectra. Second, 

each saturated spectrum was replaced by the average of the non-saturated neighboring pixels in 

the image. For the LIBS dataset, a baseline correction was afterwards applied using the asymmet-

ric least squares (AsLS) algorithm based on the Whittaker smoother [21], with λ = 104 and an 

asymmetry parameter of 0.0003. For the PIL dataset, which had a radically lower signal-to-noise 

ratio, it was first necessary to apply a Savitzky-Golay smoothing (filter width = 20; polynomial 

order = 2) [22], and then, again, the AsLS algorithm (λ = 107 and asymmetry parameter of 0.0003) 

for baseline correction. Finally, the use of a threshold on the global spectral intensity of the pixels 

helped to generate a mask to separate the spectra from the mineral sample, used for further analy-

sis, from the spectra of the epoxy resin surrounding it, discarded in all the following data treat-

ments steps. This image cropping step reduced the total amount of spectra to be analyzed from 

more than 2 million to around 1 million. The comparison between the starting raw spectra, and the 

ones with this first spectral and spatial pretreatment are represented in the supplementary material 

(Figure S1).  

3) Double data compression: this is a key central step in all the proposed chemometric strategy. In fact, 

despite the already performed signal corrections and the massive reduction of spectra, the dimensions 

of the datasets (both LIBS and PIL) were still very huge. In chemometrics, and particularly in the signal 

unmixing framework, it is common to use methods oriented to the purest selection of variables (under-

stood as pixels or spectral channels) to generate initial estimates for iterative unmixing methods, such 

as MCR-ALS. In the present work, a SIMPLe-to-use Interactive Self-modeling Mixture Analysis 

(SIMPLISMA) [23–26] based-method was first used to select only the purest image information and 

drastically compress the number of selected pixels and spectral channels prior to the final MCR-ALS 

analysis. For each Di image submatrix in Figure 3b, taking advantage of the fine spectral features of 

LIBS, the selection of purest information was applied first on the spectral channels. In this way, only 
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the most important spectral variables (i.e. wavelengths) related to different chemical elements in the 

mineral were selected, discarding the redundant information. It is also important to underline the fact 

that at this stage of the procedure, as the final number of purest spectral variables needed is unknown, 

it was decided to overestimate this value. Thus, each Di image submatrix was first divided into blocks 

of 200 spectra from which the first 20 purest spectral variables were selected. At the end, a small list 

of spectral channels considering all the selected channels in the 16 Di submatrices was used to generate 

the spectral-compressed Di,compr.λ image submatrices, which had a much lower number of spectral chan-

nels than the original Di blocks, but had all image pixels. In a next step, the same approach based on 

SIMPLISMA was used in each of the spectral-compressed Di,compr.λ image submatrices to select the 

purest pixels. So, each of the Di,compr.λ  image submatrices was divided into blocks of 500 spectra, and 

the first 40 purest pixels of each block were selected, providing a spectral- and pixel-compressed 

Di,compr. λ/p submatrix with a much lower number of pixels and spectral channels than the initial Di 

related block. The extracted information of all the Di,compr. λ/p submatrices was fused together in order 

to create a final, compressed, Dcompr. λ/p dataset with selected information from the full initial image 

(Figure 3b). The sequential use of a purest variable selection method on small blocks of the initial 

image not only helps in speeding up the data analysis process but, most importantly, ensures that even 

minor compounds present in local zones of the raw dataset will be kept in the image compressed ver-

sion. At this point it is important to note that the selection of information is driven by the difference in 

spectral and spatial features and not by the percentage of variance expressed by the different com-

pounds in the considered sample. Here, a difference between LIBS and PIL spectra has to be pointed 

out. While the LIBS spectra show numerous and very fine peaks, only two broad bands are observed 

with PIL spectroscopy. So, in order to further compress the PIL spectral domain, the baseline part 

between the two bands was suppressed. In the rest of the dataset, the selection of the purest pixels was 

applied as in the LIBS dataset. 

