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Abstract

We consider the dictionary-based ROM-net (Reduced Order Model) framework [T. Daniel, F.
Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-
net), Advanced modeling and Simulation in Engineering Sciences 7 (16), 2020] and summarize the
underlying methodologies and their recent improvements. The main contribution of this work is
the application of the complete workflow to a real-life industrial model of an elastoviscoplastic high-
pressure turbine blade subjected to thermal, centrifugal and pressure loadings, for the quantification
of the uncertainty on dual quantities (such as the accumulated plastic strain and the stress tensor),
generated by the uncertainty on the temperature loading field. The dictionary-based ROM-net
computes predictions of dual quantities of interest for 1008 Monte Carlo draws of the temperature
loading field in 2 hours and 48 minutes, which corresponds to a speedup greater than 600 with
respect to a reference parallel solver using domain decomposition, with a relative error in the order
of 2%. Another contribution of this work consists in the derivation of a meta-model to reconstruct
the dual quantities of interest over the complete mesh from their values on the reduced integration
points.

Keywords: ROM-nets, nonlinear reduced order models, dictionary of reduced order models, uncer-
tainty quantification

1 Introduction

Numerical simulation is vastly used in the industry when designing a new mechanical part. Uncertainty
quantification is used to compute the influence of a poorly known or uncontrolled parameter, like
dispersion within manufacturing tolerances. Procedures that rely on the Monte Carlo method require
solving the corresponding problem for many values of the parameter. With modeling and simulation
progresses, meshes are getting larger and models more complex, leading to increased duration for the
corresponding computations. For these reasons, many methods have been proposed to replace these
reference models with fastly computed approximations.

In this work, we consider an industrial model of an elastoviscoplastic high-pressure turbine blade
subjected to thermal, centrifugal and pressure loadings, for the quantification of the uncertainty of dual
quantities (such as the accumulated plastic strain and the stress tensor), generated by the uncertainty
on the temperature loading. Computing the fatigue lifetime of one such blade requires simulating its
behavior until the stabilization of the mechanical response, which last several weeks using Abaqus [1]
because of the size of the mesh, the complexity of the constitutive equations, and the number of
loading cycles in the transient regime. With such a computation time, uncertainty quantification with
the Monte Carlo method is unaffordable. In addition, such simulations are too time-consuming to
be integrated in design iterations, which limits them to the final validation steps, while the design
process still relies on simplified models. Accelerating these complex simulations is a key challenge
while maintaining a satisfying accuracy, as it would provide useful numerical tools to improve design
processes and quantify the effect of the uncertainties on the environment of the system.
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Simulations are accelerated using a dictionary of reduced order models, with a classifier able to
select which local reduced order model use for a new temperature loading. The framework is called
ROM-net [26]. A dataset of 200 solutions is computed in a Finite Element approximation space of
dimension in the order of the million, for various instances of the temperature field loading in parallel
in 7 days and 9 hours on 48 cores. These solutions are computed over 11 time steps in the first cycle,
using a scalable Adaptive MultiPreconditioned FETI (AMPFETI) solver [14] in Z-set finite-element
software [2]. The dataset is partitioned into two clusters using a k-medoids algorithm with a Reduced
Order Model (ROM)-oriented dissimilarity measure in 5 minutes; the corresponding local ROMs,
using Proper Orthogonal Decomposition (POD) [23, 73] and Empirical Cubature Method (ECM) [41],
are trained in 2 hours and 30 minutes. An automatic reduced model recommendation procedure,
allowing to decide which local ROM to use for a new temperature loading, is trained in the form of a
logistic regression classifier in 16 minutes. A contribution of this work is the use of a meta-model to
reconstruct the dual quantities of interest over the complete mesh from their values on the reduced
integration points, in the form of a multi-task Lasso, which takes 1 hour to train for 14 dual fields.
The uncertainties on dual quantities of interest, such as the accumulated plastic strain and the stress
tensor, are quantified by using our trained ROM-net on 1008 Monte Carlo draws of the temperature
loading field in 2 hours and 48 minutes, which corresponds to a speedup greater than 600 with respect
to our highly optimized domain decomposition AMPFETI solver. Expected values for the Von Mises
stress and the accumulated plastic strain have 0.99-confidence intervals’ width of respectively 1.66%
and 2.84% (relative to the corresponding prediction for the expected value). As a validation stage,
20 reference solutions are computed on new temperature loadings, and dual quantities of interest are
predicted with relative accuracy in the order of 1% to 2%, while the location of the maximum value
is perfectly predicted.

In Section 2, a summary of the results and the methodology constructed in our team’s previous work
on dictionary-based ROM-net is provided. Details are given on the reduced order modeling strategy
and the concept of ROM-net is recalled. References on alternative methods from the literature are
also given. Section 3 contains a description of the industrial dataset, the hypotheses of the model,
and the objective of the present study. The proposed workflow for uncertainty quantification is then
applied on this industrial configuration in Section 4. Finally, conclusions are drawn in Section 5.

2 Description of the methodology

This section provides elements from the literature and from our previous works to deal with uncertainty
quantification in an industrial context using physical reduced order modeling.

2.1 Reduced order modeling of nonlinear parametrized partial differential equa-
tions

Consider a nonlinear physical problem described by the following parametrized differential equation:

D(u;x) = 0, (1)

where u is the primal variable belonging to a Hilbert space H, x denotes the parameters of the
problem, and D is an operator involving a differential operator and operators for initial conditions
and/or boundary conditions. Here, the time is considered as a parameter and is included in the
definition of x. The solution manifold M is defined by M := u(X ) = {u(x) | x ∈ X}. Classically,
the problem is written on a geometrical support discretized by a mesh, and the solution is sought in a
finite dimensional space, e.g. the finite element space Span {φi}1≤i≤N : this defines the High Fidelity
Model (HFM). Here, in the target application, N is in the order of the million.

Model order reduction [71, 48] is a discipline in numerical analysis consisting in replacing a com-
putationally expensive high fidelity model by a fast ROM to calculate approximate solutions of the
considered physical problem (1). A ROM can be either a data-driven metamodel (or surrogate model)
calibrated with a regression algorithm, or a physics-based model obtained by numerical methods such
as the Proper Generalized Decomposition [21, 20], the Reduced Basis Method (RBM) [70, 74], and the
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POD-Galerkin method [23, 73], among others. It is generally used for parametrized equations whose
solution must be known for different points in the parameter space. As in machine learning, a model
order reduction procedure starts by a training phase (or offline stage) where the ROM is built from
some training data. The ROM is then used on test data in an exploitation phase (or online stage). In
the training phase, high-fidelity solutions, called snapshots, are computed with the HFM for different
points of the parameter space to get a sampled representation of the solution manifold. The model
order reduction algorithm analyzes these snapshots to learn how the solution is affected by parameter
variations. Given the cost of computing snapshots in the training phase, a ROM is profitable only if
it is extensively used in the exploitation phase.

RBM and POD-Galerkin are also called projection-based since they consist in applying the Galerkin
method on a reduced order basis, which can be costly for certain parameter dependencies and nonlin-
ear problems. In such cases, a second reduction stage is necessary. Hyper-reduction was initially the
name of a method proposed in [75] in 2005, but this term has been extended to refer to all the meth-
ods proposing a second reduction stage. Hyper-reduction methods include the Empirical Interpolation
Method (EIM, [11]), the Missing Point Estimation (MPE, [10]), the A Priori Hyper-Reduction (APHR,
[75]), the Best Point Interpolation Method (BPIM, [65]), the Discrete Empirical Interpolation Method
(DEIM, [19]), the Gauss-Newton with Approximated Tensors (GNAT, [16]), the Energy-Conserving
Sampling and Weighting (ECSW, [34]), the Empirical Cubature Method (ECM, [41]), and the Lin-
ear Program Empirical Quadrature Procedure LPEQP, [81]). Hyper-reduction techniques implicitly
assume that the physics model is based on local constitutive laws. A constitutive model is local if its
equations evaluated at a given point ξ ∈ Ω only involve variables evaluated at ξ.

