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Abstract 

Direct ink writing (DIW) belongs to extrusion-based 3D printing techniques. The success of 

DIW process depends on well-printable ink and optimized process parameters. After ink 

preparation, DIW process parameters considerably affect the parts’ dimensional accuracy and 

process parameters optimization for dimensional accuracy of printed layers is necessary for 

quality control of parts in DIW. In this study, DIW process parameters were identified and 

divided into two categories as the parameters for printing a line and the parameter from lines 

to a layer. Then a two-step method was proposed for optimizing process parameters. Step 1 

was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of 

extruded filaments and printed rectangular objects were observed in screening experiments 

to determine printability windows for each process parameter. Then, interaction effect tests 

were conducted and degree of freedom (DOF) for experiments was calculated followed by 

orthogonal array (OA) selection for Taguchi design. Next, main experiments of line printing 

based on Taguchi method were conducted. Signal-to-noise ratio (SNR) calculations and 

analysis of variance (ANOVA) were performed to find the optimal combination and evaluate 

the significance respectively. Step 2 was to optimize the parameter from lines to a layer. In 

Step 2, the average width of the printed line under optimal condition was measured firstly. 

Then, single-factor tests of rectangular object printing were conducted to find the optimal 

parameter from lines to a layer. After these two steps, confirmation results were conducted 

to verify the reliability of the proposed method and the method robustness on other shapes 

and other materials; parameter adaptability in 3D parts printing from printed layers’ analyses 

for the proposed method and parameter adaptability in constructs fabricated as 100% infill or 

with porosities. 
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accuracy; Taguchi method 

1. Introduction 

Direct ink writing (DIW), also known as extrusion-based 3D printing [1], relies on extruding 

ink-based materials with suitable printability through a nozzle using either mechanical (piston 

or screw driven) or pneumatic forces. DIW is attracting widespread interest in the fields of 

tissue engineering [2], industrial applications such as batteries [3], sensors [4], four-

dimensional (4D) printing [5], soil science [6] and everyday life [7] because it is capable of 

printing 3D structures in a flexible, low-cost and well-controlled fashion. 

The success of DIW process depends on well-printable ink and optimized process parameters. 

Recent studies [8-10] focused on inks preparation and rheological analyses as ink rheology 

plays the most critical role in extrusion process, shrinkage, shape fidelity and structural stability. 

Meanwhile, DIW process parameters concerned with the equipment considerably affect the 

parts’ dimensional accuracy [11]. 

In 3D printing, dimensional accuracy of printed layers could affect the whole part quality. At 

present, monitoring and control of printed layers is a research focus in AM quality control [12, 

13]. He and Huang [14] predicted the in-plane shape of printed layers to improve the 

geometric accuracy of AM built products. He et al. [15] captured the image of each printed 

layer to control the whole process of fused deposition modeling (FDM). Mohammad et al. [16] 

proposed a quality monitoring framework for 3D printing through monitoring each layer. 

Therefore, after well-printable inks are prepared to guarantee shape fidelity and structural 

stability, process parameters optimization for dimensional accuracy of printed layers is 

necessary for quality control of parts in DIW. 

Recently, the selection of process parameters for DIW has been conducted by many scholars 

[17-19]. However, all these studies just determined a printability window instead of an optimal 

value and few studies are available for process parameters significance analysis and 

optimization for DIW. Therefore, it is imperative to investigate the significance of each process 

parameter and find optimal process parameters setting to improve dimensional accuracy of 

parts in DIW. 

Taguchi method [20] and machine learning (ML) methods [21, 22] have been widely used to 

control process parameters of material extrusion-based 3D printing. ML methods enable the 

proper parameters selection with little process analyses but need large dataset, additional 

time and computing resources [23]. Taguchi technique is more efficient [24] with a significant 

slash in experimental time and cost [25] and it can determine the significance of each 

parameter by analysis of variance (ANOVA) [26]. The main purpose of this paper is to perform 

DIW process parameters optimization with minimum material and time. Thus, Taguchi 

method is adopted in this study. 

