Hugo Lhachemi 
  
Christophe Prieur 
  
Predictor-Based Output Feedback Stabilization of an Input Delayed Parabolic PDE with Boundary Measurement

Keywords: Input delayed reaction-diffusion PDEs, predictor, output feedback, boundary control

This paper is concerned with the output feedback boundary stabilization of general 1-D reaction diffusion PDEs in the presence of an arbitrarily large input delay. We consider the cases of Dirichlet/Neumann/Robin boundary conditions for the both boundary control and boundary condition. The boundary measurement takes the form of a either Dirichlet or Neumann trace. The adopted control strategy is composed of a finite-dimensional observer estimating the first modes of the PDE coupled with a predictor to compensate the input delay. In this context, we show for any arbitrary value of the input delay that the control strategy achieves the exponential stabilization of the closed-loop system, for system trajectories evaluated in H 1 norm (also in L 2 norm in the case of a Dirichlet boundary measurement), provided the dimension of the observer is selected large enough. The reported proof of this result requires to perform both control design and stability analysis using simultaneously the (non-homogeneous) original version of the PDE and one of its equivalent homogeneous representations.

Introduction

Since time delays are ubiquitous in practical applications, feedback control of finite-dimensional systems in the presence of input delays has been extensively studied [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF][START_REF]Time-delay systems: an overview of some recent advances and open problems[END_REF]. The extension of this topic to Partial Differential Equations (PDEs) has attracted much attention in the recent years [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF][START_REF] Nicaise | Stability of the heat and of the wave equations with boundary timevarying delays[END_REF][START_REF] Wang | Delay-dependent exponential stabilization for linear distributed parameter systems with time-varying delay[END_REF]. This paper is concerned with the feedback stabilization of reaction-diffusion PDEs in the presence of an arbitrarily long input delay. One of the very first contributions on this topic was reported in [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] using a backstepping control design technique (see also [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] for the related problem of sensor dynamics governed by diffusion PDEs). More recently, the possibility to combine classical spectral reduction methods [START_REF] Coron | Global steadystate controllability of one-dimensional semilinear heat equations[END_REF][START_REF] Coron | Global steadystate stabilization and controllability of 1D semilinear wave equations[END_REF][START_REF] David | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] (which are based on the fact that the associated eigenfunctions form a Riesz basis) and the design of a classical predictor feedback [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF][START_REF] Bekiaris | Compensation of state-dependent input delay for nonlinear systems[END_REF][START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF] on a finite-dimensional truncated model of Corresponding author H. Lhachemi. The work of C. Prieur has been partially supported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003)

Email addresses: hugo.lhachemi@centralesupelec.fr (Hugo Lhachemi), christophe.prieur@gipsa-lab.fr (Christophe Prieur).

the original PDE was reported in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] in the case of a state-feedback. Extensions of this approach in various directions, also in the context of state-feedback, were reported in [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF][START_REF] Lhachemi | Indomain stabilization of block diagonal infinite-dimensional systems with time-varying input delays[END_REF][START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF]. One of the main advantages of spectral reduction methods for parabolic PDEs is that they allow the design of a finite-dimensional state-feedback, making them particularly relevant for practical applications. However, sole state-feedback control of PDEs is generally inapplicable in practice because the distributed nature of the state makes it essentially impossible to measure. Hence the design of an observer is generally required. Since the plant is a PDE, the observer itself generally takes the form of a PDE synthesized using a backstepping procedure [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF]. Hence the partial statefeedback can be coupled with the observer to ensure the stability of the closed-loop plant; see e.g. [START_REF] Katz | Boundary delayed observer-controller design for reaction-diffusion systems[END_REF] where sufficient LMI conditions are derived with robustness aspects w.r.t. small enough delays. In order to avoid the pitfall of late lumping approximations required for the implementation of observers with infinite dimensional dynamics, a number of works have been devoted to the design of finite-dimensional observer-based control strategies for parabolic PDEs [START_REF] Mark | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF][START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF][START_REF] Grüne | Finite-dimensional output stabilization of linear diffusion-reaction systems-a small-gain approach[END_REF][START_REF] Harkort | Finitedimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF][START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF][START_REF] Lhachemi | Finite-dimensional observer-based PI regulation control of a reaction-diffusion equation[END_REF][START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF][START_REF] Lhachemi | Local output feedback stabilization of a reaction-diffusion equation with saturated actuation[END_REF][START_REF] Lhachemi | Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF][START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF][START_REF] Sano | Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement[END_REF]. In this work, we take advantage of the control architecture initially reported in [START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF] augmented with the LMI-based procedure introduced in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. More precisely, we leverage the enhanced procedure reported in [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF] that extends for general reaction-diffusion PDEs the LMI-based approach reported in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] to Dirichlet and/or Neumann boundary control and measurement (see also [START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF] with a different approach but limited to Dirichlet measurements).

