
HAL Id: hal-03506558
https://hal.science/hal-03506558

Preprint submitted on 2 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Integrating statistical thinking to the reform of contract
law: towards a leximetric approach of the French legal

system
Louis Daniel Georges Brule Naudet

To cite this version:
Louis Daniel Georges Brule Naudet. Integrating statistical thinking to the reform of contract law:
towards a leximetric approach of the French legal system: Detailed research plan for a mathematical
analysis of the understanding of French law. 2022. �hal-03506558�

https://hal.science/hal-03506558
https://hal.archives-ouvertes.fr

Integrating statistical thinking to the reform of
contract law: towards a leximetric approach of

the French legal system

Detailed research plan for a mathematical analysis of the
understanding of French law

Louis Brulé Naudet
University of Paris-Dauphine (Paris Sciences et Lettres)

Contents
1 Fractality of the legal phenomenon and mathematization of prac-

tice: an infinitely fragmented and statistically appropriable science 1
1.1 Ambiguity, legal security and statistical modeling: a common

paradigm for law and computer science 2
1.2 From the standardization of a large set of categorical variables

to the realization of unbiased indicators of legal effectiveness . 3

2 Towards a leximetry methodology for impact analysis of reforms:
the example of ordinary least squares regression 5
2.1 Simple linear regression and OLS estimator, analysis of both

strengths and limitations . 5
2.2 Introduction to multiple regression by gradient descent algo-

rithm . 7

A Appendix: full source code in Python 3.10, or how to perform lexi-
metric analysis from scratch 12

1 Fractality of the legal phenomenon and mathematization
of practice: an infinitely fragmented and statistically ap-
propriable science

To this day1, the majority tendency is based on the confrontation be-
tween the human and social sciences and the fundamental disciplines applied
to the observations of nature and the constraining forces which are, in a
non-limitative way, for example, physics or geology. However, to think of
the brutal separation between the subjects presents itself as a logic refuted
for centuries, notably, in the legal doctrine2, thanks to the works of Got-
tfried Wilhelm Leibniz3, and the structuring of the theories of language and
fundamental computer science seems to go in this direction as well, effec-
tively demonstrating the nature of complex dynamics attached to literary
paradigms. In this sense, one of the points of rapprochement between com-
puter science and literature that we will address is the rejection of ambiguity
in decision making and its impact on the modeling of behaviors induced by
iterative protocols4: thus, the objective of the study would be to demonstrate
a possible mathematical representation of the practice of law in order to draw
statistical conclusions on the effectiveness of the norm and its understanding
by the legal actors.

1L. Strauss. Anthropologie structurale II. Fonds Claude Lévi-Strauss. Place des éditeurs,
2014.

2Harvard University Press. Chapter 1. Beyond Geometry: Leibniz and the Science of
Law, pages 17–27. Harvard University Press, 2009.

3M. H. Hoeflich. Law & geometry: Legal science from leibniz to langdell. American
Journal of Legal History, 30(2):95–121, 1986.

4K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,
2013. ISBN 9781118762868.

1

1.1 Ambiguity, legal security and statistical modeling: a com-
mon paradigm for law and computer science

When we analyze the interpretation process resulting from the launch-
ing of an algorithm, whatever its language, we discover a particular char-
acteristic that isolates computer grammar from other forms of communica-
tion practiced by human beings5: the rejection of algebraic ambiguity by
the systematic application of precedence rules. This has two effects, the
first is the neutralization of any form of uncontrolled decision, the second
is the exact application of the developer’s will. In natural grammar, if
ϕ → ϕ or ϕ | ϕ and ϕ | ψ | χ | β, the sentence "ψ or χ and β" induces
a syntactic ambiguity from which two derivation trees result:

ϕ

ϕ

ψ

or ϕ

ϕ

χ

and ϕ

β

ϕ

ϕ

ϕ

ψ

or ϕ

χ

and ϕ

β

We can then understand the importance of the forced contextualization
of the reasoning in the avoidance of interpretation errors by singularizing
out the possible result, and from this simple demonstration can easily arise
an analogy with the functioning of the syllogism applied in the practice of
law6, notably in the production of court decisions and the writing of con-
ventions between people. From this conclusion, we can take the discussion

5H. M. Pandey. Advances in ambiguity detection methods for formal grammars. Pro-
cedia Engineering, 24:700–707, 2011.

