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Abstract We study the nonparametric regression estimation problem with a random
design in Rp with p ≥ 2. We do so by using a projection estimator obtained by least
squares minimization. Our contribution is to consider non-compact estimation do-
mains in Rp on which we recover the function, and to provide a theoretical study of
the risk of the estimator relative to a norm weighted by the distribution of the design.
We propose a model selection procedure in which the model collection is random
and takes into account the discrepancy between the empirical norm and the norm
associated with the distribution of design. We prove that the resulting estimator au-
tomatically optimizes the bias-variance trade-off in both norms, and we illustrate the
numerical performance of our procedure on simulated data.

Keywords nonparametric estimation · nonparametric regression · hermite basis ·
model selection

1 Introduction

We consider the following random design regression model:

Yi = b(XXX i)+ εi, i = 1, . . . ,n,

where the variables XXX i ∈ Rp are independent but not necessarily identically dis-
tributed, the noise variables εi ∈ R are i.i.d. centered with finite variance σ2 and
independent from the XXX is, and b : Rp → R is a regression function. We seek to re-
cover the function b on a domain A ⊂ Rp from the observations (XXX i,Yi)i=1,...,n.
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More precisely, we consider the following framework. We assume that the vari-
ance of the noise σ2 is known. We assume that the variables XXX i are independent
but not identically distributed, we call µi the distribution of XXX i, but we do not as-
sume that µi is known. However, we fix ν a reference measure on A and we as-
sume that µ := 1

n ∑
n
i=1 µi admits a bounded density with respect to ν , so that we have

L2(A,µ)⊂ L2(A,ν). In particular, this assumption implies that supp(µ)⊂ A. Finally,
we consider domains A⊂Rp of the form A1×·· ·×Ap where Ak ⊂R and we consider
a measure ν on A that is of the form ν1 ⊗·· ·⊗νp with νk supported on Ak. Our goal
is to estimate the regression function b on the domain A and to control the expected
error with respect to the norm ∥·∥µ associated with the distribution of the XXX is:

∀t ∈ L2(A,µ), ∥t∥2
µ

:=
∫

A
t(xxx)2 dµ(xxx) =

1
n

n

∑
i=1

∫
A

t(xxx)2 dµi(xxx).

We can interpret the error with respect to this norm as a prediction risk: if XXX ′
1, . . . ,XXX

′
n

are independent copies of XXX1, . . . ,XXXn, then we have:

∀b̂ estimator, ∥b− b̂∥2
µ =

1
n

n

∑
i=1

E
[(

b(XXX ′
i)− b̂(XXX ′

i)
)2
∣∣∣XXX1, . . . ,XXXn

]
,

which is the mean quadratic error of a new observation drawn uniformly from one of
the distributions µi.

Nonparametric regression problems have a long history, and a large number of
methods have been proposed. In this introduction, we focus on two main families of
methods: kernel estimators and projection estimators. For reference books on the sub-
ject, see Efromovich (1999) regarding the projection method and Györfi et al (2002)
for the kernel method.

The classical estimator of Nadaraya (1964) and Watson (1964) consists of a quo-
tient of estimators b̂ f/ f̂ , where b̂ f and f̂ are kernel estimators of the functions b f
and f (the function f being the common density of the XXX is in the i.i.d case). This
estimator can also be interpreted as locally fitting a constant by averaging the Yis, the
locality being determined by the kernel, see the book of Györfi et al (2002) or Tsy-
bakov (2009). This method can then be generalized by replacing the local constant
by a local polynomial, leading to the so-called local polynomial estimator.

The main drawback of the Nadaraya–Watson estimator is that it relies on an es-
timator of the density of the XXX is. As such, the rate of convergence depends on the
regularity of f , and two smoothing parameters have to be chosen. A popular solution
is to choose the same bandwidth for both estimators using leave-one-out cross vali-
dation. This method works well in practice and has been proven consistent by Härdle
and Marron (1985) (see also Chapter 8 in Györfi et al (2002)). Recently, Comte and
Marie (2021) have proposed to use the Penalized Comparison to Overfitting method
(PCO), a bandwidth selection method developed by Lacour et al (2017) for kernel
density estimation, to select separately the bandwidths of the numerator and the de-
nominator of the Nadaraya–Watson estimator. Their estimator matches the perfor-
mances of the single bandwidth CV estimator when the noise is high, but the latter
is better when the noise is small. Other bandwidth selection methods exist such as
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plug-in or bootstrap; see Köhler et al (2014) for an extensive survey and comparison
of the different bandwidth selection methods for the local linear estimator.

Another approach is to use a projection estimator. The idea is to minimize a least
squares contrast over finite-dimensional spaces of functions {Smmm : mmm ∈ Mn} called
models:

b̂mmm := argmin
t∈Smmm

1
n

n

∑
i=1

(
Yi − t(XXX i)

)2
,

the model collection Mn being allowed to depend on the number of observations.
This method overcomes the problems of the Nadaraya–Watson estimator: it does not
need to estimate the density of the XXX is, and only one model selection procedure is
required. Moreover, it can provide a sparse representation of the estimator. This ap-
proach was developed in a fixed design setting by Birgé and Massart (1998), Barron
et al (1999) and Baraud (2000). In particular, the papers of Baraud (2000, 2002) pro-
vide a model selection procedure that optimizes the bias-variance compromise under
weak assumptions on the moments of the noise distribution. They obtain an estimator
that is adaptive both in the fixed and random design setting when the domain A is
compact.

The non-compact case have been studied recently in the simple regression setting
(p = 1) by Comte and Genon-Catalot (2020a,b). They use non-compactly supported
bases, specifically the Hermite basis (supported on R) and the Laguerre basis (sup-
ported on R+), to construct their estimator. Significant attention has been paid to these
bases in the past years since they exhibit nice mathematical properties that are useful
for solving inverse problems (Mabon 2017; Comte and Genon-Catalot 2018; Sacko
2020). Non-compactly supported bases also avoid issues concerning the choice of
support. When A is compact, the theory assumes it is fixed a priori. In practice, how-
ever, the support is generally determined using the data, although this dependency
between data and support is not taken into account in the theoretical development.
Working with a non-compact domain, for example R or R+, allows us to bypass this
issue.

Concerning the regression problem, difficulties arise when we go from the com-
pact case to the non-compact case. When A is compact, it is usual to assume that the
density of the XXX is is bounded from below by some positive constant f0. In the non-
compact case, this assumption fails. Instead, the study of the minimum eigenvalue
of some random matrix must be done. This question has been studied in the simple
regression case (p = 1) by Cohen et al (2013) by using the matrix concentration in-
equalities of Tropp (2012). However, their results are obtained under the assumption
that the regression function is bounded by a known quantity and they do not provide
a model selection procedure.

We make the following contributions in our paper. We extend the results of Comte
and Genon-Catalot (2020a) to the multiple regression case (p ≥ 2) with more general
assumptions on the design, and we improve their result on the oracle inequality un-
der the empirical norm (see Theorem 2). Our work generalizes the results of Baraud
(2002) to the non-compact case and improves their results in the compact case (see
Theorem 3). We do so by combining the fixed design results of Baraud (2000) with a
more refined study of the discrepancy between the empirical norm and the µ-norm.
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This discrepancy is expressed in terms of the deviation of the minimum eigenvalue
of a random matrix, of which we control the probability with the concentration in-
equalities of Tropp (2012) and Gittens and Tropp (2011). Finally, our estimator is
constructed as a projection estimator on a tensorized basis whose coefficients are
computed using hypermatrix calculus and can be implemented in practice. This fea-
sibility is illustrated in Section 5 which also shows that the procedure works well.

Outline of the paper In Section 2 we define the projection estimator. In Section 3
we study the probability that the empirical norm and the µ-norm depart from each
other and we derive an upper bound on the µ-risk of our estimator. In Section 4 we
propose a model selection procedure and we prove that it satisfies an oracle inequality
both in empirical norm and in µ-norm. Finally, in Section 5 we study numerically the
performance of our estimator. All the proofs are gathered in Section 7.

Notations

– EXXX :=E[ · |XXX1, . . . ,XXXn], PXXX :=P[ · |XXX1, . . . ,XXXn], VarXXX :=Var( · |XXX1, . . . ,XXXn), where
XXX = (XXX1, . . . ,XXXn).

– If π is a measure on A, we write ∥·∥π and ⟨·, ·⟩π the norm and the inner product
weighted by the measure π .

– We denote by ⟨·, ·⟩n and ∥·∥n the empirical inner product and the empirical norm1,
defined as ⟨t,s⟩n := 1

n ∑
n
i=1 t(XXX i)s(XXX i) and ∥t∥2

n := 1
n ∑

n
i=1 t(XXX i)

2. If u ∈ Rn is a
vector, we also write ∥u∥2

n := 1
n ∑

n
i=1 u2

i .

2 Projection estimator

In our setting, the domain is a Cartesian product A = A1 × ·· · ×Ap and ν = ν1 ⊗
·· ·⊗νp where νk is supported on Ak. For each i ∈ {1, . . . , p}, we consider (ϕ i

j) j∈N an
orthonormal basis of L2(Ai,dνi) and we form an orthonormal basis of L2(A,dν) by
tensorization:

∀ jjj ∈ Np, ∀xxx ∈ A, ϕ jjj(xxx) := (ϕ1
j1 ⊗·· ·⊗ϕ

p
jp
)(xxx) := ϕ

1
j1(x1)×·· ·×ϕ

p
jp
(xp).

For mmm ∈ Np
+, we set Smmm := Span(ϕ jjj : jjj ≤ mmm− 1) and we write Dmmm := m1 · · ·mp its

dimension. We estimate b by minimizing a least squares contrast on Smmm:

b̂mmm := argmin
t∈Smmm

1
n

n

∑
i=1

(
Yi − t(XXX i)

)2
.

If we expand b̂mmm on the basis (ϕ jjj) jjj∈Np , this problem can be written as:

b̂mmm = ∑
jjj≤mmm−1

â(mmm)
jjj ϕ jjj, â(mmm) := argmin

aaa∈Rm
∥Y− Φ̂ΦΦmmm ×p a∥2

Rn , (1)

1 in general it is a semi-norm but we will only consider subspaces on which it is a norm.
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where Y := (Y1, . . . ,Yn) ∈ Rn and Φ̂ΦΦmmm ∈ Rn×mmm is defined as:

∀i ∈ {1, . . . ,n}, ∀ jjj ≤ mmm−1,
[
Φ̂ΦΦmmm
]

i, jjj := ϕ jjj(XXX i).

Using Lemma 8 in Appendix, the problem (1) has a unique solution if and only if Φ̂ΦΦmmm
is injective and in that case:

â(mmm) = (Φ̂ΦΦ
∗
mmm ×1 Φ̂ΦΦmmm)

−1 ×p Φ̂ΦΦ
∗
mmm ×1 Y

=
1
n

Ĝ−1
mmm ×p Φ̂ΦΦ

∗
mmm ×1 Y,

where [Φ̂ΦΦ
∗
mmm] jjj,i = [Φ̂ΦΦmmm]i, jjj and where Ĝmmm is the Gram hypermatrix of (ϕ jjj) jjj≤mmm−1 rela-

tively to the empirical inner product ⟨·, ·⟩n:

∀ jjj,kkk ≤ mmm−1,
[
Ĝmmm
]

jjj,kkk := ⟨ϕ jjj,ϕkkk⟩n.

Notice that Φ̂ΦΦmmm is injective if and only if Ĝmmm is invertible, that is if and only if ∥·∥n is
a norm on Smmm.

3 Bound on the risk of the estimator

Let us start with the classical bias-variance decomposition of the empirical risk. In
our context this result is given by the next Proposition.

Proposition 1 If Ĝmmm is invertible, then we have:

EXXX∥b− b̂mmm∥2
n = inf

t∈Smmm
∥b− t∥2

n +σ
2 Dmmm

n
.

As a consequence, if Ĝmmm is invertible a.s, then we have:

E∥b− b̂mmm∥2
n ≤ inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n
.