We address the finite-dimensional observer-based output feedback boundary stabilization of general 1-D reaction diffusion PDEs in the presence of an arbitrarily large input delay. A solution to this control design problem was reported for the first time in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] by combining a finite-dimensional observer and a predictor (used to compensate the input delay) in the very specific setting of a reaction-diffusion equation with Neumann boundary control, a bounded output operator, and with stability of the closed-loop system assessed in L 2 norm for arbitrarily large value of the input delay. However, the approach developed in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] and which solely relies on the original (non-homogeneous) representation of the PDE is strongly tailored for the above-mentioned setting and is hardly extendable to other types of boundary conditions (Dirichlet/Robin), to unbounded measurement operators (Dirichlet/Neumann), and to system trajectories evaluated in H 1 norm. This is because, introducing (β n ) n≥1 the coefficients of projection of the boundary control operator into the Hilbert basis formed by the eigenstructures of the underlying Sturm-Liouville operator, the Neumann setting is such that β n = O(1) while the Dirichlet/Robin configurations give in general no better than β n = O( √ λ n ) where λ n are the eigenvalues of the problem that grow in n 2 . This difference of asymptotic behavior has a major impact on the control design procedure since the proof reported in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF], which is limited to the case of a bounded measurement operator with trajectories evaluated in L 2 norm, heavily relies on the convergence of the series β 2 n /λ n that is only granted for Neumann boundary control. This issue becomes even more stringent in the case of an unbounded measurement operator and for system trajectories evaluated in H 1 norm, as it will be further detailed in Remark 3 of this paper after the introduction of the model of the system and its modal decomposition.

In this paper, we completely solve the control design problem of output feedback stabilization of general 1-D reaction-diffusion PDEs in the presence of an arbitrarily large input delay, with Dirichlet/Neumann/Robin boundary control/condition, and with a boundary measurement selected as a either Dirichlet or Neumann trace. The employed control architecture combines a finite-dimensional observer and a predictor. In the case of a Dirichlet (resp. Neumann) measurement, we assess the exponential stability of the closed-loop system in L 2 and H 1 norms (resp. H 1 norm) for arbitrarily large value of the input delay provided the dimension of the observer is selected large enough. This is achieved by leveraging an adequate scaling procedure [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF] and by considering simultaneously both the original (non-homogeneous) representation of the PDE and one of its homogeneous versions obtain using a change of variable for control design and Lyapunov stability analysis.

The paper is organized as follows. Notations and properties of Sturm-Liouville operators are presented in Section 2. The problem setting is presented in Section 3 followed by a preliminary spectral reduction of the problem. The case of a Dirichlet measurement is studied in Section 4 while the case of a Neumann measurement is analyzed in Section 5. A numerical example is provided in Section 6. Finally, concluding remarks are formulated in Section 7.

Notation and properties

Notation

Spaces R n are endowed with the Euclidean norm • . The corresponding induced norms of matrices are also denoted by • . For any two vectors X and Y of arbitrary dimensions, col(X, Y ) stands for the vector [X , Y ] . The space of square integrable functions on (0, 1) is denoted by L 2 (0, 1) and is endowed with the usual inner product f, g = 1 0 f (x)g(x) dx and with associated norm denoted by • L 2 . For an integer m ≥ 1, H m (0, 1) denotes the m-order Sobolev space and is equipped with its usual norm • H m . For a symmetric matrix P ∈ R n×n , P 0 (resp. P 0) means that P is positive semi-definite (resp. positive definite).

Properties of Sturm-Liouville operators

Let θ 1 , θ 2 ∈ [0, π/2], p ∈ C 1 ([0, 1]) and q ∈ C 0 ([0, 1]) with p > 0 and q ≥ 0. Let the Sturm-Liouville operator A : D(A) ⊂ L 2 (0, 1) → L 2 (0, 1) be defined by Af = -(pf ) + qf on the domain D(A) = {f ∈ H 2 (0, 1) : c θ1 f (0) -s θ1 f (0) = c θ2 f (1) + s θ2 f (1) = 0} where c θi = cos θ i and s θi = sin θ i . The eigenvalues λ n , n ≥ 1, of A are simple, non negative (due to θ 1 , θ 2 ∈ [0, π/2] and q ≥ 0), and form an increasing sequence with λ n → +∞ as n → +∞. The corresponding unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis. The domain of the operator A is also characterized by

