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Continuum parallel robots (CPRs) comprise several flexible beams connected in parallel to an end-effector. They combine the inherent compliance of continuum robots with the high payload capacity of parallel robots. Workspace characterization is a crucial point in the performance evaluation of CPRs. In this paper, we propose a methodology for the workspace evaluation of planar continuum parallel robots (PCPRs), with focus on the constant-orientation workspace. An explorative algorithm, based on the iterative solution of the inverse geometrico-static problem is proposed for the workspace computation of a generic PCPR. Thanks to an energy-based modelling strategy, and derivative approximation by finite differences, we are able to apply the Kantorovich theorem to certify the existence, uniqueness, and convergence of the solution of the inverse geometrico-static problem at each step of the procedure. Three case studies are shown to demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

C ONTINUUM robots (CRs) [1] are manipulators that achieve movement through controlled displacement and deformation of slender elastic links. CRs are well suited for maneuvers in complex curvilinear pathways and when intrinsic flexibility is important. In particular, continuum parallel robots (CPRs) employ multiple slender links connected in parallel to an end-effector (EE) and, compared with their serial counterparts, they may exhibit higher precision, stability, and payload capacity [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], [START_REF] Chen | Kinetostatics modeling and analysis of parallel continuum manipulators[END_REF]. As recently highlighted [START_REF] Mauzé | Nanometer precision with a planar parallel continuum robot[END_REF], CPRs are good candidates for high precision manipulation tasks, or applications where intrinsic compliance is required and serial CRs suffer from payload limitations. While the basic architecture of a CPR is similar to a Gough-Stewart platform, different designs may lead to an increase in performance [START_REF] Childs | Leveraging geometry to enable highstrength continuum robots[END_REF]. In order to assess which design better suits a specific operational task, performance quantification is required.

Workspace evaluation, i.e. the identification of all poses where the robot may lie in a stable equilibrium, is a crucial performance assessment tool. Though several geometrical, discretization and numerical methods are available in the literature for rigid-link manipulators [START_REF] Merlet | Parallel robots[END_REF], workspace computation algorithms for CRs are at a preliminary stage. Joint-space sampling approaches are used in [START_REF] Burgner-Kahrs | Workspace characterization for concentric tube continuum robots[END_REF], [START_REF] Trivedi | Dexterity and workspace analysis of two soft robotic manipulators[END_REF], for the computation of the CR reachable workspace. However, these approaches are computationally expensive to achieve accuracy. To overcome this disadvantage, an approximated approach is proposed in [START_REF] Cao | Workspace analysis of tendon-driven continuum robots based on mechanical interference identification[END_REF]. However, because this method can detect only points on the external surface of the workspace, it seems difficult to extend it to the identification of inner boundaries. An optimization-based approach is proposed in [START_REF] Amehri | Discrete cosserat method for soft manipulators workspace estimation: an optimizationbased approach[END_REF] for the workspace computation under a general modelling strategy that can encompass various CRs. However, even in this case, inner boundaries are not easy to detect.

As far as CPRs are concerned, the workspace of a 3-leg CPR is calculated in [START_REF] Singh | Optimal work space of parallel continuum manipulator consisting of compact bionic handling arms[END_REF] by intersecting the workspace of each leg, with the latter being independently obtained by sampling the actuation space and computing the resulting EE poses. This approach, also used in [START_REF] Nuelle | Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot[END_REF] for a planar CPRs (PCPRs), allows the results to be obtained in a straightforward way, but it may lack accuracy since no interaction force is modelled between flexible legs and the rigid EE. A different strategy is employed in [START_REF] Orekhov | Analysis and validation of a teleoperated surgical parallel continuum manipulator[END_REF] for a 6-DoF CPR: the actuation space is sampled uniformly and, by iteratively solving the forward geometricostatic problem, the reachable workspace is obtained. Strain limits are considered by excluding configurations that overcome a certain threshold. This approach can be employed for a generic CPR, but singularity and stability analyses are not performed. Equilibrium stability is instead analyzed in [START_REF] Till | Elastic stability of cosserat rods and parallel continuum robots[END_REF], from an optimal-control point of view. The above limitations are also encountered in [START_REF] Mauzé | Nanometer precision with a planar parallel continuum robot[END_REF], where an inverse geometricostatic discretization approach is successfully used for the evaluation of the constant orientation workspace of PCPRs, but the modelling strategy does not include singularity and stability analysis. Similarly, an inverse kinematics discretization strategy is used in [START_REF] Lilge | Tendon Actuated Continuous Structures in Planar Parallel Robots: A Kinematic Analysis[END_REF], and singular configurations are additionally detected by employing a simplified mathematical model; however, the latter cannot account for the action of external loads on the robot. The workspace of a two-leg CPR is computed in [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF], by including the possibility of analyzing different working modes (i.e multiple solutions of the inverse problem [START_REF] Bonev | Working and assembly modes of the agile eye[END_REF]). However, the modelling strategy, based on the solution of elliptic integrals and limited to planar robots, does not seem to be easily applicable to a generic CPR.