We use the reduced order modeling framework developed in our previous work [18] for elastovis-
coplastic structural mechanics, whose training phase is decomposed in three steps:

• Data generation: snapshots u(xn), 1 ≤ n ≤ Ns, Ns being the number of available snapshots,
are computed with the high-fidelity model and provide information about how the physical
system reacts to changes of the parameter x. In our case, the finite-element solver Z-set [2] is
used.

• Data compression: a Reduced Order Basis (ROB) is constructed by looking for a hidden low-
rank structure in the snapshots. We apply the snapshot-POD, which consists in (i) computing

the snapshot correlation matrix Cn,m =

∫
Ω
u(xn) · u(xm), 1 ≤ n,m ≤ Ns, (ii) retaining the

eigenvalue/eigenvector pairs of C associated to the highest eigenvalues: (ξi, λi), 1 ≤ i ≤ N ,

and (iii) recombining them with the snapshots to create the ROB: ψi(x) =
1√
λi

Nn∑
n=1

u(xn)ξin,

1 ≤ i ≤ N . When the quantities of interest are dual variables, which is the case in the industrial
application considered here, ROBs are also constructed for the corresponding fields.

• Operator compression: this step contains the operations that guarantee the efficiency of the
reduced order model in the exploitation phase. For nonlinear problems, applying the Galerkin
method in the online phase on the ROB requires to compute integrals over the mesh. In our case,
we use the ECM [41] to replace these costly integrals by reduced quadrature schemes trained
over the snapshots at our disposal, hence tailored for our considered problem.

Then, the online stage consists in assembling a variational formulation of Equation (1) on the ROB,
using a reduced quadrature scheme, and solving it using a Newton algorithm. Since the constitutive
laws are only computed at the locations of the integration points of the reduced quadrature scheme,
the dual quantities have to be reconstructed over the complete mesh. This can be done using the
Gappy-POD and the ROBs of the corresponding dual fields. See [18] for more details on the reduced
order modeling framework we used. In Section 4.4, we propose to replace this last reconstruction stage
by a meta-model.
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2.2 Dictionary of reduced order models

This section introduces the concept of ROM-net as a dictionary of ROMs, and provides elements on
its implementation.

2.2.1 Nonreducible problems

A ROM is an approximation of our considered HFM. We define the speedup of the ROM as the
ratio of the computation time of the HFM to the computation time of the ROM. Consider a set of
snapshots generated using the high-fidelity model over a sampling of the parameter domain. The
parametrized problem is said nonreducible when applying a linear data compression over this set of
snapshots leads to a ROB containing too many vectors for the online problem to feature an interesting
speedup. Formally, this happens when the Kolmogorov N-width dN (M) decreases too slowly with
respect to N , where N is the cardinality of the ROB,

dN (M) := inf
HN∈Gr(N,H)

sup
u∈M

inf
v∈HN

||u− v||H, (2)

with the Grassmannian Gr(N,H) being the set of all N -dimensional subspaces of H and HN ∈
Gr(N,H) the subspace spanned by the considered ROB. Qualitatively, the solution manifoldM covers
too many independent directions to be embedded in a low-dimensional subspace. To address this issue,
several techniques have been developed:

• Problem-specific methods tackle the difficulties of some specific physics problems that are known
to be nonreducible, such as advection-dominated problems which have been largely investigated,
for instance in [42, 72, 15].

• Online-adaptive model reduction methods update the ROM in the exploitation phase by col-
lecting new information online as explained in [82], in order to limit extrapolation errors when
solving the parametrized governing equations in a region of the parameter space that was not ex-
plored in the training phase. The ROM can be updated for example by querying the high-fidelity
model when necessary for basis enrichment [75, 50, 66, 17, 40].

• ROM interpolation methods [5, 58, 56, 54, 57, 55, 4, 3, 6, 63, 62, 22] use interpolation techniques
on Grassmann manifolds or matrix manifolds to adapt the ROM to the parameters considered
in the exploitation phase by interpolating between two precomputed ROMs.

• Dictionaries of basis vector candidates enable building a parameter-adapted ROM in the ex-
ploitation phase by selecting a few basis vectors. This technique is presented in [59, 47] for the
Reduced Basis method.

• Dictionaries of ROMs rely on the construction of several local ROMs adapted to different regions
of the solution manifold. These local ROMs can be obtained by partitioning the time interval [31,
30], the parameter space [31, 32, 38, 68, 40, 43, 44], or the solution space [7, 80, 68, 8, 64, 26,
37, 77].

• Nonlinear manifold ROM methods [53, 52, 51] learn a nonlinear embedding and project the
governing equations onto the corresponding approximation manifold, by means of a nonlinear
function mapping a low-dimensional latent space to the solution space.

Our framework focuses on dictionaries of ROMs, where the solution manifold is partitioned to get
a collection of subsets Mk ⊂ M that can be covered by a dictionary of low-dimensional subspaces,
enabling the use of local linear ROMs. If {Mk}k∈[[1;K]] is a partition of M, then:

∀k ∈ [[1;K]], ∀N ∈ N∗, dN (Mk) ≤ dN (M). (3)

For a given numberK of subsets, two partitions can be compared on the basis of the ratios dN (Mk)/dN (M).
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2.2.2 Dictionary-based ROM-nets

We introduced the concepts of ROM-net and dictionary-based ROM-net in [26], where rigorous def-
initions can be found. Suppose we dispose of an already computed dictionary of ROMs for the
parametrized problem (1), where each element of the dictionary is a ROM that can approximate the
problem on a subset of the solution manifold M. A dictionary-based ROM-net is a machine learning
algorithm trained to assign the parameter x ∈ X to the ROM of the dictionary leading to the most
accurate reduced prediction. This assignment, called model recommendation in [64], is a classification
task, see Figure 1.

Figure 1: Exploitation phase of a dictionary-based ROM-net. K local ROMs are combined with a
classifier CK for automatic ROM CK(x) recommendation, used to predict the quantity of interest Z(x).

The dictionary of ROMs is constructed in a clustering stage, during which snapshots are regrouped
depending on their respective proximity on M, in the sense of a particular dissimilarity measure we
introduced in [28]. The dissimilarity between two parameter values x, x′ ∈ X , denoted by δ(x, x′),
involves the sine of the principal angles between subspaces associated to the solutions of the HFM
u(x), u(x′) ∈ M, see [28, Definition 3.11]. For this reason, the clustering is coined physics-informed.
We refer to the remaining of [28] for the description of a practical efficiency criterion of the dictionary-
based ROM-net, which enables to decide, before the computationally costly steps of the workflow, if a
dictionary of ROMs is preferable to one global ROM, and how to calibrate the various hyperparameters
of the ROM-net.

Remark 2.1 (Importance of the classification). We use a representative-based clustering algorithm,
namely k-medoids. One could argue that the classification step can be replaced by choosing the cluster
k for which the dissimilarity measure δ(x, x̃k) between the parameter x and the cluster medoid x̃k is
the smallest. However, we recall that the computation of the dissimilarity measure requires solving the
HFM at the parameter value x, which would render the complete model reduction framework useless.
Hence, the classification step enables to bypass this HFM solve and directly recommend the appropriate
local ROM.