4) Unmixing MCR-ALS analysis on the double compressed image data: once the compression is accom-

plished, the MCR-ALS process can be started to retrieve the spectral signatures and related distribution 

maps of the compounds in the image. Using the double-compressed dataset Dcompr. λ/p, the first step 

was to newly apply the SIMPLISMA-based method to extract the purest spectra to be used as initial 

estimates for the signal unmixing technique, as normally done in the routine approach, and, most im-

portantly, to assist in the selection of the number of components for the unmixing step. Indeed, select-

ing the optimal number of components for an MCR model is always a challenge on complex imaging 

samples, particularly if they contain minor compounds [27], since the presence of these contributions 
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may not be detected by methods based on analyzing the variance explained to decide the MCR model 

size, such as Singular Value Decomposition (SVD) does. The innovation in this work is that instead of 

using SVD to estimate the number of components, the purity of the selected spectra, pi, as defined by 

SIMPLISMA, will be the adopted criterion [28]. Hence, a graphical representation plotting purity vs. 

nr. of components is used to set the threshold for component selection. For the sake of a better inter-

pretability, the y-axis represents pi/p1, being p1 the purity of the first selected spectrum and pi the purity 

of the following i selected spectra. In this way, the y-axis goes from 0 to 1, i.e., a value of 0.9 will mean 

that the purity of a certain selected spectrum, meaning a new component in the model, is 90% the value 

of the first selected spectrum. Therefore, it is possible to observe the difference in purity of any selected 

spectrum with the first one, related to the difference in spectral shape between them and not to ex-

plained variance. Of course, the purity value decreases from component to component and a threshold 

expressed as, e.g., 1% of purity with respect to the first spectrum selected, can be set. In this manner, 

it is possible to estimate the right interval of components to consider in the MCR-ALS analysis, avoid-

ing to include either too few or too many possible chemical contributions. An example of this graphical 

representation is reported in the supplementary material (Figure S2), where a number of components 

around 8-10 seems a reasonable estimate. Different MCR-ALS resolutions will then be calculated for 

different values of rank within the range estimated but a single solution will finally be adopted, based 

on the quality of the extracted pure spectra compared to LIBS database spectra (Figure 3c). The MCR 

model obtained can be expressed as: Dcompr. λ/p = Ccompr. λ/p ST
compr. λ/p where Ccompr. λ/p and ST

compr. λ/p 

are compressed versions of the information in the distribution maps and spectral fingerprints, respec-

tively. In these analyses, only the constraint of non-negativity was used in the concentration and spec-

tral mode, respectively. 

5) Reconstruction of full distribution maps and spectral signatures: in this last step, the full spectral sig-

natures and complete distribution maps of the initial image were recovered with two suitable single 

least-squares steps. Note that the MCR model that corresponds to the analysis of full image would be 

D  = Ctot ST
tot, meaning D the matrix containing all the spectra of the original image, ST

tot the pure 

complete spectra of the compounds in the image and Ctot the matrix of related concentration profiles 

that conveniently refolded provide the complete distribution maps. First, the double compressed spec-

tral signatures (ST
compr. λ/p, where λ represents the compressed spectral channels and p the compressed 

pixels) obtained from the previous MCR results were combined with each of the i subimages 

(Di,compr. λ), where the spectral dimension was compressed but the pixel dimension was as in the original 

image, to rebuild the concentration profiles (Ci compr. λ), as represented in Eq. 1: 
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      Ci compr. λ = Di,compr. λ (ST
compr. λ/p)+                                                                                                                                                (1) 

      where (ST
compr. λ/p)+ is the pseudoinverse of matrix ST

compr. λ/p. All the (Ci compr. λ) matrices were ap-

pended together to reobtain the matrix of concentration profiles corresponding to the whole initial 

image, Ctot (Figure 2d), the profiles of which can be conveniently refolded to give distribution maps. 