D(A) = {f ∈ L 2 (0, 1) : n≥1 |λ n | 2 | f, φ n | 2 < +∞}. Let p * , p * , q * ∈ R be such that 0 < p * ≤ p(x) ≤ p * and 0 ≤ q(x) ≤ q * for all x ∈ [0, 1], then it holds 0 ≤ π 2 (n -1) 2 p * ≤ λ n ≤ π 2 n 2 p * + q * for all n ≥ 1 [30]. Moreover if p ∈ C 2 ([0, 1]
), we have (see, e.g., [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]) that φ n (ξ) = O(1) and φ n (ξ) = O( √ λ n ) as n → +∞ for any given ξ ∈ [0, 1]. Assuming further that q > 0, an integration by parts and the continuous embedding

H 1 (0, 1) ⊂ L ∞ (0, 1) show the existence of constants C 1 , C 2 > 0 such that C 1 f 2 H 1 ≤ n≥1 λ n f, φ n 2 = Af, f ≤ C 2 f 2 H 1 (1)
for any f ∈ D(A). The latter inequalities and the Rieszspectral nature of A imply that the series expansion f = n≥1 f, φ n φ n holds in H 2 (0, 1) norm for any f ∈ D(A). Due to the continuous embedding H 1 (0, 1) ⊂ L ∞ (0, 1), we obtain that f (0) = n≥1 f, φ n φ n (0) and f (0) = n≥1 f, φ n φ n (0). We finally define, for any integer

N ≥ 1, R N f = n≥N +1 f, φ n φ n .
3 Problem setting and preliminary spectral reduction

Problem setting

We consider in this paper the input delayed reactiondiffusion system described by

z t (t, x) = (p(x)z x (t, x)) x -q(x)z(t, x) (2a) c θ1 z(t, 0) -s θ1 z x (t, 0) = 0 (2b) c θ2 z(t, 1) + s θ2 z x (t, 1) = u(t -h) (2c) z(0, x) = z 0 (x) (2d) 
for t > 0 and x ∈ (0, 1) where

θ 1 , θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]
) with p > 0, q ∈ C 0 ([0, 1]), and the input delay h > 0. Here z(t, •) is the state of the PDE at time t, u(t -h) is the delayed version of the command u(t), and z 0 is the initial condition. We assume throughout the paper that u(τ ) = 0 for τ < 0.

Remark 1 Even if we restrict the presentation to parameters θ 1 , θ 2 ∈ [0, π/2], which correspond to the most meaningful configurations from a practical perspective, developments reported in this paper readily extend to the case θ 1 , θ 2 ∈ [0, π) provided q in (5) is selected sufficiently large positive so that (1) still holds, implying in particular λ n ≥ 0 for all n ≥ 1. In this case, one merely needs to modify the change of variable formula ( 6) by the following one: w(t, x) = z(t, x) -

x α c θ 2 +αs θ 2 u(t) where α > 1 is fixed so that c θ2 + αs θ2 = 0.
The system output y(t) ∈ R is selected as the either left Dirichlet trace (in this case

θ 1 ∈ (0, π/2]) y D (t) = z(t, 0) (3) 
or left Neumann trace (in this case

θ 1 ∈ [0, π/2)) y N (t) = z x (t, 0). ( 4 
)
Without loss of generality, let q ∈ C 0 ([0, 1]) and q c ∈ R be such that q(x) = q(x) -q c , q(x) > 0.

(

) 5 
This allows to consider the Sturm-Liouville operator A and its related properties as described in Subsection 2.2.

In particular, since q ≥ 0, the eingenvalues λ n of A are such that λ n ≥ 0. Note however that the actual modes of the reaction-diffusion PDE (2) are given by -λ n + q c , hence a finite number of them may be unstable.

Spectral reduction

In order to obtain an equivalent homogeneous representation of (2), we define the change of variable

w(t, x) = z(t, x) - x 2 c θ2 + 2s θ2 u(t -h). (6) 
Introducing v = u, we infer that

u(t) = v(t) (7a) w t (t, x) = (p(x)w x (t, x)) x -q(x)w(t, x) (7b) + a(x)u(t -h) + b(x)v(t -h) (7c) c θ1 w(t, 0) -s θ1 w x (t, 0) = 0 (7d) c θ2 w(t, 1) + s θ2 w x (t, 1) = 0 (7e) w(0, x) = w 0 (x) (7f)
where