The training of the classifier can be difficult when working with physical fields: simulations are
costly, data are in high dimension and classical data augmentation techniques for images cannot be
applied. Hence, we can consider replacing the HFM by an intermediate-fidelity solver for generating
the data needed for the training of the classifier, by considering coarser meshes and fewer time steps.
We precise that the HFM should be used at the end for generating the data required in the training
of the local ROMs. We propose in [27] improvements for the training of the classifier in our context
by developing a fast variant of the mRMR [69] feature selection algorithm, and new class-conserving
transformations of our data, acting like a data augmentation procedure. In this work, we use the same
model for generating the data used in the training of the clustering and classifier and for constructing
the local reduced-order models: there is no intermediate-fidelity solver.

2.3 Uncertainty quantification

The parameter is modeled by a random variable. The uncertainty quantification consists in a Monte
Carlo procedure where values of the parameter are drawn from the distribution of this random variable,
and using the trained dictionary-based ROM-net to select a local ROM and predicting the correspond-
ing quantity of interest. Statistical estimators of quantities depending on the solution of our physical
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problem can then be efficiently computed. Our objective is to apply the presented methodology to
a real industrial case: quantifying the uncertainties on dual quantities of interest generated by the
uncertainty of the temperature loading, in a high-pressure (HP) turbine blade elastoviscoplastic cyclic
mechanical computation.

3 Industrial context

This section presents the industrial test case of interest. It consists in predicting the mechanical
behavior of a HP turbine blade in an aircraft engine with uncertainties on the thermal loading. The
industrial context and the models for the mechanical behavior and the thermal loading are presented,
with a particular emphasis on the assumptions that have been made.

For confidentiality reasons, mesh sizes and numerical values corresponding to the industrial dataset
are not given. Reproducible data are available on request for the numerical example proposed in [26].
The accuracy of the predictions made by our methodology are given in the form of relative errors.

3.1 Thermomechanical fatigue of high-pressure turbine blades

High-pressure turbine blades are critical parts in an aircraft engine. Located downstream of the
combustion chamber, they are subjected to extreme thermomechanical loadings resulting from the
combination of centrifugal forces, pressure loads, and hot turbulent fluid flows whose temperatures
are higher than the material’s melting point. The repeating thermomechanical loading over time
progressively damages the blades and leads to crack initiation under thermomechanical fatigue. Pre-
dicting the fatigue lifetime is crucial not only for safety reasons, but also for ecological issues, since
reducing fuel consumption and improving the engine’s efficiency requires increasing the temperature
of the gases leaving the combustion chamber.

High-pressure turbine blades are made of monocrystalline nickel-based superalloys that have good
mechanical properties at high temperatures. To reduce the temperature inside this material, the blades
contain cooling channels where flows relatively fresh air coming from the compressor. In addition, the
blade’s outer surface is protected by a thin thermal barrier coating. In spite of these advanced cooling
technologies, the rotor blades undergo centrifugal forces at high temperatures, causing inelastic strains.
Under this cyclic thermomechanical loading repeated over the flights, the structure has a viscoplastic
behavior and reaches a viscoplastic stabilized response, where the dissipated energy per cycle still has
a nonzero value. This is called plastic shakedown, and leads to low-cycle fatigue. At cruise flight,
the persistent centrifugal force applied at high temperature induces progressive (or time-dependent)
inelastic deformations: this phenomenon is called creep. In addition, the difference between gas
pressures on the extrados and the intrados of the blade generates bending effects. Environmental
factors may also locally modify the chemical composition of the material, leading to its oxidation. As
oxidized parts are more brittle, they facilitate crack initiation and growth. Thermal fatigue resulting
from temperature gradients is another life-limiting factor. Temperature gradients make colder parts
of the structure prevent the thermal expansion of hotter parts, creating thermal stresses. Due to their
higher temperatures, the hot parts are more viscous and have a lower yield stress, which make them
prone to develop inelastic strains in compression. When the temperature cools down after landing,
tensile residual stresses appear in parts which were compressed at high temperatures and favor crack
nucleation. Given the complex temperature field resulting from the internal cooling channels and the
turbulent gas flow, thermal fatigue has a strong influence on the turbine blade’s lifetime. In particular,
during transient regimes such as take-off, an important temperature gradient appears between the
leading edge and the trailing edge of the blade, since the latter has a low thermal inertia due to its
small thickness and thus warms up faster.

In short, the behavior of a high pressure turbine blade results from a complex interaction between
low-cycle fatigue, thermal fatigue, creep, and oxidation. Due to the cost and the complexity of
experiments on parts of an aircraft engine, numerical simulations play a major role in the design
of high-pressure turbine blades and their fatigue lifetime assessment. All this knowledge have been
learned by scientist and engineers during last decades. In the proposed approach to machine learning
for model order reduction, all this knowledge is preserved in local ROMs. It is even more than that,
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the uncertainty propagation comes to complete this valuable traditional knowledge. We do not expect
from artificial intelligence to learn everything in our modeling process.

3.2 Industrial dataset and objectives

3.2.1 Industrial problem

Figure 2 gives the geometry and the finite-element mesh of a real high-pressure turbine blade. The
mesh is made of quadratic tetrahedral elements, and contains a number of nodes in the order of
the million. The elasto-viscoplastic mechanical behavior is described by a crystal plasticity model
presented in Section 3.5. As explained above, Monte Carlo simulations using a commercial software
as Abaqus are unaffordable. With the help of domain decomposition methods, the computation time
can be reduced by solving equilibrium equations in parallel on different subdomains of the geometry.
Using the implementation of the Adaptive MultiPreconditioned FETI solver [14] in Z-set finite-element
software [2], the simulation of one single loading cycle of the HP turbine blade with 48 subdomains
takes approximately 53 minutes.

Figure 2: High-pressure turbine blade geometry and mesh (micro-perforations are not modeled)

3.2.2 Objectives

The objective is to use a ROM-net to quantify uncertainties on the mechanical behavior of the high-
pressure turbine blade, given uncertainties on the thermal loading. The reduction of the computation
time should enable Monte Carlo simulations for uncertainty quantification. In particular, we are not
interested in predicting the state of the structure after a large number of flight-representative loading
cycles. Only one cycle is simulated. Cyclic extrapolation of the behavior of a high-pressure turbine
blade has been studied in [18] and is out of the scope of the present work.

3.3 Modeling assumptions

3.3.1 Weak thermomechanical coupling

It is assumed that the heat produced or dissipated by mechanical phenomena has negligible effects
in comparison with thermal conduction, which enables avoiding strongly coupled thermomechani-
cal simulations and running thermal and mechanical simulations separately instead. Under a weak
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thermomechanical coupling, the first step consists in solving the heat equation to determine the tem-
perature field and its evolution over time. The temperature field history defines the thermal loading
and is used to compute thermal strains and temperature-dependent material parameters for the me-
chanical constitutive laws. Once the thermal loading is known, the temperature-dependent mechanical
problem must be solved in order to predict the mechanical response of the structure.

3.3.2 Cyclic thermomechanical loading

The thermomechanical loading applied to the high-pressure turbine blade during its whole life is
modeled as a cyclic loading, with one cycle being equivalent to one flight. The rotation speed of the
turbine’s rotor is proportional to a periodic function of time ω(t) whose evolution over one period (or
cycle, see Figure 3) is representative of one flight with its three main regimes, namely take-off, cruise,
and landing. The period (or duration of one cycle) is denoted by tc. The rotation speed between
flights k and k + 1 is zero, which means that ω(ktc) = 0 for any integer k. The rotation speed ω(t) is
scaled so that its maximum is 1.

Figure 3: Function ω(t) defining one cycle for the rotation speed.