A fundamental part of each workspace evaluation algorithm is the computation of the robot pose. In CPRs, this task is not trivial, since the geometry of the manipulator is not sufficient 0000-0000/00$00.00 c 2021 IEEE to describe the pose of the whole robot, and its configuration is defined by the elastic deformation of the links. This problem is called geometrico-static and, in CPRs, forward and inverse problems do not generally admit an analytical solution. Consequently, the geometrico-static model is usually simplified by introducing numerical approximations [START_REF] Simo | A three-dimensional finite-strain rod model. Part II: Computational aspects[END_REF] with the approximate solution being computed by numerical schemes (e.g. Newton-based methods). However, it may happen that no or multiple solutions exist for the same problem, and in this case solution certification becomes a crucial point. Interval analysis (IA) applies a branch-and-prune approach to solve a set of equations: it is mainly employed (i) when it is needed to certify that all solutions are found in a bounded region [START_REF] Altuzarra | Certified kinematics solution of 2-dof planar parallel continuum mechanisms[END_REF], and (ii) when dealing with bounded model parameter uncertainties [START_REF] Tan | Pose characterization and analysis of soft continuum robots with modeling uncertainties based on interval arithmetic[END_REF], [START_REF] Iqbal | A guaranteed approach for kinematic analysis of continuum robot based catheter[END_REF]. As a drawback, computational time of IA methods exponentially depends on the number of variables [START_REF] Merlet | Interval analysis for certified numerical solution of problems in robotics[END_REF]. On the other side, the Kantorovich theorem [START_REF] Kantorovich | On Newton's method for functional equations[END_REF] is a useful tool when the solution certification is important. This theorem establishes sufficient conditions on the initial guess of the Newton iteration to certify the existence, uniqueness, and convergence of the solution on a defined region [START_REF] Goldsztejn | A three-step methodology for dimensional tolerance synthesis of parallel manipulators[END_REF]. While the application of the Kantorovich theorem is computationally efficient, certification of multiple solutions, and dealing with uncertainties are not possible, in contrast to IA approaches.

Our goal is to develop a methodology for the workspace evaluation of PCPRs, a class of CPRs which recently obtained higher scientific interest [START_REF] Mauzé | Nanometer precision with a planar parallel continuum robot[END_REF], [START_REF] Lilge | Tendon Actuated Continuous Structures in Planar Parallel Robots: A Kinematic Analysis[END_REF]. We want to include several aspects usually of interest for workspace evaluation that stateof-the-art approaches cannot include simultaneously, namely equilibrium stability, singularity identification, strain limits, and external load influence. For this purpose, we decided to adopt the modelling strategy proposed in [START_REF] Zaccaria | An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots[END_REF], since it allows us to apply external loads to any robot component, to enforce generic geometric constraints, to assess equilibrium stability, and to identify singular configurations (by the procedure introduced in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]).

Our workspace-evaluation algorithm is based on the iterative solution of the inverse geometrico-static problem (IGSP) [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]. In order to certify the existence of a unique solution of the IGSP at each step of the workspace computation algorithm, and thus certify that all the computed configurations are characterized by the same working mode, we propose to apply the Kantorovich theorem. With this theorem, it is possible to ensure that a computed solution lies in the neighborhood of a previously computed configuration, and to certify the convergence of the numerical method used to find the new IGSP solution. By employing an energy-based modelling strategy combined with finite differences [START_REF] Zaccaria | An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots[END_REF], we can obtain an analytical expression of the constants required for the solution certification through the Kantorovich theorem that may be not trivial to obtain with other approaches (i.e. the continuous formulation in [START_REF] Black | Parallel continuum robots: Modeling, analysis, and actuation-based force sensing[END_REF], which may require the solution of an optimization problem). As it will also be shown, this methodology for the workspace computation is time-efficient 1 . It allows obtaining certified results in a reduced computational time, which is beneficial since fast workspace computation algorithms may be used for workspace-guided design tools.