Hereafter, we always assume that Ĝmmm is invertible a.s.
If we want to obtain a similar result for the µ-norm, we need to understand how

the empirical norm can deviate from the µ-norm. More generally, we need to under-
stand the relations between the different norms we have on the subspace Smmm (∥·∥n,
∥·∥µ , ∥·∥ν and ∥·∥∞). It is well known that all norms are equivalent on finite dimen-
sional spaces; our question concerns the constants in this equivalence. We introduce
the following notation: if ∥·∥α and ∥·∥β are two norms on a space S, we define:

Kα

β
(S) := sup

t∈S\{0}

∥t∥2
α

∥t∥2
β

,

and when S = Smmm, we use the notation Kα

β
(mmm) := Kα

β
(Smmm). The next lemma gives the

value of Kβ

α (S) when the norms are Euclidean.
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Lemma 1 Let (S,⟨·, ·⟩α) be a d-dimensional Euclidean vector space equipped with
an orthonormal basis (φ1, . . . ,φd). Let ⟨·, ·⟩β be another inner product on E and let
G be the Gram matrix of the basis (φ1, . . . ,φd) relatively to ⟨·, ·⟩β , that is:

G :=
[
⟨φ j,φk⟩β

]
1≤ j,k≤d

.

We have:

Kβ

α (S) = ∥G∥op = λmax(G), Kα

β
(S) = ∥G−1∥op =

1
λmin(G)

.

The proof of Lemma 1 is identical to the proof of Lemma 3.1 in Baraud (2000), so
we leave it out.

The next lemma provides a way to compute K∞
α (S) from an orthonormal basis

when ∥·∥α is Euclidean. It is essentially the same as Lemma 1 in Birgé and Massart
(1998).

Lemma 2 Let S be a space of bounded functions on A such that d := dim(S) is finite.
Let ⟨·, ·⟩α be an inner product on S. If (ψ1, . . . ,ψd) is an orthonormal basis of S, then
we have:

K∞
α (S) =

∥∥∥∥ d

∑
j=1

ψ
2
j

∥∥∥∥
∞

.

The question we are interested in is how close are the norms ∥·∥n and ∥·∥µ on Smmm.
Following a similar idea of Cohen et al (2013), let us define the event:

∀δ ∈ (0,1), Ωmmm(δ ) :=
{
∀t ∈ Smmm, ∥t∥2

µ ≤ 1
1−δ

∥t∥2
n

}
=

{
Kµ

n (mmm)≤ 1
1−δ

}
. (2)

The key decomposition of the µ-risk of b̂mmm is given by the following Proposition.

Proposition 2 For all δ ∈ (0,1), we have:

E∥b− b̂mmm∥2
µ ≤

(
1+

2
1−δ

[
K∞

µ (mmm)

(1−δ )n
∧1
])

inf
t∈Smmm

∥b− t∥2
µ +

2σ2Dmmm

(1−δ )n

+2∥b∥2
µ P[Ωmmm(δ )

c]+E
[
Kµ

n (mmm)∥Y∥2
n 1Ωmmm(δ )c

]
,

where Kµ
n (mmm) and K∞

µ (mmm) are given by Lemmas 1 and 2.

We see that we need an upper bound on the probability of the event Ωmmm(δ )
c. The

following proposition is a consequence of the matrix Chernoff bound of Tropp (2012)
(Theorem 5 in Appendix) .

Proposition 3 For all δ ∈ (0,1), we have:

P[Ωmmm(δ )
c]≤ Dmmm exp

(
−h(δ )

n
K∞

µ (mmm)

)
,

where h(δ ) := δ +(1−δ ) log(1−δ ) and K∞
µ (mmm) is given by Lemma 2.



Nonparametric Multiple Regression by Projection 7

Remark 1 The quantity K∞
µ (mmm) is unknown but we have the following upper bound

using Lemmas 1 and 2:

K∞
µ (mmm)≤ K∞

ν (mmm)Kν
µ (mmm) =

(
sup
xxx∈A

∑
jjj≤mmm−1

ϕ jjj(xxx)2

)
∥G−1

mmm ∥op.

The quantity ∥G−1
mmm ∥op is still unkown but can be estimated by plugging in Ĝmmm.

Comte and Genon-Catalot (2020a) show in their Proposition 8 that, when one uses
the Hermite or the Laguerre basis, the inverse of the Gram matrix is unbounded (it
satisfies ∥G−1

m ∥op ≳
√

m), while it is bounded in the compact case:

∥G−1
mmm ∥op = sup

t∈Smmm\{0}

∥t∥2
ν

∥t∥2
µ

≤ 1
f0
, (3)

where f0 is a positive lower bound of the covariates density. Hence, the least squares
minimization problem will become highly unstable as the dimension of the projection
space grows. That is why a form of regularization is needed if we want to control the
µ-risk of the estimator. For α a positive constant, let us consider the following model
collection:

M
(1)
n,α :=

{
mmm ∈ Np

+

∣∣∣∣K∞
ν (mmm)

(
∥G−1

mmm ∥op ∨1
)
≤ α

n
logn

}
. (4)

Gathering Propositions 2 and 3, we obtain the following bound on the µ-risk of b̂mmm

when mmm belongs to M
(1)
n,α .

Theorem 1 Let us assume that b ∈ L2r(µ) for some r ∈ (1,+∞] and let r′ ∈ [1,+∞)
be the conjugated index of r, that is: 1

r +
1
r′ = 1. For all α ∈ (0, 1

2r′+1 ) and for all

mmm ∈ M
(1)
n,α we have:

E∥b− b̂mmm∥2
µ ≤Cn(α,r′) inf

t∈Smmm
∥b− t∥2

µ +C′(α,r′)σ
2 Dmmm

n
+

C′′(b,σ2,α,r
)

n logn
,

where the constants Cn(α,r′) and C′(α,r′) are given by:

Cn(α,r′) := 1+
2

1−δ (α,r′)

(
α(

1−δ (α,r′)
)

logn
∧1

)
, C′(α,r′) :=

2
1−δ (α,r′)

,

where δ (α,r′) ∈ (0,1) tends to 1 as α tends to 1
2r′+1 , and where C′′(b,σ2,α,r

)
is

defined by (18).

Remark 2 Let us make some statements concerning the behavior of Cn(α,r′) and
C′(α,r′):

– Cn(α,r′) is bounded relatively to n;
– Cn(α,r′)≥ 1 and C′(α,r′)≥ 2;
– as α → 1

2r′+1 with n fixed, Cn(α,r′) and C′(α,r′) tend to +∞;
– as n →+∞ with α and r′ fixed, Cn(α,r′) tends to 1.
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4 Adaptive estimator

We consider the empirical version of the model collection Mn,α defined by (4):

M̂
(1)

n,β :=
{

mmm ∈ Np
+

∣∣∣∣K∞
ν (mmm)

(
∥Ĝ−1

mmm ∥op ∨1
)
≤ β

n
logn

}
,

with β a positive constant. We choose m̂mm1 ∈ M̂
(1)

n,β by minimizing the following pe-
nalized least squares criterion:

m̂mm1 := argmin
mmm∈M̂

(1)
n,β

(
−∥b̂mmm∥2

n +(1+θ)σ2 Dmmm

n

)
, θ > 0. (5)

Based on a result of Baraud (2000) for fixed design regression, we prove that b̂m̂mm1
automatically optimizes the bias-variance compromise in empirical norm on Mn,α ,
up to a constant and a remainder term.

Theorem 2 If b ∈ L2r(µ) for some r ∈ (1,+∞] and if E|ε1|q is finite for some q > 6,
then there exists a constant αβ ,r′ > 0 depending on β and r′ (the conjugated index
of r) such that for all α ∈ (0,αβ ,r′), the following upper bound on the risk of the
estimator b̂m̂mm1 with m̂mm1 defined by (5) holds:

E∥b− b̂m̂mm1∥
2
n ≤C(θ) inf

mmm∈M
(1)
n,α

(
inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n

)
+σ

2 Σ(θ ,q)
n

+Rn,

where C(θ) := (2+8θ−1)(1+θ), and where:

Σ(θ ,q) :=C′′(θ ,q)
E|ε1|q

σq ∑
mmm∈Np

+

D
−( q

2−2)
mmm , Rn :=C′(∥b∥L2r(µ),σ

2)
(logn)(p−1)/r′

nκ(α,β )/r′
,

with κ(α,β ) a positive constant satisfying κ(α,β )
r′ > 1 and κ(α,β )

r′ → 1 as α → αβ ,r′ .

Remark 3 The term Σ(θ ,q) is finite if q > 6. Indeed, let 2ε := ( q
2 − 2)− 1 > 0, we

have:

∑
mmm∈Np

+

D
−( q

2−2)
mmm =

+∞

∑
d=1

Card
{

mmm ∈ Np
+

∣∣Dmmm = d
}
×d−( q

2−2) ≤
+∞

∑
d=1

o(dε)

d1+2ε
<+∞,

where we use Theorem 7 in Appendix.

Remark 4 The constant αβ ,r′ is increasing with β and goes from 0 to 1
2r′+1 . It is also

decreasing with r′ (so increasing with r) and tends to 0 as r′ →+∞ (as r → 1).

To transfer the previous adaptive result from the empirical norm into the µ-norm,
we use once again concentration inequalities on the matrix Ĝmmm. However, we need
to make a distinction between the compact case and the non-compact case. Indeed,
when A is compact, we can make the usual assumption that the density dµ

dν
is bounded

from below and apply the matrix Chernoff bound of Gittens and Tropp (2011), see
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Lemma 6. This lemma relies critically on the “bounded from below” assumption so
it cannot work in the non-compact case.

To handle the non-compact case, we make use of the matrix Bernstein bound
of Tropp (2012) instead (Theorem 6 in appendix), see Lemma 7. This inequality is
different from the matrix Chernoff bounds we have used so far, so we have to consider
smaller model collections to make it work. In the following, we consider two cases:

1. Compact case. We assume that there exists f0 > 0 such that for all x ∈ A, dµ

dν
(x)>

f0. In that case, Gmmm is always invertible and we have ∥G−1
mmm ∥op ≤ 1

f0
, see (3).

2. General case. We consider smaller model collections:

M
(2)
n,α :=

{
mmm ∈ Np

+

∣∣∣∣K∞
ν (mmm)

(
∥G−1

mmm ∥2
op ∨1

)
≤ α

n
logn

}
,

M̂
(2)

n,β :=
{

mmm ∈ Np
+

∣∣∣∣K∞
ν (mmm)

(
∥Ĝ−1

mmm ∥2
op ∨1

)
≤ β

n
logn

}
,

where α and β are positive constants and we choose m̂mm2 ∈ M̂
(2)

n,β as:

m̂mm2 := argmin
mmm∈M̂

(2)
n,β

(
−∥b̂mmm∥2

n +(1+θ)σ2 Dmmm

n

)
, θ > 0. (6)

Theorem 3 Let r ∈ (1,+∞], let r′ ∈ [1,+∞) be its conjugated index and let us assume
that b belongs to L2r(µ) and that E|ε1|q is finite for some q > 6.
• Compact case. Let f0 > 0 such that dµ

dν
(x)≥ f0 for all x ∈ A, there exists β f0,r′ > 0

such that for all β ∈ (0,β f0,r′), there exists αβ ,r′ > 0 such that for all α ∈ (0,αβ ,r′),
the following upper bound on the risk of the estimator b̂m̂mm1 with m̂mm1 defined by (5)
holds:

E∥b− b̂m̂mm1∥
2
µ ≤C(θ ,β ,r) inf

mmm∈M
(1)
n,α

(
inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n

)
+C′(β ,r)σ2 Σ(θ ,q)

n
+Rn,

where the remainder term is given by:

Rn =C′′(∥b∥L2r(µ),σ
2,β ,r

)(
n−

κ(α,β )
r′ (logn)

p−1
r′ +n−λ (β ,r, f0) (logn)

p−1
r′ −1

)
,

with λ (β ,r, f0)> 1 and κ(α,β )
r′ > 1.