Let Ω ⊂ R3 denote the solid body representing the high-pressure turbine blade, with ∂Ω denoting
its outer surface. Let ∂Ωp ⊂ ∂Ω be the surface corresponding to the intrados and extrados. The
thermal loading is defined as:

∀ξ ∈ Ω, ∀t ∈ R+, T (ξ, t) = (1− ω(t))T0 + ω(t)Tmax(ξ) (4)

where T0 = 293 K and Tmax is the temperature field obtained when the rotation speed reaches its
maximum. This field Tmax is obtained either by an aerothermal simulation or by a stochastic model,
as explained later. Similarly, the pressure load applied on ∂Ωp reads:

∀ξ ∈ ∂Ωp, ∀t ∈ R+, p∂Ω(ξ, t) = (1− ω(t))p∂Ω
0 + ω(t)p∂Ω

max(ξ) (5)

where p∂Ω
0 = 1 atm is the atmospheric pressure at sea level, and where p∂Ω

max is the pressure field
obtained when the rotation speed reaches its maximum. The clamping of the blade’s fir-tree foot on
the rotor disk is modeled by displacements boundary conditions that are not detailed here.

3.3.3 Geometric details and thermal barrier coating

Small geometric details of the structure have been removed to simplify the geometry. Nonetheless,
the main cooling channels are considered. The effects of the thermal barrier coating (TBC) have been
integrated in aerothermal simulations, but the TBC is not considered in the mechanical simulation
although its damage locally increases the temperature in the nickel-based superalloy and thus affects
the fatigue resistance of the structure. Additional centrifugal effects due to the TBC are not taken
into account.
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3.3.4 Influential factors

The predicted mechanical response of the structure depends on many different factors. Below is a
nonexhaustive list of influential factors that are possible sources of uncertainties in the numerical
simulation:

• Thermal loading: The viscoplastic behavior of the nickel-based superalloy is very sensitive
to the temperature field and its gradients. However, the temperature field is not accurately
known because of the impossibility of validating numerical predictions experimentally. Indeed,
temperature-sensitive paints are accurate to within 50 K only, and they do not capture a real
surface temperature field since they measure the maximum temperature reached locally during
the experiment.

• Crystal orientation: Because of the complexity of the manufacturing process of monocrys-
talline blades, the orientation of the crystal is not perfectly controlled. As the superalloy has
anisotropic mechanical properties, defaults in crystal orientation highly affect the location of
damaged zones in the structure.

• Mechanical loading: The centrifugal forces are well known because they are related to the
rotation speed that is easy to measure. On the contrary, pressure loads are uncertain because
of the turbulent nature of the incoming fluid flow. However, the effects of pressure loads uncer-
tainties on the mechanical response are less significant than those of the thermal loading and
crystal orientation uncertainties.

• Constitutive laws: Uncertainties on the choice of the constitutive model, the relevance of the
modeling assumptions, and the values of the calibrated parameters involved in the constitutive
equations also influence the results of the numerical simulations.

For simplification purposes, the only source of uncertainty that is considered in this work is the
thermal loading. The equations of the mechanical problem are then seen as parametrized equations,
where the parameter is the temperature field Tmax (see Equation (4)) obtained when the rotation
speed reaches its maximum value. The dimension of the parameter space is then the number of nodes
in the finite-element mesh. The mechanical loading is assumed to be deterministic. With the crystal
orientation, the constitutive laws and their parameters (or coefficients), they are considered as known
data describing the context of the study and given by experts.

3.4 Stochastic model for the thermal loading

A stochastic model is required to take into account the uncertainties on the thermal loading. Given
the definition of the thermal loading in Equation (4), we only need to model uncertainties in space
through the field Tmax obtained when the rotation speed reaches its maximum value. The random
temperature fields must satisfy some constraints: they must satisfy the heat equation, and they must
not take values out of the interval [0 K;Tmelt], where Tmelt is the melting point of the superalloy.
These random fields are obtained by adding random fluctuations to a reference temperature field,
see Figure 4. The reference field and comes from aerothermal simulations run with the software
Ansys Fluent1. The data-generating distribution is defined as a Gaussian mixture model made of two
Gaussian distributions with the same covariance function but with distinct means, and with a prior
probability of 0.5 for each Gaussian distribution. The Gaussian distributions are obtained by taking
the four first eigenfunctions of the covariance function (see Karhunen-Loève expansion [49]), with a
standard deviation of 15 K. Therefore, realizations of the random temperature field read:

∀ξ ∈ Ω, T (ξ) = Tref(ξ) + Υ0 δT0(ξ) +
4∑
i=1

Υi δTi(ξ) (6)

where Tref is the reference field, δT0 is a temperature perturbation at the trailing edge whose maximum
value is 50 K, {δTi}1≤i≤4 are fluctuation modes, Υ0 is a random variable following the Bernoulli

1https://www.ansys.com/products/fluids/ansys-fluent
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distribution with parameter 0.5, and {Υi}1≤i≤4 are independent and identically distributed random
variables following the standard normal distribution N (0, 1). The variable Υ0 is also independent of
the other variables Υi. The different fields involved in Equation (6) can be visualized in Figure 4.
Equation (6) defines a mixture distribution with two Gaussian distributions whose means are Tref

and Tref + δT0. We voluntarily define this mixture distribution with δT0 adding 50 K in a critical
zone of the turbine blade in order to check that our physics-informed cluster analysis can successfully
detect two relevant clusters, i.e. one for fields obtained with Υ0(θ) = 0 and one for fields obtained
with Υ0(θ) = 1. Indeed, the temperature perturbation δT0 is expected to significantly modify the
mechanical response of the high-pressure turbine blade. All the fields {δTi}0≤i≤4 satisfy the steady
heat equation like Tref, which ensures that the random fields always satisfy the heat equation under the
assumption of a linear thermal behavior. For nonlinear thermal behaviors, Equation (6) would define
surface temperature fields that would be used as Dirichlet boundary conditions for the computation of
bulk temperature fields. The assumption of a linear thermal behavior is adopted here to avoid solving
the heat equation for every realization of the random temperature field.

Let us now give more details about the construction of the fluctuation modes {δTi}1≤i≤4. First,
surface fluctuation modes are computed on the boundary ∂Ω using the method given in [78] for the
construction of random fields on a curved surface. The correlation function is defined as a function of
the geodesic distance dG along the surface ∂Ω:

ρ(ξ, ξ′) = exp

(
−dG(ξ, ξ′)

d0
G

)
(7)

where d0
G is a correlation length. Geodesic distances are computed thanks to the algorithm described

in [61, 79] and implemented in the Python library gdist2. A covariance matrix is built by evaluating the
correlation function on pairs of nodes of the outer surface of the finite-element mesh, and multiplying
the correlation by the constant variance. The four surface modes are then obtained by finding the
four eigenvectors corresponding to the largest eigenvalues of the covariance matrix. The steady heat
equation with Dirichlet boundary conditions is solved for each of these surface modes to derive the 3D
fluctuation modes, using Z-set [2] finite-element solver. The Python library BasicTools3 developed by
SafranTech is used to read the finite-element mesh and write the temperature fields in a format that
can be used for simulations on Z-set.

3.5 Mechanical constitutive model

It is assumed that the mechanical behavior of the high-pressure turbine blade can be described in the
framework of the infinitesimal strain theory. The mechanical response of the structure during the first
loading cycle is described by the following equilibrium equations and boundary conditions:

div(σ(ξ, t)) + fC(ξ, t) = 0 ∀t ∈ [0; tc] ∀ξ ∈ Ω
σ(ξ, t).n(ξ, t) = −p∂Ω(ξ, t)n(ξ, t) ∀t ∈ [0; tc] ∀ξ ∈ ∂Ωp

u(ξ, t) = u∂Ω(ξ, t) ∀t ∈ [0; tc] ∀ξ ∈ ∂Ω \ ∂Ωp
(8)

where u(ξ, t) is the displacement field (primal variable), σ(ξ, t) is the symmetric second-order Cauchy
stress tensor, fC(ξ, t) is the local volumic centrifugal force, u∂Ω(ξ, t) are the imposed displacements,
and n(ξ, t) is the outward-pointing normal vector to the outer surface ∂Ω. The relation between the
stress tensor and the displacement field is described by constitutive laws modeling the mechanical
behavior of the monocrystalline nickel-based superalloy. At high temperatures, this material has an
elasto-viscoplastic behavior that can be described in the crystal plasticity framework [9, 60] to model
inelastic strains generated by the motion of dislocations4 in different slip systems of the crystal. The
strain tensor ε is defined as the symmetric part of the displacement gradient (with respect to ξ):

ε =
1

2

(
∇u + (∇u)T

)
(9)

2https://pypi.org/project/gdist/
3https://gitlab.com/drti/basic-tools
4Linear defects in the crystal structure.
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Figure 4: Reference temperature field (on the left), temperature perturbation at the trailing edge
(field 0 = δT0), and fluctuation modes (fields 1 to 4). The fluctuations in the fourth mode are located
inside the blade, in the cooling channels.