a(x) = 1 c θ 2 +2s θ 2 {2p(x)+2xp (x)-x 2 q(x)}, b(x) = -x 2 c θ 2 +2s θ 2
, and

w 0 (x) = z 0 (x) -x 2 c θ 2 +2s θ 2 u(-h) = z 0 (x).
Let the coefficients of projection be defined by

z n (t) = z(t, •), φ n , w n (t) = w(t, •), φ n , a n = a, φ n , and b n = b, φ n .
In particular we have from ( 6) that

w n (t) = z n (t) + b n u(t -h), n ≥ 1. ( 8 
)
Using standard arguments, see e.g. [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF][START_REF] Mironchenko | Local stabilization of an unstable parabolic equation via saturated controls[END_REF] for details, the projection of ( 7) into the Hilbert basis (φ n ) n≥1 gives

u(t) = v(t) (9a) ẇn (t) = (-λ n + q c )w n (t) + a n u(t -h) + b n v(t -h) (9b) 
with w(t, •) = n≥1 w n (t)φ n in L 2 norm for mild solutions and in H 2 norm for classical solutions (see the end of Section 2.2). Using (8) into the latter idendity, the projection of (2) reads

żn (t) = (-λ n + q c )z n (t) + β n u(t -h) (10) 
with

β n = a n + (-λ n + q c )b n = p(1){-c θ2 φ n (1) + s θ2 φ n (1)} = O( √ λ n ).
Here we have z(t, •) = n≥1 z n (t)φ n in L 2 norm. Finally, when dealing with classical solutions, the Dirichlet measurement y D (t) given by (3) can be expressed as the series expansion:

y D (t) = z(t, 0) = w(t, 0) = n≥1 w n (t)φ n (0) (11) 
while for the Neumann measurement y N (t) given by ( 4) we have:

y N (t) = z x (t, 0) = w x (t, 0) = n≥1 w n (t)φ n (0). ( 12 
)
Remark 2 Note that the series expansions [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF][START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF] hold for the coefficients of projection w n , i.e., for the PDE in w coordinates. Such a series expansion does not hold for the coefficients of projection z n , i.e., for the PDE in z coordinates.

Remark 3 The use of a predictor feedback to achieve the boundary stabilization of (2) in the case of Neumann actuation and boundary condition (θ 1 = θ 2 = π/2) was reported first in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] for a bounded output operator, namely

y(t) = 1 0 c(x)z(t, x) dx with c ∈ L 2 (0, 1
), and for system trajectories evaluated in L 2 norm. In this very specific setting, the authors managed to perform the both control design and stability analysis on the sole representation [START_REF] Harkort | Finitedimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF], i.e., for the PDE in original coordinates (2). This approach is strongly tailored for the above-mentioned setting and is hardly extendable to other types of boundary control (Dirichlet/Robin) and to unbounded measurement operators (Dirichlet/Neumann). This is essentially because the consideration of a Neumann actuation yields the most favorable case β n = p(1)φ n (1) = O(1) while any other boundary actuation setting (Dirichlet/Robin) gives in general no better than

β n = O( √ λ n ).
However, one of the crucial points of the L 2 stability analysis performed in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] relies in the use of the estimate 2

β n z n u ≤ α (β 2 n /λ n )u 2 +α -1 λ n z 2
n , valid for any α > 0, where the convergence of the first series on the RHS holds for the Neumann actuation setting (β n = O(1)) and with a term λ n z 2 n that can be handled, provided its convergence, in the L 2 Lyapunov stability analysis 1 . This approach fails in the case of Dirichlet/Robin actuation settings (

β n = O( √ λ n )).
The situation is even more stringent when trying to assess the stability of the system trajectories in H 1 norm (possibly with unbounded output operators instead of a bounded one) since this would led to a term of the form λ n β n z n that cannot be neither handled with the above approach. In this paper, we completely solve the control design problem for the general reaction diffusion [START_REF] Mark | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF] with Dirichlet/Neumann/Robin boundary control/condition and with a measurement selected either as the Dirichlet (3) or Neumann (4) trace. The proposed strategy consists in designing the predictor feedback based on the representation [START_REF] Harkort | Finitedimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF] in original coordinates (2) while the stability analysis is performed based on [START_REF] Grüne | Finite-dimensional output stabilization of linear diffusion-reaction systems-a small-gain approach[END_REF] in homogeneous coordinates [START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF]. 1 Essentially because λn appearing in

λnz 2 n = λ α n z 2 n
has a power α = 1 that is not larger than the one in the dynamics of the modes [START_REF] Harkort | Finitedimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF].

Case of a Dirichlet measurement

We consider in this section the input-delayed reactiondiffusion system (2) for θ 1 ∈ (0, π/2] with Dirichlet measurement (3).