In this paper, we identified DIW process parameters through printing analyses and proposed 

a two-step optimization method to optimize DIW process parameters for dimensional 

accuracy of printed layers and analyze the significance of each process parameter. To verify 

the method, confirmation tests were conducted considering the condition comparison and 

the method robustness on other shapes and other materials; parameter adaptability in 3D 

parts printing from printed layers’ analyses for the proposed method and parameter 

adaptability in constructs fabricated as 100% infill or with porosities. 



2. Materials and methods 

2.1. Materials and DIW process 

A piston driven DIW 3D printer TM-081 (Tobeca Company, France) was used as illustrated in 

Figure 1(a). The piston movement is driven by a mechanical system, which extrudes out ink in 

the syringe through the nozzle into the air and finally on the substrate. Then, a three-axis 

movement frame guides the nozzle to move in x and y directions to deposit the extruded 

filaments on a planar region as nozzle is fixed in z direction. Afterward, the nozzle moves to 

the next layer and 3D parts is printed layer by layer. Finally, the printed part is solidified 

through heating-based evaporation [27] or ultraviolet (UV) light [28] according to types of 

printed materials. 
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Figure 1. Process parameters identification for DIW process: (a) the DIW 3D printer; (b) the DIW 

process; (c) process parameters setting in Step 1. 

Nivea Crème (Art. No. 80104) (Beiersdorf Global AG, Germany) was chosen as material to 

verify the proposed method because Nivea Crème is used as printability reference for inks to 

test the process parameters in DIW and can represent numerous printable inks in DIW [17] 

(many inks in DIW are designed and produced to have the same printability of Nivea Crème). 

A complete rheological characterization for Nivea Crème was conducted as ink rheology plays 

the most critical role in DIW. The yield stress value was determined as 534 Pa through shear 

stress ramp test (Figure 2(a)), which means the ink stays rest when the shear stress value is 

below 534 Pa and starts to flow when the shear stress value exceeds 534 Pa. Figure 2(b) shows 

the shear-thinning characterization of the ink as viscosity decreases with the increase of shear 

rate. The ink exhibits a solid-like response as its storage modulus (G’) exceeds its loss modulus 

(G’’) (Figure 2(c)), which means the ink has low shrinkage and good shape fidelity. Moreover, 

the structural stability of the ink is also good as shown in Figure 2(d): from 0-200 s, the 

viscosity stays stable and in high value when shear rate value is near 0; from 200-300 s, the 

viscosity stays stable and in low value when shear rate value is 900 
1s− ; from 300-500 s, the 

shear rate value recoveries to near 0 and the viscosity recoveries to stay stable and in high 

value. In conclusion, Nivea Crème (Art. No. 80104) was verified as a well-printable ink through 

the rheological characterization. After ink preparation, the focus of this work is to identify and 

optimize the DIW process parameters. 
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Figure 2. Rheological characterization of Nivea Crème (Art. No. 80104): (a) Yield stress 

determination through shear stress ramp test; (b) Viscosity as a function of shear rate; (c) Storage 

(G’) and loss (G’’) modulus as a function of frequency; (d) stability analysis through recovery test. 

To verify the method robustness on other materials, a well-printable cellulose-based ink was 

prepared following the literature [5]. The ingredients of the cellulose-based ink were: 2.36% 

cellulose fibers, 0.59% hydroxyethylcellulose (HEC), 1.77% carboxymethyl cellulose (CMC), 0.47% 

montmorillonite, 0.47% citric acid (CA) and 94.34% demineralized water. The detailed 

preparation process and rheological characterization of the cellulose-based ink can be found 

in [5]. 