Figure 5: On the left: von Mises stress field σeq obtained when the rotation speed reaches its maximum
value. On the right: accumulated plastic strain pocum in octahedral slip systems at the end of the first
cycle. Note: the foot of the high-pressure turbine blade has an elastic behavior, while the rest of the
blade has a viscoplastic behavior described by a crystal plasticity model.

The stress tensor is obtained from the elastic strain tensor thanks to Hooke’s law:

σ = C : (ε− εp − α(T − T0)1) (10)

where εp is the tensor of inelastic strains and 1 is the identity second-order tensor. The fourth-order
tensor C is the stiffness tensor. Given the face-centered cubic crystal structure of the superalloy, the
stiffness tensor is anisotropic but has only three independent coefficients. The thermal expansion of
crystals with cubic symmetry is isotropic, which explains why the thermal expansion coefficient α is
the same in all directions. The time evolution of hidden variables such as inelastic strains are described
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by ordinary differential equations that must be solved at every integration point of the finite-element
mesh. The inelastic strain rate can be decomposed into contributions of dislocations motions in 12
octahedral slip systems and 6 cubic slip systems:

ε̇p =
12∑
s=1

γ̇os sym (los ⊗ nos) +
6∑
s=1

γ̇cs sym (lcs ⊗ ncs) =
12∑
s=1

γ̇osm
o
s +

6∑
s=1

γ̇csm
c
s (11)

where γ̇os (resp. γ̇cs) is the shear strain rate in the s-th octahedral (resp. cubic) slip system. The tensor
mo
s (resp. mc

s) is the orientation tensor of the s-th octahedral (resp. cubic) slip system, defined by
the normal nos (resp. ncs) to the slip plane and the slip direction los (resp. lcs). The shear strain rates
γ̇os are given by a hyperbolic viscoplastic flow rule:

γ̇os = εoh sinh

(〈
|τ os − xos| − ros

Ko
h

〉noh)
sign(τ os − xos) (12)

where εoh, Ko
h and noh are material parameters. Similar equations are satisfied in cubic slip systems.

The resolved shear stresses τ os are given by Schmid’s law:

τ os = σ : mo
s (13)

Again, similar equations are valid for cubic slip systems. The stress variables xos, x
c
s, r

o
s and rcs describe

hardening phenoma, i.e. the evolution of the shape of the elastic domain within which no dissipative
phenoma occur. The back-stresses xos (and xcs) are the solutions of an ordinary differential equation
modeling kinematic hardening with static recovery:

ẋos = coγ̇os − doxos|γ̇os | − co
(
|xos|
Mo

)mo
(14)

Isotropic hardening is modeled by the following equations:

ros = ro0 +Qo (1− exp (−boνos )) (15)

with ν̇os = |γ̇os |. All the constitutive equations given in this section are true for all ξ ∈ Ω and for all
t ∈ [0; tc], and are solved at every integration point of the finite-element mesh. All the coefficients
involved in these equations depend on the local value of the temperature field. The problem is thus
seen as a system of partial differential equations and ordinary differential equations parametrized
by the thermal loading. The standard procedure for the computation of a fatigue lifetime with an
uncoupled damage model consists in solving the mechanical problem for a large number of cycles until
the stabilization of the mechanical response (in the case of plastic shakedown). Then, a damage field
can be computed in a post-processing step and can be linked to a fatigue lifetime. For high-pressure
turbine blades, fatigue models generally consider interaction effects with oxidation and creep, like
in [35, 36]. In this work, no fatigue lifetime is computed since we only solve the problem for the
very first cycle. Instead, our quantity of interest is a strain indicator that partially describes the
damage state of the material. This quantity of interest corresponds to the accumulated plastic strain
in octahedral slip systems at the end of the first cycle, which reads:

pocum(ξ) =

∫ tc

0

√
2

3
ε̇p,o(ξ, t) : ε̇p,o(ξ, t) dt (16)

with:

ε̇p,o =

12∑
s=1

γ̇osm
o
s (17)

It is also common to look at the values of the von Mises equivalent stress field defined as:

σeq =

√
3

2
s : s, s = σ − 1

3
tr(σ)1 (18)

Therefore, the variables considered for the evaluation of the ROM-net and for uncertainty quantifica-
tion are the accumulated plastic strain pocum in octahedral slip systems at the end of the first cycle,
and the von Mises stress σeq obtained when the rotation speed reaches its maximum value. These
variables can be visualized in Figure 5 for a reference thermal loading.
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4 ROM-net based uncertainty quantification applied to an indus-
trial high-pressure turbine blade

This section develops the different stages of the ROM-net for the industrial test case presented in the
previous section. Given our budget of 200 high-fidelity simulations, a dictionary containing two local
ROMs is constructed thanks to a physics-informed clustering procedure. A logistic regression classifier
is trained for automatic model recommendation using information identified by feature selection,
followed by an alternative to the Gappy-POD for full-field reconstruction of dual quantities. Then,
the results of the uncertainty quantification procedure are presented. We advise the reader to refer to
Section 4.6, which contains an illustration of the proposed workflow, while reading Sections 4.1-4.5.
Finally the accuracy of the ROM-net is validated using simulations for new temperature loadings.

4.1 Design of numerical experiments

Given the computational cost of high-fidelity mechanical simulations of the high-pressure turbine
blade, the training data are sampled from the stochastic model for the thermal loading using a design
of experiments (DoE). Our computational budget corresponds to 200 high-fidelity simulations, so a
database of 200 temperature fields must be built. This database includes two separate datasets coming
from two independent DoEs:

• The first dataset is built from a Maximum Projection LHS design (MaxProj LHS DoE ) and
contains 80 points. This dataset will be used for the construction of the dictionary of local
ROMs via clustering. The MaxProj LHS DoE has good space-filling properties on projections
onto subspaces of any dimension.

• The second dataset is built from a Sobol’ sequence (Sobol’ DoE ) of 120 points. Using a subop-
timal DoE method ensures that this second dataset is different and independent from the first
one. The lower quality of this dataset with respect to the first one is compensated by its larger
population. This dataset will be used for learning tasks requiring more training examples than
the construction of the local ROMs, namely the classification task for automatic model recom-
mendation, and the training of cluster-specific surrogate models for the reconstruction of full
fields from hyper-reduced predictions on a reduced-integration domain. These surrogate models
(Gappy surrogates) replace the Gappy-POD [33] method that is commonly used in hyper-reduced
simulations to retrieve dual variables on the whole mesh.

These DoEs are built with the platform Lagun5. The fact that these two datasets come from two
separate DoEs is beneficial: as each of them is supposed to have good space-filling properties, they
are both representative of the possible thermal loading and can therefore be used to define a training
set and a test set for a given learning task. For instance, the classifier trained on the Sobol’ DoE can
be tested on the MaxProj LHS DoE. The local ROMs built from snapshots belonging to the MaxProj
LHS DoE can make predictions on the Sobol’ DoE that will be used for the training of the Gappy
surrogates, which is relevant since the Gappy surrogates are supposed to analyze ROM predictions on
new unseen data in the exploitation phase.