Control strategy

Let δ > 0 be the desired exponential decay rate for the closed-loop system trajectories. Let N 0 ≥ 1 be such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 +1 be arbitrarily given and that will be specified later. Consider first the following observer dynamics used to estimate the N first modes of the plant in z-coordinates:

ŵn (t) = ẑn (t) + b n u(t -h) (13a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h) (13b) -l n N k=1 ŵk (t)φ k (0) -y D (t) , 1 ≤ n ≤ N 0 żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h), N 0 + 1 ≤ n ≤ N (13c)
where l n ∈ R are the observer gains.

Remark 4 Dynamics ( 13) constitutes an observer of the N first modes z n of the PDE in (original) z coordinates. However, due to Remark 2 and in view of ( 11), the estimation ŷD (t) of the actual Dirichlet measurement y D (t) is expressed in function of the estimation ŵn of the modes w n of the PDE in homogeneous coordinates w as ŷD (t) = N k=1 ŵk (t)φ k (0). Hence, even if (13) estimates the modes z n in z coordinates, the correction of the error of measurement is done based on the modes w n in w coordinates.

Remark 5

The idea to split the observer dynamics into two parts, one with active correction of the estimation error for the first modes as in (13b) and one without correction of the estimation error as in (13c), roots back to [START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF] in a delay-free context with bounded input and output operators. Since then, such an idea, sometimes referred to as the add of a "Residual Mode Filter" and which was shown to be of paramount importance for ensuring closed-loop stability [START_REF] Mark | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF] has been extended in various directions [START_REF] Mark | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF][START_REF] Grüne | Finite-dimensional output stabilization of linear diffusion-reaction systems-a small-gain approach[END_REF][START_REF] Harkort | Finitedimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF][START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF][START_REF] Lhachemi | Finite-dimensional observer-based PI regulation control of a reaction-diffusion equation[END_REF][START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF][START_REF] Lhachemi | Local output feedback stabilization of a reaction-diffusion equation with saturated actuation[END_REF][START_REF] Lhachemi | Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF][START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF][START_REF] Sano | Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement[END_REF].

Due to the input delay h > 0, we need to introduce a predictor component. To do so, let ẐN0 = ẑ1 . . . ẑN0 , A 0 = diag(-λ 1 + q c , . . . , -λ N0 + q c ), and B 0 = β 1 . . . β N0 . We can now introduce the following Artstein transformation [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF]:

ẐN0 A (t) = e A0h ẐN0 (t) + t t-h e A0(t-τ ) B 0 u(τ ) dτ. (14)
Then the control is defined as the predictor feedback [START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF]:

u(t) = K ẐN0 A (t), t ≥ 0 ( 15 
)
where K ∈ R 1×N0 is the feedback gain.

Remark 6

The well-posedness of the closed-loop system composed of the plant [START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF] in homogeneous coordinates w, the Dirichlet measurement (3), and the controller [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF][START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF][START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] in terms of classical solutions for initial condition z 0 ∈ H 2 (0, 1) so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, with null control in negative times (u(τ ) = 0 for τ < 0) and zero initial condition for the observer (ẑ n (0) = 0), is a direct consequence of [31, Thm. 6.3.1 and 6.3.3] and the invertibility of the Artstein transformation [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF] using a classical induction argument. Having obtained classical solutions based on the homogeneous representation [START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF], standard arguments [8, Sec. 3.3] using the change of variable formula [START_REF] Coron | Global steadystate stabilization and controllability of 1D semilinear wave equations[END_REF] give the existence of classical solutions for the closed-loop system with the plant (2) expressed in original z coordinates.

In preparation of the statement of the main result, we define the matrices 15) and the observer gain L whose coefficients l n appear in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] are computed so that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. To complete the control design procedure, it merely remains to select adequately the dimension N of the observer to ensure the stability of the closed-loop system with exponential decay rate δ > 0.

A 1 = diag(-λ N0+1 + q c , . . . , -λ N + q c ), B1 = β N0+1 /λ N0+1 . . . β N /λ N , C 0 = φ 1 (0) . . . φ N0 (0) , C1 = φ N 0 +1 (0) √ λ N 0 +1 . . . φ N (0) √ λ N , L = l 1 . . . l N0 , F =        A 0 + B 0 K e A0h LC 0 0 e A0h L C1 0 A 0 -LC 0 0 -L C1 B1 K 0 A 1 0 0 0 0 A 1        , L =        e A0h L -L 0 0        E = A 0 + B 0 K e A0h LC

