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Abstract
We consider a classification problem in which test in-
stances are not available as complete feature vectors,
but must rather be uncovered by repeated queries to
an oracle. We have a limited budget of queries: the
problem is then to find the best features to ask the
oracle for. We consider here a strategy where features
are uncovered one by one, so as to maximize the sepa-
ration between the classes. Once an instance has been
uncovered, the distribution of the remaining instances
is updated according to the observation. Experiments
on synthetic and real data show that our strategy re-
mains reasonably accurate when a decision must be
made based on a limited amount of observed features.
We briefly discuss the case of imprecise answers, and
list out the many problems arising in this case.
Keywords: Partially supervised decision making; ro-
bust decision making; active learning.

1. Introduction

In a typical supervised classification setting, a classifier is
trained to identify the class of instances drawn from a pop-
ulation of reference. Classically, instances are interpreted
as the realization of a random vector X ∈ IRp, whose ele-
ments are the features describing the instance. In order to
classify any new (test) instance, Bayesian decision theory
[5, 14] advocates estimating the posterior probabilities of
the classes, for which two main approaches can then be de-
ployed. Discriminative approaches aim at estimating these
probabilities directly, for instance by assuming a parame-
terized model which has to be estimated from training data;
generative approaches rather estimate the class-conditional
distributions of the feature vector and the class frequencies
from the training data [13]. Then, for a new instance x, the
posterior probabilities are deduced using Bayes rule.

In both cases, it is obvious that making a decision re-
quires the test instance to be perfectly known. In some
applications, however, instances may only come partially
observed or unobserved. For instance, in medical diagnosis,
nothing is known about a patient before a diagnosis is per-
formed: uncovering some features may require performing
time-consuming, invasive or potentially hazardous tests,
which should therefore be avoided if possible.

In this work, test instances are assumed to be unobserved:
the missing features must be uncovered in order to make a

decision. This problem differs from imputation since val-
ues are uncovered and not estimated. It is related to active
learning [6, 11, 3, 15, 16], which however occurs during
training, and generally aims at uncovering information re-
garding the class variable so as to improve the classification
model being trained. Note that in the two last references
[15, 16], the problem of uncovering missing feature values
was addressed, and the proposal is close in spirit to the
strategy presented here. In [10], the problem of processing
partial test instances was addressed. The missing features
were assumed to be always the same; two models were
available (one based on the features always available, the
other on all features), and the issue was then to identify
which instances should be completed and which may be
left incomplete.

Here, we investigate an iterative strategy where the fea-
ture values of a test instance are retrieved progressively,
with the purpose of increasing evidence pointing towards
one of the possible classes, by exploiting the model inferred
in the training step. An oracle is assumed to provide this
information, in the form of answers regarding the actual
value taken by features. We mainly consider the case of
precise answers provided with respect to a single feature —
i.e., each answer consists in a single realization for one of
the variables describing the test instance. We nevertheless
discuss the case of imprecise answers (sets of values being
then provided as answers) and point out the main issues
caused by such partial pieces of information.

The article is organized as follows. Section 2 briefly re-
calls the setting and provides some notations. In Section 3,
we describe an approach where features are uncovered
based on their expected tendency to determine the class
information. Section 4 presents some experiments on syn-
thetic and real data. Section 5 briefly discusses the case
of imprecise answers, and the implications on the strategy
proposed. Eventually, Section 6 concludes and presents the
many directions in which future work may be conducted.

2. Setting

2.1. Classical decision making

A test instance x has to be classified into one of K ≥ 2
classes Ω = {ω1, . . . ,ωK}; it is assumed to be the realiza-
tion of a random vector X ∈X = IRp, the (unknown) class
information being encoded by a random variable Z ∈ Ω.
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We will place ourselves in the case of a well-known gen-
erative model: the prior probabilities πk = Pr(Z = ωk) and
class-conditional densities fk = fX |Z=ωk

are estimated using
training data.