Drawing random temperature fields as defined in Equation (6) requires sampling data from the
random variables {Υi}0≤i≤4, where Υ0 follows the Bernoulli distribution with parameter 0.5 and the
variables Υi for i ∈ [[1; 4]] are independent standard normal variables and independent of Υ0. Both
DoE methods (Maximum Projection LHS and Sobol’ sequence) generate point clouds with a uniform
distribution in the unit hypercube. Figures 6 and 7 show the projections onto 2-dimensional subspaces
of the 5D point clouds used to build our datasets. The marginal distributions are plotted to check that
they well approximate the uniform distribution. These point clouds, considered as samples of a random
vector (χ0, χ1, χ2, χ3, χ4) following the uniform distribution on the unit hypercube, are transformed
into realizations of the random vector (Υ0,Υ1,Υ2,Υ3,Υ4) using the following transformations:

Υ0 = 1χ0>1/2 and ∀i ∈ [[1; 4]], Υi = F−1(χi) (19)

5https://gitlab.com/drti/lagun
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Figure 6: Visualization of the MaxProj LHS DoE. The marginal distributions are represented on the
diagonal. The 5D DoE is projected on 2D subspaces for visualization purposes, in order to check
space-filling properties in 2D.

where F−1 is the inverse of the cumulative distribution function of the standard normal distribution.
The resulting samples define the MaxProj dataset and the Sobol’ dataset of random temperature fields,
using Equation (6). Each temperature field defines a thermal loading, using Equation (4). The 200
corresponding mechanical problems are solved for one loading cycle with the finite-element software
Z-set [2] with the domain decomposition method described in [14], with 48 subdomains. The average
computation time for one simulation is 53 minutes.

4.2 ROM dictionary construction

4.2.1 Clustering

The 80 simulations associated to the MaxProj dataset are used as clustering data. Loading all the
simulation data and computing the pairwise ROM-oriented dissimilarities takes about 5 minutes.
The ROM-oriented dissimilarity defined in [28, Definition 3.11], and mentioned in Section 2.2.2, is
computed with n = 1, i.e. each simulation is represented by one field. Two variants are tested: a
method-oriented variant, where the dissimilarities are computed from the displacements fields at the
maximum rotation speed, and a goal-oriented variant, where the dissimilarities involve the quantity of
interest pocum (accumulated plastic strain in octahedral slip systems at the end of the simulation). The
dataset is partitioned into two clusters using our implementation of PAM [46, 45] k-medoids algorithm,
with 10 different random initializations for the medoids. The clustering results can be visualized thanks
to Multidimensional Scaling (MDS) [13]. MDS is an information visualization method which consists
in finding a low-dimensional dataset Z0 whose matrix of Euclidean distances d(Z0) is an approximation
of the true dissimilarity matrix δ. To that end, a cost function called stress function is minimized

14



Figure 7: Visualization of the Sobol’ DoE. The marginal distributions are represented on the diagonal.
The 5D DoE is projected on 2D subspaces for visualization purposes, in order to check space-filling
properties in 2D.

with respect to Z:

Z0 = arg min
Z

(ς(Z; δ)) = arg min
Z

∑
i<j

(δij − dij(Z))2

 (20)

This minimization problem is solved with the algorithm Scaling by MAjorizing a COmplicated Func-
tion (SMACOF, [29]) implemented in Scikit-Learn [67]. Figures 8 and 9 show the clusters on the MDS
representations with the two variants of the ROM-oriented dissimilarity measure. Each figure com-
pares the clustering results with the expected clusters corresponding to Υ0 = 0 and Υ0 = 1, the latter
corresponds to the perturbation δT0 being activated. On this example, the method-oriented variant
using the displacement field does not manage to distinguish the expected clusters. On the contrary,
the goal-oriented variant leads to clusters that almost correspond to the expected ones, with only 4
points with wrong labels out of 80. In the sequel, the results obtained with the goal-oriented variant
are considered. The medoids of the two clusters are given in Figure 10. Cluster 0 contains temperature
fields for which Υ0 = 1, while cluster 1 contains fields for which Υ0 = 0. It can be observed that
the quantity of interest clearly differs from one cluster to the other, while the differences are hardly
visible on the displacement field. The displacement field combines deformations associated to different
phenomena (thermal expansion, elastic strains, viscoplastic strains) that are not necessarily related
to damage in the structure, which could explain why the quantity of interest pocum seems to be more
appropriate for clustering in this example.
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Figure 8: MDS representation of the clustering results using the ROM-oriented dissimilarity measure
on the displacement field (method-oriented variant). On the left, the colors correspond to the expected
clusters. On the right, the colors correspond to the clusters identified by the clustering algorithm.
The positions of the labels 0 and 1 coincide with the positions of the clusters’ medoids. The MDS
relative error ς(Z0; δ)/ς(0; δ) is 7.9%.

Figure 9: MDS representation of the clustering results using the ROM-oriented dissimilarity measure
on the quantity of interest pocum (goal-oriented variant). On the left, the colors correspond to the
expected clusters. On the right, the colors correspond to the clusters identified by the clustering
algorithm. The positions of the labels 0 and 1 coincide with the positions of the clusters’ medoids.
The MDS relative error ς(Z0; δ)/ς(0; δ) is 12%.

4.2.2 Construction of local ROMs

The simulations used for the physics-informed clustering procedure can directly provide snapshots for
the construction of the local ROMs. To control the duration of their training, only 20 simulations
are selected to provide snapshots for the each local ROMs, which represents half of the clusters’
populations. These simulations are selected in a maximin greedy approach starting from the medoid
(see [27, Algorithm 2, Stage 2] for a example of maximin selection). Figure 11 shows which simulations
have been selected for the construction of the local ROMs.

The local ROMs are built following the methodology described in Section 2.1, using the Mordicus
code developed in the FUI project MOR DICUS. The snapshot-POD and the ECM are done in
parallel with shared memory on 24 cores. The tolerance for the snapshot-POD is set to 10−8 for the
displacement field, and to 10−4 for dual variables (the quantity of interest pocum and the six components
of the stress tensor). The POD bases for the dual variables will be used for their reconstruction with
the Gappy surrogates. The tolerance for the ECM is set to 5× 10−4. The primal POD bases of both
local ROMs contain 18 displacement modes. The local ROM 0 (resp. 1) has 10 (resp. 12) modes for
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Figure 10: The 3 fields on the left correspond to the medoid of cluster 0, and those on the right
correspond to the medoid of cluster 1. The fields in the first and the third columns show the differences
between the medoids’ temperature fields and the reference temperature field Tref (the scale is truncated
for the first field). The second and the fourth columns show the displacement magnitude field

√
u.u

(top) and the quantity of interest pocum (bottom).

Figure 11: MDS representation of the clustering results. Orange points represent the snapshots
selected for cluster 0, while the light blue points represent the snapshots selected for cluster 1. For
each cluster, the snapshots are selected by a maximin procedure starting from the medoid.

the quantity of interest pocum, and both ROMs have between 8 and 13 modes for stress components.
The ECM selects 506 (resp. 510) integration points for the reduced-integration domain of ROM 0
(resp. 1). Building one local ROM takes approximately 2 hours and 30 minutes.
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4.3 Automatic model recommendation

In this section, a classifier is trained for the automatic model recommendation task. The 120 temper-
ature fields coming from the Sobol’ dataset are used as training data for the classifier. Their labels
are determined by finding their closest medoid in terms of the ROM-oriented dissimilarity measure.
Hence, for each temperature field of the Sobol’ dataset, two dissimilarities are computed: one with the
medoid of the first cluster, and one with the medoid of the second cluster. Once trained, the classifier
can be evaluated on the 80 labelled temperature fields of the MaxProj dataset.