Main stability results

Theorem 8 Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, and q ∈ C 0 ([0, 1]). Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (5) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Let h > 0 be given. For a given N ≥ N 0 + 1, assume that there exist P 0, Q 1 , Q 2 0, α > 1, and β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0, R 1 0, R 2 0 ( 16 
)
where

Θ 1 = F P + P F + 2δP + Q1 P L L P -β + E Q 2 E (17a) Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM φ (17b) R 1 = -e -2δh Q 1 + αγ R N a 2 L 2 K K (17c) R 2 = -e -2δh Q 2 + αγ R N b 2 L 2 K K (17d) with Q1 = diag(Q 1 , 0, 0, 0) and M φ = n≥N +1 |φn(0)| 2 λn < +∞.
Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, the trajectories of the closed-loop system composed of the plant (2), the Dirichlet measurement (3), and the controller (13-15) with null control in negative times (u(τ ) = 0 for τ < 0) and zero initial condition for the observer (ẑ n (0) = 0) satisfy z(t, •) 2

H 1 + sup τ ∈[t-h,t] |u(τ )| 2 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2
H 1 for all t ≥ 0. Moreover, for any given h > 0, the constraints ( 16) are always feasible for N selected large enough.

Proof. We first write a finite dimensional model capturing the N first modes of the PDE and the dynamics (13-15) of the output feedback controller. We define e n = z n -ẑn for all 1 ≤ n ≤ N . In view of (13a-13b) and based on ( 8) and [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF], we obtain that żn = (-

λ n + q c )ẑ n + β n u(• -h) + l n N k=1 φ k (0)e k + l n ζ (18) for 1 ≤ n ≤ N 0 where ζ(t) = n≥N +1 w n (t)φ n (0). Introducing E N0 = e 1 .
. . e N0 , the scaled error ẽn = √

λ n e n (see [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF]), and ẼN-N0 = ẽN0+1 . . . ẽN , we deduce that

ŻN0 = A 0 ẐN0 +B 0 u(•-h)+LC 0 E N0 +L C1 ẼN-N0 +Lζ. ( 19 
) Taking first the time derivative of ( 14) and then inserting [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] and ( 19), we infer that

ŻN0 A = (A 0 + B 0 K) ẐN0 A (20) + e A0h LC 0 E N0 + L C1 ẼN-N0 + Lζ .
Consider now (13c). Defining the scaled estimation zn = ẑn /λ n and ZN-N0 = zN0+1 . . . zN , this latter dynamics can be written as

ŻN-N0 = A 1 ZN-N0 + B1 u(t -h).
In order to eliminate the input delay, we consider the second following Artstein transformation:

ZN-N0 A (t) = e A1h ZN-N0 (t) + t t-h e A1(t-τ ) B1 u(τ ) dτ (21) 
which implies, along with [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF], that

ŻN-N0

A = A 1 ZN-N0 A + B1 K ẐN0 A . (22) 
Combining ( 10) and (13b-13c), the error dynamics reads

ĖN0 = (A 0 -LC 0 )E N0 -L C1 ẼN-N0 -Lζ, (23a) ĖN-N0 = A 1 ẼN-N0 . (23b) 
Therefore, defining the vector

X = col ẐN0 A , E N0 , ZN-N0 A , ẼN-N0 , (24) 
we infer from ( 20) and [START_REF] Lhachemi | Local output feedback stabilization of a reaction-diffusion equation with saturated actuation[END_REF][START_REF] Lhachemi | Nonlinear boundary output feedback stabilization of reaction diffusion PDEs[END_REF] that

Ẋ = F X + Lζ. (25) 
Finally, defining X = col (X, ζ) and based on ( 15) and ( 20), we also have

u = KX, v = u = K ŻN0 A , ŻN0 A = E X. ( 26 
)
We can now perform the stability analysis. Consider the functional defined by V (t) = V 0 (t)+V 1 (t)+V 2 (t) where

V 0 (t) = X(t) P X(t) + γ n≥N +1 λ n w n (t) 2 (27a) V 1 (t) = t (t-h)+ e -2δ(t-s) ẐN0 A (τ ) Q 1 ẐN0 A (τ )dτ (27b) V 2 (t) = t (t-h)+ e -2δ(t-s) ŻN0 A (τ ) Q 2 ŻN0 A (τ ) dτ (27c)
with (t -h) + = max(t -h, 0). The computation of the time derivative of V for t > h gives V ≤ X F P + P F P L L P 0