2.2. Identification of process parameters 

Process parameters were identified through DIW process analysis. As shown in Figure 1(b), 

DIW process for a printed layer includes two steps. Step 1 is to print a line by moving nozzle 

from point A to point B. Then, a layer is printed by arranging lines tightly in Step 2. Thus, DIW 

process parameters for printed layers are divided into two categories as: 

1) Process parameters for printing a line; 

2) Extra process parameter from lines to a layer. 

2.2.1 Process parameters for printing a line 

The process parameters for printing a line is illustrated in Figure 1(c). Inner diameters of 



syringe tube sD  and nozzle nD  are dependent on equipment and considered as constants. 

Their values in our study are in 21.6 mm and 0.84 mm respectively. pv  (piston velocity set 

in the G-code), nv  (nozzle velocity) and h  (gap between nozzle bottom surface and 

substrate) are identified as controllable process parameters. ev  (average velocity of extruded 

filament on the nozzle bottom surface), which is dependent on pv  and equipment, is 

uncontrolled process parameters. 

In extrusion-based AM, optimal nv  depends on pv  [29] and optimal h  depends on nD  

[30]. If pv , nv  and h  were set independently without regard to the relationship between 

these parameters, the optimization would be inefficient and even incorrect. Thus, process 

parameters for printing a line were identified as: nv , CR  (calibrated normalization ratio of 

pv  to nv ) and H  (ration of h  to nD , defined as / nh D ).  

ev  was used as intermediate variable to define CR  as it is both correlated to nv  and pv . 

We supposed that nv  and ev  should satisfy Eq. (1) for optimal process design as follows: 

 n ev R v=  . (1) 

Where R  is the ratio of nv  to ev . 

The relationship between real piston velocity and ev  could be calculated according to 

conservation of mass. However, real piston velocity is not equal to pv  because pv  are 

nominal values of positon velocity set in the G-code. The main sources of errors between pv  

and real piston velocity came from the uncertainty in the control of the piston velocity. To 

correct systematic errors in the piston velocity control, the relationship between pv  and ev  

was calculated using Eq. (2) according to conservation of mass with a calibration procedure 

[31] as follows: 

 2 21 1

4 4
s p f n eD v C D v  =   . (2) 

Where fC  is a calibration factor which amends the volume conservation to compensate for 

sources of errors in the piston velocity due to the uncertainty in the control of the piston 



velocity. 

Eq. (1) and Eq. (2) were combined and simplified into Eq. (3) as follows: 

 
2 2

2 2

f n n
p n C n

s s

C D D
v v R v

R D D
=   =   . (3) 

Where CR  is calibrated normalization ratio of pv  to nv , defined as /fC R . Identification 

of CR  as a process parameter, which considered the relationship between pv  and nv  

as well as the main sources of errors in the experiments, improves the efficiency and 

accuracy of the optimization process. 

2.2.2 Extra process parameter from lines to a layer 

As illustrated in Figure 1(b), Ow  (average width of the optimal printed line) of printed line 

under optimal condition was measured in Step 1. Then, a rectangular object (reprehensive of 

the printed layers) was printed by controlling ld  (distance between lines) line by line. In 

extrusion-based AM, optimal ld  depends on Ow  [32]. Thus, extra process parameter from 

lines to a layer was identified as WR  (ratio of ld  to Ow ) and ld  could be determined as 

follows: 

 l W Od R w=  . (4) 

Where WR  is the ratio of ld  to Ow , defined as /l Od w . WR  mainly reflects the impact 

of W  (the weight of the printed layer) on distortion in x-y plane (detailed relationship 

between WR  and W  as well as its derivation process were shown in the Section SI 1 of 

Supporting Information (SI)). 

Consequently, DIW process parameters were identified as: 

1) Process parameters for printing a line: nv , CR  and H ; 

2) Extra process parameter from lines to a layer: WR . 

2.3. Definition and measurement method of dimensional errors 

Dimensional errors were divided into dimensional error for printed lines and dimensional 

error for printed layers according to the two categories of identified process parameters. x-y 

plane dimensional accuracy is of primary interest and dimensional accuracy in the z axis can 

be ignored for layer accuracy analyses because previous studies [12, 14, 16] have verified that 

the use of control charts with image data only considering x-y plane dimensions for each 

layer could improve quality of parts in 3D printing significantly. 