4.3.1 Feature selection

Figure 12: Feature selection results. The kriging metamodel for redundancy terms is represented by
the red curve and built from 800 true redundancy terms (blue points). The elements containing the
selected nodes are represented in the turbine blade geometry.

Each temperature field is discretized on the finite-element mesh, which contains in the order of
the million nodes. To reduce the dimension of the input space and facilitate the training phase of the
classifier, we apply the geostatistical mRMR feature selection algorithm described in [27, Algorithm 1]
on data from the Sobol’ dataset. First, 800 pairs of nodes are selected in the mesh, which takes 18
seconds. The 800 corresponding redundancy terms are computed with Scikit-Learn [67] in less than 3
seconds. Figure 12 plots the values of these redundancy terms versus the Euclidean distance between
the nodes. We observe that the correlation between the redundancy mutual information terms and the
distance between the nodes is poor, with a lot of noise. This can be due to the fact that the random
temperature fields have been built using Gaussian random fields on the outer surface with an isotropic
correlation function depending on the geodesic distance along the surface rather than the Euclidean
distance. Since the turbine blade is a relatively thin structure, two nodes, one on the intrados and
another one on the extrados, can be close to each other in the Euclidean distance, but with totally
uncorrelated temperature fluctuations because of the large geodesic distance separating them. On the
contrary, two points on the same side of the turbine blade can have correlated temperature variations
while being separated by a Euclidean distance in the order of the blade’s thickness. The length of the
mutual information’s high-variance regime seems to correspond to the blade’s chord, which supports
this explanation. The thinness of the turbine blade induces anisotropy in the correlation function of
the bulk Gaussian random field defining the thermal loading, which implies an anisotropic behavior of
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the mutual information according to [27, Property 1]. The use of a local temperature perturbation δT0

in conjunction with fluctuation modes having larger length scales may also partially explain the large
variance of redundancy terms. Nonetheless, it remains clear that redundancy terms are smaller as for
large distances. This trend is captured by a kriging metamodel (Gaussian process regression) trained
with Scikit-Learn in a few seconds, with a sum-kernel involving the Matérn kernel with parameter
5/2 (to get a continuous and twice differentiable metamodel) and length scale 1, and a white kernel
to estimate the noise level of the signal. The curve of the metamodel is given in Figure 12. Then, for
each node of the finite-element mesh, the mutual information with the label variable is computed. The
computations of these relevance terms (in the order of the million terms) are distributed between 280
cores, which gives a total computation time of 15 minutes. Among these features, 5, 986 features are
preselected by discarding those with a relevance mutual information lower than 0.05. The geostatistical
mRMR selects 11 features in 42 seconds. The corresponding nodes in the finite-element mesh can be
visualized in Figure 12.

Remark 4.1. The metamodel for redundancy terms could be improved by defining it as a function of
the precomputed geodesic distances along the outer surface rather than the Euclidean distances. Each
finite-element node would be associated to its nearest neighbor on the outer surface before computing
the approximate mutual information from geodesic distances.

4.3.2 Classification

The classifier is trained on the Sobol’ dataset, using the values of the temperature fields at the 11
nodes identified by the feature selection algorithm. The classifier is a logistic regression [12, 24, 25]
with elastic net regularization [83] implemented in Scikit-Learn. The two hyperparameters involved
in the elastic net regularization are calibrated using 5-fold cross-validation, giving a value of 0.001 for
the inverse of the regularization strength, and 0.4 for the weight of the L1 penalty term (and thus 0.6
for the L2 penalty term). Thanks to the L1 penalty term, the classifier only uses 5 features among
the 11 input features. The classifier’s accuracy, evaluated on the MaxProj dataset to use new unseen
data, reaches 98.75%. The confusion matrix indicates that 100% of the test examples belonging to
class 0 have been correctly labeled, and that 2.38% of the test examples belonging to class 1 have been
misclassified. Table 1 summarizes the values of precision, recall and F1-score on test data.

Table 1: Classification results.

Class Precision Recall F1-score Support

0 0.9744 1.0000 0.9870 38
1 1.0000 0.9762 0.9880 42

Accuracy - - 0.9875 80
Macro avg 0.9872 0.9881 0.9875 80

Weighted avg 0.9878 0.9875 0.9875 80

4.4 Surrogate model for Gappy reconstruction

When using hyper-reduction, the ROM calls the constitutive equations solver only at the integration
points belonging to the reduced-integration domain. It is recalled that the ECM selected 506 (resp.
510) integration points for the reduced-integration domain of ROM 0 (resp. 1), and that the finite-
element mesh initially contains a number of integration points in the order of the million. Therefore,
after a reduced simulation, dual variables defined at integration points are known only at integration
points of the reduced-integration domain. To retrieve the full field, the Gappy-POD [33] finds the
coefficients in the POD basis that minimize the squared error between the reconstructed field and the
ROM predictions on the reduced-integration domain. This minimization problem defines the POD
coefficients as a linear function of the predicted values on the reduced-integration domain. Although
these coefficients are optimal in the least squares sense, they can be biased by the errors made by
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the ROM. To alleviate this problem, we propose to replace the common Gappy-POD procedure by
a metamodel or Gappy surrogate. The inputs and the outputs of the Gappy surrogate are the same
as for the Gappy-POD: the input is a vector containing the values of a dual variable on the reduced-
integration domain, and the output is a vector containing the optimal coefficients in the POD basis.
One Gappy surrogate must be built for each dual variable of interest: in our case, 7 surrogate models
per cluster are required, namely one for the quantity of interest pocum and one for every component of
the Cauchy stress tensor.

The training data for these Gappy surrogates are obtained by running reduced simulations with
the local ROMs, using the thermal loadings of the Sobol’ dataset. Indeed, the two local ROMs have
been built on the MaxProj dataset, therefore thermal loadings of the Sobol’ dataset can play the role
of test data for the ROMs. For each thermal loading in the Sobol’ dataset, the true high-fidelity
solution is already known since it has been computed to provide training data for the classifier. In
addition, the exact labels for these thermal loadings are known, which means that we know which
local ROM to choose for each thermal loading of the Sobol’ dataset. Given ROM predictions on the
reduced-integration domain, the optimal coefficients in the POD basis are given by the projections of
the true prediction made by the high-fidelity model (the finite-element model) onto the POD modes.
This provides the true outputs for the Sobol’ dataset, which can then be used as a training set for the
Gappy surrogates.

Given the high-dimensionality of the input data (there are more than 500 integration points in
the reduced-integration domains) with respect to the number of training examples (120 examples), a
multi-task Lasso metamodel is used. The hyperparameter controlling the regularization strength is
optimized by 5-fold cross-validation. Training the 14 Gappy surrogates (7 for each cluster) takes 1 hour.
The Gappy surrogates select between 8% and 18% of the integration points in the reduced-integration
domains, thanks to the L1 regularization. The mean cross-validated coefficients of determination
are 0.9637 (resp. 0.8935) for the quantity of interest for cluster 0 (resp. cluster 1), and range from
0.9404 to 0.9938 for stress components. These satisfying results mean that it is not required to train
a kriging metamodel with the variables selected by Lasso to get nonlinear Gappy surrogates. The
Gappy surrogates are then linear, just as the Gappy-POD.

Remark 4.2. In this strategy, the local ROMs solve the equations of the mechanical problem, which
enables using linear surrogate models to reconstruct dual variables. Using surrogate models from scratch
instead of local ROMs would have been more difficult, given the nonlinearities of this mechanical
problem and the lack of training data for regression. In addition, such surrogate models would require
a parametrization of the input temperature fields, whereas the local ROMs use the exact values of the
temperature fields on the RID without assuming any model for the thermal loading.