When a new (test) instance x is observed, Bayesian de-
cision theory recommends that the class ω? with highest
posterior probability be chosen:

ω
? = arg max

k=1,...,K
Pr(ωk|x), (1)

with

Pr(ωk|x) =
πk fk(x)

∑` π` f`(x)
. (2)

In other terms, making a decision amounts to determining
the class which dominates the others in terms of posterior
probability, which we will write ωk �p ω`:

ωk �p ω`⇔ Pr(ωk|x)> Pr(ω`|x)⇔
fk(x)
f`(x)

>
π`

πk
. (3)

2.2. Decision making from partial instances

The problem addressed in this work is that the test instances
xi are only partially observed. For each instance, we de-
compose the feature vector into two parts: x = (xO,xM),
with O⊆ {1, . . . , p} is the subset of indices of the observed
variables, and M ⊆ {1, . . . , p} stands for the unobserved
ones (obviously, O and M form a partition of {1, . . . , p}).
Whenever M 6= /0, the conditional densities fk(x) cannot
be computed any more. Then, should a decision be made
using the observed vector xO alone, the missing variables
can be marginalized out:

fk(xO) =
∫

XM

fk(x)dxM. (4)

Obviously, the observed feature vector xO may not be suf-
ficient in order to make an accurate decision. In this case,
one may consider uncovering (some of) its missing part xM ,
in order to increase the amount of information based on
which the decision is to be made.

Rather than choosing the features to be uncovered in a
single shot, we propose to do it progressively, exploiting
the information retrieved in each step for making the next
choices. For this purpose, we repeatedly query the oracle
for missing values, and we update the information regarding
the class-conditional densities for the feature vector and
therefore the posterior probabilities of the classes.

3. Iterative feature querying
3.1. Global strategy

Iterative approach We consider a test instance with
missing features which needs to be classified. An oracle is
able to provide the missing values. We propose to uncover

features iteratively. At each step t = 0,1,2, . . . , we con-
sider the sets of observed features Ot and missing features
Mt (again, forming a partition of {1, . . . , p}). The process,
roughly described in Algorithm 1, consists in picking (sets
of) variables Qt , so as to transfer them from Mt into Ot+1.

Algorithm 1: Iterative querying process
Input: model; test instance with observed (O0 = /0)

and missing (M0 = {1, . . . , p}) features
Output: Updated sets of features Ot and Mt
t← 0;
while querying for new features is still possible do

t← t +1;
identify a new part xQt of x to be uncovered;
update the sets of features: Ot ← Ot−1∪Qt ,

Mt ←Mt−1 \Qt ;
update the available information over the
remaining features in Mt using xQt ;

end
return sets of features Ot and Mt , observed vector xOt

Assume no information regarding the instance to be clas-
sified is available: O0 = /0 and M0 = {1, . . . , p}. Should a
decision be made, the class with highest prior probability
would be chosen. Making the best decision would instead
require uncovering all p variables, i.e. Q1 = {1, . . . , p}; and
choosing a class according to Equation (3). Imagine that
this is not possible, due to resource constraints: only a sub-
set of variables with indices Q1 can be uncovered in a first
step: O1←Q1 and M1←{1, . . . , p}\Q1. Then, either new
variables can be queried for; or a decision can be made
based on the available information.

Decision making Should the processed be stopped at
some step t and a decision be made based on Ot , the missing
variables can be marginalized out:

Pr(ωk|xOt ) =
Pr(ωk,xOt )

Pr(xOt )

=
fk(xQt |xOt−1)Pr(ωk|xOt−1)

∑` f`(xQt |xOt−1)Pr(ω`|xOt−1)
. (5)

Note that this latter expression is that of Equation (2) where
prior probabilities πk were replaced with posterior probabil-
ities Pr(ωk|Ot−1). Alternatively, we could check whether
ωk �p ω`, for all ` 6= k, as in Equation (3):

ωk �p ω` ⇔
fk(xQt |xOt−1)

f`(xQt |xOt−1)
>

Pr(ω`|xOt−1)

Pr(ωk|xOt−1)
.