• General case. Let B := (∥ dµ

dν
∥∞ + 2

3 )
−1, there exists βB,r′ > 0 such that for all β ∈

(0,βB,r′), there exists α̃β ,r′ > 0 such that for all α ∈ (0, α̃β ,r′), the following upper
bound on the risk of the estimator b̂m̂mm2 with m̂mm2 defined by (6) holds:

E∥b− b̂m̂mm2∥
2
µ ≤C(θ ,β ,r) inf

mmm∈M
(2)
n,α

(
inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n

)
+C′(β ,r)σ2 Σ(θ ,q)

n
+Rn,
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where the remainder term is given by:

Rn =C′′(∥b∥L2r(µ),σ
2,β ,r

)(
n−

κ̃(α,β )
r′ (logn)

p−1
r′ +n−λ (β ,r,B) (logn)

p−1
r′ −1

)
,

with λ (β ,r,B)> 1 and κ̃(α,β )
r′ > 1.

This result shows that there is a range of values for the constant β that depends on
the integrability of b and on f0 (compact case) or ∥ dµ

dν
∥∞ (general case), such that for

the µ-norm, the estimator b̂m̂mm automatically optimizes the bias-variance trade-off (up
to a constant and a rest) on Mn,α for all α in a range that depends on β .

Remark 5 Theorem 3 improves previous results in the literature:

1. In the compact case, we improve the result of Baraud (2002). Indeed in this arti-
cle, the model collections considered are built by picking an “envelope model”,
that is a linear space Sn with finite dimension Nn, whose all models are a sub-
space. Their assumptions concern the space Sn: they assume that K∞

ν (Sn) ≤
C2Nn for some constant C > 0 and they require that Nn ≤ C−1

√
n/(logn)3. In

comparison, our procedure avoids the choice a priori of an envelope model, and
uses a looser constraint on the dimension of the models.

2. In the non-compact case, we extend the results of Comte and Genon-Catalot
(2020a) to the case p ≥ 2 without losing much on the assumptions: their result
requires a moment of order 6 on the noise whereas our result is obtained with
a moment of order q, with q > 6. We also generalize their result by consider-
ing a non i.i.d. design and by using a more general moment assumption on the
regression function.

Remark 6 (Unknown variance) During all of our work, we assume that σ2 is known.
To handle the case of an unknown variance, we can use the same method proposed
by Baraud (2000) in the fixed design setting. Using a residual least-squares estimator
of σ2 in the penalized criterion for choosing the model, they prove (Theorem 6.1)
that the resulting estimator of the regression function satisfies an oracle inequality.
Starting from Baraud’s result, and using the same arguments we used in this paper,
we think one can obtain an oracle inequality for a projection estimator, in the random
design framework with unknown variance. We omit such development for the sake
of conciseness.

5 Numerical illustrations

In this section, we compare our estimator with the Nadaraya–Watson estimator on
simulated data in the case p = 1 and p = 2.

Regression function We consider the following regression functions:

1. b1(x) = exp((x−1)2)+ exp((x+1)2),
2. b2(x) := 1

1+x2 ,
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3. b3(x) := xcos(x),
4. b4(x) := |x|,
5. b5(x1,x2) := exp(− 1

2 [(x1 −1)2 +(x2 −1)2])+ exp(− 1
2 [(x1 +1)2 +(x2 +1)2]),

6. b6(x1,x2) := 1/(1+ x2
1 + x2

2),
7. b7(x1,x2) := cos(x1)sin(x2),
8. b8(x1,x2) := |x1x2|.

The functions b2 and b6 are smooth bounded functions and have a unique maximum
at 0, so they should be an easy case. The functions b1 and b5 are smooth and bounded
with two maximums. The functions b3 and b7 are smooth oscillating functions. Fi-
nally the functions b4 and b8 are not smooth nor bounded, and should be a harder
case.

Distribution of XXX For the sake of simplicity, we consider the case where XXX1, . . . ,XXXn
are i.i.d. and have a density with respect to Lebesgue measure (i.e. ν = Leb). For the
case p = 1, we consider the following distributions: X ∼ N (0,1), and X ∼ Laplace.
Both distributions are symmetric and centered at 0, but the normal distribution is more
concentrated around its mean than the Laplace distribution. For the case p= 2, we use
independent marginals for the distribution of the covariates: XXX ∼N (0,1)⊗N (0,1),
and XXX ∼ Laplace⊗Laplace.

Noise distribution We consider the normal distribution: ε ∼N (0,σ2). The variance
σ2 is chosen such that the signal-to-noise ratio is the same for each choice of regres-
sion function and distribution of XXX , where we define the signal-to-noise ratio as:

SNR :=
∥b∥2

µ

σ2 .

We consider the following values: SNR= 2 (High noise), and SNR= 20 (Low noise).

Parameters of the projection estimator Since the distributions of XXX are supported on
R or R2, we choose the Hermite basis. The Hermite functions are defined as:

ϕ j(x) := c j H j(x)e−
x2
2 , H j(x) := (−1) jex2 d j

dx j

[
e−x2

]
, c j :=

(
2 j j!

√
π
)−1/2

.

and form a basis of L2(R). We form a basis of L2(R2) by tensorizing the Hermite
basis as explained in Section 2. We choose the parameter m̂mm with the model selection
procedure (6). This procedure requires two additional parameters: the constant θ in
the penalty and the constant β in the model collection M̂

(2)
n,β .

We choose β such that the model collection M̂
(2)

n,β is not too small, especially for

small sample sizes. Indeed, we find that the operator norm ∥Ĝ−1
mmm ∥op can grow very

fast with mmm, which can result in model collections with very few models. In our case,
we choose β = 104.

The constant κ := 1+θ in front of the penalty is chosen following the “minimum
penalty heuristic” (Arlot and Massart 2009). On several preliminary simulations, we
compute the selected dimension Dm̂mm as a function of κ and we find κmin such that for
κ < κmin the dimension is too high and for κ > κmin it is acceptable. Then, we choose
κ⋆ = 2κmin. In our case, we find κ⋆ = 2 when p = 1 and p = 2.
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Nadaraya–Watson estimator Let us define the Nadaraya–Watson estimator in the
case p = 1. For all h ∈ (0,1), let Kh be the pdf of the N (0,h) distribution. The
Nadaraya–Watson estimator is defined as:

∀x ∈ R, b̂NW
h (x) :=

∑
n
i=1 Yi Kh(x−Xi)

∑
n
i=1 Kh(x−Xi)

.

The bandwidth h is selected by leave-one-out cross validation, that is:

ĥ := argmin
h

n

∑
i=1

(
Yi − b̂NW

h,−i(Xi)
)2
,

where b̂NW
h,−i is the Nadaraya–Watson estimator computed from the data set:{

(X j,Yj) : j ∈ {1, . . .n}\{i}
}
.

In the case p = 2, the definition of the estimator is the same but with a couple of
bandwidths hhh = (h1,h2) ∈ (0,1)2, and with Khhh the pdf of the N2(000,H) distribution,
where H := diag(h1,h2).

Computation of the risk We consider samples of size n = 250 and n = 1000 in the
case p = 1, and samples of size n = 500 and n = 2000 in the case p = 2. For each
choice of regression function, distribution of XXX and SNR, we generate N = 100 sam-
ples of size n. For each sample, we compute the Hermite projection estimator and the
Nadaraya–Watson estimator, then we compute the relative µ-error of the estimators,
that is:

relative error :=
∥b̂−b∥2

µ

∥b∥2
µ

=

∫
Rp |b̂(xxx)−b(xxx)|2 f (xxx)dxxx∫

Rp b(xxx)2 f (xxx)dxxx
,

where f is the density of the distribution µ . We compute an approximation of these
integrals: we consider a compact domain I× I with I an interval such that P[X ∈ I] =
95% in the case p = 1 and P[XXX ∈ I × I] = 95% in the case p = 2. Then, we consider a
discretization with 200 points of I. In the case p = 1, we use Simpson’s rule with this
discretization of I to approximate the integrals. In the case p = 2, we approximate the
integrals by a sum over the grid of I × I:∫∫

R2

∣∣b̂(xxx)−b(xxx)
∣∣2 f (xxx)dxxx ≈

200

∑
i=1

200

∑
j=1

∣∣b̂(x1,i,x2, j)−b(x1,i,x2, j)
∣∣2 f (x1,i,x2, j)∆

2,

where ∆ is the discretization step.

Results In the case p = 1, we show our results on Table 1. First of all, we see that
the results are superior when X has a Normal distribution compared to a Laplace
distribution. This can be explained by the fact that the Laplace distribution is less
concentrated around 0 than the normal distribution, so the Xis are more scattered
and the mu-risk covers a larger range. In addition, in the normal setting, we see that
the Hermite estimator is better than the Nadaraya–Watson estimator for estimating
b1, b2 and b3, and both estimators are equivalent for estimating b4. In the Laplace
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X distrib. Reg. fun. Estim. SNR = 2 SNR = 20
n = 250 n = 1000 n = 250 n = 1000

Norm.

b1

Hermite
1.23 0.288 0.138 0.034

[1.22,1.24] [0.284,0.292] [0.136,0.140] [0.034,0.035]
4 5 6 6

NW
1.50 0.468 0.255 0.076

[1.49,1.51] [0.463,0.472] [0.253,0.258] [0.075,0.076]
0.307 0.212 0.724 0.763

b2

Hermite
1.00 0.362 0.159 0.047

[0.99,1.01] [0.358,0.366] [0.157,0.161] [0.047,0.047]
3 5 6 8

NW
1.38 0.475 0.236 0.075

[1.37,1.40] [0.470,0.480] [0.234,0.238] [0.074,0.076]
0.281 0.214 0.161 0.126

b3

Hermite
1.77 0.477 0.206 0.050

[1.76,1.79] [0.472,0.482] [0.204,0.208] [0.049,0.050]
10 12 11 13

NW
2.80 0.823 0.808 0.160

[2.78,2.82] [0.817,0.829] [0.799,0.818] [0.160,0.161]
0.138 0.107 0.088 0.066

b4

Hermite
1.94 0.532 0.288 0.116

[1.92,1.97] [0.528,0.536] [0.286,0.290] [0.115,0.116]
9 12 11 13

NW
1.86 0.585 0.344 0.108

[1.84,1.88] [0.581,0.590] [0.341,0.347] [0.107,0.108]
0.216 0.162 0.120 0.096

Lap.

b1

Hermite
1.81 0.400 0.162 0.047

[1.78,1.83] [0.394,0.405] [0.159,0.164] [0.046,0.047]
5 6 6 7

NW
2.20 0.686 0.335 0.104

[2.18,2.23] [0.681,0.691] [0.332,0.338] [0.103,0.105]
0.347 0.260 0.182 0.147

b2

Hermite
1.45 0.426 0.202 0.064

[1.43,1.47] [0.421,0.430] [0.199,0.204] [0.063,0.064]
3 5 7 9

NW
1.94 0.725 0.0337 0.113

[1.92,1.95] [0.720,0.731] [0.334,0.339] [0.112,0.114]
0.315 0.249 0.180 0.145

b3

Hermite
4.56 0.985 1.39 0.121

[4.49,4.63] [0.979,0.991] [1.32,1.47] [0.120,0.123]
19 27 20 29

NW
3.57 0.974 1.09 0.258

[3.52,3.61] [0.968,0.980] [1.06,1.11] [0.254,0.261]
0.225 0.184 0.155 0.137

b4

Hermite
8.61 1.04 1.59 0.177

[8.23,8.98] [1.04,1.05] [1.53,1.65] [0.175,0.180]
19 28 20 29

NW
2.30 0.729 0.454 0.133

[2.28,2.33] [0.724,0.733] [0.451,0.457] [0.133,0.134]
0.294 0.224 0.171 0.127

Table 1 Risk comparison, p = 1. Table showing the relative µ-risks of the Hermite projection estimator
and the Nadaraya–Watson estimator. For each distribution of X , regression function, SNR and n, we display
the estimated relative µ-risk over N = 100 samples with a 95% confidence interval, multiplied by 100. For
the projection estimator, we display the mean selected model, and for the Nadaraya–Watson estimator, we
display the mean selected bandwidth.
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XXX distrib. Reg. fun. Estim. SNR = 2 SNR = 20
n = 500 n = 2000 n = 500 n = 2000