The dictionary-based ROM-net used for mechanical simulations of the high-pressure turbine blade
is made of a dictionary of two local hyper-reduced order models and a logistic regression classifier.
The classifier analyzes the values of the input temperature field at 11 nodes only, identified by our
feature selection strategy. For a given thermal loading in the exploitation phase, after the reduced
simulation with the local ROM recommended by the classifier, linear cluster-specific Gappy surrogates
reconstruct the full dual fields (quantity of interest and stress components) from their predicted values
on the reduced-integration domain.

4.5 Uncertainty quantification results

Once trained, the ROM-net can be applied for the quantification of uncertainties on the mechanical
behavior of the HP turbine blade resulting from the uncertainties on the thermal loading. Since the
ROM-net online operations can be performed sequentially on one single core, 24 cores are used in
order to compute the solution for 24 thermal loadings at once. This way, 42 batches of 24 Monte
Carlo simulations are run in 2 hours and 48 minutes, using Safran’s module of Mordicus code. The
1008 thermal loadings used for this study are generated by randomly sampling points from the uniform
distribution on the 5D unit hypercube and applying the transformation given in Equation (19).

The expected values of pocum and σeq are estimated with the empirical means Zn = 1
n

∑n
i=1 Zi,

where Zi are the corresponding samples. The variances of pocum and σeq are computed using the
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Figure 13: Histograms and probability density functions of the quantities of interest pocum (left) and
σeq (right).

Table 2: Widths of the confidence intervals (CI) for the expectations, expressed as percentages of the
estimated expectations.

Estimated variable Confidence level Relative CI width

E[pocum] 0.95 2.16%
E[pocum] 0.99 2.84%
E[σeq] 0.95 1.26%
E[σeq] 0.99 1.66%

unbiased sample variance S2
n =

1

n− 1

n∑
i=1

(
Zi − Zn

)2
. The Central Limit Theorem gives asymptotic

confidence intervals for the expected values: for all α ∈]0; 1[, the interval:

In =
[
Zn − φ1−α

2

√
S2
n/n;Zn + φ1−α

2

√
S2
n/n,

]
(21)

where φr denotes the quantile of order r of the standard normal distribution N (0, 1) is an asymptotic
confidence interval with confidence level 1 − α for the expectation µ: limn→+∞ P(µ ∈ In) = 1 − α.
The widths of the confidence intervals are expressed as a percentage of the estimated value for the
expectations in Table 2.

The probability density functions of the quantities of interest can be estimated using Gaussian
kernel density estimation (see Section 6.6.1. of [39]). Figure 13 gives the histograms and estimated
distributions for pocum and σeq. The shapes of these distributions highly depend on the assumptions
made for the stochastic thermal loading. As observed in Figure 5, the stress field is highly sensitive
to temperature gradients, which may explain why the distribution of the Von Mises stress is bimodal.

4.6 Workflow

The workflow presented in Sections 4.1-4.5 is illustrated in Figure 14.

4.7 Validation

For validation purposes, the accuracy of the ROM-net is evaluated on 20 Monte Carlo simulations
with 20 new thermal loadings. These thermal loadings are generated by randomly sampling points
from the uniform distribution on the 5D unit hypercube, and applying the transformation given in
Equation (19). The reduced simulations are run on single cores with Safran’s module of Mordicus code.
The total computation time for generating a new thermal loading on the fly, selecting the corresponding
reduced model, running one reduced simulation and reconstructing the quantities of interest is 4
minutes on average. As a comparison, one single high-fidelity simulation with Z-set [2] with 48
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Figure 14: Workflow for the ROM-net methology applied to the considered industrial setting in
Sections 4.1-4.5.

Table 3: Error indicators for the evaluation of the ROM-net on 20 new thermal loadings.

Error indicator Errors on pocum Errors on σeq

Mean L2 relative error on Ω 1.14% 0.84%
Mean L2 relative error on Ω′ 0.75% 1.46%
Mean L∞ relative error on Ω 1.11% 1.09%
Mean L∞ relative error on Ω′ 1.05% 2.60%

Mean relative error on value averaged over Ω′ 0.50% 0.89%
Mean distance between maxima 0 0

subdomains takes 53 minutes, which implies that the ROM-net computes 13.25 times faster. However,
one high-fidelity simulation requires 48 cores for domain decomposition, whereas the ROM-net works
on one single core. Hence, using 48 cores to run 48 reduced simulations in parallel, 636 reduced
simulations can be computed in 53 minutes with the ROM-net, while the high-fidelity model only runs
one simulation. In addition to the acceleration of numerical simulations, energy consumption is reduced
by a factor of 636 in the exploitation phase. In spite of the fast development of high-performance
computing, numerical methods computing approximate solutions at reduced computational resources
and time are particularly important for many-query problems such as uncertainty quantification, where
the intensive use of computational resources is a major concern. Model order reduction and ROM-nets
play a prominent role toward green numerical simulations [76]. Of course, the number of simulations
in the exploitation phase must be large enough to compensate the efforts made in the training phase,
like in any machine learning or model order reduction problem.

Figures 15 and 16 show the results for two simulations belonging to cluster 0 and cluster 1 respec-
tively. These figures give the difference between the current temperature field as the reference one, i.e.
the field T − Tref, and the resulting variations of the quantity of interest predicted by the ROM-net
and the high-fidelity model, i.e. po,ROM

cum (T )−po,HF
cum (Tref) and po,HF

cum (T )−po,HF
cum (Tref). The signs and the
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positions of the variations of the quantity of interest seem to be quite well predicted by the ROM-net.

Figure 15: Comparison between high-fidelity predictions (middle column) and ROM-net’s predictions
(right-hand column). The field on the left represents the difference between the current temperature
field (belonging to cluster 0) and the reference one. The other fields correspond to the increments of
the quantity of interest pocum with respect to its reference state obtained with the reference temperature
field.

Let us introduce a zone of interest Ω′ defined by all of the integration points at which pocum is
higher than 0.4 × max pocum(ξ) for the thermal loading defined by Tref + δT0. This zone of interest
contains 209 integration points. The values of the variables pocum and σeq averaged over Ω′ are denoted
by pocum and σeq. Table 3 gives different indicators quantifying the errors made by the ROM-net: the
L2 relative errors on the whole domain Ω and on the zone of interest Ω′, the L∞ relative errors on Ω
and Ω′, the relative errors on pocum and σeq, and the errors on the locations of the points where the
fields pocum and σeq reach their maxima. All the relative errors remain in the order of 1% or 2%, which
validates the methodology. In addition, the ROM-net perfectly predicts the position of the critical
points at which pocum and σeq reach their maxima. Figure 17 shows errors on the quantities of interest.

5 Conclusion

In this work, we used a dictionary-based ROM-net to successfully quantify the uncertainties on dual
quantities of interest of an elastoviscoplastic high-pressure turbine blade, generated by the uncertainty
on its temperature loading. This validates the methodology on large models with highly nonlinear
behaviors. An outlook of this work would be to consider nonparametrized geometrical variability,
which is of paramount interest when considering the design of mechanical parts and the uncertainty
quantification of their manufacturing processes.
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discussions on uncertainty quantification.
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Figure 16: Comparison between high-fidelity predictions (middle column) and ROM-net’s predictions
(right-hand column). The field on the left represents the difference between the current temperature
field (belonging to cluster 1) and the reference one. The other fields correspond to the increments of
the quantity of interest pocum with respect to its reference state obtained with the reference temperature
field.

Figure 17: Errors on the quantity of interest pocum. The red (resp. blue) color is used for zones where
the quantity of interest is overestimated (resp. underestimated).
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