Feature choice strategy The problem of choosing fea-
tures to query for is vast: how many features should be
uncovered, which ones, in which order. The main issue is
obviously that of the choice criterion, that is, a measure of
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informativeness of each feature with respect to the task at
hand (here, classification).

We propose here to query for the single feature Xqt
1

which appears to be the most informative, repeatedly if
resources allow for it. Uncovering subsets of features has
been studied in a similar setting [4]; it will not be addressed
here. It can nevertheless be seen as a direct generalization
of the approach presented in this article, with two notable
caveats: (a) evaluating the informativeness criterion over
all possible subsets of features is combinatorial; and (b)
uncovering larger pieces of information at once limits the
interest of exploiting the information xQt retrieved at a
given step in order to choose the next query Qt+1.

3.2. Informativeness criterion

Intuitively, in the iterative querying strategy described
above, the variables to query for should be chosen accord-
ing to the information it will supposedly bring in order
to choose between the classes in presence. Obviously, a
variable is informative if it weighs heavily in predicting the
output variable Z. Therefore, having previously observed
the values in xO, we propose to choose the variable Xq

2

which has the greatest influence on Z, by minimizing the
conditional entropy H(Z|Xq,xO) [12]:

H(Z|Xq,XO = xO) =

−
K

∑
k=1

∫
Xq

Pr(ωk,xq|xO) log
Pr(ωk,xq|xO)

fXq|XO=xO(xq)
dxq. (6)

Note that this conditional entropy, which indicates to which
extent the outcome of the class variable Z is determined
by the random variable Xq|xO, can be re-expressed as the
expected differential entropy of Z|xq,xO, which turns out to
be the (discrete) entropy of the class posterior probability
distribution Pr(Z|xq,xO):

H(Z|Xq,xO) =

−
∫

Xq
∑
k

Pr(ωk|xq,xO) logPr(ωk|xq,xO)d fXq|xO(xq)︸ ︷︷ ︸
EXq |xO [H(Z|xq,xO)]

. (7)

Thus, this strategy can be seen as picking the feature which
is expected to maximize the “unevenness” of the class
posterior probability distribution Pr(Z|xO,xq), i.e. so that
probability mass is distributed as much as possible towards
a single class. Remark that minimizing the entropy amounts
to maximizing an expected Kullback-Leibler divergence
between the class-conditional densities and the mixture
density for Xq:

1. We deliberately use a lowercase letter whenever the query will be
made regarding a single unknown variable.

2. We drop here the subscript referring to the iteration in which the
query is made, for the sake of simplicity.

H(Z|Xq,XO = xO) =

H(Z)−∑
k

πk

∫
Xq

fk(xq|xO) log
fk(xq|xO)

f (xq|xO)
dxq︸ ︷︷ ︸

EZ[DKL(Pr(Xq|Z,xO)||Pr(Xq|xO))]

.

(8)

In other terms, the querying strategy can be seen as choos-
ing the variable which maximizes the information gain in-
duced by using the marginal distribution Pr(Xq|xO) instead
of the class-conditional distribution Pr(Xq|Z,xO), averaged
with respect to the distribution of Z.

3.3. Entropy calculation issues

A model of the joint distribution Pr(Xq,Z|xO) is required
for any q ∈ {1, . . . , p}, in order to determine the most infor-
mative query. Such a model can be derived in a generative
setting: for instance, in the Gaussian case, Property 1 makes
it possible to easily update the class-conditional distribu-
tions according to the features retrieved. This is not for
discriminative models (since Pr(Z|X) is directly modelled).