Norm.

b5

Hermite
1.69 0.587 0.294 0.067

[1.68,1.71] [0.583,0.591] [0.191,0.196] [0.066,0.067]
12 16 21 25

NW
2.31 0.845 0.566 0.217

[2.29,2.32] [0.841,0.848] [0.564,0.568] [0.216,0.218]
(0.382,0.388) (0.295,0.297) (0.231,0.238) (0.190,0.188)

b6

Hermite
1.41 0.732 0.333 0.094

[1.40,1.43] [0.728,0.735] [0.331,0.336] [0.094,0.095]
5 14 26 29

NW
2.80 1.10 0.630 0.249

[2.78,2.81] [1.09,1.10] [0.628,0.633] [0.248,0.250]
(0.327,0.356) (0.273,0.272) (0.213,0.210) (0.172,0.172)

b7

Hermite
3.32 0.916 0.650 0.123

[3.29,3.35] [0.912,0.919] [0.645,0.654] [0.123,0.124]
26 35 43 59

NW
3.72 1.45 1.29 0.420

[3.70,3.74] [1.45,1.46] [1.28,1.29] [0.419,0.421]
(0.280,0.285) (0.229,0.225) (0.181,0.192) (0.151,0.147)

b8

Hermite
9.00 2.01 4.80 0.847

[8.89,9.12] [2.00,2.02] [3.66,4.93] [0.841,0.853]
50 67 51 70

NW
5.47 2.08 2.56 0.769

[5.44,5.49] [2.07,2.08] [2.55,2.57] [0.767,0.771]
(0.255,0.250) (0.197,0.197) (0.179,0.174) (0.138,0.137)

Lap.

b5

Hermite
1.91 0.703 0.366 0.076

[1.90,1.93] [0.698,0.708] [0.359,0.373] [0.076,0.077]
12 17 21 27

NW
3.79 1.66 1.01 0.404

[3.77,3.80] [1.66,1.67] [1.01,1.02] [0.403,0.405]
(0.451,0.441) (0.354,0.357) (0.252,0.254) (0.212,0.208)

b6

Hermite
2.09 0.962 0.416 0.172

[2.07,2.11] [0.956,0.968] [0.412,0.420] [0.171,0.173]
7 18 27 39

NW
4.21 1.80 0.944 0.401

[4.19,4.22] [1.79,1.80] [0.941,0.947] [0.400,0.402]
(0.422,0.403) (0.324,0.339) (0.231,0.236) (0.203,0.199)

b7

Hermite
10.3 5.56 14.3 1.49

[10.1,10.5] [5.50,5.62] [13.9,14.6] [1.46,1.52]
30 115 76 128

NW
7.43 2.80 3.02 0.931

[7.40,7.46] [2.80,2.81] [3.01,3.03] [0.929,0.933]
(0.350,0.391) (0.292,0.235) (0.230,0.201) (0.187,0.167)

b8

Hermite
415 74.1 330 71.2

[406,424] [72.1,76.0] [322,338] [69.5,72.9]
77 136 79 135

NW
9.59 3.34 6.20 1.75

[9.55,9.64] [3.33,3.35] [6.17,6.23] [1.74,1.76]
(0.351,0.356) (0.284,0.275) (0.257,0.264) (0.211,0.209)

Table 2 Risk comparison, p = 2. Table showing the relative µ-risks of the Hermite projection estimator
and the Nadaraya–Watson estimator. For each distribution of XXX , regression function, SNR and n, we display
the estimated relative µ-risk over N = 100 samples with a 95% confidence interval, multiplied by 100. For
the projection estimator, we display the mean selected dimension, and for the Nadaraya–Watson estimator,
we display the mean selected bandwidths.
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setting, the Hermite estimator is still better for b1 and b2, but for b3 it has similar per-
formances as the Nadaraya–Watson estimator. For estimating b4, the latter is better,
although the difference becomes small as n increases.

In the case p = 2, we show our results on Table 2. In the normal setting, the
Hermite projection estimator is better for estimating b5, b6 and b7. For b8, its perfor-
mances are worse than the kernel estimator on small samples but they are equivalent
on large samples. In the Laplace setting, our estimator is better for estimating b5 and
b6, but it is worse for estimating b7. Moreover, the Hermite estimator has very poor
performances for estimating b8. We think that the functions b7 and b8 are hard to ap-
proximate with the Hermite basis, so that the Hermite projection estimator performs
poorly. This can be seen by looking at the mean selected dimension, which grows
quickly as n grows, showing that the estimator needs a large number of coefficients
to reconstruct the regression function. This is especially true for b8, as it is a non
differentiable and unbounded function.

In addition, we observe that the Hermite estimator is faster to compute than the
Nadaraya–Watson estimator with leave-one-out cross validation. The difference is
small when n is small, but for example, when n = 2000 and p = 2, the Hermite
estimator is about 3 time faster. In conclusion, the Hermite projection estimator is a
good alternative to the Nadaraya–Watson estimator.

6 Concluding remark

In this paper, we have considered the nonparametric regression problem with a ran-
dom design. The covariates are assumed to be independent but not identically dis-
tributed, and the variance of the noise is assumed to be known. We estimate the re-
gression function on a non-compact domain of Rp with a projection estimator, using
tensorised orthonormal bases. The projection space is chosen by a penalized criterion,
as in Birgé and Massart (1998) and Baraud (2000). Our model collection depends on
the design, and is thus random. Indeed, we consider subspaces Smmm on which the op-
erator norm of the Gram hypermatrix associated to the least squared minimization
problem is constrained. This constraint on the operator norm comes from a refined
study of the discrepancy between the norms ∥·∥n and ∥·∥µ on Smmm. This study relies on
Matrix concentration inequalities of Tropp (2012) and Gittens and Tropp (2011), as
it has been suggested by the work of Cohen et al (2013). Doing so, we obtain oracle
bounds for the selected estimator, in both norms. Our work extends and improves
the results of Baraud (2002) and Comte and Genon-Catalot (2020a), as explained by
Remark 5.

Different extension of our work can be pursued. A natural extension would be
to consider the heteroskedastic regression model, in which the observations (XXX i,Yi)
satisfy:

Yi = b(XXX i)+σ(XXX i)εi,

were εis have unit variance. Using the same projection estimator, Comte and Genon-
Catalot (2020b) have obtained similar results for this model in the one-dimensional
case. The extension to the multivariate case could be done in two ways. The first way
would be to generalize the fixed design results of Baraud (2000) to the case of noise



16 Florian Dussap

variables with different variance, and then to apply the same arguments we used in
this paper to deduce the results for the random design setting. The second way would
be be to follow the approach of Comte and Genon-Catalot (2020b), that is based on
Talagrand’s inequality, and to see if it can be extended to the multivariate case.
Another extension of our work would be to investigate the use of more general ap-
proximation spaces Sm, as does Baraud (2002). We want to known if the same method
we used could handle approximation spaces that are not constructed from an or-
thonormal basis. A typical example we have in mind is splines approximation. We
suspect that our results on the comparison between the norms ∥·∥n and ∥·∥µ still hold
in this context, so that adaptive strategies could be derived from it.

7 Proofs

7.1 Proofs of Section 2

Proof (Proposition 1) Let Π
(n)
mmm be the projector on Smmm for the empirical inner product.

We have the decomposition:

EXXX∥b− b̂mmm∥2
n = ∥b−Π

(n)
mmm b∥2

n +EXXX∥b̂mmm −Π
(n)
mmm b∥2

n

= inf
t∈Smmm

∥b− t∥2
n +EXXX∥Π

(n)
mmm εεε∥2

n

= inf
t∈Smmm

∥b− t∥2
n +σ

2 Tr
(
Π

(n)
mmm
)

n

= inf
t∈Smmm

∥b− t∥2
n +σ

2 Dmmm

n
.

Taking the expected value in this equality, we obtain:

E∥b− b̂mmm∥2
n = E

[
inf

t∈Smmm
∥b− t∥2

n

]
+σ

2 Dmmm

n
≤ inf

t∈Smmm
E∥b− t∥2

n +σ
2 Dmmm

n

= inf
t∈Smmm

E∥b− t∥2
µ +σ

2 Dmmm

n
.

⊓⊔

7.2 Proofs of Section 3

Proof (Lemma 2) Let x ∈ A and let t = ∑
d
j=1 a j ψ j ∈ S. The family of functions

(ψ1, · · · ,ψd) is orthonormal with respect to ⟨·, ·⟩α , so by the Cauchy–Schwarz in-
equality we have:

t2(x) =

(
d

∑
j=1

a j ψ j(x)

)2

≤

(
d

∑
j=1

a2
j

)(
d

∑
j=1

ψ
2
j (x)

)
= ∥t∥2

α

d

∑
j=1

ψ
2
j (x),
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with equality if (α1, . . . ,αd) is proportional to (ψ1(x), . . . ,ψd(x)). Hence we have:

d

∑
j=1

ψ
2
j (x) = sup

t∈S\{0}

t2(x)
∥t∥2

α

.

Taking the supremum for x ∈ A, we obtain:

sup
x∈A

d

∑
j=1

ψ
2
j (x) = sup

x∈A
sup

t∈S\{0}

t2(x)
∥t∥2

α

= sup
t∈S\{0}

supx∈A t2(x)
∥t∥2

α

,

that is: ∥∥∥∥ d

∑
j=1

ψ
2
j

∥∥∥∥
∞

= sup
t∈S\{0}

∥t∥2
∞

∥t∥2
α

=: K∞
α (S).

⊓⊔

To prove Proposition 3 and Theorem 2, we need the following lemma.

Lemma 3 Let (ψ1, . . . ,ψDmmm) be an orthnormal basis of Smmm relatively to an inner
product ⟨·, ·⟩α . Let Ĥmmm be the Gram matrix of this basis relatively to the empirical
inner product and let Hmmm := E[Ĥmmm], that is:

∀ j,k ∈ {1, . . . ,Dmmm},
[
Ĥmmm
]

j,k := ⟨ψ j,ψk⟩n and
[
Hmmm
]

j,k := ⟨ψ j,ψk⟩µ .

For all δ ∈ (0,1) we have:

P
[
λmin(Ĥmmm)≤ (1−δ )λmin(Hmmm)

]
≤ Dmmm exp

(
−h(δ )

nλmin(Hmmm)

K∞
α (mmm)

)
,

with h(δ ) := δ +(1−δ ) log(1−δ ) and where K∞
α (mmm) is given by Lemma 2.

Proof We use Theorem 5 in Appendix. Indeed, Ĥmmm can be written as a sum Z1 +
. . .+Zn where:

∀ j,k ∈ {1, . . . ,Dmmm},
[
Zi
]

j,k :=
1
n

ψ j(XXX i)ψk(XXX i),

so we have using Lemma 2:

λmax(Zi) = ∥Zi∥op =
1
n

Dmmm

∑
k=1

ψk(XXX i)
2 ≤ 1

n

∥∥∥∥Dmmm

∑
k=1

ψ
2
k

∥∥∥∥
∞

=
1
n

K∞
α (mmm).

Therefore, applying inequality (29) of Theorem 5 with µmin = λmin(Hmmm) and R =
1
n K∞

α (mmm) yields:

P
[
λmin(Ĥmmm)≤ (1−δ )λmin(Hmmm)

]
≤ Dmmm exp

(
−h(δ )

nλmin(Hmmm)

K∞
α (mmm)

)
.