We additionally propose the use of a preconditioning matrix for the Newton iteration, to alleviate the numerical illconditioning of the IGSP problem and, consequently, to facilitate the IGSP solution certification.

Finally, we propose an adaptive-grid workspace-exploration algorithm. At each step of the workspace algorithm, the grid is refined in case the solution of the IGSP is not certifiable, so that a refined grid is used only where necessary (in contrast to the fixed grid flooding algorithm of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]): the overall computation time is therefore reduced. The algorithm is then employed to identify stable and unstable workspace regions, and to detect singularities that determine workspace boundaries as in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF].

The paper is structured as follows. Section II introduces the PCPR modelling strategy, analyzes configuration stability and singularities, and discusses the Kantorovich theorem application. Section III describes the novel workspace exploration algorithm in detail. Section IV proposes three case studies to show the effectiveness of our approach. Section V draws conclusions and outlines future work directions.

II. MODELLING

A. Modelling Approach

Consider a slender beam of length L as represented in Fig. 1a. Shear and extensibility are neglected. Each rod is discretized into N elements of equal length L e = L/N and the orientation of the i-th element (i = 1, ..., N ), with respect to (w.r.t.) a fixed frame, is θ i . The deformation energy of the beam, assumed as initially straight, can be written as:

V b (θ 1 , ..., θ N ) = V e + V l (1) 
where V e and V l represent beam's deformation energy and the potential energy of concentrated and distributed loads acting on the beam, computed by approximating derivatives with finite differences (see [START_REF] Zaccaria | An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots[END_REF], [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] for their expressions). We assume that the PCPR comprises n beams, as in Fig. 1b, with the generic beam being identified by the index k = 1, ..., n. We can identify n controlled variables 2 , collected in the vector q A = [q a1 , ..., q an ]. Moreover, we define

θ k = [θ 2k , ..., θ N k ] and θ = [θ 1 , ..., θ n ].
The position and orientation of the EE are denoted as p P and φ, respectively, and grouped in the array q P = [p P , φ]. The array x = [θ, q P ] contains all non-actuated variables. Finally, the total potential energy of the PCPR can be written as:

V t (q A , x) = n k=1 V b,k (q ak , θ k ) -f T (p P -p * P ) -m(φ -φ * )
(2) where f , m are, respectively, a EE constant force and a constant moment (which ensures that the overall system is conservative), and (.) * denotes the undeformed state.

Due to the parallel architecture, the configuration variables are related by geometric constraints, such as closure equations. If beams are connected to the platform by revolute joints, closure equations can be written as:

p Bk (q Ak , θ k ) -p Bk (p P , φ) = 0 (3) 
where p Bk (q Ak , θ k ) is function of the leg variables [START_REF] Zaccaria | An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots[END_REF] and p Bk (p P , φ) is function of platform variables. Other beam connections to the EE can be modelled (such as fixed constraints [START_REF] Mauzé | Nanometer precision with a planar parallel continuum robot[END_REF]): Φ is the array stacking m φ general geometric constraints.

A static robot configuration is feasible, for an assigned value of q A , if and only if the manipulator is in a stable equilibrium, that is, the total potential energy is at a minimum. However, variables are related by constraints Φ, and local extrema of V t are characterized by Lagrange conditions [START_REF] Nocedal | Numerical Optimization[END_REF]. Assuming that ∇ x Φ has full rank, x is a local extrema of V t if Lagrange multipliers λ exist such as:

∇ x L = 0 , ∇ λ L = 0 (4)
where the Lagrangian function L is:

L(q A , x, λ) = V t (q a , x) + Φ(q a , x) T λ (5) 
In order to assess if a configuration belongs to the static workspace, we are interested in determining if a value of q A exists so that an assigned EE pose q d P is an equilibrium, that is, we seek the solution of the IGSP, defined as: 2 In the case of a revolute joint, q ak = θ 1k whereas, in the case of a prismatic joint, the orientation θ 1k of the first element is a constant value and q ak defines the position of the first node of the beam.