However, even in the former case, H(Z|Xq,xO) cannot
generally be computed exactly. Note that Equation (6) can
be decomposed into

H(Z|Xq,xO) =−∑
k

πk

∫
Xq

fk(xq|xO) log fk(xq|xO)dxq︸ ︷︷ ︸
H(Xq|Z,xO)

−∑
k

πk logπk︸ ︷︷ ︸
H(Z)

+
∫

Xq

f (xq|xO) log f (xq|xO)dxq︸ ︷︷ ︸
−H(Xq|xO)

; (9)

the existence of a closed form for H(Xq|Z,xO) depends
on fk(·|xO); and no closed form exists for H(Xq|xO), since
fXq(·|xO) is a mixture of distributions.

It will always remain possible to compute an approxi-
mation to Equation (7), or to the right-hand terms in Equa-
tion (9) for which a closed form does not exist, via Monte-
Carlo strategies. For instance, in the former case, we have

H(Z|Xq,xO)'
1
T

T

∑
t=1

H(Z|xO,x
(t)
q ),

where the T instances x(1)q , . . . ,x(T )q are sampled according
to fXq|xO(·) = ∑k πk fk(·|xO). Note that experimentally, the
estimates obtained seem more accurate when approximat-
ing Equation (7) than Equation (9).

3.4. Conditional distribution updating

In Algorithm 1, the last step of an iteration consists in up-
dating the “available information” regarding the remaining
missing variables, according to the value which has just
been retrieved.

3
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In the case where the answer provided by the oracle
is a precise value xq for the queried variable Xq, a trivial
strategy would consist in simply transfering the variable
just observed from the missing features Mt to the observed
ones Ot , and picking the next variable to be queried re-
gardless of the piece of information xq just acquired. Note
that this strategy, where conditional entropies are estimated
separately (variable-wise), can be seen as a “naive” proce-
dure, since it amounts to neglect the interactions between
the variables in the querying strategy, and to choosing the
queries based on the training data uniquely.

Indeed, the piece of uncovered information is likely to
modify our knowledge of the class-conditional distributions
of the remaining missing variables, especially in the case
of high correlations. Therefore, we may exploit it further
by updating these class-conditional distributions, i.e. by
conditioning with respect to the new value xq. As a result,
the querying strategy depends on the test instance being
processed. Note that this step can be difficult to proceed
with, depending on the distributions considered. However,
in some particular cases, we may specify a closed form for
the updated class-conditional distributions. This is for in-
stance the case with the (multivariate) Gaussian pdf, which
can be updated according to a new value as described by
Property 1 (see Appendix A).

3.5. Simple example

We illustrate the strategy described above on a simple exam-
ple. The (known) class-conditional distributions are Gaus-
sian. The example makes use of two properties of Gaussian
distributions, recalled in Appendix A.

Example 1 (Gaussian case) Assume a population of in-
stances xi ∈ IR3 distributed in K = 2 classes. The distri-
bution in each class is Gaussian, with π1 = 0.5 = π2, and
class-conditional expectations and covariance matrices

µ1 =

 1.5
−0.5
−0.5

 , µ2 =

 −1.5
0.5
0.5

 ,

Σ1 = Σ2 =

 1 0.75 0.25
0.75 1 0
0.25 0 1

 .

The entropy is approximated as described in Section 3.3.
Note that a closed form for the entropy exists in the Gaus-
sian case (see Property 2): thus, both the first and third
terms in Equation (9) may be computed exactly, leaving
only the second one for approximation. However, as men-
tioned in Section 3.3, it turned out that the approximations
were more accurate based on Equation (7).

The variable to be queried first is X1. Intuitively, it is
the most discriminative one, since it maximizes the uneven-
ness of the posterior probability distribution (see Figure 1,

where the variation of posterior probabilities along the X1
axis is sharper). This intuition is confirmed by the expected
entropies estimated here:

H(Z|X1)' 0.166, H(Z|X2) = H(Z|X3)' 0.581.
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Figure 1: Posterior distributions Pr(Z = ωk|X j = x j) for
j = 1 (left), and j ∈ {2,3} (right).