⊓⊔
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Proof (Proposition 3) Let ψ1, . . . ,ψDmmm be an orthonormal basis of Smmm relatively to
the inner product ⟨·, ·⟩µ . Let Ĥmmm be their Gram matrix relatively to the empirical
inner product. According to Lemma 1, we have Kµ

n (mmm) = ∥Ĥ−1
mmm ∥op = λmin(Ĥmmm)

−1

and we have E[Ĥmmm] = Immm because (ψ1, . . . ,ψDmmm) is orthonormal for the inner product
associated with µ , so the event Ωmmm(δ )

c can be written as:

Ωmmm(δ )
c =

{
λmin(Ĥmmm)≤ 1−δ

}
=
{

λmin(Ĥmmm)≤ (1−δ )λmin(E[Ĥmmm])
}
.

Applying Lemma 3 yields the result. ⊓⊔

Proof (Proposition 2) We start with the decomposition:

E∥b− b̂mmm∥2
µ = E

[
∥b− b̂mmm∥2

µ 1Ωmmm(δ )

]
+E

[
∥b− b̂mmm∥2

µ 1Ωmmm(δ )c
]
. (7)

We consider these two terms separately. The expectation of the first term is controlled
as in Theorem 3 in Cohen et al (2013). On the event Ωmmm(δ ) we have (1−δ )∥t∥2

µ ≤
∥t∥2

n for all t ∈ Smmm, so if b(µ)mmm is the projection of b on Smmm for the norm ∥·∥µ , we have:

∥b− b̂mmm∥2
µ 1Ωmmm(δ ) ≤ ∥b−b(µ)mmm ∥2

µ +∥b̂mmm −b(µ)mmm ∥2
µ 1Ωmmm(δ )

≤ ∥b−b(µ)mmm ∥2
µ +2∥b̂mmm −b(n)mmm ∥2

µ 1Ωmmm(δ )+2∥b(n)mmm −b(µ)mmm ∥2
µ 1Ωmmm(δ )

≤ ∥b−b(µ)mmm ∥2
µ +

2
1−δ

∥b̂mmm −b(n)mmm ∥2
n +2∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

Taking the expectation, we obtain:

E
[
∥b− b̂mmm∥2

µ 1Ωmmm(δ )

]
≤ ∥b−b(µ)mmm ∥2

µ +
2

1−δ
σ

2 Dmmm

n
+2E

[
∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

]
.

(8)
We give an upper bound on the last term in two ways. Firstly, we have:

E
[
∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

]
≤ E

[
Kµ

n (mmm)∥b(n)mmm −b(µ)mmm ∥2
n 1Ωmmm(δ )

]
≤ 1

1−δ
E∥b(n)mmm −b(µ)mmm ∥2

n

since Kµ
n (mmm)≤ 1

1−δ
on the event Ωmmm(δ ), see (2). Let Π

(n)
mmm be the empirical projector

on Smmm, we have:

∥b(n)mmm −b(µ)mmm ∥2
n =

∥∥∥Π
(n)
mmm
(
b−b(µ)mmm

)∥∥∥2

n
≤ ∥b−b(µ)mmm ∥2

n.

Thus, we have shown:

E
[
∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

]
≤ 1

1−δ
E∥b−b(µ)mmm ∥2

n =
1

1−δ
∥b−b(µ)mmm ∥2

µ . (9)

Secondly, let g := b−b(µ)mmm and let Π
(n)
mmm be the empirical projector on Smmm we have:

E
[
∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

]
= E

[
∥Π

(n)
mmm g∥2

µ 1Ωmmm(δ )

]
.
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Let (ψ1, . . . ,ψDmmm) be an orthonormal basis of Smmm for the inner product ⟨·, ·⟩µ , we
have:

Π
(n)
mmm g = argmin

t∈Smmm

∥g− t∥2
n =

Dmmm

∑
j=1

c⋆j ψ j, c⋆ := argmin
c∈RDmmm

∥g−Ψmmmc∥2
Rn ,

where Ψmmm ∈ Rn×Dmmm is the matrix defined by [Ψmmm]i, j := ψ j(XXX i), and where g is the
vector

(
g(XXX1), . . . ,g(XXXn)

)
∈ Rn. By Lemma 8, c⋆ is given by:

c⋆ = (Ψ ∗
mmmΨmmm)

−1
Ψ

∗
mmmg =

1
n

H−1
mmm Ψ

∗
mmmg,

where Hmmm is the Gram matrix of (ψ1, . . . ,ψDmmm) relatively to the empirical inner prod-
uct. Using Lemma 1, we get:

∥∥Π
(n)
mmm g

∥∥2
µ
=
∥∥c⋆
∥∥2
RDmmm ≤

∥∥H−1
mmm
∥∥2

op

∥∥∥1
n

Ψ
∗

mmmg
∥∥∥2

RDmmm
= Kµ

n (mmm)2
Dmmm

∑
j=1

⟨g,ψ j⟩2
n.

Hence, on the event Ωmmm(δ ) we obtain:

∥∥Π
(n)
mmm g

∥∥2
µ

1Ωmmm(δ ) ≤
1

(1−δ )2

Dmmm

∑
j=1

⟨g,ψ j⟩2
n.

Since g = b−b(µ)mmm is orthogonal to ψ1, . . . ,ψDmmm relatively to the inner product ⟨·, ·⟩µ ,
we have E[⟨g,ψ j⟩n] = ⟨g,ψ j⟩µ = 0, so we get:

E

[
Dmmm

∑
k=1

⟨g,ψk⟩2
n

]
=

Dmmm

∑
k=1

Var
(
⟨g,ψk⟩n

)
=

1
n2

n

∑
i=1

Dmmm

∑
j=1

Var
(
g(XXX i)ψ j(XXX i)

)
=

1
n2

n

∑
i=1

E

[
g(XXX i)

2
Dmmm

∑
j=1

ψ j(XXX i)
2

]

≤ 1
n2

n

∑
i=1

E
[
g(XXX i)

2]sup
x∈A

Dmmm

∑
j=1

ψ j(x)2

=
1
n
∥g∥2

µ K∞
µ (mmm) =

K∞
µ (mmm)

n
∥b−b(µ)mmm ∥2

µ ,

where the last equality comes from Lemma 2. Hence we have shown:

E
[
∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

]
≤ 1

(1−δ )2

K∞
µ (mmm)

n
∥b−b(µ)mmm ∥2

µ . (10)

Combining (9) and (10) yields:

E
[
∥b(n)mmm −b(µ)mmm ∥2

µ 1Ωmmm(δ )

]
≤ 1

1−δ
∥b−b(µ)mmm ∥2

µ

(
1∧

K∞
µ (mmm)

(1−δ )n

)
. (11)

For the second term in (7), we have:

E
[
∥b− b̂mmm∥2

µ 1Ωmmm(δ )c
]
≤ 2∥b∥2

µ P[Ωmmm(δ )
c]+2E

[
∥b̂mmm∥2

µ 1Ωmmm(δ )c
]
.
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We have the following upper bound on ∥b̂mmm∥2
µ :

∥b̂mmm∥2
µ ≤ Kµ

n (mmm)∥b̂mmm∥2
n ≤ Kµ

n (mmm)∥Y∥2
n, (12)

where the last inequality comes from the fact that b̂mmm is the empirical projection of Y.
Hence, we get:

E
[
∥b− b̂mmm∥2

µ 1Ωmmm(δ )c
]
≤ 2∥b∥2

µ P[Ωmmm(δ )
c]+2E

[
Kµ

n (mmm)∥Y∥2
n1Ωmmm(δ )c

]
. (13)

The inequality of Proposition 2 is obtained using (8), (11) and (13) in (7). ⊓⊔

Proof (Theorem 1) Let mmm ∈ M
(1)
n,α and let δ ∈ (0,1) (we choose it later in the proof).

By Remark 1, we have by definition of M
(1)
n,α :

K∞
µ (mmm)≤ K∞

ν (mmm)∥G−1
mmm ∥op ≤ α

n
logn

, (14)

so Proposition 2 yields:

E∥b− b̂mmm∥2
µ ≤Cn(δ ,α) inf

t∈Smmm
∥b− t∥2

µ +C′(δ )σ2 Dmmm

n
+Rn,

with Cn(α,δ ) :=
(

1+ 2
1−δ

[
α

(1−δ ) logn ∧1
])

, C′(δ ) := 2
1−δ

and:

Rn := 2∥b∥2
µ P[Ωmmm(δ )

c]+E
[
Kµ

n (mmm)∥Y∥2
n 1Ωmmm(δ )c

]
.

For the first term in Rn, we apply Proposition 3 with (14):

P[Ωmmm(δ )
c]≤ Dmmm n−

h(δ )
α ≤ n−

h(δ )
α

+1. (15)

For the second term in Rn, since ∥·∥µ ≤ ∥·∥∞ and mmm ∈ M
(1)
n,α we have:

Kµ
n (mmm)≤ Kµ

ν (mmm)Kν
n (mmm)≤ K∞

ν (mmm)∥G−1
mmm ∥op ≤ α

n
logn

, (16)

and we have using the independence of (XXX i)1≤i≤n and (εi)1≤i≤n:

E
[
∥Y∥2

n1Ωmmm(δ )c
]
=

1
n

n

∑
i=1

E
[(

b(XXX i)+ εi
)21Ωmmm(δ )c

]
= E

[
1
n

n

∑
i=1

b(XXX i)
21Ωmmm(δ )c

]
+σ

2P[Ωmmm(δ )
c].

We apply Hölder’s inequality with r,r′ ∈ (1,+∞) such that 1
r +

1
r′ = 1:

E
[
∥Y∥2

n1Ωmmm(δ )c
]
≤ E

[(
1
n

n

∑
i=1

b(XXX i)
2

)r ] 1
r

P
[
Ωmmm(δ )

c] 1
r′ +σ

2P
[
Ωmmm(δ )

c]
≤ E

[
1
n

n

∑
i=1

b(XXX i)
2r

] 1
r

P
[
Ωmmm(δ )

c] 1
r′ +σ

2P
[
Ωmmm(δ )

c]
≤ ∥b∥2

L2r(µ) n−
h(δ )
αr′ +

1
r′ +σ

2 n−
h(δ )

α
+1,
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and if b ∈ L∞(µ), the last inequality also holds for r = ∞ and r′ = 1 (just take the
limit as r →+∞). Hence, we obtain:

E
[
Kµ

n (mmm)∥Y∥2
n1Ωmmm(δ )c

]
≤ α

logn

(
∥b∥2

L2r(µ) n−
h(δ )
αr′ +

1
r′ +1 +σ

2 n−
h(δ )

α
+2
)
. (17)

If we choose δ such that h(δ ) ≥ (2r′+ 1)α , then all the exponents of n in (15) and
(17) are less than −1. The function h is an increasing function from [0,1] to itself so it
is invertible on [0,1]. Since α ∈ (0, 1

2r′+1 ), we can choose δ = δ (α,r′) := h−1((2r′+
1)α). For this choice, we obtain:

E∥b− b̂mmm∥2
µ ≤Cn

(
δ (α,r′),α

)
inf

t∈Smmm
∥b− t∥2

µ +C′(
δ (α,r′)

)
σ

2 Dmmm

n

+
C′′(b,σ2,α,r

)
n logn

,

where Cn(δ ,α) and C′(δ ) were defined at the beginning of the proof, and where:

C′′(b,σ2,α,r
)
≤ 2∥b∥2

L2(µ)+α

(
∥b∥2

L2r(µ)+σ
2
)
. (18)

⊓⊔

7.3 Proof of Theorem 2

The proof of Theorem 2 is based on a result for fixed design regression of Baraud
(2000). Let M̂n be a finite collection of models, that may depend on (XXX1, . . . ,XXXn),
such that for all mmm ∈ M̂n, Ĝmmm is invertible. Let m̂mm ∈ M̂n be the minimizer of the
following penalized least squares criterion:

m̂mm := argmin
mmm∈M̂n

(
−∥b̂mmm∥2

n +pen(mmm)
)
, pen(mmm) := (1+θ)σ2 Dmmm

n
, θ > 0. (19)

Theorem 4 (Corollary 3.1 in Baraud (2000)) If E|ε1|q is finite for some q > 4, then
the following upper bound on the risk of the estimator b̂m̂mm with m̂mm defined by (19)
holds:

EXXX∥b− b̂m̂mm∥2
n ≤C(θ) inf

mmm∈M̂n

(
inf

t∈Smmm
∥b− t∥2

n +σ
2 Dmmm

n

)
+σ

2 Σn(θ ,q)
n

,

with:

Σn(θ ,q) :=C′(θ ,q)
E|ε1|q

σq ∑
mmm∈M̂n

D
−( q

2−2)
mmm ,

where C(θ) := (2+8θ−1)(1+θ) and C′(θ ,q) is a positive constant.
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Proof (Theorem 2) Let ∆n,α,β := {M (1)
n,α ⊂ M̂

(1)
n,β }, we have:

E∥b− b̂m̂mm1∥
2
n = E

[
EXXX∥b− b̂m̂mm1∥

2
n1∆n,α,β

]
+E

[
∥b− b̂m̂mm1∥

2
n1∆ c

n,α,β

]
.

