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1 Fractality of the legal phenomenon and mathematization of practice: an infinitely fragmented and statistically appropriable science

To this day1 , the majority tendency is based on the confrontation between the human and social sciences and the fundamental disciplines applied to the observations of nature and the constraining forces which are, in a non-limitative way, for example, physics or geology. However, to think of the brutal separation between the subjects presents itself as a logic refuted for centuries, notably, in the legal doctrine 2 , thanks to the works of Gottfried Wilhelm Leibniz 3 , and the structuring of the theories of language and fundamental computer science seems to go in this direction as well, effectively demonstrating the nature of complex dynamics attached to literary paradigms. In this sense, one of the points of rapprochement between computer science and literature that we will address is the rejection of ambiguity in decision making and its impact on the modeling of behaviors induced by iterative protocols 4 : thus, the objective of the study would be to demonstrate a possible mathematical representation of the practice of law in order to draw statistical conclusions on the effectiveness of the norm and its understanding by the legal actors.

1.1 Ambiguity, legal security and statistical modeling: a common paradigm for law and computer science

When we analyze the interpretation process resulting from the launching of an algorithm, whatever its language, we discover a particular characteristic that isolates computer grammar from other forms of communication practiced by human beings5 : the rejection of algebraic ambiguity by the systematic application of precedence rules. This has two effects, the first is the neutralization of any form of uncontrolled decision, the second is the exact application of the developer's will. In natural grammar, if an analogy with the functioning of the syllogism applied in the practice of law 6 , notably in the production of court decisions and the writing of conventions between people. From this conclusion, we can take the discussion even further by exploring the fractal character of law in its construction as an iterated function, and this conception appears to be relatively effective in capturing the elements of hierarchical order, recursivity and self-reference in legal reasoning7 .

ϕ → ϕ or ϕ | ϕ and ϕ | ψ | χ | β,
1.2 From the standardization of a large set of categorical variables to the realization of unbiased indicators of legal effectiveness

We have just demonstrated the importance of mathematics in the avoidance of errors of interpretation induced by the inambiguity caused with the extensive contextualization of the legal problem. Based on this fact, questioning the reform of contract law in terms of effectiveness would seem to be a major topic of research in doctrine, particularly thanks to the large production of case law and the possibility of a clear comparison between the periods before and after the adoption of ordinance No. 2016-131 of February 10, 2016 reforming contract law 8 . In this context, one particular point will attract our attention, concerning the quantitative approach to the practice of law in business and personal relationships. To speak of leximetry, in this sense, would consist of an application of econometric principles 9 to legal problems, in order to empirically test the different provisions and interpret their understanding by the actors of the juridical system. In this context, the researcher finds himself in a problematic of observation and compilation of data directly from reality10 , which could be coupled with a survey of lawyers and jurists in contract law directly confronted with the dispositions of the 2016 reform. A general research problem could then be formulated: Is the reform of contract law a source of clarification or, on the contrary, of incomprehension for legal practitioners with regard to the judicial reading ?

This would mean questioning the underlying issues, in particular whether the reform is understood by the drafters of contracts, by introducing a quantitative analysis of the number of appeals at first instance on issues arising from the reform, and whether it is correctly applied by the judges, by referring to the number of appeals lodged by the parties following referral to the court, as well as the number of appeals to the Court of Cassation and the number of rulings in favor of or against resolution of the litigation. Using the great intellectual and practical production, makes this research theme a propitious field of leximetric application, notably thanks to the important size of the observed sample and the possibility of clearly isolating the explained variable and the explanatory ones. We can also be satisfied that the result will be indicators of high quality, in particular thanks to their minimization of statistical bias11 , and, especially in the context of multiple linear regression12 , which will allow viable significant results from the estimation of the coefficients associated with the explanatory variables.

2 Towards a leximetry methodology for impact analysis of reforms: the example of ordinary least squares regression

One of the reasons for the development of specific statistical techniques is due to the nature of the data that are mobilized. These data are generally non-experimental and of several types, each one raising specific problems. In the context of an impact analysis, two models are possible: time series and panel data. These data are usually drawn from supposedly representative samples of the total population. This means in particular that one can only calculate an estimation of the parameters from this sample: even if it is randomly drawn, this sample is rarely perfect and there is always a risk that it is not exactly representative of the population it is supposed to represent13 , in particular, in our example, this could result from anomalies in the judicial procedure. The first property expected of an estimator is therefore that it is unbiased, i.e. that its expectation is equal to the true parameter. The interest of the OLS method is precisely to produce unbiased representations:

the situations where the estimator overestimates and underestimates θ such that the estimated value will be correct on average.