Finally, by combining the obtained concentration profile Ctot matrix with the original data matrix D 

(represented by the whole spectral domain), the full spectral signatures (ST
tot) were finally obtained 

(Figure 2e), as represented in Eq. 2: 

 

ST
tot = (Ctot)+ D                                                                                                                              (2) 

Data fusion strategy 

As already described above, at first the LIBS and PIL datasets will be separately investigated by 

the use of the MCR-ALS analysis, in order to obtain a general idea about the information coming from 

the different techniques. This will form the first part of the results section. Without revealing these results, 

the observation of the average spectra acquired in LIBS and PIL already allow us to think that the exploi-

tation of the latter will certainly be very limited due to the low number of spectral contributions when it 

is used alone. The interpretation of PIL spectral data acquired on complex natural samples remains a real 

challenge today. So, the main idea of this data fusion approach was to increase the possibility to better 

understand the luminescence phenomenon, investigating potential correlation or anticorrelation between 

the two spectroscopic techniques. Different fusion strategies have already been proposed in the literature 

[29–31]. In this work, the low-level data fusion was used for this study, which means concatenating the 

LIBS and PIL spectrum related to each image pixel to form a multiset configuration. Note that this step 

is easily done because the instrumental setup of the LIBS/PIL system ensures a perfect spatial congruency 

between LIBS and PIL pixel spectra. As a first step, all the LIBS and PIL pixel spectra, already com-

pressed in the spectral dimension were concatenated together. It is important to stress here that only the 

LIBS and PIL matrices from the compression on the spectral variables were used for the fusion, not those 

from the double compression. The reason for using this strategy is that PIL spectra alone, as already 

explained, have much poorer information than LIBS. Using all the pixels initially in the fused structure 

ensures that the subsequent pixel selection will be carried out in such a way that the relevant correlation 

between the two techniques is appropriately captured. Finally, the extraction of the initial estimates with 

SIMPLISMA and the MCR-ALS analysis were carried out as previously described, but using the fused 

LIBS/PIL dataset. Again, the full spectral signatures and complete distribution maps were recovered using 
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two single least-squares steps combining the MCR results and the information in the extended pixel and 

spectral dimensions. 

RESULTS AND DISCUSSION 

LIBS dataset analysis. MCR-ALS results. 

Due to its complexity, the LIBS dataset was the first one to be analyzed and investigated by the use of 

MCR-ALS. With the proposed data analysis pipeline, only 89400 over the more than 2 million of spectra 

(the 4% of the whole information) and only 489 spectral channels over the initial 2048 (the 24% of the 

initial value) were used. Considering the double compression, only 1% of the initial image information 

was used to perform MCR-ALS analysis and finally extract the full size maps and resolved LIBS spectra 

of each pure chemical contribution. The number of components needed to describe this compressed in-

formation, as estimated from the purity-based graphical method then suggested to select 6 significant 

chemical contributions. Figure 4 shows that the first four contributions from the MCR-ALS model on the 

compressed data are related to elements already observed in Figure 2. Comparison of the resolved LIBS 

features with simulated spectra confirmed the identity of these compounds. However, the results offer as 

additional information the evidence that Cr and V are spatially correlated because they are present in the 

same MCR pure component. It is then interesting to see that the other 5 pure contributions correspond to 

single elements which is quite unusual in the context of LIBS signal unmixing. If we look at the distribu-

tions of these elements, we could first say that Ca, Fe and Ti are approximately located in the same areas. 

However, a more detailed analysis shows specific sub-zones of the sample for each of them. Additionally, 

it should be noted that Ca and Fe are often present along cracks of the mineral. The Ti contribution is also 

very interesting because it highlights areas of the sample for which no PIL signal was observed in Figure 

2. The last two components deserve a separate discussion. The first one seems to be equally distributed in 

all the mineral (signal contribution #4). The extracted spectrum is undeniably that of argon. However, the 

reader should not misunderstand the location of this element, which is not in fact part of the sample but 

comes from the gas flow above it, used to stabilize the plasma. As for the last contribution #6, its distri-

bution image seems at first sight to be mainly related to noise. However, the extracted pure spectrum 

shows that the LIBS signature can be unambiguously attributed to the emission spectrum of zirconium. 