6S. Brunet. La conception originelle de la sécurité juridique : l’allemagne. Titre VII,
5:79–90, 2020.

2

even further by exploring the fractal character of law in its construction as
an iterated function, and this conception appears to be relatively effective in
capturing the elements of hierarchical order, recursivity and self-reference in
legal reasoning7.

1.2 From the standardization of a large set of categorical vari-
ables to the realization of unbiased indicators of legal effec-
tiveness

We have just demonstrated the importance of mathematics in the
avoidance of errors of interpretation induced by the inambiguity caused with
the extensive contextualization of the legal problem. Based on this fact,
questioning the reform of contract law in terms of effectiveness would seem
to be a major topic of research in doctrine, particularly thanks to the large
production of case law and the possibility of a clear comparison between the
periods before and after the adoption of ordinance No. 2016-131 of Febru-
ary 10, 2016 reforming contract law8. In this context, one particular point
will attract our attention, concerning the quantitative approach to the prac-
tice of law in business and personal relationships. To speak of leximetry, in
this sense, would consist of an application of econometric principles9 to legal
problems, in order to empirically test the different provisions and interpret
their understanding by the actors of the juridical system. In this context, the
researcher finds himself in a problematic of observation and compilation of

7Dalmasso & al. Comparer, mesurer, classer : L’art périlleux de la leximétrie du licen-
ciement. Travail et emploi, 4:33–46, 2009.

8In accordance with Section 1 of Act No. 2018-287 of April 20, 2018, Ordinance No.
2016-131 of February 10, 2016, is ratified.

9J. M. Wooldridge. Introductory Econometrics: A Modern Approach. South-Western,
2009.

3

data directly from reality10, which could be coupled with a survey of lawyers
and jurists in contract law directly confronted with the dispositions of the
2016 reform. A general research problem could then be formulated: Is the
reform of contract law a source of clarification or, on the contrary, of in-
comprehension for legal practitioners with regard to the judicial reading ?
This would mean questioning the underlying issues, in particular whether
the reform is understood by the drafters of contracts, by introducing a quan-
titative analysis of the number of appeals at first instance on issues arising
from the reform, and whether it is correctly applied by the judges, by refer-
ring to the number of appeals lodged by the parties following referral to the
court, as well as the number of appeals to the Court of Cassation and the
number of rulings in favor of or against resolution of the litigation. Using the
great intellectual and practical production, makes this research theme a pro-
pitious field of leximetric application, notably thanks to the important size
of the observed sample and the possibility of clearly isolating the explained
variable and the explanatory ones. We can also be satisfied that the result
will be indicators of high quality, in particular thanks to their minimization
of statistical bias11, and, especially in the context of multiple linear regres-
sion12, which will allow viable significant results from the estimation of the
coefficients associated with the explanatory variables.

10D. M. Hausman. The Philosophy of Economics: An Anthology. Cambridge University
Press, 3 edition, 2007.

11T. Alban. Econométrie des Variables Qualitatives. Dunod, 2000.
12H. Theil. Principles of Econometrics. Wiley Hamilton publication, 1979.