X + 2γ n≥N +1 λ n (-λ n + q c )w 2 n + 2γ n≥N +1 λ n {a n u(• -h) + b n v(• -h)}w n -2δV 1 -2δV 2 + ( ẐN0 A ) Q 1 ẐN0 A -e -2δh ẐN0 A (• -h) Q 1 ẐN0 A (• -h) + ( ŻN0 A ) Q 2 ŻN0 A -e -2δh ŻN0 A (• -h) Q 2 ŻN0 A (• -h).
Using Young inequality and invoking [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF], we obtain that

2 n≥N +1 λ n a n u(• -h)w n ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N a 2 L 2 u(• -h) 2 ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N a 2 L 2 ẐN0 A (• -h) K K ẐN0 A (• -h)
for any α > 0 and, similarly,

2 n≥N +1 λ n b n v(• -h)w n ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N b 2 L 2 ŻN0 A (• -h) K K ŻN0 A (• -h)
Combining the latter estimates and using [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF], we obtain

V + 2δV ≤ X F P + P F + 2δP + Q1 P L L P 0 + E Q 2 E X + 2γ n≥N +1 λ n -1 - 1 α λ n + q c + δ w 2 n + ẐN0 A (• -h) R 1 ẐN0 A (• -h) + ŻN0 A (• -h) R 2 ŻN0 A (• -h). Recalling that ζ = n≥N +1 w n φ n (0) we have ζ 2 ≤ M φ n≥N +1 λ n w 2
n . Hence, we obtain, for any β > 0,

V + 2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n w 2 n + ẐN0 A (• -h) R 1 ẐN0 A (• -h) + ŻN0 A (• -h) R 2 ŻN0 A (• -h) ( 28 
)
where Γ n = 2γ -1 -1 α λ n + q c + δ +βM φ . For α > 1, we have Γ n ≤ Γ N +1 = Θ 2 for all n ≥ N + 1. Thus we infer from ( 16) that V + 2δV ≤ 0 for all t > h, implying that V (t) ≤ e -2δ(t-h) V (h) for all t ≥ h.

Computing now the time derivative of V for t ∈ (0, h) for which u(• -h) and v(• -h) are zero, and proceeding similarly to the previous paragraph, we infer that

V + 2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n w 2 n with Γ n = 2γ {-λ n + q c + δ} + βM φ ≤ Γ n ≤ Θ 2 for n ≥ N + 1.
Hence we obtain that V + 2δV ≤ 0 on (0, h) thus V (t) ≤ e -2δt V (0) for all 0 ≤ t ≤ h. Combining this estimate with the result of the previous paragraph, we infer that V (t) ≤ e -2δt V (0) for all t ≥ 0. The claimed stability estimate now easily follows from the definition of V , the estimates (1), the control law [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF], and the two Artstein transformations ( 14) and [START_REF] Lhachemi | Finite-dimensional observer-based PI regulation control of a reaction-diffusion equation[END_REF].

It remains to show that the constraints Θ 1 , Θ 2 , R 1 , R 2 0 are feasible when selecting N ≥ N 0 + 1 large enough. Regarding the matrix F + δI, we note that (i) A 0 + B 0 K + δI and A 0 -LC 0 + δI are Hurwitz; (ii) e (A1+δI)t ≤ e -κ0t for all t ≥ 0 with κ 0 = λ N0+1 -q c -δ > 0 is independent of N ; and (iii) e A0h L C1 ≤ e A0h L C1 , L C1 ≤ L C1 and B1 K ≤ B1 K where e A0h , K, and L are independent of the number of observed modes N while C1 = O(1) and B1 = O(1) when N → +∞. Hence, applying the Lemma reported in Appendix to the matrix F + δI, we infer that the solution P 0 to F P + P F + 2δP = -I is such that P = O(1) as N → +∞. Note also that L is a constant independent of N while M φ = O( 1) and E = O(1) as N → +∞. We fix arbitrarily the value of α > 1 and we set

β = √ N , γ = 1/N , Q 1 = 2e 2δh αγ R N a 2 L 2 K K, and Q 2 = 2e 2δh αγ R N b 2 L 2 K K.
Hence, using in particular Schur complement, we infer that (16) hold for [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]. The term V 0 presents a first term that accounts for the dynamics of the observer as well as the dynamics of the N first modes of the (original) PDE in z coordinates. However, the second term, which accounts for the residual modes n ≥ N + 1, is expressed in homogeneous w coordinates. This point is key in the success of the stability assessment of the previous theorem. The term V 1 is introduced as in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] in order to compensate the term u(• -h) appearing in the time derivative of w n , see [START_REF] Grüne | Finite-dimensional output stabilization of linear diffusion-reaction systems-a small-gain approach[END_REF]. Moreover, since the modes n ≥ N + 1 are captured by w n in w coordinates, the time derivative of w n also implies the occurrence of v = u = K ŻN0

N ≥ N 0 + 1 selected large enough. 2 Remark 9 Recall the definition of V (t) = V 0 (t) + V 1 (t) + V 2 (t) with V i defined by
A , see again [START_REF] Grüne | Finite-dimensional output stabilization of linear diffusion-reaction systems-a small-gain approach[END_REF]. This latter term is handled in the stability analysis by the introduction of the term V 2 .