Assume that the realization for X1 is x1 = 0.5. Should a
decision be made, the class posterior probabilities would
lead to choose class ω1: indeed, Pr(ω1|X1 = 0.5)' 0.818.
Missing values can however be further uncovered. For this
purpose, we first have to update the distributions of the
missing variables. Let X23|1 stand for the random vector
obtained by conditioning (X2,X3)

T on (X1 = x1). Using
Property 1, we have that

X23|1 ∼
ωk

N
(

µk,23|1,Σk,23|1

)
,

with

µ1,23|1 =

(
−1.25
−0.75

)
, µ2,23|1 =

(
2
1

)
,

Σ1,23|1 = Σ2,23|1 =

(
0.4375 −0.1875
−0.1875 0.9375

)
.

The marginal conditional distributions for X2|X1 = x1 and
X3|X1 = x1, can then be deduced, and the posterior proba-
bilities consequently updated (see Figure 2). As it turns out,
variable X2|x1 is now the most discriminative one:

H(Z|X2,x1)' 0.0225, H(Z|X3,x1)' 0.3637.

Assume that the value uncovered for X2 is x2 = 2. When it
comes to decision making, the posterior probabilities ob-
tained would now lead to choose class ω2, with Pr(ω1|X1 =
0.5,X2 = 2) ' 0; if variable X3 had been uncovered in-
stead, giving x3 = 0.5 class ω1 would have been chosen
(Pr(ω1|X1 = 0.5,X2 = 2) ' 0.69). The correct decision,
based on the full feature vector, is class ω2 (Pr(ω1|x)' 0).

4. Experiments
4.1. Synthetic data

We first report experiments realized on synthetic data. We
generated n = 1000 data according to a Gaussian mixture

4
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Figure 2: Posterior distributions Pr(Z =ωk|X j = x j,x1) for
j = 2 (left) and j = 3 (right).

with the following parameters: π1 = 0.6,π2 = 0.4, and
class-conditional expectations and covariance matrices

µ1 =


1
1
1
1
1

 , µ2 =


−1
−1
−1
−1
−1

 ;

Σ1 =


1 0.25 0 0 0

0.25 1 0 0 0
0 0 1 0.75 0.25
0 0 0.75 1 0.5
0 0 0.25 0.5 1

 ,

Σ2 =


1 0.25 0.5 0 0

0.25 1 0.75 0 0
0.5 0.75 1 0.25 0
0 0 0.25 1 0.5
0 0 0 0.5 1

 .

We randomly split the data into a training set (60% of the
data) and a test set (40%), and we trained a quadratic dis-
criminant analysis model, i.e. we estimated a multivariate
Gaussian mixture model on the labeled data. Then, four
strategies were compared for processing each test instance:

1. instances were classified using all features (baseline);

2. a fixed amount of features were uncovered at random;

3. a fixed amount of features were uncovered based on
the estimated entropies H(Z|X j), computed separately
for all natural features X j ( j = 1, . . . , p), without up-
dating the distributions;

4. a fixed amount of features were uncovered via an
iterative procedure where the class-conditional dis-
tributions are updated sequentially, according to the
uncovered values.

We let the amount n f of uncovered features vary: we set
n f = 1, . . . , p− 1. We generated 104 samples in order to
estimate the conditional entropy, by approximating Equa-
tion (7). We repeated the procedure described above T = 25
times, computing each time the error rate.

Figure 3 displays the error rates thus obtained, along
with 95% confidence intervals error rates. Obviously, when
n f = 1, both strategies 3 and 4 perform similarly (slight
differences being sometimes observed, due to the approxi-
mation of the conditional entropy). Overall, the sequential
strategy performs significantly better than random selection,
and better than the basic entropy procedure (the difference
with this latter being significant for n f = 2 and n f = 3. For
all three methods, the accuracy gets closer to that of the
baseline as n f increases (and is obviously identical when
n f = 5), due to the total amount of uncovered information
growing with n f .