4

2 Towards a leximetry methodology for impact analysis of
reforms: the example of ordinary least squares regression

One of the reasons for the development of specific statistical techniques
is due to the nature of the data that are mobilized. These data are generally
non-experimental and of several types, each one raising specific problems. In
the context of an impact analysis, two models are possible: time series and
panel data. These data are usually drawn from supposedly representative
samples of the total population. This means in particular that one can only
calculate an estimation of the parameters from this sample: even if it is
randomly drawn, this sample is rarely perfect and there is always a risk that
it is not exactly representative of the population it is supposed to represent13,
in particular, in our example, this could result from anomalies in the judicial
procedure. The first property expected of an estimator is therefore that it
is unbiased, i.e. that its expectation is equal to the true parameter. The
interest of the OLS method is precisely to produce unbiased representations:
the situations where the estimator overestimates and underestimates θ such
that the estimated value will be correct on average.

2.1 Simple linear regression and OLS estimator, analysis of both
strengths and limitations

The least squares method consists in minimizing the sum of the squares
of the residuals, weighted differences in the multidimensional case, between
each point of the regression cloud and its projection, parallel to the ordinate

13P. Kennedy. A Guide to Econometrics, 5th Edition, volume 1. The MIT Press, 5
edition, 2003.

5

axis, on the regression line, such as:

y = β0 + β1x1 (1)

β1 =

!n
i=1(xi − x̄)(yi − ȳ)!n

i=1(xi − x̄)2
(2)

β0 = ȳ − β1x̄ (3)

In this model, the β1 coefficient will be interpreted as the marginal effect
of an additional unit or variation of the explanatory variable on the explained
one and for a leximetrical application14, it could explain, as an example, the
relationship between the changes in positive law and the number of appeals to
the court of first instance for contract law issues15. From this point of view, if
there is evidence of an increase in the number of referrals to the courts of first
instance, it could be interpreted either as a better reading of contract law,
allowing for an increase in legal production by private individuals, or, on the
contrary, as a lack of readability and comprehension of the provisions, and, if
this is the case, as a lesser quality of the work of the drafters, weighing down
on legal security, and in particular on the vulnerable party. However, the
major drawback of simple linear regression is the existence of omitted variable
bias. Thus, in addition to simultaneity, correlation between the explanatory
variables and the error term can occur when an omitted variable affects
both the explained variable and one16 explanatory variable. One method to

14The Python 3.8 source code is available in the appendix, tested with execution via Unix
Shell (zsh), and aims at both a descriptive analysis of position variables and dispersion
indicators, but also of simple and multiple linear regression coefficients, based on a gradient
descent algorithm with empirical optimization of the learning coefficient.

15If we want to analyze the impact of a purely qualitative explanatory variable, we will
use a dummy variable, taking either the value 0 or 1, which will be integrated into the
equation in the same way as a quantitive data.

16(or more).

6

limit this bias would be to introduce several explanatory variables within a
multiple linear regression.

2.2 Introduction to multiple regression by gradient descent algo-
rithm

The gradient descent algorithm is designed for differentiable optimiza-
tion: it is therefore intended to minimize a differentiable real function defined
on a euclidean space17. By this process, it will be possible to optimize the
value of the regression coefficients in order to minimize the mean square
error and thereby approximate the real impact of the variation of the ex-
planatory variables. The algorithm is iterative and proceeds by successive
improvements, until convergence.

w[0]

w[1]

w[2]

w[3]

w[4]

For our approach in Python, it is important to understand the math-
ematical decomposition of a gradient descent mechanism18. This model is

17R. Bonnin. Machine Learning for Developers. Packt Publishing, 2017.
18Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied

Optimization. Springer US, 2013.

7

structurally based on an approximation of the value of x, the global mini-
mum of the generalized representation of partial derivatives associated with
the empirically observed function, computed by a recursive process blocked
by a learning rate modulating the correction and by extension, the speed of
convergence. Mathematically, the problem can be formulated as follows :

ηt+1 = ηt − α∇St (4)

∇St =
1

n

n"

i=1

(hη(xi)− y)xi (5)

Therefore,

ηt+1 = ηt − α

n

n"

i=1

(hη(xi)− y)xi (6)