For the first term, on ∆n,α,β we have inf
mmm∈M̂

(1)
n,β

(. . .)≤ inf
mmm∈M

(1)
n,α
(. . .) so by applying

Theorem 4 we obtain:

E
[
EXXX∥b− b̂m̂mm1∥

2
n1∆n,α,β

]
≤ E

[
C(θ) inf

m∈M
(1)
n,α

(
inf

t∈Smmm
∥b− t∥2

n +σ
2 Dmmm

n

)
+σ

2 Σ(θ ,q)
n

]

≤C(θ) inf
m∈M

(1)
n,α

(
inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n

)
+σ

2 Σ(θ ,q)
n

.

For the second term, we have:

∥b− b̂m̂mm1∥
2
n1∆ c

n,α,β
≤ 2∥b∥2

n1∆ c
n,α,β

+2∥b̂m̂mm1∥
2
n1∆ c

n,α,β
.

Using Hölder’s inequality with r,r′ ∈ (1,∞) such that 1
r +

1
r′ = 1, we obtain:

E
[
∥b∥2

n1∆ c
n,α,β

]
≤E

[(
1
n

n

∑
i=1

b(XXX i)
2

)r]1/r

P
[
∆

c
n,α,β

]1/r′

≤∥b∥2
L2r(µ)P

[
∆

c
n,α,β

]1/r′

,

and if b ∈ L∞(µ), the inequality also holds for r = ∞ and r′ = 1. Since b̂m̂mm1 is the
empirical projection of Y on Sm̂mm111 , we have ∥b̂m̂mm1∥2

n ≤ ∥Y∥2
n. Hence, we get:

E
[
∥b̂m̂mm1∥

2
n1∆ c

n,α,β

]
≤ E

[
∥Y∥2

n1∆ c
n,α,β

]
= E

[
1
n

n

∑
i=1

b(XXX i)
21∆ c

n,α,β

]
+σ

2P
[
∆

c
n,α,β

]
≤ ∥b∥2

L2r(µ)P
[
∆

c
n,α,β

] 1
r′
+σ

2P
[
∆

c
n,α,β

]
. (20)

To conclude, we give an upper bound on P
[
∆ c

n,α,β

]
:

P
[
∆

c
n,α,β

]
= P

[
∃mmm ∈ Np

+, mmm ∈ M
(1)
n,α and mmm /∈ M̂

(1)
n,β

]
≤ ∑

mmm∈M
(1)
n,α

P
[
mmm ∈ M

(1)
n,α and mmm /∈ M̂

(1)
n,β

]
.

Using the following inclusion of events:{
mmm ∈ M

(1)
n,α and mmm /∈ M̂

(1)
n,β

}
⊂
{

K∞
ν (mmm)

(
∥G−1

mmm ∥op ∨1
)
≤ α

n
logn

}
∩
{

K∞
ν (mmm)

(
∥Ĝ−1

mmm ∥op ∨1
)
≥ β

n
logn

}
⊂

{
∥Ĝ−1

mmm ∥op

∥G−1
mmm ∥op

≥ β

α

}
=

{
λmin(Ĝmmm)≤

α

β
λmin(Gmmm)

}
,
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we get:

P
[
∆

c
n,α,β

]
≤ ∑

mmm∈M
(1)
n,α

P
[

λmin(Ĝmmm)≤
α

β
λmin(Gmmm)

]
. (21)

Using Lemma 3 with the inequality K∞
ν (mmm)∥G−1

mmm ∥op ≤ α
n

logn for mmm ∈ M
(1)
n,α , we ob-

tain:

∀mmm ∈ M
(1)
n,α , P

[
λmin(Ĝmmm)≤

α

β
λmin(Gmmm)

]
≤ Dmmm exp

(
h(1− α

β
)

n
K∞

ν (mmm)∥G−1
mmm ∥op

)
≤ Dmmm n−h(1− α

β
)/α

.

Hence, we get:

P
[
∆

c
n,α,β

]
≤ ∑

mmm∈M
(1)
n,α

Dmmm n−h(1− α

β
)/α ≤ Card(M (1)

n,α)n1−h(1− α

β
)/α

.

Using Proposition 4 in appendix, we obtain:

P
[
∆

c
n,α,β

]
≤ n2−h(1− α

β
)/α H p−1

n = n−κ(α,β )H p−1
n ,

with Hn := ∑
n
k=1

1
k and κ(α,β ) :=

h(1− α

β
)

α
−2. We know that Hn ∼ logn, so we want

a condition on α such that the κ(α,β ) is strictly greater than r′. Let x := β

α
≥ 1, we

have:

κ(α,β )> r′ ⇐⇒ h
(

1− α

β

)
> (2+ r′)α

⇐⇒ 1− α

β
+

α

β
log
(

α

β

)
> (2+ r′)α

⇐⇒ 1− 1+ log(x)
x

>
(2+ r′)β

x

⇐⇒ 1+(2+ r′)β + log(x)
x

< 1. (22)

The function:

fβ ,r′(x) :=
1+(2+ r′)β + log(x)

x
,

is decreasing on [1,+∞), we have fβ ,r′(1) > 1 and fβ ,r′(x) → 0 when x → +∞, so
there exists a unique xβ ,r′ ∈ (1,+∞) such that fβ ,r′(xβ ,r′) = 1. Thus, we have:

(22) ⇐⇒ x ∈ (xβ ,r′ ,+∞) ⇐⇒ α ∈ (0,αβ ,r′),

where αβ ,r′ := β

x
β ,r′

. Hence, if α ∈ (0,αβ ,r′) then we have:

P
[
∆

c
n,α,β

]1/r′

≤ n−
κ(α,β )

r′ H
p−1
r′

n ,

with κ(α,β )
r′ > 1 and κ(α,β )

r′ → 1 as α → αβ ,r′ . ⊓⊔
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Remark 7 If we use the collections M
(2)
n,α and M̂

(2)
n,β instead, we obtain the inequality

(21) with α and β replaced by α ′ :=
√

α and β ′ :=
√

β . The rest of the proof is
unchanged.

Proof (Remark 4) We have αβ ,r′ := β

x
β ,r′

where xβ ,r′ is the unique solution in (1,+∞)

of the equation fβ ,r′(x) = 1 with:

fβ ,r′(x) :=
1+(2+ r′)β + logx

x
.

Hence, xβ satisfies the relation:

xβ ,r′ − logxβ ,r′ = 1+(2+ r′)β . (23)

Since the functions fβ ,r′ are decreasing on (1,+∞) and since ∀x, fβ ,r′(x) is increasing
with β and r′, we see that xβ ,r′ is increasing with β and r′. Thus, the limits of xβ ,r′

when β → 0 and β →+∞ exist. Using the relation (23), we obtain:

lim
β→0

xβ ,r′ = 1, lim
β→+∞

xβ ,r′ =+∞, lim
r′→∞

xβ ,r′ =+∞,

and we have xβ ,r′ ∼ (2+ r′)β when β →+∞. Thus, the limits of αβ ,r′ are:

lim
β→0

αβ ,r′ = 0, lim
β→+∞

αβ ,r′ =
1

2+ r′
, lim

r′→+∞

αβ ,r′ = 0.

Since xβ ,r′ is increasing with r′, we see that αβ ,r′ is deacreasing with r′. Finally, using
the relation (23) again, we have:

αβ ,r′ =
β

xβ ,r′
=

1
2+ r′

(
1− 1

xβ ,r′
−

logxβ ,r′

xβ ,r′

)
.

It is easy to see that the function x 7→ 1− 1
x −

logx
x is increasing on [1,+∞) so αβ ,r′ is

also increasing with β . ⊓⊔

7.4 Proof of Theorem 3

Before proving Theorem 3, we need some preliminary results.

Lemma 4 For all x > 0 and all mmm ∈ Np
+ we have:

P
[
∥Ĝmmm −Gmmm∥op ≥ x

]
≤ Dmmm exp

(
−nx2/2

K∞
ν (mmm)

(
∥Gmmm∥op +

2
3 x
))

≤ Dmmm exp

(
−nx2/2

K∞
ν (mmm)

(
∥ dµ

dν
∥∞ + 2

3 x
)) .
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Proof The set {ϕ jjj : jjj ≤ mmm− 1} has cardinality Dmmm so let {φ1, . . . ,φDmmm} be its ele-
ments. We define the matrix Ĥmmm as:

∀ j,k ∈ {1, . . . ,Dmmm},
[
Ĥmmm
]

j,k := ⟨φ j,φk⟩n,

and we denote its expectation Hmmm, of which the components are ⟨φ j,φk⟩µ . In other
words, we have reshaped the hypermatrices Ĝmmm and Gmmm into Dmmm × Dmmm matrices.
Moreover, this operation preserves the operator norm:

∥Gmmm∥op = ∥Hmmm∥op.

Indeed, let d := Dmmm, we have:

∥Gmmm∥op = sup
a∈Rmmm

∥a∥Rmmm=1

∥Gmmm ×p a∥2
Rmmm = sup

a∈Rmmm

∥a∥Rmmm=1

∑
ℓℓℓ≤mmm−1

(
∑

kkk≤mmm−1
⟨ϕℓℓℓ,ϕkkk⟩akkk

)2

,

∥Hmmm∥op = sup
a∈Rd

∥a∥Rd =1

∥Hmmma∥2
Rd = sup

a∈Rd

∥a∥Rd =1

d

∑
j=1

(
d

∑
i=1

⟨ψ j,ψi⟩ai

)2

.

Since the sets {ϕ jjj : jjj ≤ mmm− 1} and {φ1, . . . ,φd} are equal, these two quantities are
also equal. Hence we have:

∥Ĝmmm −Gmmm∥op = ∥Ĥmmm −Hmmm∥op,

so we work on Ĥmmm and Hmmm from now on. We write:

Ĥmmm −Hmmm =
n

∑
i=1

Zi, Zi :=
1
n

(
ViV⊤

i −E
[
ViV⊤

i

])
, Vi :=

 φ1(XXX i)
...

φDmmm(XXX i)

 ,
and we use the Matrix Bernstein bound (Theorem 6 in appendix).

1. Bound on ∥Zi∥op:

1
n
∥ViV⊤

i ∥op =
1
n
∥Vi∥2 =

1
n

Dmmm

∑
j=1

φ j(XXX i)
2 ≤ K∞

ν (mmm)

n
,

where the last inequality comes from Lemma 2. Hence, ∥Zi∥op ≤ R, with R :=
K∞

ν (mmm)
n .