Here, we also provide information with respect to the
queries made (based on the data generated during one repe-
tition of the procedure). Using the naive entropy approach,
we observed that q1 = 3 — note that actually, all variables
are equally informative, but approximations in the entropy
calculation lead to choose this variable. We estimated the
frequencies of each sequence of queries computed with the
sequential strategy, differentiating according to the actual
class of the instances. The three most frequent sequences
are displayed in Table 1 (class 1) and 2 (class 2).

The following remarks can be made. First of all, the two
classes have a frequent query in common — we may imag-
ine that it corresponds to instances near the classification
boundary. Second, the remaining queries differ, for each
class, by the two last variables queried for: they can thus be
deemed as typical from the class. This insight is confirmed
by the fact that the two most frequent queries for instances
in class 1 were never computed for instances in class 2 (the
two most frequent queries for class 2 having however been
computed, for 10 and 8 instances respectively).

This confirms that according to the data, there may exist
“typical sequences” for instances from a particular class.
This opens the way to strategies where elements of se-
quences can be suggested, e.g. according to the similarity
of the test instance being evaluated to instances with known
optimal sequences, in order to alleviate the computational
cost of the sequential strategy presented above.

Table 1: Top three most frequent sequences, class ω1

Sequence nb. frequency

(3, 1, 2, 4, 5) 33 14.04%
(3, 1, 2, 5, 4) 29 12.34%
(3, 4, 2, 5, 1) 25 10.64%

4.2. Real data

We present here results obtained on four real datasets of the
UCI Machine Learning repository [8]. For each dataset, we
used the procedure described in Section 4.1. The data were
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Figure 3: Error curves as a function of the number of un-
covered variables, synthetic (Gaussian) data.
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Figure 4: Error curves, breast cancer.
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Figure 5: Error curves, pima data.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

all features
random selection
fixed entropy
adaptive entropy

nb. of queried variables

Figure 6: Error curves, optdigits data.
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Figure 7: Error curves, satimage data.
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Figure 8: Error curves, wine data.
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Table 2: Top three most frequent sequences, class ω2

Sequence nb. frequency

(3, 2, 4, 5, 1) 46 28.40%
(3, 2, 4, 1, 5) 26 16.05%
(3, 4, 2, 5, 1) 22 13.58%

centered and scaled, and in order to avoid numerical issues
when estimating the covariance matrices, we performed a
PCA in order to keep p = 6 descriptive variables for the
optdigits and satimage data. In the case of the optdigits
data, we focused on five classes (corresponding to the digits
‘0’, ‘1’, ‘3’, ‘7’, ‘8’) in order to keep the computational cost
reasonable (remember for each test instance, we compute
the average error rate for each possible amount of retrieved
features, which is quadratic in the number of features).

Figures 4 to 7 display the classification error as a function
of the number of uncovered variables. These curves confirm
the insight given by the experiments on the synthetic data,
in that selecting the variables according to their expected
“discriminative power” seems a good strategy, especially if
the number of uncovered variables is low. It also mitigates
the enthusiasm for the sequential procedure. Indeed, this
procedure does not perform systematically better than the
naive entropy approach; when it does, the difference is
rarely significant (it is actually the case for the optdigits,
satimage and wine datasets, with n f = 2).

We may provide an explanation to this fact. Our strategy
for updating the class-conditional distributions and for esti-
mating the conditional entropy relies here heavily on the
assumption that the data are Gaussian. Should this distribu-
tional assumption be erroneous, the updated distributions
might further differ from the actual distributions of the miss-
ing variables; besides, the estimated entropy values might
be improper. This would therefore lead to making queries
that are actually not optimal with respect to the actual dis-
tribution of the data. Should this latter insight be confirmed,
using robust strategies based on sets of distributions might
be an appropriate solution.