This is a very interesting result because this trace element could not be detected by classical single band 

LIBS integration because of the low signal-to-noise ratio of the related signal and the strong spatial and 

spectral overlap with other major elements.
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Figure 4. MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares) results on the LIBS dataset.   

PIL dataset analysis. MCR-ALS results. 

As previously explained, the interpretation of only the PIL image can be very challenging because 

of the broad spectral features provided by this technique, and this sample is not an exception. Although 

the luminescence of kyanite has been studied for more than 80 years [12], the interpretation of the emis-

sion characteristics is still not clear; hence the interest in proposing an original spectroscopic setup and 

an associated data processing approach. Researchers agree that the emissions observed in the lumines-

cence spectrum are attributed to different Cr3+ centers in the aluminosilicate mineral. They also often 

associate the differences in luminescence behavior of Cr3+ with its substitution in different positions of 

Al3+ inside the kyanite structure. Nevertheless, these positions are so similar that it is challenging to ex-

plain significant differences in luminescence properties. It is therefore time to see whether the MCR-ALS 

approach can help us in this exploration of the PIL dataset exploited alone. The pure spectra and the 

corresponding distribution maps extracted from this signal unmixing method are shown in Figure 5. First, 

it is interesting to see that the number of components estimated for the PIL dataset was two.  
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Figure 5. MCR-ALS results on the PIL dataset of the considered kyanite sample.   

We were far from observing this with the classical integration method since the two PIL images at 689 

and 706 nm presented in Figure 2 were at first sight very similar to each other. Thus, even if the two 

spatial distributions extracted with MCR-ALS are very close, they still show areas with some variations 

in intensity. From a spectral point of view, we see that the two most intense emission bands of the dataset 

are now separated in these two contributions. In the pure contribution #1, an intense luminescence signal 

at 706.87 nm is accompanied by a doublet of low intensity at 711.03 and 712.87 nm. In addition, a lumi-

nescence signal is observed at 688.93 nm. It is in this same spectral zone that we can find the maximum 

of luminescence in the pure component #2 centered on 689.38 nm. Thus we now understand that the 

luminescence initially observed around 689 nm from the raw data was in fact at least coming from two 

distinct signals. Finally, a last observation of the pure component #2 could make us think of the presence 

of a doublet at 706.19 and 707.48 nm. This is not the case since it is in fact the representation of a broad-

ening of the emission band observed on the component #1 at 706.87 nm. With the results obtained from 

the MCR-ALS analysis of PIL data, the complexity of the PIL spectra can be confirmed. However, the 

very strong overlap between the components both in the spectral and spatial directions limits the signal 

unmixing power of the method and the ambiguity in the solutions obtained hinders the proper understand-

ing of the luminescence phenomenon. To improve this situation, the fusion of the PIL and LIBS datasets 
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will be mandatory to reliably understand which kind of elements are located in a specific zone of the 

mineral and associated with the luminescence effect. 

 LIBS/PIL data-fusion. MCR-ALS results. 

After the observation of the individual MCR-ALS results for the LIBS and the PIL images separately, the 

fusion of the two datasets was carried out. The main idea of this strategy was to deepen the chemical 

information from both techniques by finding correlations among the different spectroscopic signals and 

components.  In particular, by combining the finer spectroscopic features of LIBS with the broad PIL 

signals, it now seems possible to give a suitable chemical interpretation to the luminescence signals. Using 

the proposed compression pipeline, only 89400 pixels and 1165 spectral channels were selected from the 

fused dataset. More precisely, considering the initial size of the merged dataset (more than 2 million spec-

tra and about 4000 channels for both spectroscopies), the amount of information resulting from the double 

compression and thus finally used for the signal unmixing constituted only 1% of the original data. The 

MCR-ALS results on the fused dataset are given in Figure 6 after the estimation of the number of com-

ponents suggested seven significant chemical contributions. As a reminder, the pure spectra extracted by 

MCR-ALS on the fused dataset contain simultaneously a LIBS part and a PIL one. Thus, the extended 

LIBS/PIL fingerprint of the extracted components will directly differentiate the elements that present a 