2. Bound on ∥∑
n
i=1E

[
Z2

i
]
∥op:∥∥∥∥ n

∑
i=1

E
[
Z2

i
]∥∥∥∥

op
= sup

∥a∥=1

n

∑
i=1

E
[
∥Zi a∥2]= sup

∥a∥=1

n

∑
i=1

Dmmm

∑
j=1

E
[
(Zi a)2

j
]

= sup
∥a∥=1

n

∑
i=1

Dmmm

∑
j=1

Var
[
(Zi a) j

]
,
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since EZi = 0. We compute the variance:

Var
[
(Zi a) j

]
= Var

[
1
n

φ j(XXX i)
Dmmm

∑
k=1

φk(XXX i)ak

]
≤ 1

n2E

(φ j(XXX i)
Dmmm

∑
k=1

φk(XXX i)ak

)2


=
1
n
E
[
φ j(XXX i)

2 ta(XXX i)
2],

where ta := ∑
Dmmm
k=1 ak φk. Using Lemmas 1 and 2 yields:

n

∑
i=1

Dmmm

∑
j=1

Var
[
(Zi a) j

]
≤ 1

n2

n

∑
i=1

E

[
Dmmm

∑
j=1

φ j(XXX i)
2 ta(XXX i)

2

]
≤ 1

n
K∞

ν (mmm)∥ta∥2
µ

≤ 1
n

K∞
ν (mmm)Kµ

ν (mmm)∥ta∥2
ν

=
1
n

K∞
ν (mmm)∥Gmmm∥op ∥a∥2.

Hence, ∥∑
n
i=1E

[
Z2

i
]
∥op ≤ 1

n K∞
ν (mmm)∥Gmmm∥op =: v.

Applying Theorem 6 yields:

P
[
∥Ĥmmm −Hmmm∥op ≥ x

]
≤ Dmmm exp

(
− nx2/2

K∞
ν (mmm)

(
∥Gmmm∥op +

2
3 x
)) ,

which is the first inequality of Lemma 4. The second inequality follows from the
following upper bound on ∥Gmmm∥op:

∥Gmmm∥op = sup
t∈Smmm\{0}

∥t∥2
µ

∥t∥2
ν

≤
∥∥∥dµ

dν

∥∥∥
∞

.

⊓⊔

In order to prove Theorem 3, let us consider the events:

Λ
(ι)
n (β ,γ) :=

{
M̂

(ι)
n,β ⊂ M

(ι)
n,γ

}
, Ω̃

(ι)
n (δ ,γ) :=

⋂
mmm∈M

(ι)
n,γ

Ωmmm(δ ), ι ∈ {1,2},

(24)
where Ωmmm(δ ) is defined by (2).

Lemma 5 For ι ∈ {1,2}, we have for all δ ∈ (0,1) and all γ > 0:

P
[
Ω̃

(ι)
n (δ ,γ)c

]
≤ n−

h(δ )
γ

+2 H p−1
n ,

where Hn := ∑
n
k=1

1
k is the n-th harmonic number.
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Proof We use Proposition 3 with Remark 1:

P
[
Ω̃

(ι)
n (δ ,γ)c

]
≤ ∑

mmm∈M
(ι)
n,γ

P[Ωmmm(δ )
c]≤ ∑

mmm∈M
(ι)
n,γ

Dmmm exp

(
−h(δ )

n
K∞

µ (mmm)

)

≤ ∑
mmm∈M

(ι)
n,γ

Dmmm exp

(
−h(δ )

n
K∞

ν (mmm)∥G−1
mmm ∥op

)

≤ ∑
mmm∈M

(ι)
n,γ

Dmmm n−
h(δ )

γ ≤ n−
h(δ )

γ
+2 H p−1

n ,

where the last inequality comes from Proposition 4. ⊓⊔

Lemma 6 (Compact case) We have for all γ > β > 0:

P
[
Λ

(1)
n (β ,γ)c

]
≤ n−h(1− γ

β
)

f0
β
+1 H p−1

n ,

where h(δ ) = δ +(1−δ ) log(1−δ ), f0 > 0 is such that dµ

dν
(x)≥ f0 for all x ∈ A and

Hn := ∑
n
k=1

1
k .

Proof We start with a union bound:

P
[
Λ

(1)
n (β ,γ)c

]
= P

[
∃mmm ∈ Np

+, mmm ∈ M̂
(1)

n,β and mmm /∈ M
(1)
n,γ

]
≤ ∑

mmm∈Np
+

K∞
ν (mmm)≤β

n
logn

P
[
mmm ∈ M̂

(1)
n,β and mmm /∈ M

(1)
n,γ

]
.

We have the following inclusion of events:{
mmm ∈ M̂

(1)
n,β and mmm /∈ M

(1)
n,γ

}
⊂
{

K∞
ν (mmm)

(
∥Ĝ−1

mmm ∥op ∨1
)
≤ β

n
logn

}
∩
{

K∞
ν (mmm)

(
∥G−1

mmm ∥op ∨1
)
≥ γ

n
logn

}
⊂

{
∥G−1

mmm ∥op

∥Ĝ−1
mmm ∥op

≥ γ

β

}
⊂
{

λmin(Ĝmmm)≥
γ

β
λmin(Gmmm)

}
,

hence we obtain:

P
[
Λ

(1)
n (β ,γ)c

]
≤ ∑

mmm∈Np
+

K∞
ν (mmm)≤β

n
logn

P
[

λmin(Ĝmmm)≥
γ

β
λmin(Gmmm)

]
.

We apply inequality (30) of Theorem 5 with R = 1
n K∞

ν (mmm):

P
[

λmin(Ĝmmm)≥
γ

β
λmin(Gmmm)

]
≤ exp

(
−h
(

1− γ

β

)
n

K∞
ν (mmm)∥G−1

mmm ∥op

)
.
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In the compact case, we have ∥G−1
mmm ∥op ≤ 1

f0
, see (3). Using Proposition 4, we obtain:

P
[
Λ

(1)
n (β ,γ)c

]
≤ ∑

mmm∈Np
+

K∞
ν (mmm)≤β

n
logn

n−h(1− γ

β
)

f0
β ≤ n−h(1− γ

β
)

f0
β
+1H p−1

n .

⊓⊔

Lemma 7 (General case) We have for all γ > β > 0:

P
[
Λ

(2)
n (β ,γ)c

]
≤ n−C(β ,γ) B

2β
+2 H p−1

n ,

where C(β ,γ) :=
(

1−
√

β/γ

)2
, B :=

(
∥ dµ

dν
∥∞ + 2

3

)−1 and Hn := ∑
n
k=1

1
k .

Proof We start with a union bound:

P
[
Λ

(2)
n (β ,γ)c

]
= P

[
∃mmm ∈ Np

+, mmm ∈ M̂
(2)

n,β and mmm /∈ M
(2)
n,γ

]
≤ ∑

mmm∈Np
+

K∞
ν (mmm)≤β

n
logn

P
[
mmm ∈ M̂

(2)
n,β and mmm /∈ M

(2)
n,γ

]
.

We have the following inclusion of events:{
mmm ∈ M̂

(2)
n,β and mmm /∈ M

(2)
n,γ

}
⊂
{

K∞
ν (mmm)

(
∥Ĝ−1

mmm ∥2
op ∨1

)
≤ β

n
logn

}
∩
{

K∞
ν (mmm)

(
∥G−1

mmm ∥2
op ∨1

)
≥ γ

n
logn

}
⊂
{

K∞
ν (mmm)∥Ĝ−1

mmm ∥2
op ≤ β

n
logn

}
∩
{

K∞
ν (mmm)∥Ĝ−1

mmm −G−1
mmm ∥2

op ≥
(√

γ −
√

β
)2 n

logn

}
⊂
{
∥Ĝ−1

mmm ∥2
op ≤

β

K∞
ν (mmm)

n
logn

}
∩
{
∥Ĝ−1

mmm −G−1
mmm ∥op ≥

(√
γ

β
−1
)
∥Ĝ−1

mmm ∥op

}
.

Let η :=
√

γ

β
−1 and let ε ∈ (0,1). We consider the following decomposition:{

∥Ĝ−1
mmm −G−1

mmm ∥op ≥ η∥Ĝ−1
mmm ∥op

}
= E1 ∪E2,

with:

E1 :=
{
∥Ĝ−1

mmm −G−1
mmm ∥op ≥ η∥Ĝ−1

mmm ∥op

}
∩
{∥∥Ĝ−1

mmm (Gmmm − Ĝmmm)
∥∥

op < ε

}
,

E2 :=
{
∥Ĝ−1

mmm −G−1
mmm ∥op ≥ η∥Ĝ−1

mmm ∥op

}
∩
{∥∥Ĝ−1

mmm (Gmmm − Ĝmmm)
∥∥

op ≥ ε

}
.

– For E1, we apply Lemma 9 with A := Ĝmmm and B := Gmmm − Ĝmmm:

E1 ⊂

 ∥Ĝ−1
mmm ∥2

op∥Ĝmmm −Gmmm∥op

1−
∥∥Ĝ−1

mmm (Gmmm − Ĝmmm)
∥∥

op

≥ η∥Ĝ−1
mmm ∥op

∩
{∥∥Ĝ−1

mmm (Gmmm − Ĝmmm)
∥∥

op < ε

}
⊂
{
∥Ĝ−1

mmm ∥op∥Ĝmmm −Gmmm∥op ≥ (1− ε)η
}
.



Nonparametric Multiple Regression by Projection 29

– For E2, we have directly:

E2 ⊂
{∥∥Ĝ−1

mmm (Gmmm − Ĝmmm)
∥∥

op ≥ ε

}
⊂
{
∥Ĝ−1

mmm ∥∥Gmmm − Ĝmmm∥op ≥ ε

}
.

Thus, we obtain:

∀ε ∈ (0,1), E1 ∪E2 ⊂
{
∥Ĝ−1

mmm ∥op∥Gmmm − Ĝmmm∥op ≥ (1− ε)η ∧ ε

}
.

We now choose ε maximizing (1− ε)η ∧ ε . This maximum is achieved when ε =
(1− ε)η , that is:

ε =
η

1−η
= 1−

√
β/γ =: c(β ,γ) ∈ (0,1).

Thus, we obtain:

P
[
Λ

(2)
n (β ,γ)c

]
≤ ∑

mmm∈Np
+

K∞
ν (mmm)≤β

n
logn

P

[{
∥Ĝ−1

mmm ∥2
op ≤

β

K∞
ν (mmm)

n
logn

}
∩

{
∥Ĝmmm −Gmmm∥op ≥

c(β ,γ)

∥Ĝ−1
mmm ∥op

}]

≤ ∑
mmm∈Np

+
K∞

ν (mmm)≤β
n

logn

P

[
∥Ĝmmm −Gmmm∥op ≥ c(β ,γ)

√
K∞

ν (mmm)

β

logn
n

]
.

Let x := c(β ,γ)
√

K∞
ν (mmm)
β

logn
n and notice that x ≤ 1 if K∞

ν (mmm) ≤ β
n

logn . We apply
Lemma 4 and Proposition 4:

P
[
Λ

(2)
n (β ,γ)c

]
≤ ∑

mmm∈Np
+

K∞
ν (mmm)≤β

n
logn

Dmmm exp

(
−n

2
c2(β ,γ)

K∞
ν (mmm)

β

logn
n

[
K∞

ν (mmm)

(∥∥∥dµ

dν

∥∥∥
∞

+
2
3

x
)]−1

)

≤ ∑
mmm∈Np

+
K∞

ν (mmm)≤β
n

logn

Dmmm n−c2(β ,γ) B
2β ≤ n−c2(β ,γ) B

2β
+2 H p−1

n ,

where B := (∥ dµ

dν
∥∞ + 2

3 )
−1. ⊓⊔

Now we can prove Theorem 3.

Proof (Theorem 3) Let δ ∈ (0,1) and γ > β be constants to be chosen later. Let
us introduce the event Ξ

(ι)
n (β ,γ,δ ) := Λ

(ι)
n (β ,γ)∩ Ω̃

(ι)
n (δ ,γ) where Λ

(ι)
n (β ,γ) and
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Ω̃
(ι)
n (δ ,γ) are defined by (24). On the event Ξ

(ι)
n (β ,γ,δ ), for all mmm ∈ M

(ι)
n,α , for all

t ∈ Smmm we have:

∥b− b̂m̂mmι
∥2

µ ≤ 2∥b− t∥2
µ +2∥b̂m̂mmι

− t∥2
µ

≤ 2∥b− t∥2
µ +

2
1−δ

∥b̂m̂mmι
− t∥2

n

≤ 2∥b− t∥2
µ +

4
1−δ

∥b− t∥2
n +

4
1−δ

∥b− b̂m̂mmι
∥2

n.