2.3.1 Dimensional error for printed lines and its measurement method 

A. Definition of dimensional error for printed lines 

As illustrated in Figure 3(a), 1N  measuring points were set along the line length uniformly 

and widths of line on each measuring point were measured as 1( 1,2,..., )iw i N= . Average 

width of the printed line was calculated as follows: 

 
1

1

1

/
N

i

i

w w N
=

= . (5) 

Dimensional errors 1( 1,2,..., )iel i N=  on each measuring point along length were defined 

as follows: 

 1, ( 1, 2,..., )i iel w w i N= − = . (6) 
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Figure 3. Definition and measurement method of dimensional errors: (a) definition of dimensional 

errors for printed lines; (b) measuring points setting for printed lines; (c) definition of dimensional 

errors for printed rectangular objects; (d) measuring points setting for printed rectangular objects. 

B. Measurement method of dimensional error for printed lines 

As shown in Figure 3(b), to reduce measurement error and consider the printing stability in 

the whole range, three lines were printed (each line was 100 mm long) and 9 measuring points 

were set for each line uniformly. 27 measuring points were uniformly distributed along lines 

as 1w  to 27w . Minimum and maximum widths of lines except 27 measuring points was 

measured as 28w  and 29w . Thus, totally 29 dimensional errors were used for dimensional 

accuracy analysis of printed lines. In practice, a ruler was put beside printed lines as reference 

dimension and photo of printed lines with ruler was taken using a camera (Canon LEGRIA HF 

R86 Noir, Canon Inc., Japan). Then, photo was imported into MATLAB and widths were 

measured using virtual ruler of the graphic processing tools in MATLAB. 



2.3.2 Dimensional error for printed rectangular objects and its measurement method 

A. Definition of dimensional error for printed rectangular objects 

As illustrated in Figure 3(c), 2N  and 3N  measuring points were set along x and y directions 

in the printed rectangular object uniformly and lengths on each measuring point along x and 

y direction were measured as 2( 1,2,..., )ilx i N=  and 3( 1,2,..., )ily i N= . Average lengths 

for x and y directions were calculated as follows: 

 
2

2

1

/
N

i

i

lx lx N
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= . (7) 
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1

/
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ly ly N
=
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Designed dimensions for rectangular object in x and y directions were Lx  and Ly . 

Dimensional errors for the printed rectangular object in x and y directions were defined as 

follows: 

 2, ( 1, 2,..., )i ierx lx Lx i N= − = . (9) 

 3, ( 1, 2,..., )i iery ly Ly i N= − = . (10) 

B. Measurement method of dimensional error for printed rectangular objects 

To reduce measurement error and consider the printing stability in the whole range, 

measuring points setting for printed rectangular objects was shown in Figure 3(d). Designed 

dimensions for rectangular object in x and y directions were Lx=30 mm and Ly =20 mm, 

respectively. In x direction, 10 measuring points were set uniformly as 1lx  to 10lx . Minimum 

and maximum lengths except 10 points were measured as 11lx  and 12lx . In y direction, 8 

measuring points were set uniformly as 1ly  to 8ly , and minimum and maximum lengths 

except 8 points were measured as 9ly  and 10ly . Thus, 12 lengths were measured in x 

direction as 1lx  to 12lx ; and 10 lengths were measured in y direction as 1ly  to 10ly . Totally, 

22 dimensional errors were used for dimensional accuracy analysis of printed rectangular 

objects. In practice, the lengths measurement method was same as widths measurement for 

printed lines using ruler beside the printed object and MATLAB. 