F(y) =      0 = ∇ x L = ∇ x V t + ∇ x Φ T λ 0 = ∇ λ L = Φ 0 = q P -q d P (6)
Equations ( 6) form a square system of N eq = n(N + 2) + 3 nonlinear equations in y = (q A , θ, q P , λ), which can be solved by using root-finding techniques, such as the Newton method.

B. Equilibrium Stability and Singularity Conditions

Once a solution of Eq. ( 6) is identified, its stability, and its singularities can be evaluated by the method presented in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]. The Jacobian matrix J of Eq. ( 6), can be computed as:

J(y) = ∂F(y) ∂y =   A L U L P L Λ L A Φ U Φ P Φ 0 0 0 I 0   (7) 
where:

• A L = ∇ q A (∇ x L) , U L = ∇ θ (∇ x L) • P L = ∇ q P (∇ x L) , Λ L = ∇ λ (∇ x L) • A Φ = ∇ q A Φ , U Φ = ∇ θ Φ , P Φ = ∇ q P Φ
and I is the identity matrix. The analytical expression of all terms in J is obtainable, but not reported here for brevity. Equilibrium stability can be assessed by verifying that the reduced hessian matrix H r of the total potential energy is positive definite [START_REF] Nocedal | Numerical Optimization[END_REF]. H r can be obtained as:

H r = Z T ∂ 2 V t ∂x 2 Z = Z T U L P L Z (8) 
where Z denotes the left nullspace of Λ L . Moreover, configuration singularities can be assessed if the following matrices degenerate [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]:

T 1 = Z T A L Z T U L A Φ U Φ , T 2 = Z T P L Z T U L P Φ U Φ (9) 
Type 1 (or serial) singularities are related to the degeneracy of T 1 and define the limits of the robot workspace. Type 2 (or parallel) singularities, related to T 2 , delimit stable-to-unstable regions.

C. Kantorovich Theorem for Newton Iteration and Preconditioning

If a Newton method is employed for the solution of the IGSP in Eq. ( 6), the Kantorovich theorem establishes sufficient conditions for the existence and uniqueness of the solution [START_REF] Kantorovich | On Newton's method for functional equations[END_REF]. Let χ, δ, λ ∈ R + , y 0 be the initial guess given to the numerical solver, and B(y 0 , 2δ) = {y : yy 0 ≤ 2δ} a ball of radius 2δ centered in y 0 . For convenience, let the infinite norm being used. Let J(y) be the Jacobian matrix of F(y) w.r.t. y, and χ, δ, λ are chosen such as:

χ ≥ J -1 (y 0 ) (10) δ ≥ J -1 (y 0 )F(y 0 ) (11) λ ≥ max y∈B   max h∈[1,Neq]   i,j ∂ 2 F h (y) ∂y i ∂y j     (12) 
Then, if χ, δ, λ exist such that 2χδλ ≤ 1, the Kantorovich theorem states that a solution y * ∈ B(y 0 , t * ) exists, where

t * = 1- √ 1-2χδλ λχ ∈ [δ, 2δ].
Moreover, the solution is unique inside B(y 0 , 2δ), and the Newton iteration, starting from y 0 , converges to y * . Kantorovich constants have a numerical meaning: χ is related to the absolute conditioning of the problem, δ represents the closeness to the linearized solution, and λ is influenced by the non-linearity of the problem.

However, if a discretization approach is used for modelling PCPRs, the Jacobian matrix J is usually large and ill-conditioned, resulting in high values of χ. Therefore, the certification of the existence, uniqueness, and convergence of the IGSP solution holds only for y 0 sufficiently close to y * . To overcome this difficulty, we can preconditionate the IGSP to reduce the value of χ. We propose to solve an equivalent and modified inverse geometrico-static problem (MIGSP), where each IGSP equation is multiplied by a constant that represents the physical dimensions of the equation terms:

F M (y) =                    0 = 1 EI (∇ θ V t + ∇ θ Φ T λ) 0 = L EI (∇ p P V t + ∇ p P Φ T λ) 0 = 1 EI (∇ φ V t + ∇ φ Φ T λ) 0 = 1 L Φ 0 = 1 L (p P -p d P ) 0 = φ -φ d (13)
or equivalently:

F M (y) = MF(y) (14) 
where M is a diagonal matrix collecting the coefficients that multiply each equation of Eq. ( 13). The Jacobian matrix of the MIGSP w.r.t. y is:

J M (y) = ∂F M (y) ∂y = M ∂F(y) ∂y = MJ(y) (15) 
The Kantorovich constants of the MIGSP can be obtained from Eqs. [START_REF] Amehri | Discrete cosserat method for soft manipulators workspace estimation: an optimizationbased approach[END_REF], [START_REF] Singh | Optimal work space of parallel continuum manipulator consisting of compact bionic handling arms[END_REF], [START_REF] Nuelle | Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot[END_REF] by employing F M , J M instead of F, J. While the computation of χ, δ is straightforward, the computation of λ requires to analytically compute all the second derivative of MIGSP equations, which is long and involved. According to Eq. ( 12), we have to identify where the sum in absolute value of the second derivatives assumes the maximum value inside the ball for each equation. However, this sum is not constant w.r.t. y and we may identify the maximum by solving a constrained optimization problem, at the cost of high computational time. We preferred to approximate λ with absolute value inequalities [START_REF] Nocedal | Numerical Optimization[END_REF]: in this way we consider the worst-case scenario and we obtain an expression of λ that depends on y 0 , δ. The details of this computation are not provided here due to space limitations.

III. WORKSPACE EVALUATION

This Section describes in detail the innovative workspacecomputation strategy, which we call Adaptive Flooding Algorithm (Alg. 1 lines 1-19). In particular, we modified the Flooding Algorithm of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] by introducing a grid-adaptation procedure: during each iteration, the grid size is adjusted when the certification is not feasible with the initial grid size. This is done in order to certify as much workspace as possible, since the Kantorovich constant δ depends on the distance of the initial guess from the solution. We focus on the constant-orientation workspace of PCPRs, i.e. the set of all Algorithm 1: Adaptive flooding algorithm. possible locations of the robot EE that can be reached with a given orientation, though our approach can be easily extended to other types of workspace. A discretization approach is employed and the MIGSP is solved iteratively over a grid of EE locations. The first step of the algorithm requires the initialization of some entities: a 2-dimensional uniform grid is generated accordingly to an initial stepsize (s i ). The grid discretizes a user-defined box (assumed to fully include the workspace) and in the middle of each square of the grid, a point representing the EE position is placed (Fig. 2a). An initial point (named p P ) where the explorative algorithm starts is selected within the grid. For the first solution of the MIGSP, an initial guess obtained through constant-curvature modelling approach is employed. As shown in [START_REF] Lilge | Tendon Actuated Continuous Structures in Planar Parallel Robots: A Kinematic Analysis[END_REF], the inverse problem under constant-curvature approach admits a finite number of solutions (but usually low solution accuracy), and we can decide which solution to use as initial guess, in order to let the algorithm converge to the desired working mode [START_REF] Bonev | Working and assembly modes of the agile eye[END_REF]. The resulting output configuration is stacked in the Config list to be employed as a future guess. Then, neighboring EE positions (Fig. 2a) are computed and saved in the toDo list, which contains points to be processed. The toDoEnd list, that contains points that are neighbors to Type 2 singular configurations, is initialized as empty. Then, the iterative algorithm starts, a new p P is obtained from the first element of the toDo list and employed as the EE location to be reached. The initial guess y 0 for the MIGSP, the Kantorovich flag associated to y 0 and neighbors of p P are obtained through the FindGuess procedure. The latter, which plays an important role in the certification of the MIGSP solution, is detailed in subsection III-A.

If the current step s c (i.e the edge size of the square centered in p P ) is greater to the minimum stepsize allowed for the computation (s m ), the value of the Kantorovich constants is checked to certify the solution: if 2χδλ ≤ 1, the MIGSP is solved and new points to be processed are created in the Compute procedure (detailed in subsection III-B). If the manipulator is not cuspidal [START_REF] Wenger | Cuspidal and noncuspidal robot manipulators[END_REF], and the solution is certified, the working mode of the initial guess is preserved also on the configuration resulting from the MIGSP solution. In the case of the solution is not certifiable, the grid is refined: the square centered in p P is divided into new four equal squares (Fig. 2b), and new four points p new are placed in the middle of each new square. Then, the original EE location p P is replaced with p new and added to the toDo list. In the case the minimum stepsize is reached (s c ≤ s m ), the Compute procedure is executed even if the MIGSP solution is not certified, in order to fully compute the workspace. Finally, the algorithm restarts until some elements are present in the lists toDo and toDoEnd. If toDo is empty, then it is refilled with toDoEnd (how toDo and toDoEnd are managed is explained in subsection III-B).