5. Imprecise answers
5.1. Problem

The strategy presented above assumes answers to be precise,
in the form of a value xq. This assumption is reasonable in
some cases, such as for instance in the context of a medical
examination as mentioned in the introduction. In other
settings, however, the answer may be a piece of imprecise
or uncertain knowledge with respect to the queried variable.

We will discuss here the case where the expert provides
imprecise but certain answers, in the form of intervals
Rq ⊂Xq in which the value of the queried variable lies

(or is considered to). This kind of information actually cor-
responds to epistemic uncertainty [9], due to the expert
being unable to answer with precision to the query. This is
sometimes due to the elicitation process: for instance, the
expert may be asked whether a given variable is greater or
smaller than a given threshold.

5.2. Incorporating imprecise answers

An imprecise answer must be taken into account at two lev-
els: computing the next best query, and making a decision.

Naive entropy strategy The naive strategy can still be
used (since the distributions used to choose the queries
are not affected by the answers). Should a decision be
made, the variable can be marginalized out according to
this truncated distribution — which amounts to replace the
class-conditional densities in Equation (5) by their inte-
gral over Rq, that is by the class-conditional probabilities
Pr(Rq|ωk,xOt−1).

In such a case of ill-known feature values xq ∈ Rq, the
criteria used in the precise case can be replaced by a cau-
tious counterpart. The imprecise answer defines a credal
set for the posterior probabilities: for any class ωk ∈Ω,

Pk =
{

Pr(ωk|xq,xO) such that xq ∈ Rq
}
.

Once this credal set is specified, further queries can be made
by computing pessimistic entropy values (in a cautious and
therefore robust perspective), typically using a maximum
of entropy criterion [1, 2]. Alternatively, a decision can be
made, by using cautious strategies [17] such as interval
dominance.

Sequential strategy In this case, the distribution of an
imprecisely observed variable can be updated by truncat-
ing the density. The variable can be queried for again, in
the hope for a more precise answer allowing to further de-
crease the expected entropy for the posterior probability
distribution over the classes.

A critical consequence of the realization xq being par-
tially identified is that updating accordingly the class-
conditional distributions of the missing variables becomes
difficult. Indeed, in each class ωk, we only know that the
conditional distribution of the missing variables XM|Rq,xO
lies in the set of conditional pdfs

FXM |ωk,RqxO =
{

fXM |Z=ωk,xq,xO such that xq ∈ Rq

}
.

Note that using Bayes rule yields, for any variable X j ∈ XM ,

fX j |ωk,xO,Rq(x j) =
Pr(Rq|ωk,xO,x j) fX j |ωk,xO(x j)

Pr(Rq|ωk,xO)
. (10)

Although the denominator and the right-hand term in the
numerator can be easily computed, Pr(Rq|ωk,xO,x j) de-
pends on x j. Therefore, characterizing this distribution, or
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sampling from it in order to compute the conditional en-
tropy, is a difficult problem, even in the simple case of
Gaussian class-conditional distributions. Note that recent
work regarding the propagation of uncertainty using copula
dependence [18] may provide a starting point to address
this issue in the general case.

6. Conclusion and perspectives

Summary In this article, we addressed the case of super-
vised classification, where test instances to be classified are
not observed, or only partially, and where an oracle can be
interrogated with respect to the missing values in order to
increase the amount of information upon which the decision
will be made. In order to make these choices, we propose
to use a conditional entropy criterion, which indicates the
variable which is expected to determine the class variable
the most. We propose two strategies for making successive
choices this purpose. A naive approach consists in comput-
ing the conditional entropies separately, i.e. based on the
training data uniquely; a sequential approach consists in
updating the class-conditional distributions of the missing
variables according to the pieces of information uncovered
in the process, thus depending on the test instances.