2.4. Orthogonal array selection procedure 

Instead of conducting full factorial experiments, Taguchi method based experiments of 

different process conditions are conducted through an orthogonal array (OA), minimizing the 



number of experiments while ensuring the validity and robustness of the data [33]. The OA is 

selected based on degree of freedom (DOF) calculation considering the number of factors, 

interactions between them and the number of levels of each factor [34]. The procedure for 

OA selection is as follows: 

(1) Determine the number, levels and interaction effects of factors. 

(2) Calculate the total DOF of factors. DOF for a single factor is equal to one less than the 

number of levels of that factor. DOF for a two-factor interaction effect is equal to 

( ) ( )1 21 1S S−  −  as 1S  and 2S  are DOF of the two factors. Total DOF of factors is 

cumulative sum of DOF of all single factors and DOF of all two-factor interaction effects. 

(3) OA is selected from commonly used standard OAs based on total DOF of factors as 

number of experiments should require Eq. (11) as follows [35]: 

 1totalT DOF + . (11) 

Where T  is number of experiments; totalDOF  is total DOF of factors and their interaction 

effects. 

3. Framework for DIW process optimization 

The framework of the two-step process parameters optimization method was shown in Figure 

4. Step 1 was to optimize process parameters for printing a line. In step 1, continuity and 

uniformity of extruded filaments in the air and on the substrate and printed rectangular 

objects on the substrate were observed in screening experiments to determine printability 

windows for each process parameter. Then, interaction effect tests were conducted and DOF 

for experiments was calculated followed by OA selection for Taguchi design. Next, main 

experiments of line printing based on Taguchi method were conducted. SNR calculations and 

ANOVA were performed for Taguchi method based data to find the optimal combination and 

evaluate the significance respectively. Step 2 was to optimize extra process parameter from 

lines to a layer. In Step 2, the average width of printed lines under optimal condition was 

obtained firstly. Then, single-factor tests of rectangular object printing were conducted to 

find the optimal WR . Finally, the optimal combination of total identified process parameters 

was summarized through step 1 and step 2 of the framework. 
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Figure 4. Framework of the proposed two-step method for optimizing DIW process parameters for 

printed layers. 

4. Results and discussion 

4.1. Step 1: optimization of printed line 

4.1.1 Printability windows 

The term ‘printability window’ is defined as the combination of process parameters required 

for successful extrusion for DIW [17]. In experiments, printability window determination 

criterions include three points: continuity and uniformity of 1) extruded filaments in the air; 2) 

extruded filaments on the substrate and 3) printed rectangular object on the substrate. 

Detailed information for screening experiments setting were listed in the Section SI 2 of SI. 

Through screening experiments, printability windows of each process parameter for the 

prepared ink were listed as: (5~11) mm/s for nv ; (1~1.6) for CR ; (0.65~1.05) for H  and 

(0.5~0.9) for WR . 

4.1.2 Orthogonal array selection 

The lower value, middle value and higher value of printability windows for each factor in step 

1 ( nv , CR  and H ) were considered to be level 1, 2 and 3 respectively as listed in Table 1. 

Table 1. Levels of process parameters in step 1. 

Parameter Range Level 1 Level 2 Level 3 

nv  (5~11) mm/s 5 8 11 



CR  1~1.6 1 1.3 1.6 

H  0.65~1.05 0.65 0.85 1.05 

In this study, only two-factor interaction effects were considered. In interaction effect tests, 

one factor of nv , CR  and H  was fixed and the remaining two factors were changed to 

print lines for interaction effect analysis of the remaining two factors. Average widths of 

printed lines under each process parameters setting were calculated as indicator to analyze 

interaction effects. Interaction effect graphs were plotted in Figure 5. 

Interaction effect graph is a tool to study whether influence of one factor affects the function 

of the other factors [36]. In the graph, parallel line shows no interaction effect and the intersect 

or intersect trend between lines means a high degree of interaction [37]. As illustrated in 

Figure 5, interaction effects of n Cv R , nv H  and CR H  should be considered as two 

lines in graphs intersect for n Cv R  as well as nv H  and had intersect trend for CR H . 