Where ∇St represents the gradient associated with the function, α, the
learning rate and ηt the estimator of the βt coefficients. The issue of the
determination of the learning rate makes an optimal analysis very complex:
if the learning rate is too low, convergence can only be achieved with a very
large number of iterations, requiring a lot of resources; if it is too high, the
system will face a divergence and it will be impossible to approach the value
of the gradient19. To overcome this risk, the attached algorithm, based on a
matrix method of determination, has been designed for the optimization of
this parameter by implementing a comparison process of the different linear
coefficients of determination of Pearson from the regression20. So, in the
context of our study, the R-squared being defined as the ratio of the variance
explained by the regression to the total variance, and allowing to measure

19K. P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation
and Machine Learning series. MIT Press, 2012.

20C. Carrère. Statistiques descriptives: Théorie et applications.

8

the proximity of the data to the fitted regression line; a value close to 1 will
indicate that the model explains all the variability of the data around the
mean, and conversely, a reduced coefficient will present the regression as not
explaining the dependencies between the variables.

In order to establish a research schedule, it would seem wise to plan a
report over several years in order to complete the dataset concerning the
various judicial institutions, probably over three years for the purpose to be
more or less in line with the first decade of the reform and to obtain a better
statistical significance, but this field of research is promising, especially in
France, where it is actually absent from legal doctrine and thought, in spite
of its potential for the identification of the weaknesses of our law, especially
in such a fundamental discipline as contract, which, by extension, touches on
the right to property and the freedom of entrepreneurship.

9

References

Dalmasso & al. Comparer, mesurer, classer : L’art périlleux de la leximétrie
du licenciement. Travail et emploi, 4:33–46, 2009.

T. Alban. Econométrie des Variables Qualitatives. Dunod, 2000.

R. Bonnin. Machine Learning for Developers. Packt Publishing, 2017.

S. Brunet. La conception originelle de la sécurité juridique : l’allemagne.
Titre VII, 5:79–90, 2020.

C. Carrère. Statistiques descriptives: Théorie et applications.

K. Falconer. Fractal Geometry: Mathematical Foundations and Applications.
Wiley, 2013. ISBN 9781118762868.

D. M. Hausman. The Philosophy of Economics: An Anthology. Cambridge
University Press, 3 edition, 2007.

M. H. Hoeflich. Law & geometry: Legal science from leibniz to langdell.
American Journal of Legal History, 30(2):95–121, 1986.

P. Kennedy. A Guide to Econometrics, 5th Edition, volume 1. The MIT
Press, 5 edition, 2003.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning series. MIT Press, 2012.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Applied Optimization. Springer US, 2013.

10

H. M. Pandey. Advances in ambiguity detection methods for formal gram-
mars. Procedia Engineering, 24:700–707, 2011.

Harvard University Press. Chapter 1. Beyond Geometry: Leibniz and the
Science of Law, pages 17–27. Harvard University Press, 2009.

L. Strauss. Anthropologie structurale II. Fonds Claude Lévi-Strauss. Place
des éditeurs, 2014.

H. Theil. Principles of Econometrics. Wiley Hamilton publication, 1979.

J. M. Wooldridge. Introductory Econometrics: A Modern Approach. South-
Western, 2009.

11

A Appendix: full source code in Python 3.10, or how to
perform leximetric analysis from scratch

import numpy as np
import pandas as pd
from scipy.stats import t

def minimum(axis):
"""
minimum : pandas.core.frame.DataFrame −> Float
minimum(axis) Calculates the minimum of all the variations of each

variable of interest . Return minimum_val.
"""
try:

list_values = axis. tolist () # Transform
pandas.core.frame.DataFrame to List to iterate.

minimum_val = float(min(list_values))

return minimum_val

def maximum(axis):
"""
max_calculus : pandas.core.frame.DataFrame −> Float
max_calculus(axis) Calculates the maximum of all the variations of

each variable of interest . Return maximum_val.
"""
try:

list_values = axis. tolist () # Transform
pandas.core.frame.DataFrame to List to iterate.