Simple linear regression and OLS estimator, analysis of both strengths and limitations

The least squares method consists in minimizing the sum of the squares of the residuals, weighted differences in the multidimensional case, between each point of the regression cloud and its projection, parallel to the ordinate axis, on the regression line, such as:

y = β 0 + β 1 x 1 (1)
β 1 = ! n i=1 (x i -x)(y i -ȳ) ! n i=1 (x i -x) 2
(2)

β 0 = ȳ -β 1 x (3) 
In this model, the β 1 coefficient will be interpreted as the marginal effect of an additional unit or variation of the explanatory variable on the explained one and for a leximetrical application 14 , it could explain, as an example, the relationship between the changes in positive law and the number of appeals to the court of first instance for contract law issues 15 . From this point of view, if there is evidence of an increase in the number of referrals to the courts of first instance, it could be interpreted either as a better reading of contract law, allowing for an increase in legal production by private individuals, or, on the contrary, as a lack of readability and comprehension of the provisions, and, if this is the case, as a lesser quality of the work of the drafters, weighing down on legal security, and in particular on the vulnerable party. However, the major drawback of simple linear regression is the existence of omitted variable bias. Thus, in addition to simultaneity, correlation between the explanatory variables and the error term can occur when an omitted variable affects both the explained variable and one 16 explanatory variable. One method to limit this bias would be to introduce several explanatory variables within a multiple linear regression.

Introduction to multiple regression by gradient descent algorithm

The gradient descent algorithm is designed for differentiable optimization: it is therefore intended to minimize a differentiable real function defined on a euclidean space17 . By this process, it will be possible to optimize the value of the regression coefficients in order to minimize the mean square error and thereby approximate the real impact of the variation of the explanatory variables. The algorithm is iterative and proceeds by successive improvements, until convergence.
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For our approach in Python, it is important to understand the mathematical decomposition of a gradient descent mechanism 18 . This model is structurally based on an approximation of the value of x, the global minimum of the generalized representation of partial derivatives associated with the empirically observed function, computed by a recursive process blocked by a learning rate modulating the correction and by extension, the speed of convergence. Mathematically, the problem can be formulated as follows :

η t+1 = η t -α∇S t (4) ∇S t = 1 n n " i=1 (h η (x i ) -y)x i (5) 
Therefore,

η t+1 = η t - α n n " i=1 (h η (x i ) -y)x i (6) 
Where ∇S t represents the gradient associated with the function, α, the learning rate and η t the estimator of the β t coefficients. The issue of the determination of the learning rate makes an optimal analysis very complex:

if the learning rate is too low, convergence can only be achieved with a very large number of iterations, requiring a lot of resources; if it is too high, the system will face a divergence and it will be impossible to approach the value of the gradient 19 . To overcome this risk, the attached algorithm, based on a matrix method of determination, has been designed for the optimization of this parameter by implementing a comparison process of the different linear coefficients of determination of Pearson from the regression 20 . So, in the context of our study, the R-squared being defined as the ratio of the variance explained by the regression to the total variance, and allowing to measure the proximity of the data to the fitted regression line; a value close to 1 will indicate that the model explains all the variability of the data around the mean, and conversely, a reduced coefficient will present the regression as not explaining the dependencies between the variables.

In order to establish a research schedule, it would seem wise to plan a report over several years in order to complete the dataset concerning the various judicial institutions, probably over three years for the purpose to be more or less in line with the first decade of the reform and to obtain a better statistical significance, but this field of research is promising, especially in France, where it is actually absent from legal doctrine and thought, in spite of its potential for the identification of the weaknesses of our law, especially in such a fundamental discipline as contract, which, by extension, touches on the right to property and the freedom of entrepreneurship.