Thus, three factors ( nv , CR  and H ) and three interaction effects ( n Cv R , nv H  and 

CR H ) were considered in calculation for total DOF of factors. 
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Figure 5. (a) Interaction effect graphs of step1 for: (a.1) n Cv R ; (a.2) nv H ; (a.3) CR H  and 

(b) mean SNR graph for main experiments in step 1. 

DOF of single factor and their interaction effects were calculated according to Section 2.4 and 

the total DOF of factors was 18. Thus, 27L  OA ( TL  means OA with T  experiments) was 



selected for main experiments of step 1 as shown in Table 2, from commonly used standard 

OAs for three-level Taguchi design including 9L , 18L  and 27L  according to Eq. (11). 

Table 2. Experimental plan and calculated SNR for main experiments of step 1. 

Experiment number 

Experimental condition 

SNR of dimensional errors 
nv /( mm/s) CR  H  

N1 5 1 0.65 22.51 

N2 5 1 0.85 18.75 

N3 5 1 1.05 22.73 

N4 5 1.3 0.65
 

31.60 

N5 5 1.3 0.85 28.22 

N6 5 1.3 1.05 42.12 

N7 5 1.6 0.65
 

38.58 

N8 5 1.6 0.85 30.33 

N9 5 1.6 1.05 35.91 

N10 8 1 0.65 20.81 

N11 8 1 0.85 20.64 

N12 8 1 1.05 22.07 

N13 8 1.3 0.65 37.32 

N14 8 1.3 0.85 33.76 

N15 8 1.3 1.05 25.78 

N16 8 1.6 0.65 22.82 

N17 8 1.6 0.85 25.37 

N18 8 1.6 1.05 29.11 

N19 11 1 0.65 36.61 

N20 11 1 0.85 24.71 

N21 11 1 1.05 23.74 

N22 11 1.3 0.65 27.22 

N23 11 1.3 0.85 26.96 

N24 11 1.3 1.05 25.94 

N25 11 1.6 0.65 26.78 

N26 11 1.6 0.85 23.98 

N27 11 1.6 1.05 32.92 

4.1.3 SNR analysis 

Main experiments of step 1, containing 27 experimental runs, were conducted as shown in 

Table 2. Based on the requirements of response, SNR was divided into three categories 

namely medium-the-better, higher-the-better and lower-the-better [38]. In this study, the 

dimensional error is the lower-the-better to enhance the printing accuracy. Hence, Eq. (12) 

was used to calculate the SNR; and results were listed in Table 2. 
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 . (12) 



Where   was the average SNR, n  was the number of experiments conducted at level i  

and iy  was the evaluation value (dimensional error in this study). 

The mean SNR response of each process parameters in each level was calculated and listed 

in Table 3. Figure 5(b) represented the mean SNR graph. Higher SNR represents the minimum 

variation difference between the desired output and evaluated output. Therefore, optimal 

process parameters for high dimensional accuracy using Taguchi method were found as: nv

=5 mm/s, CR =1.3, H =0.65. 

Table 3. Mean SNR response table for dimensional error of main experiments in step 1. 

Process 

parameters 

Mean SNR for dimensional error 
Max-Min Rank 

Level 1 Level 2 Level 3 

nv  30.08 27.65 27.65 3.67 2 

CR  23.62 29.53 29.53 7.37 1 

H  29.36 28.92 28.92 3.50 3 

4.1.4 ANOVA results 

ANOVA is a tool to investigate the significant effect and indicate the contribution of process 

parameters in machinability researches [39]. ANOVA results for dimensional error of printed 

lines obtained using Minitab software was shown in Table 4. From Table 4, it was found that 

dimensional error was significantly influenced by CR  followed by n Cv R , nv H , H , 

nv  and CR H . The contribution percentage of process parameters setting for CR , H  

and nv  on dimensional error was 27.78%, 6.64% and 6.37%, respectively, meaning CR  is the 

most important process parameters for dimensional error of printed lines. Meanwhile, 

interaction effects of n Cv R , nv H  and CR H  influenced dimensional error in 26.65%, 

7.01% and 4.41% percentage of contribution respectively. Thus, OA selection for Taguchi 

design should consider interaction effects of n Cv R , nv H  and CR H  as interaction 

effects of n Cv R , nv H  and CR H  had big influences on dimensional error. CR  is 

highly significant in dimensional error at 95% level of confidence as p-value<0.05. Thus, CR  

was principal in single process parameters setting which should be paid more attention in 

DIW. 