A. Choice of the Initial Guess

The choice of the initial guess at each iteration plays an important role in the MIGSP solution certification. The routine of the initial guess selection is described in lines 20-32 of Alg. 1. Given a desired EE location p P , we want to identify an initial-guess configuration y 0 to be used for the MIGSP solution. Initially, the distance r N for which two EE locations are considered to be neighbors is set as √ 2s c (Fig. 2a). This way, neighbors of p P are identified in the grid and stacked in the array n. Neighbors in the workspace are extracted from n and collected in the array n W K . However, caused by the grid refinement process, it can happen that no neighbors are in the workspace (Fig. 2c): in this case, the radius r N for which points are considered to be neighbors is multiplied by two, and the selection of n is repeated until workspace points are found.

In order to increase the possibility to certify the MIGSP solution, the Kantorovich constants for the configurations associated to n W K EE locations are computed. Then, the EE location that ensures the lowest value of 2χδλ (named n best ) is identified, and the robot configuration y 0 associated to n best is extracted from Config. If the solution certification is not required, n best can be chosen as the one that ensures the best inverse conditioning of J to speed up the computation.

B. Computation Process

This subsection describes the routine for the computation of the MIGSP solution and for the creation of new points to be processed (lines 33-46 of Alg. 1). Starting from a given initial guess y 0 and a set of neighboring EE locations n, the MIGSP is solved by a Newton scheme. Then, T 1 , T 2 are computed according to Eqs. [START_REF] Cao | Workspace analysis of tendon-driven continuum robots based on mechanical interference identification[END_REF]. In particular, we compute the inverse condition number of T 1 , T 2 in order to identify their degeneracy. Then, we check if the Newton solver converges and the resulting configuration is not Type-1 singular. Moreover, mechanical constraints are verified in mechconstr: these include strain limits on the legs, as well as joint limits. If the check succeeded, outputs associated with the resulting configuration y (e.g. internal energy of the robot, equilibrium stability, number of inflection points) are computed in Values. These results, as well as singularity flags and Kantorovich constants, are saved in Results and y is stored in Config as a future initial guess. Subsequently, neighbors not in the workspace and not in toDo,toDoEnd, are stored in n 1 . If the actual configuration y is not T 2 -singular, n 1 is added to the toDo list, else in toDoEnd.

In this way, Type 1 singularities, associated with boundaries of the workspace, are not crossed but only approached. Type 2 singularities, which delimit stable from unstable regions, are crossed in a second stage of the algorithm (only when toDo is empty) in order to discover possible stable regions separated by unstable transitions. 

IV. CASE STUDIES

In this Section, three case studies, focusing on different PCPRs (Fig. 3), are reported. Workspace evaluation is discussed with a focus on the identification of different regions (e.g. stable, unstable, regions where stress limits are exceeded) and certification of the IGSP solution. Our algorithm is compared to the flooding algorithm of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], to demonstrate the benefit of the grid-adaptation routine in terms of computational time. For all case studies, beams are made of harmonic steel with Young modulus E = 210 GPa, maximum stress σ max = 1800 MPa, density ρ = 7800 kg/m3 , length L = 1m , circular cross-section of radius r = 1mm. Simulations are performed in the Matlab enviroment.

A. RF RF R robot

This subsection investigates the workspace of a RF RF R robot. The aim of this case study is twofold: on the one hand, it shows the capability of our algorithm to detect singularities and unstable regions, as well as to include external loads and strain limits in the model; on the other hand, it investigates the influence of the stepsize and the preconditioner on the IGSP solution certification.

This manipulator, borrowed from [START_REF] Altuzarra | Position analysis in planar parallel continuum mechanisms[END_REF], [START_REF] Zaccaria | An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots[END_REF], has two actuated revolute joints in A 1 , A 2 (R) and two flexible links (F ) connected by a passive revolute joint centered in B (Fig. 3a). The distance between the actuators is L A1A2 = 0.4m. An external force of 1.5N is applied on the EE, and legs are subjected to gravity. Simulations are performed with N = 50, ensuring sufficient MIGSP solution accuracy.