Both strategies are evaluated on several datasets, un-
der the assumption that the class-conditional distributions
are multivariate Gaussians (which corresponds to the well-
known quadratic discriminant analysis classifier). They are
compared to classical QDA where all features are used
for making decisions, and a strategy where features are
uncovered at random for each test instance. The results
obtained show the interest of choosing variables based on
their extent to influence the class information. Although
the sequential procedure seems to be able to provide better
choices than the naive one, it may also be highly sensitive to
the distributional assumptions being (reasonably) satisfied.

We then briefly discuss the issue of imprecise answers to
the queries made. Then, the oracle provides sets of possible
values for the queried variable, rather than a single (precise
and certain) value. Although the naive approach can still
be used in this case, using both the precise-probabilistic
approach presented or a robust variant, the sequential ap-
proach becomes much more difficult to implement, due to
the class-conditional distributions being ill-specified.

Future work The future directions of this preliminary
work are many, and point towards concepts and tools de-
veloped within the imprecise-probabilistic framework. The
first direction would be to further investigate the case of
imprecise answers, for instance by deriving sets of posterior
probabilities over the classes induced by the intervals pro-
vided, and consequently using a robust strategy to choose
between the queries, for instance by using extensions of the
entropy [1, 2], and for making decisions [17, 7]. We may
also study the case of imprecise and uncertain answers; in

this case, the same issue of specifying the class-conditional
distributions (and updating them) will be key.

The results obtained on real data also ask the question
of robustness with respect to the distributional assumption.
In this case, sets of class-conditional distributions may also
be used, this time to account for the fact that the actual
distributions might differ from the estimated ones. This is
likely to be critical, especially in the sequential approach
where the sensitivity to the distributional assumption being
violated can be expected to increase, possibly dramatically,
with the successive conditionings being made.

Another important issue to be addressed is that of choos-
ing the amount of features to be uncovered. In the exper-
iments realized, we let the amount of uncovered features
vary up to the maximum possible, therefore showing that a
few carefully chosen instances make it possible to attain a
good classification accuracy. It might be interesting to be
able to quantify the (expected) amount of remaining (i.e.,
missing) information. However, although the total condi-
tional entropy can be decomposed using a chain rule, this
decomposition does not hold when the class-conditional
distributions are altered by conditioning with respect to
the successive uncovered values. This issue of choosing
the number of queries may also be further developed with
queries having a cost (possibly depending on the feature,
such as in the medical examination example), which calls
for being able to evaluate the cost-benefit ratio of a query.

Several other directions seem to be of interest. We men-
tioned in the experiments that some sequences of queries
seem to be frequently observed. We may investigate how
such typical sequences could be inferred, for instance using
a separate (validation) set of instances. We may also con-
sider other criteria for choosing the queries — this direction
being strongly related to that of robustness.

Appendix A. Properties of Gaussian random
vectors

Property 1 (Conditioning in Gaussian vectors) Let
X ∼N (µ,Σ) be a Gaussian random vector with expec-
tation µ and covariance matrix Σ. Assume that X can be
partitioned into two subvectors XA and XB, where A and B
indicate the indices of the corresponding variables:

X =

(
XA
XB

)
, µ =

(
µA
µB

)
, Σ =

(
ΣAA ΣAB
ΣBA ΣBB

)
.

Then, the distribution of XA conditional on XB = xB is
multivariate Gaussian:

XA|XB = xB ∼N (µA|B,ΣA|B), (11)

with

µA|B = µA+ΣABΣ
−1
BB(xB−µB), ΣA|B =ΣAA−ΣABΣ

−1
BBΣBA.
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Property 2 (Entropy of a Gaussian random vector)
Let X ∼ N (µ,Σ) be a Gaussian random in X = IRp

vector with expectation µ and covariance matrix Σ. Its
differential entropy can be computed as follows:

H(X) =
p
2

log(2π)+
p
2
+

1
2

log(detΣ).
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