maximum_val = float(max(list_values))

12

return maximum_val

def wide(axis):
"""
wide : pandas.core.frame.DataFrame −> Float
wide(axis) Calculates the delta of all the variations of each

variable of interest . Return delta.
"""
try:

delta = maximum(axis) − minimum(axis)

return delta

def average(axis) :
"""
average : pandas.core.frame.DataFrame −> Float
average(axis) Calculates the mean of all the variations of each

variable of interest . Return mean.
"""
try:

list_values = axis. tolist () # Transform
pandas.core.frame.DataFrame to List to iterate.

mean = sum(float(i) for i in list_values) / len(list_values)

return mean

def median(axis):
"""
median : pandas.core.frame.DataFrame −> Float
median(axis) Calculates the median of all the variations of each

variable of interest . Return median.

13

"""
try:

list_values = axis. tolist () # Transform
pandas.core.frame.DataFrame to List to iterate.

list_values_sorted = sorted(list_values)

if len(list_values_sorted) % 2 == 0:
median = (list_values_sorted[(int(len(list_values_sorted) −

1)) // 2] +
list_values_sorted[(int(len(list_values_sorted) + 1)) //
2]) / 2.0

else:
median = list_values_sorted[(len(list_values_sorted) − 1) //

2]

return median

def quartiles (axis) :
"""
quartiles : pandas.core.frame.DataFrame −> Float ∗ Float
quartiles (axis) Calculates the 1st and 3rd quartiles of all the

variations of each variable of interest . Return quartile_1,
quartile_3.

"""
try:

list_values = axis. tolist () # Transform
pandas.core.frame.DataFrame to List to iterate.

list_values_sorted = sorted(list_values)

if len(list_values_sorted) % 4 == 0:

14

quartile_1 = list_values_sorted[len(list_values_sorted) // 4
− 1]

quartile_3 = list_values_sorted[3 ∗ (len(list_values_sorted)
// 4 − 1)]

else:
quartile_1 = list_values_sorted[len(list_values_sorted) // 4]
quartile_3 = list_values_sorted[3 ∗ (len(list_values_sorted)

// 4)]

return quartile_1, quartile_3

def variance(axis) :
"""
variance : pandas.core.frame.DataFrame −> Float
variance(axis) Calculates the corrected variance of all the

variations of each variable of interest . var.
"""
try:

list_values = axis. tolist () # Transform
pandas.core.frame.DataFrame to List to iterate.

var = 0

for i in range(0, len(list_values)) :
var = (var + (list_values[i] − average(axis)) ∗∗ 2)

var = var / (len(list_values) − 1)

return var

def std(axis) :

15

"""
std : pandas.core.frame.DataFrame −> Float
std(axis) Calculates the standard deviation of all the variations of

each variable of interest . Return standard_deviation.
"""
try:

standard_deviation = variance(axis) ∗∗ (1 / 2)

return standard_deviation

def statistics (dataframe):
"""
statistics : pandas.core.frame.DataFrame −>

pandas.core.frame.DataFrame
statistics (dataframe) Performs key statistic analysis for each

explanatory variable , stores all data in a summary table.
Return dataframe_stats.

"""
dataframe_stats = pd.DataFrame(columns=["Explanatory variable",

"Minimum", "Maximum", "Delta", "Mean", "Median", "1st
quartile", "3rd quartile", "Adj. Variance", "Adj. Standard
deviation"])

for element in dataframe:
min = minimum(dataframe[element])
max = maximum(dataframe[element])
delta = wide(dataframe[element])
mean = average(dataframe[element])
mdn = median(dataframe[element])
quar_1, quar_3 = quartiles(dataframe[element])
adj_var = variance(dataframe[element])

16

adj_std = std(dataframe[element])

row = {"Explanatory variable": element, "Minimum": min,
"Maximum": max, "Delta": delta, "Mean": mean, "Median":
mdn, "1st quartile": quar_1, "3rd quartile": quar_3, "Adj.
Variance": adj_var, "Adj. Standard deviation": adj_std}

dataframe_stats = dataframe_stats.append(row,
ignore_index=True)

return dataframe_stats

def covariance(y, x):
"""
covariance: pandas.core.frame.DataFrame ∗

pandas.core.frame.DataFrame −> Float
covariance(y, x) Calculates the corrected covariance of the

explanatory variables with respect to the explained variable .
Return adj_cov.