A Appendix: full source code in Python 3.10, or how to perform leximetric analysis from scratch "Minimum", "Maximum", "Delta", "Mean", "Median", "1st quartile", "3rd quartile", "Adj. Variance", "Adj. Standard deviation"]) row = {"Explanatory variable": element, "Minimum": min, "Maximum": max, "Delta": delta, "Mean": mean, "Median": mdn, "1st quartile": quar_1, "3rd quartile": quar_3, "Adj.

for
Variance": adj_var, "Adj. sum_total_squares = 0 sum_residuals_squares = 0 for i in range(0, len(x)) : normalize_test_data = ((np.array(x.iloc[i ])mu) / sigma) print("\n{}".format(theta)) normalized_coef_dataframe = pd.DataFrame(columns=["B0", "B1", "B2", "B3", "B4", "B5", "B6", "R-squared"]) row = {"B0":theta[0], "B1":theta [1], "B2":theta [2], "B3":theta [3],

"B4":theta [4], "B5":theta [5], "B6":theta [6], "R-squared":max(score_list)} normalized_coef_dataframe = normalized_coef_dataframe.append(row, ignore_index=True) return normalized_coef_dataframe, theta, mu, sigma

  . . . . . . . . . . . . . . . . . . . 5 2.2 Introduction to multiple regression by gradient descent algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

  the sentence "ψ or χ and β" induces a syntactic ambiguity from which two derivation trees result:We can then understand the importance of the forced contextualization of the reasoning in the avoidance of interpretation errors by singularizing out the possible result, and from this simple demonstration can easily arise

  element in dataframe: min = minimum(dataframe[element]) max = maximum(dataframe[element]) delta = wide(dataframe[element]) mean = average(dataframe[element]) mdn = median(dataframe[element]) quar_1, quar_3 = quartiles(dataframe[element]) adj_var = variance(dataframe[element]) adj_std = std(dataframe[element])

  .ndarray * numpy.ndarray * numpy.ndarray -> numpy.ndarray ulr(X, Y, theta) Computes the dependent variable of a particular combinaison of theta for linear regression . Return iterate_value. """ predictions = X.dot(theta) errors = np.subtract(predictions, Y) sqrErrors = np.square(errors) iterate_value = 1 / (2 * len(Y)) * errors .T.dot(errors) .ndarray * numpy.ndarray * numpy.ndarray * numpy.ndarray * numpy.ndarray -> Float accuracy(y, x, theta, mu, sigma) Calculates R2 of the regression to optimizing learning rate . Return score.