Table 4. ANOVA of dimensional error for main experiments in step 1. 

Source DOF 
Sum of squares 

(SS) 

Mean squares 

(MS) 
F-ratio p value Contribution (%) 



nv  2 62.90 31.45 1.21 0.349 6.37 

CR  2 274.31 137.15 5.26 0.035 27.78 

H  2 65.58 32.79 1.26 0.335 6.64 

n Cv R  4 263.16 65.79 2.52 0.124 26.65 

nv H  4 69.26 17.31 0.66 0.635 7.01 

CR H  4 43.52 10.88 0.42 0.792 4.41 

Error 8 208.77 26.10   21.14 

Total 26 987.50    100 

4.2. Step 2: optimization of printed rectangular objects 

4.2.1 Line width under optimal process parameters 

At the beginning of step 2, lines were printed using optimal process parameters obtained in 

step 1 to get line width under optimum condition. Average width of the optimal printed line 

was calculated using Eq. (5) as 1.31 mm. 

4.2.2 Single-factor tests 

In order to get a layer from lines, distance between lines ld  was calculated by Eq. (4). In Eq. 

(4), average width of optimal lines Ow  was obtained at the beginning of step 2; and only 

single-factor WR  determines printing results in step 2. Single-factor tests, containing 5 

experimental runs, were conducted as shown in Table 5 to find optimal value of WR . The 

lower-the-better SNR was used and results were listed in Table 5. Higher SNR represents 

better dimensional accuracy. Therefore, optimal WR  were found as: WR =0.9. 

Table 5. Single-factor tests for step 2. 

Experiment number NR1 NR2 NR3 NR4 NR5 

WR  

0.5 0.6 0.7 0.8 0.9 

SNR of dimensional error 1.96 0.88 1.73 0.38 16.95 

Consequently, optimal DIW process parameters for a layer fabricated in the prepared ink were 

found as: nv =5 mm/s, CR =1.3, H =0.65, WR =0.9. 



4.3. Confirmation tests 

4.3.1 Confirmation tests for method robustness on shapes 

To validate that the optimum conditions can be generalized to layers in other shapes, three 

shapes as Shape A (disk), Shape 2 (leaf) and Shape C (maple leaf) were printed under optimal 

condition (achieved by proposed method) and condition A ( nv =8 mm/s, CR =1, H =0.85, 

WR =0.8). As shown in Figure 6(a), the dimensional quality under optimal condition was higher 

than that under condition A, verifying the method robustness in other shapes. 
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Figure 6. Confirmation tests for the proposed method in (a) verification of method robustness on 

layer shapes and materials; (b) verification for parameter adaptability in 3D parts printing. 



4.3.2 Confirmation tests for method robustness on materials 

To verify the method robustness on materials, a well-printable cellulose-based ink was 

chosen. The optimized process parameters for the cellulose-based ink in DIW obtained using 

the proposed method were: nv =10 mm/s, CR =1.5, H =0.25, WR =0.5. As shown in Figure 

6(a), printed layers in three shapes using the cellulose-based ink have high dimensional 

accuracy same as Nivea Crème, verifying the method robustness on materials. Moreover, 

compared with the optimized process parameters for cellulose-based ink (low viscosity) and 

Nivea Crème (high viscosity), it could be concluded that ink with higher viscosity in DIW needs 

smaller values for nv , CR  and larger values for H , WR . 