"""
try:

numerator = 0

for i in range(0, len(x), 1):
numerator += (y[i] − average(y)) ∗ (x[i] − average(x))

adj_cov = numerator / (len(x) − 1)

return adj_cov

def pearsonr(y, x):
"""

17

pearsonr: pandas.core.frame.DataFrame ∗
pandas.core.frame.DataFrame −> Float

pearsonr(y, x) Calculates the Pearson’s correlation coefficient of
the explanatory variables with respect to the explained
variable . Return corr.

"""
try:

corr = covariance(y, x) / (std(x) ∗ std(y))

return corr

def ols(y, x):
"""
ols : pandas.core.frame.DataFrame ∗ pandas.core.frame.DataFrame

−> Float
ols (y, x) Calculates the B1 and B0 coefficients of the Ordinary

Least Mean Square Method, to perform linear regression. Return
pearsonr_dict, pearsonr_dataframe.

"""
try:

numerator = 0
denominator = 0

for i in range(0, len(x)) :
numerator += (x[i] − average(x)) ∗ (y[i] − average(y))
denominator += (x[i] − average(x)) ∗∗ 2

b1 = numerator / denominator
b0 = average(y) − (b1 ∗ average(x))

return b0, b1

18

def r2_score(y, x):
"""
r2_score: pandas.core.frame.DataFrame ∗

pandas.core.frame.DataFrame −> Float
r2_score(y, x) Calculates the coefficient of determination of the

explanatory variables with respect to the explained variable .
Return score.

"""
try:

b0, b1 = ols(y, x)
sum_total_squares = 0
sum_residuals_squares = 0

for i in range(0, len(x)) :
y_reg = b0 + b1 ∗ x[i]
sum_total_squares += (y[i] − average(y)) ∗∗ 2
sum_residuals_squares += (y[i] − y_reg) ∗∗ 2

score = 1 − (sum_residuals_squares / sum_total_squares)

return score

def adj_r2_score(y, x):
"""
adj_r2_score: pandas.core.frame.DataFrame ∗

pandas.core.frame.DataFrame −> Dict ∗ Float
adj_r2_score(y, x) Calculates the adjusted coefficient of

determination of the explanatory variables with respect to the
explained variable . Return adj_score.

"""

19

try:
adj_score = 1 − (((1 − r2_score(y, x)) ∗ (len(x) − 1)) / (len(x)

− 1 − 1))

return adj_score

def std_err(y, x):
"""
std_err: pandas.core.frame.DataFrame ∗

pandas.core.frame.DataFrame −> Float
std_err(y, x) Calculates the root−mean−square deviation of the

Ordinary Least Mean Square Method. Return rmse.
"""
try:

b0, b1 = ols(y, x)
rmse = 0
ss_xx = 0

for i in range(len(x)) :
y_reg = b0 +(b1 ∗ x[i])
rmse += (y[i] − y_reg) ∗∗ 2
ss_xx += (x[i] − average(x)) ∗∗ 2

rmse = ((rmse / (len(x) − 2)) / ss_xx) ∗∗ (1 / 2) # Correction
of the degree of liberties .

return rmse

def t_stat(y, x):
"""
t_stat: pandas.core.frame.DataFrame ∗ pandas.core.frame.DataFrame

20

−> Float
t_stat(y, x) Calculates the test statistic of the Ordinary Least

Mean Square Method. Return t.
"""
try:

b0, b1 = ols(y, x)
t = b1 / std_err(y, x)

return t

def p_value(y, x):
"""
p_value: pandas.core.frame.DataFrame ∗

pandas.core.frame.DataFrame −> Float
p_value(y, x) Calculates the test statistic of the Ordinary Least