The workspace of the RF RF R, computed by the algorithm presented in Section III, is shown in Figs. 4a,4b,4c. Configurations are marked as singular when the inverse condition number of matrices reported in Eq. ( 9) is lower than a certain threshold T OL. We experienced that T OL = 10 -6 correctly identify singularities. Stress limits are considered by evaluating whether a first-order approximation of stress [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF] on each element does not overcome σ max . By considering stress limits, the workspace is considerably reduced, in particular in the working mode showed in Fig. 4c (0.96 m 2 without considering stress limits to 0.36 m 2 with stress limit included).

We also tested the influence of the minimum stepsize s m and the influence of the preconditioner on the MIGSP certification of the workspace, with a focus on the stable and feasible workspace (i.e where stress limits or joint bounds are not exceeded). To quantify how many configurations are computed in a certified way, we introduce the certified percentage of the workspace C % as:

C % = 100 • A C /A W ( 16 
)
where A C is the certified area and A W is the workspace area. These areas are obtained by summing the area of each square of the grid that lies in the workspace (for A W ) and by summing the area of each square that is computed in a certified way and belongs to the workspace for A C . Results are reported in Table I. With s i = 4mm, by passing from s m = 2mm (Fig. 4a) to s m = 1mm (Fig. 4b), C % grows from 80.4% to 92.1%. As expected, the computational time 3 increases from 32 min to 84 min. To achieve C % = 92.1% the flooding algorithm of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] required 192 min with 1 mm stepsize, which is considerably higher. If the preconditioner is not used, C % drops to 35.1% (with s m = 1mm) and at the same time, the computational time reaches 383 min. The increase of the computational time is due to the higher number of processed points (18.9 • 10 5 compared to 7.1 • 10 5 in the preconditioned case) for the adaptation of the grid, and not for a considerable increase in the MIGSP solution time. This is confirmed by the data relative to the case of s m = s i = 4mm (where no grid refinement is possible), with the same grid being employed with and without the preconditioner, and the resulting computational times are comparable. Also in the case of a different working mode (Fig. 4c), we certified a significant amount of the workspace (70.2%) in a reduced time (44 min) with s m = 1mm. 

B. 3 -RF R robot

This subsection investigates the workspace of the 3 -RF R robot. This case study shows the possibility of identifying the workspace and certifying the IGSP solution with different EE orientations. This manipulator borrowed from [START_REF] Lilge | Tendon Actuated Continuous Structures in Planar Parallel Robots: A Kinematic Analysis[END_REF] has three actuated revolute joints A 1 , A 2 , A 3 (R) and three flexible links (F ) connected by passive revolute joints B 1 , B 2 , B 3 at a rigid EE. Actuators are equally placed along a circumference of radius r b = 0.6m, whereas passive revolute joints are placed on a circumference of radius r p = 0.15m (Fig. 3b). Simulations are performed with N = 30 and no external loads are included.

The workspace of the 3-RF R robot is illustrated in Fig. 4d and 4e by fixing φ = -π 3 , φ = -π 6 , respectively. In both cases, no unstable regions and Type-2 singularities are detected. Stress limits are included, but no point exceeds σ max . As before, s m = 1mm is chosen to guarantee a sufficient value of C % (81% and 84.6%) in a reasonable computational time (11 and 10 min). Again, the flooding algorithm of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] required higher computational time to obtain the same C % (20 and 18.5 min with 1 mm stepsize).

C. 3 -P F R robot

This subsection studies the workspace of the 3-P F R robot. This case study shows the possibility of analyzing PCPRs with different actuators and including joint limits. This manipulator is similar to the one proposed in [START_REF] Mauzé | Nanometer precision with a planar parallel continuum robot[END_REF], except for the connection of the flexible links with the platform (passive revolute joints in our case, in contrast with fixed connections in [START_REF] Mauzé | Nanometer precision with a planar parallel continuum robot[END_REF]). The 3 -P F R robot has three actuated prismatic joints A 1 , A 2 , A 3 (P ) and three flexible links (F ) connected by passive revolute joints B 1 , B 2 , B 3 at a rigid EE. Actuators are equally spaced along a circumference of radius r b = 0.65m, and passive revolute joints are placed on the platform of radius r p = 0.15m (Fig. 3c). Simulations are performed with N = 30 and no external loads are included.. The workspace of the 3-P F R robot is illustrated in Fig. 4f, where the EE orientation is φ = π 6 and 1.4m-long rails are symmetrically placed around a circle of radius r b . As for the 3 -RF R robot, maximum strain limits are included, but not exceeded. With s m = 1 mm, we reached C % = 94.5% in 5.2 min of computational time whereas the algorithm of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF] required 17 min with 1 mm stepsize. TABLE I: Influence of the preconditioner and the stepsize on the certification of the workspace. Simulations, relative to the workspace displayed in Fig. 4a, 4b, are performed with s i = 4mm, and N = 50.