Taking the expectation yields for all t ∈ Smmm:

E
[
∥b− b̂m̂mmι

∥2
µ 1

Ξ
(ι)
n (β ,γ,δ )

]
≤
(

2+
4

1−δ

)
∥b− t∥2

µ +
4

1−δ
E∥b− b̂m̂mmι

∥2
n. (25)

On the event Ξ
(ι)
n (β ,γ,δ )c, we use inequalities (12) and (16):

∥b− b̂m̂mmι
∥2

µ ≤ 2∥b∥2
µ +2∥b̂m̂mmι

∥2
µ ≤ 2∥b∥2

µ +2Kµ
n (m̂mmι)∥Y∥2

n

≤ 2∥b∥2
µ +2K∞

ν (m̂mmι)∥Ĝ−1
m̂mmι
∥op∥Y∥2

n

≤ 2∥b∥2
µ +4β

n
logn

∥Y∥2
n.

Using Hölder’s inequality as we did in (20), we obtain:

E
[
∥b− b̂m̂mmι

∥2
µ 1

Ξ
(ι)
n (β ,γ,δ )c

]
≤ 2∥b∥2

µ P
[
Ξ

(ι)
n (β ,γ,δ )c]

+8β
n

logn

(
∥b∥2

L2r(µ)P
[
Ξ

(ι)
n (β ,γ,δ )c]1/r′

+σ
2P
[
Ξ

(ι)
n (β ,γ,δ )c]) . (26)

We see we need to control P
[
Ξ

(ι)
n (β ,γ,δ )c

]
by a term of order n−2r′ .

We have decomposed the risk as the sum of (25) and (26). We give different upper
bounds on these two terms depending on whether we are in the compact case or the
general case.
• Compact case. In equation (25), we apply Theorem 2: for all α ∈ (0,αβ ,r′) we have:

E
[
∥b− b̂m̂mm1∥

2
µ 1

Ξ
(1)
n (β ,γ,δ )

]
≤
(

2+
4

1−δ

(
1+C(θ)

))
inf

mmm∈Mn,α

(
inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n

)
+

4σ2

1−δ

Σ(θ ,q)
n

+
4

1−δ
C′(∥b∥2

L2r(µ),σ
2) (logn)(p−1)/r′

nκ(α,β )/r′
,

with κ(α,β )
r′ > 1. To obtain an upper bound on (26), we apply Lemmas 5 and 6:

P
[
Ξ

(1)
n (β ,γ,δ )c]≤ P

[
Ω̃

(1)
n (δ ,γ)c

]
+P
[
Λ

(1)
n (β ,γ)c

]
≤
(

n−
h(δ )

γ
+2 +n−h(1− γ

β
)

f0
β
+1
)

H p−1
n ,
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where h(δ ) := δ +(1−δ ) log(1−δ ) and Hn := ∑
n
k=1

1
k . In order to obtain a term of

order n−2r′ , we need:
h(δ )

γ
−2 > 2r′,

h
(

1− γ

β

)
f0

β
−1 > 2r′,

⇐⇒


h(δ )> 2(1+ r′)γ,

h
(

1− γ

β

)
> (2r′+1)

β

f0
,

⇐⇒



δ > h−1(2(1+ r′)γ
)
,

γ <
1

2(1+ r′)
,

h
(

1− γ

β

)
> (2r′+1)

β

f0
.

Let us work on the last two conditions. Let x := γ

β
> 1, the conditions on (β ,γ)

become: 
x <

1
2(1+ r′)β

,

x logx− x+1 > (2r′+1)
β

f0
.

The function x 7→ x logx−x+1 is increasing on (1,+∞) and ranges from 0 to +∞, so
there exists x f0,β > 1 such that for all x > x f0,β we have x logx− x+1 > (2r′+1) β

f0
.

Hence we need to choose x such that:

x f0,β < x <
1

(2r′+2)β
. (27)

This is possible only if x f0,β < 1
(2r′+2)β , that is if:

(2r′+1)
β

f0
<

1
(2r′+2)β

log
(

1
(2r′+2)β

)
− 1

(2r′+2)β
+1.

Let us introduce a new variable y := (2r′+2)β and let R = 2r′+1
2r′+2 , the last inequality

becomes:
R
f0

y+
1+ logy

y
< 1. (28)

The function y 7→ R
f0

y+ 1+logy
y is increasing on (0,1), it tends to −∞ at 0 and for

y = 1 it is greater that 1, so there exists y f0,r′ ∈ (0,1) such that the condition (28) is
satisfied on (0,y f0,r′). To sum up, we have shown that there exists β f0,r′ ∈ (0, 1

2r′+2 )
such that for every β < β f0,r′ , the condition (27) is not empty. We choose:

γ := βx, x satisfying (27), δ :=
1+h−1

(
2(1+ r′)γ

)
2

,

and we obtain that:

E
[
∥b− b̂m̂mm1∥

2
µ 1

Ξ
(1)
n (β ,γ,δ )c

]
≤C′′(∥b∥L2r(µ),β ,σ

2)n−λ (β ,r, f0) (logn)
p−1
r′ −1,
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where λ (β ,r, f0)> 1.

• General case. In equation (25), if we follow the proof of Theorem 2 (see Remark
7), we see that if α ∈ (0,α2

β 1/2,r′
) then we have:

E∥b− b̂m̂mm2∥
2
n ≤C(θ)∥b− t∥2

µ +σ
2 Dmmm

n
+σ

2 Σ(θ ,q)
n

+C′(∥b∥2
L2r(µ),σ

2) (logn)(p−1)/r′

nκ(α
1
2 ,β

1
2 )/r′

,

with κ(α
1
2 ,β

1
2 )

r′ > 1. Thus, we obtain:

E
[
∥b− b̂m̂mm2∥

2
µ 1

Ξ
(2)
n (β ,γ,δ )

]
≤
(

2+
4

1−δ

(
1+C(θ)

))
inf

mmm∈M
(2)
n,α

(
inf

t∈Smmm
∥b− t∥2

µ +σ
2 Dmmm

n

)

+
4σ2

1−δ

Σ(θ ,q)
n

+
4

1−δ
C′(∥b∥2

L2r(µ),σ
2) (logn)(p−1)/r′

nκ(α
1
2 ,β

1
2 )/r′

.

To obtain an upper bound on (26), we apply Lemmas 5 and 7:

P
[
Ξ

(2)
n (β ,γ,δ )c]≤ P

[
Ω̃

(2)
n (δ ,γ)c

]
+P
[
Λ

(2)
n (β ,γ)c

]
≤
(

n−
h(δ )

γ
+2 +n−C(β ,γ) B

2β
+2
)

H p−1
n ,

where C(β ,γ) :=
(

1−
√

β/γ

)2
, B := (∥ dµ

dν
∥∞ + 2

3 )
−1 and Hn := ∑

n
k=1

1
k . To obtain a

term of order n−2r′ , we need:
h(δ )

γ
−2 > 2r′,

C(β ,γ)
B

2β
−2 > 2r′,

⇐⇒

h(δ )> 2(1+ r′)γ,

C(β ,γ)
B
2
> 2(1+ r′)β ,

⇐⇒



δ > h−1(2(1+ r′)γ
)
,

γ <
1

2(1+ r′)
,

C(β ,γ)B
4(1+ r′)

> β .

Let x :=
√

β/γ ∈ (0,1), the conditions on (β ,γ) can be rewritten as:
β

x2 <
1

2(1+ r′)
,

β < (1− x)2 B
4(1+ r′)

,

⇐⇒ β <
1

2(1+ r′)

(
x2 ∧ (1− x)2 B

2

)
.
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We choose x maximizing this bound. This maximum is achieved when x2 =(1−x)2 B
2 ,

that is x =
√

B/2

1+
√

B/2
. Finally we choose:

x :=

√
B/2

1+
√

B/2
, γ :=

β

x2 , δ :=
1+h−1

(
2(1+ r′)γ

)
2

,

and we obtain that for all β ∈ (0,βB,r′) with:

βB,r′ :=
1

2(1+ r′)

( √
B/2

1+
√

B/2

)2

,

we have:

E
[
∥b− b̂m̂mm2∥

2
µ 1

Ξ
(2)
n (β ,γ,δ )c

]
≤C′′(∥b∥L2r(µ),β ,σ

2)n−λ (β ,r,B) (logn)
p−1
r′ −1,

where λ (β ,r,B)> 1. ⊓⊔
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the Matrix Chernoff bound. Finally, I want to thank Herb Susmann for proofreading this article.

A Linear Algebra

Lemma 8 Let E be a Euclidean vector space and let ℓ : E → Rn be an injective linear map. For y ∈ Rn,
the solution of the problem:

â := argmin
a∈E

∥y− ℓ(a)∥2
Rn

is given by:
â =

[
(ℓ∗ ◦ ℓ)−1 ◦ ℓ∗

]
(y),

where ℓ∗ : Rn → E is characterized by the relation
〈
y, ℓ(a)

〉
Rn =

〈
ℓ∗(y),a

〉
E .

Lemma 9 Let A, B be square matrices. If A is invertible and ∥A−1B∥op < 1, then A+B is invertible and
it holds: ∥∥(A+B)−1 −A−1∥∥

op ≤
∥A−1∥2

op∥B∥op

1−∥A−1B∥op
.

B Concentration inequalities

You can find the proofs of the following bounds in Tropp (2012) and Gittens and Tropp (2011).

Theorem 5 (Matrix Chernoff bound) Let Z1, . . . ,Zn be independent random self-adjoint positive semi-
definite matrices with dimension d, such that supk λmax(Zk)≤ R a.s. If we define:

µmin := λmin

(
n

∑
k=1

E[Zk]

)
,
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then we have:

∀δ ∈ (0,1), P

[
λmin

(
n

∑
k=1

Zk

)
≤ (1−δ )µmin

]
≤ d ×

(
e−δ

(1−δ )(1−δ )

)µmin/R

, (29)

∀δ > 0, P

[
λmin

(
n

∑
k=1

Zk

)
≥ (1+δ )µmin

]
≤

(
eδ

(1+δ )(1+δ )

)µmin/R

. (30)

Theorem 6 (Matrix Bernstein bound) Let Z1, . . . ,Zn be independent random self-adjoint positive semi-
definite matrices with dimension d, such that E[Zk] = 0 and that supk λmax(Zk) ≤ R a.s. If v > 0 is such
that: ∥∥∥∥∥ n

∑
k=1

E
[
Z2

k
]∥∥∥∥∥

op

≤ v,

then for all x > 0 we have:

P

[
λmax

(
n

∑
k=1

Zi

)
≥ x

]
≤ d × exp

(
−x2/2
v+ R

3 x

)
.

C Combinatorics

Proposition 4 For n ≥ 1 and p ≥ 2 we have:

Card
{

mmm ∈ Np
+

∣∣m1 · · ·mp ≤ n
}
≤ nH p−1

n ,

where Hn := ∑
n
k=1

1
k is the n-th harmonic number.

Proof We compute:

Card
{

mmm ∈ Np
+

∣∣Dmmm ≤ n
}
=

n

∑
m1=1

. . .
n

∑
mp=1

1m1 ···mp≤n

=
n

∑
m1=1

. . .
n

∑
mp=1

1mp≤ n
m1 ···mp−1

=
n

∑
m1=1

. . .
n

∑
mp−1=1

⌈
n

m1 · · ·mp−1

⌉

≤
n

∑
m1=1

. . .
n

∑
mp−1=1

n
m1 · · ·mp−1

= nH p−1
n .

Theorem 7 (Divisor bound) Let N ∈N+ and let div(N) be the set of divisors of N. We have for all ε > 0:

Card
(
div(N)

)
= o(Nε ).

As a consequence, we have for all ε > 0:

Card
{

m ∈ Np
+

∣∣m1 · · ·mp = N
}
≤ Card

(
div(N)

)p
= o(Nε ).

A proof of this result can be found in Tao (2008).
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