LIBS signal associated with a PIL luminescence phenomenon from those that only have a LIBS signal 

and no luminescence induced. The observation of the first three pure contributions in Figure 6 clearly 

show that the elements Ca and Fe present a very low luminescence phenomenon (689.5 nm), which is 

completely absent for Ti. Moreover, there is no significant luminescence for the Ar element either (pure 

contribution #6), which it is not part of the sample but of the atmosphere above its surface. The strongest 

luminescence signals are observed for pure contributions #5 and #7 corresponding to a mixture of Cr and 

V followed by a weaker but nevertheless significant luminescence for Zr in pure contribution #4. This last 

contribution is very interesting because Zr does not form luminescence center. We can therefore say that 

the luminescence observed on contribution #4 is certainly due to an indirect correlation of another element 

with Zr. If we look at these three PIL contributions at the spectral level, they are quite singular. First, the 

pure contribution #7 has two peaks at 689.34 and 706.89 nm. On the other hand, the pure contribution #5 

shows only one peak at 706.89 nm. Finally, pure contribution #4 has a peak at 689.70 nm and an unclear 

very low signal at 711.03 and 712.87 nm. These last results show the power of the MCR-ALS approach 

associated with LIBS/PIL data fusion since the luminescence is not due to two intense contributions, but 

potentially several contributions slightly shifted in wavelength that can be differentiated. In conclusion, 

we can state that the luminescence of this sample comes mainly from the simultaneous presence of Cr and 



17 

 

V. These results are fully consistent with previous work suggesting that luminescence could potentially 

originate from the Cr3+ and V2+ centers [12].  

 

Figure 6. MCR-ALS results on the fused LIBS/PIL dataset of the considered kyanite sample. 

However, even if we can state this, there is still the end of the story to write. Indeed, even though the 

spatial distributions of the pure #5 and #7 contributions are relatively close and partially overlapped, they 

both potentially show singular chemical information. The same statement can also be made at the spectral 

level. Thus, the joint exploitation of new LIBS and PIL spectral domains and even an extension of the 
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fusion concept to other spectroscopic imaging techniques should help further in elucidating the whole 

nature of the complex luminescence phenomenon. 

CONCLUSIONS 

LIBS imaging is now clearly a tool of choice for the elemental characterization of complex samples with 

applications in many fields. Nevertheless, its high acquisition rate, which is an undeniable advantage, is 

also constrained by the millions of spectra (each containing thousands of wavelengths) acquired from a 

single sample that require the use of powerful multivariate data analysis tools. This difficult aspect leads 

to the interest in proposing a data analysis procedure capable of extracting the most distinct information, 

i.e., purest variables, at the spectral and spatial level, both for major and minor compounds, to facilitate 

the unmixing analysis without losing quality in the spatial and spectral definition of the imaged compo-

nents. With this simple procedure, it was possible to reduce the initial amount of data and keep the best 

and most unmixed 1% of the total information. The size and quality of the selected information allowed 

not only speeding up the analysis, but obtaining extremely reliable spectral fingerprints and distribution 

maps for the extracted MCR-ALS components. The data analysis pipeline has been tested on the LIBS/PIL 

dataset, but can be used in any other kind of large imaging dataset coming from an individual platform or 

from the fusion of several of them.   

The study of the kyanite dataset showed that each resolved component was potentially related to one or 

two elements present in the mineral. Last but not least, another important aspect of this work was fusing 

together LIBS and PIL datasets to provide a chemical interpretation for the PIL bands and better under-

stand which elements were related to this luminescence effect. This work represents the first published 

work on the fusion of LIBS and PIL imaging data and their simultaneous exploitation in a signal unmixing 

approach such as MCR-ALS. Thus even if we have demonstrated for this particular kyanite sample that 

the luminescence phenomenon was mainly associated with the Cr and V elements, our next work could 

be focused on the exploitation of new spectral domains or the addition of another spectroscopy such as 

Raman and Laser-Induced Time-Resolved Luminescence to the first two in a fusion process. 
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