Mean Square Method. Return p.
"""
try:

degrees_of_freedom = len(x) − 1
p = (1.0 − t.cdf(abs(t_stat(y, x)) , degrees_of_freedom)) ∗ 2.0

return p

def slr (dataframe, dep_dataframe):
"""
slr : pandas.core.frame.DataFrame ∗ pandas.core.frame.DataFrame

−> pandas.core.frame.DataFrame
slr (dataframe, dep_variable) Simple linear regression on each

explanatory variable , using the ordinary least squares method.
Return ols_dataframe.

"""

21

try:
ols_dataframe = pd.DataFrame(columns=["Explanatory variable",

"Covariance", "Pearson’s correlation", "R−squared", "Adj.
R−squared", "B0 coef.", "B1 coef.", "Std err. (B1)", "t−stat." ,
"p−value"])

k = len(dataframe.columns) # Number of explicative variables

for element in dataframe:
adj_cov = covariance(dep_dataframe, dataframe[element])
corr = pearsonr(dep_dataframe, dataframe[element])
b0, b1 = ols(dep_dataframe, dataframe[element])
score = r2_score(dep_dataframe, dataframe[element])
adj_score = adj_r2_score(dep_dataframe,

dataframe[element])
rmse = std_err(dep_dataframe, dataframe[element])
t = t_stat(dep_dataframe, dataframe[element])
p = p_value(dep_dataframe, dataframe[element])

row = {"Explanatory variable": element, "Covariance":
adj_cov, "Pearson’s correlation " : corr , "R−squared":
score, "Adj. R−squared": adj_score, "B0 coef.": b0, "B1
coef." : b1, "Std err . (B1)":rmse, "t−stat." : t ,
"p−value": p}

ols_dataframe = ols_dataframe.append(row,
ignore_index=True)

return ols_dataframe

def matrix_rewrite(y, x):
"""
matrix_rewrite : pandas.core.frame.DataFrame ∗

22

pandas.core.frame.DataFrame −> List[List] ∗ List[List]
matrix_rewrite(y, x) matrixing of the pandas tables, to solve the

multiple linear regression model. Shape of X : (n_samples,
n_features). Return Y, X.

"""
try:

Y, X = [], []

for element in y:
Y.append(element)

for i in range(0, len(x), 1):
X.append(x.iloc[i]. values . tolist ())

return Y, X

def mean_matrix(x):
"""
mean_matrix : pandas.core.frame.DataFrame −> numpy.ndarray
mean_matrix(x) Creates a matrix containing the means of the

explanatory variables. Return mu.
"""
mean_list = []

for element in x:
mean_list.append(average(x[element]))

mu = np.array(mean_list)

return mu

23

def std_matrix(x):
"""
std_matrix : pandas.core.frame.DataFrame −> numpy.ndarray
std_matrix(x) : Creates a matrix containing the standard deviation

of the explanatory variables . Return sigma.
"""
std_list = []

for element in x:
std_list .append(std(x[element]))

sigma = np.array(std_list)

return sigma

def feature_normalize(y, x):
"""
feature_normalize : pandas.core.frame.DataFrame ∗

pandas.core.frame.DataFrame −> numpy.ndarray ∗
numpy.ndarray ∗ numpy.ndarray

feature_normalize(y, x) Normalize values to optimizing gradient
descent. Return X_norm, Y, mu, sigma.

"""
try:

mu = mean_matrix(x)
sigma = std_matrix(x)
Y, X = matrix_rewrite(y, x)

X_norm = (X − mu) / sigma
X_norm = np.c_[np.ones(X_norm.shape[0]), X_norm] #

Translates slice objects to concatenation along the second axis.