V. CONCLUSIONS

This paper presented an adaptive flooding algorithm for the workspace computation of PCPRs. The algorithm may identify unstable regions, singularity loci, incorporate external loads, set maximum stress limits and joint bounds. Thanks to an energy-based modelling strategy approximated through finite differences for derivatives, the IGSP solution was certified in terms of existence, uniqueness, and convergence of the solution, by verifying Kantorovich conditions during the Newton-based problem-solving procedure. With this approach, we certified the IGSP solution over a large percentage of the workspace in a reduced computational time in comparison with previous algorithms. However, with large workspaces and/or small stepsizes, the flooding approach may require the computation of a large number of points, which may be not computationally efficient. Future work will be directed on the integration of the adaptive flooding algorithm on a workspace-guided design tool for PCPRs. Moreover, the authors will investigate the workspace evaluation of CPRs and the certification of the solution of the IGSP problem in the spatial case.

Fig. 1 :

 1 Fig. 1: (a) Discretization of a flexible link and (b) representation of a generic PCPR.

Fig. 2 :

 2 Fig. 2: Workspace algorithm: (a) representation of the grid, points along the grid and condition for neighborhood, (b) grid refinement strategy; (c) situation when neighbor radius should be enlarged.

Fig. 3 :

 3 Fig. 3: Three PCPRs object of our case studies: the RF RF R (a), the 3 -RF R (b), and the 3 -P F R (c). Relevant design dimensions are displayed.

Fig. 4 :

 4 Fig. 4: Workspaces of PCPRs. Type 1 and Type 2 singularities are drawn in red and black, respectively. Certified workspace is depicted in blue, non certified workspace in light blue and non certified unstable regions in yellow. Non certified stable regions where stress limits or joint limits are exceeded are represented in green and grey, respectively.

1

  Initialize grid, toDo, toDoEnd, Config, Results; 2 while toDo = ∅ or toDoEnd = ∅ do

	3	if toDo= ∅ then
	4	toDo ← toDoEnd; toDoEnd ← ∅ ;
	5	end
	6	p P = toDo(1), toDo ← toDo\p P ;
	7	[flag k ,y0,n] = FindGuess(p P , sc);
	8	if sc > sm then
	9	if flag k ≤ 1 then
	10	Compute(y0,n);
	11	else
	12	pnew = Generate points(p P ,sc);
	13	Replace p P with pnew;
	14	toDo ← toDo ∪ pnew
	15	end
	16	else
	17	Compute(y0,n);
	18	end
	19 end	
	20 Function FindGuess(p P , sc): 21 Set neighbors radius r N = √	2sc;
	22	do
	23	n = Find neighbors EE positions to p P ∈ grid;
	24	n W K = n ∈WK;
	32	return [flag k , y0, n];
	33 Function Compute(y0,n):
	34	y = Solve IGSP starting from y0;
	35	[T1, T2] = Singularity(y);
	36	if (Solver Converged & T1 < T OL & mechconstr(y)) then
	37	Values = CalculateOutputs(y);
	42	else
	43	toDoEnd ← toDoEnd ∪ n1;
	44	end
	45	end
	46	return;

25 if (n W K = ∅) then 26 r N ← 2r N ; 27 end 28 while (n W K = ∅); 29 Compute Kantorovich flag for each n W K ; 30 n best = n W K with best Kantorovich flag; 31 y0 = Config(n best ); 38 Save Values in Results, Save y in Config; 39 n1 = select n / ∈(WK,toDo,toDoEnd); 40 if T2 < T OL then 41 toDo ← toDo ∪ n1;

Since the model proposed in[START_REF] Zaccaria | An Analytical Formulation for the Geometrico-static Problem of Continuum Planar Parallel Robots[END_REF] uses discretized continuum-robot equations, a large number of independent variables is needed for the accurate solution of the IGSP, and high computational time is thus expected for IAbased approaches[START_REF] Merlet | Interval analysis for certified numerical solution of problems in robotics[END_REF] (a) (b)

Results are obtained by a CPU Intel Core i7-8700K,3.7GHz,32Gb RAM