	Standard deviation": adj_std} dataframe_stats = dataframe_stats.append(row, ignore_index=True) return dataframe_stats def covariance(y, x): """ covariance: pandas.core.frame.DataFrame * pandas.core.frame.DataFrame -> Float covariance(y, x) Calculates the corrected covariance of the explanatory variables with respect to the explained variable . Return adj_cov. """ try: numerator = 0 for i in range(0, len(x), 1): numerator += (y[i] -average(y)) * (x[i] -average(x)) adj_cov = numerator / (len(x) -1) return adj_cov pearsonr: pandas.core.frame.DataFrame * def r2_score(y, x): try: ols_dataframe = pd.DataFrame(columns=["Explanatory variable", def std_matrix(x): pandas.core.frame.DataFrame -> List[List] * List[List] matrix_rewrite(y, x) matrixing of the pandas tables, to solve the """ return X_norm, Y, mu, sigma pandas.core.frame.DataFrame -> Float pearsonr(y, x) Calculates the Pearson's correlation coefficient of the explanatory variables with respect to the explained variable . Return corr. """ try: corr = covariance(y, x) / (std(x) * std(y)) return corr def ols(y, x): """ ols : pandas.core.frame.DataFrame * pandas.core.frame.DataFrame -> Float ols (y, x) Calculates the B1 and B0 coefficients of the Ordinary Least Mean Square Method, to perform linear regression. Return pearsonr_dict, pearsonr_dataframe. """ try: numerator = 0 denominator = 0 for i in range(0, len(x)) : """ "Covariance", "Pearson's correlation", "R-squared", "Adj. R-squared", "B0 coef.", "B1 coef.", "Std err. (B1)", "t-stat." , multiple linear regression model. Shape of X : (n_samples, n_features). Return Y, X. std_matrix : pandas.core.frame.DataFrame -> numpy.ndarray std_matrix(x) : Creates a matrix containing the standard deviation def ulr(Y, X, theta): r2_score: pandas.core.frame.DataFrame * "p-value"]) """ of the explanatory variables . Return sigma. """ pandas.core.frame.DataFrame -> Float r2_score(y, x) Calculates the coefficient of determination of the explanatory variables with respect to the explained variable . Return score. """ try: b0, b1 = ols(y, x) sum_total_squares = 0 sum_residuals_squares = 0 for i in range(0, len(x)) : y_reg = b0 + b1 * x[i] k = len(dataframe.columns) # Number of explicative variables for element in dataframe: adj_cov = covariance(dep_dataframe, dataframe[element]) corr = pearsonr(dep_dataframe, dataframe[element]) b0, b1 = ols(dep_dataframe, dataframe[element]) score = r2_score(dep_dataframe, dataframe[element]) adj_score = adj_r2_score(dep_dataframe, dataframe[element]) rmse = std_err(dep_dataframe, dataframe[element]) t = t_stat(dep_dataframe, dataframe[element]) p = p_value(dep_dataframe, dataframe[element]) try: Y, X = [], [] for element in y: Y.append(element) for i in range(0, len(x), 1): X.append(x.iloc[i ]. values . tolist ()) return Y, X def mean_matrix(x): """ std_list = [] for element in x: std_list .append(std(x[element])) sigma = np.array(std_list) return sigma def feature_normalize(y, x): """ ulr : numpyreturn iterate_value sum_total_squares += (y[i] -average(y)) * * 2 sum_residuals_squares += (y[i] -y_reg) * * 2 score = 1 -(sum_residuals_squares / sum_total_squares) return score def adj_r2_score(y, x): """ row = {"Explanatory variable": element, "Covariance": adj_cov, "Pearson's correlation " : corr , "R-squared": score, "Adj. R-squared": adj_score, "B0 coef.": b0, "B1 coef." : b1, "Std err . (B1)":rmse, "t-stat." : t , "p-value": p} ols_dataframe = ols_dataframe.append(row, ignore_index=True) """ mean_matrix : pandas.core.frame.DataFrame -> numpy.ndarray mean_matrix(x) Creates a matrix containing the means of the explanatory variables. Return mu. """ mean_list = [] for element in x: feature_normalize : pandas.core.frame.DataFrame * def accuracy(y, x, theta, mu, sigma): pandas.core.frame.DataFrame -> numpy.ndarray * """ numpy.ndarray * numpy.ndarray feature_normalize(y, x) Normalize values to optimizing gradient descent. Return X_norm, Y, mu, sigma. """ try: mu = mean_matrix(x) accuracy: numpy""" numerator += (x[i] -average(x)) * (y[i] -average(y)) denominator += (x[i] -average(x)) * * 2 b1 = numerator / denominator adj_r2_score(y, x) Calculates the adjusted coefficient of mu = np.array(mean_list) pandas.core.frame.DataFrame -> Dict * Float return ols_dataframe Y, X = matrix_rewrite(y, x) adj_r2_score: pandas.core.frame.DataFrame * mean_list.append(average(x[element])) sigma = std_matrix(x) try:
	def pearsonr(y, x): b0 = average(y) -(b1 * average(x)) determination of the explanatory variables with respect to the explained variable . Return adj_score. def matrix_rewrite(y, x): """ return mu X_norm = (X -mu) / sigma X_norm = np.c_[np.ones(X_norm.shape[0]), X_norm] #
	""" return b0, b1 """ matrix_rewrite : pandas.core.frame.DataFrame * Translates slice objects to concatenation along the second axis.
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The Python 3.8 source code is available in the appendix, tested with execution via Unix Shell (zsh), and aims at both a descriptive analysis of position variables and dispersion indicators, but also of simple and multiple linear regression coefficients, based on a gradient descent algorithm with empirical optimization of the learning coefficient.

If we want to analyze the impact of a purely qualitative explanatory variable, we will use a dummy variable, taking either the value 0 or 1, which will be integrated into the equation in the same way as a quantitive data.
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try:

adj_score = 1 -(((1 -r2_score(y, x)) * (len(x) -1)) / (len(x) -1 -1))

return adj_score def std_err(y, x): """ std_err: pandas.core.frame.DataFrame * pandas.core.frame.DataFrame -> Float std_err(y, x) Calculates the root-mean-square deviation of the Ordinary Least Mean Square Method. Return rmse. """ try:

b0, b1 = ols(y, x) rmse = 0 ss_xx = 0