4.3.3 Confirmation tests for parameter adaptability in 3D parts printing 

In order to verify the adaptability of optimized process parameter from printed layers’ 

analyses in 3D parts printing, three 3D models were printed using the same optimized process 

parameters and layer height was set as h  for printed layers in Nivea Crème based DIW. As 

shown in Figure 6(b), the printed 3D parts had good dimensional quality by comparing 

printed parts under optimal condition and condition A ( nv =8 mm/s, CR =1, H =0.85, WR

=0.8), verifying that the proposed method has parameter adaptability in 3D parts printing 

from printed layers. 

4.3.4 Confirmation tests for parameter adaptability in constructs with porosities 

To verify the adaptability of optimized process parameter for constructs with porosities, 

confirmation tests were conducted as shown in Figure 7. Two grids named as Grids A and 

Grids B were designed as shown in Figure 7(a): the total dimensions of grids A and grids B 

are same in 31.2 mm X 31.2 mm; and the dimensions of porosity in grids A and grids B are 3 

mm X 3 mm and 6.8 mm X 6.8 mm, respectively. As shown in Figure 7(b) and Figure 7(c), the 

printed single-layer and 10-layers grids had good dimensional quality by comparing printed 

grids under optimal condition and condition A ( nv =8 mm/s, CR =1, H =0.85, WR =0.8), 

verifying that the proposed method has parameter adaptability in constructs with porosities. 
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Figure 7. Confirmation tests for the proposed method in constructs with porosities: (a) two 

designed grids: grids A and grids B; (b) printed grids A under optimal condition and condition A in 

single layer and 10-layers; (c) printed grids B under optimal condition and condition A in single 

layer and 10-layers. 

4.4. Contributions and future work 

Dimensional accuracy of printed parts in DIW depends both on inks’ material properties 

(especially rheological properties) and process parameters. To fully understand DIW, 

mathematical and simulation models were established to predict printing resolution using 

rheological properties and process parameters as input factors [40-42]. However, scholars 

were focusing on inks preparation and rheological analyses to realize a successful DIW and 

process parameters were determined by simple variable tests. Few work fully analyzed process 

parameters. It is useful and necessary to analyze process parameters through process analyses 

and optimize them as process parameters identification and optimization are important for 

DIW applications. This work focuses on the identification and optimization of process 

parameters for well-printable inks (such as Nivea Crème and cellulose-based ink) whose 

rheological properties are already analyzed in the literature. The contributions of this work 

include: (a) key process parameters identification through process analyses; (b) process 

parameters optimization through the proposed two-step method. 

In the future, a model for DIW using the identified process parameters in this work and inks’ 

rheological properties as input factors through analytical and simulation methods will be 

established to fully understand the DIW process. 

5. Conclusion 

In this study, the DIW process parameters were identified through process analyses and a 

two-step method was proposed to optimize DIW process parameters for dimensional 

accuracy and analyze the significance of each process parameter. 

In the DIW process parameters identification, DIW process parameters for printed layers were 

divided into two categories and identified by process analysis as: 1) process parameters for 

printing a line and 2) extra process parameter from lines to a layer. The process parameters 



identification considered the relationship between intermediate process parameters as well 

as main sources of errors in the experiments, thus improved the efficiency and accuracy of 

the optimization process. In the two-step optimization method for identified DIW process 

parameters, Step 1 was to optimize process parameters for printing a line and Step 2 was to 

optimize the parameter from lines to a layer. Confirmation results verified the proposed 

method and the method robustness on other shapes and other materials; parameter 

adaptability in 3D parts printing from printed layers’ analyses for the proposed method and 

parameter adaptability in constructs fabricated as 100% infill or with porosities. 

This proposed two-step optimization method satisfies the requirement of high quality DIW 

process by finding optimum process parameters setting with minimum materials and time. 

The proposed method will allow a rapid and reproducible process parameters optimization 

of a wide variety of inks in DIW. 
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