24

return X_norm, Y, mu, sigma

def ulr(Y, X, theta):
"""
ulr : numpy.ndarray ∗ numpy.ndarray ∗ numpy.ndarray −>

numpy.ndarray
ulr(X, Y, theta) Computes the dependent variable of a particular

combinaison of theta for linear regression . Return iterate_value.
"""
predictions = X.dot(theta)
errors = np.subtract(predictions, Y)
sqrErrors = np.square(errors)

iterate_value = 1 / (2 ∗ len(Y)) ∗ errors .T.dot(errors)

return iterate_value

def accuracy(y, x, theta, mu, sigma):
"""
accuracy: numpy.ndarray ∗ numpy.ndarray ∗ numpy.ndarray ∗

numpy.ndarray ∗ numpy.ndarray −> Float
accuracy(y, x, theta, mu, sigma) Calculates R2 of the regression to

optimizing learning rate . Return score.
"""
try:

sum_total_squares = 0
sum_residuals_squares = 0

for i in range(0, len(x)) :
normalize_test_data = ((np.array(x.iloc[i]) − mu) / sigma)

25

normalize_test_data = np.hstack((np.ones(1),
normalize_test_data))

prediction = normalize_test_data.dot(theta)

sum_total_squares += (y[i] − average(y)) ∗∗ 2
sum_residuals_squares += (y[i] − prediction) ∗∗ 2

score = 1 − (sum_residuals_squares / sum_total_squares)

return score

def gradient_descent(Y, X, theta, alpha, mu, sigma, iterations , y, x):
"""
gradient_descent : numpy.ndarray ∗ numpy.ndarray ∗ numpy.ndarray

∗ Float ∗ Int −> numpy.ndarray ∗ numpy.ndarray
gradient_descent(X, Y, theta, alpha, iterations) Computes the

dependent variables for linear regression . Return theta,
iterate_values .

"""
try:

iterate_values = np.zeros(iterations)

for i in range(iterations) :
predictions = X.dot(theta)
errors = np.subtract(predictions, Y)
sum_delta = (alpha / len(Y)) ∗ X.transpose().dot(errors)
theta −= sum_delta

iterate_values [i] = ulr(Y, X, theta)
progressbar(iterations , i + 1, alpha=alpha)

26

if i == (iterations − 1):
score = accuracy(y, x, theta, mu, sigma)
progressbar(iterations , i + 1, alpha=alpha, score=score)

return theta, iterate_values, score

def mls(y, x):
"""
mls : pandas.core.frame.DataFrame ∗ pandas.core.frame.DataFrame

−> pandas.core.frame.DataFrame ∗ numpy.ndarray ∗
numpy.ndarray ∗ numpy.ndarray

mls(y, x) Multiple linear regression on several endogenous
variables. Return normalized_coef_dataframe, theta, mu, sigma.

"""
X, Y, mu, sigma = feature_normalize(y, x)

theta = np.zeros(len(mu) + 1)
iterations = 99999
#alpha = [0.065, 0.50, 1.50, 2.00] # Test some learning rates to

select the highest R−squared.
alpha = [0.065]
theta_list , score_list = [], []

for element in alpha:
print("\n testing ({}/{}):" .format((alpha.index(element) + 1),

len(alpha)))
theta_train, iterate_values , score = gradient_descent(Y, X,

theta, element, mu, sigma, iterations , y, x)
theta_list .append(theta_train)
score_list .append(score)

27

print("\n{}".format(theta))

normalized_coef_dataframe = pd.DataFrame(columns=["B0", "B1",
"B2", "B3", "B4", "B5", "B6", "R−squared"])

row = {"B0":theta[0], "B1":theta [1], "B2":theta [2], "B3":theta [3],
"B4":theta [4], "B5":theta [5], "B6":theta [6],
"R−squared":max(score_list)}

normalized_coef_dataframe =
normalized_coef_dataframe.append(row, ignore_index=True)

return normalized_coef_dataframe, theta, mu, sigma

28