While Theorem 8 assesses the stability of the closed-loop in H 1 norm, the following theorem states a similar result but for trajectories evaluated in L 2 norm.

Theorem 10 Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]
) with p > 0, and q ∈ C 0 ([0, 1]). Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (5) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Let h > 0 be given. For a given N ≥ N 0 + 1, assume that there exist P 0, Q 1 , Q 2 0, and α, β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0, Θ 3 ≥ 0, R 1 0, R 2 0 (29)
where Θ 1 , R 1 , R 2 are defined by (17a), (17c), and (17d), respectively, while

Θ 2 = 2γ -λ N +1 + q c + δ + 1 α + βM φ λ 3/4 N +1 Θ 3 = 2γ - βM φ λ 1/4 N +1 with Q1 = diag(Q 1 , 0, 0, 0) and M φ = n≥N +1 |φn(0)| 2 λ 3/4 n < +∞.
Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, the trajectories of the closed-loop system composed of the plant (2), the Dirichlet measurement (3), and the controller (13-15) with null control in negative times (u(τ ) = 0 for τ < 0) and zero initial condition for the observer (ẑ n (0) = 0) satisfy z(t,

•) 2 L 2 + sup τ ∈[t-h,t] |u(τ )| 2 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2
L 2 for all t ≥ 0. Moreover, for any given h > 0, the constraints (29) are always feasible for N selected large enough.

Proof. Consider the functional defined by

V (t) = V 0 (t) + V 1 (t) + V 2 (t) where V 0 (t) = X(t) P X(t) + γ n≥N +1 w 2 n while V 1 , V 2 
are defined as in [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]. Proceeding as in the proof of Theorem 8 but replacing the estimate of ζ by the following:

ζ 2 ≤ M φ n≥N +1 λ 3/4 n w 2 n , we infer that V + 2δV ≤ X Θ 1 X + n≥N +1 Γ n w 2 n + ẐN0 A (• -h) R 1 ẐN0 A (• -h) + ŻN0 A (• -h) R 2 ŻN0 A (• -h) holds for t > h with Γ n = 2γ -λ n + q c + δ + 1 α + βM φ λ 3/4 n . For n ≥ N + 1 we note that λ 3/4 n = λ n /λ 1/4 n ≤ λ n /λ 1/4 N +1 hence Γ n ≤ -Θ 3 λ n + 2γ q c + δ + 1 α ≤ -Θ 3 λ N +1 + 2γ q c + δ + 1 α = Θ 2 ≤ 0
where we used that Θ 3 ≥ 0. Therefore, the assumptions imply that V + 2δV ≤ 0 for t > h. Similarly to the proof of Theorem 8, it can also be seen that V + 2δV ≤ 0 for t ∈ (0, h). Gathering these two results together, we infer that V (t) ≤ e -2δt V (0) for all t ≥ 0, implying the claimed stability estimate.

Regarding the feasibility of the constraints [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary timevarying delays[END_REF] for N ≥ N 0 + 1 large enough, this can be achieved following the same procedure as in the proof of Theorem 8 with α > 0 arbitrarily fixed, β = N 1/8 , and γ = 1/N 1/4 . 2

Remark 11 Let N ≥ N 0 +1 be a given number of modes to be observed. When fixing the value of α > 1 (resp. α > 0), the constraints ( 16) from Theorem 8 (resp. the constraints constraints (29) from Theorem 10) take the form of LMIs for which efficient solvers exist. Moreover, as shown in the proof of the two theorems, the resulting LMI constraints remain feasible (when fixing arbitrarily the value of α) for N selected large enough.

Case of a Neumann measurement

We consider in this section the input-delayed reactiondiffusion system (2) for θ 1 ∈ [0, π/2) with Neumann measurement (4).

Control strategy

Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 + 1 be arbitrarily given. Consider first the following observer dynamics used to estimate the N first modes of the plant in z-coordinates:

ŵn (t) = ẑn (t) + b n u(t -h) (30a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h) (30b) -l n N k=1 ŵk (t)φ k (0) -y N (t) , 1 ≤ n ≤ N 0 żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h), N 0 + 1 ≤ n ≤ N (30c)
where l n ∈ R are the observer gains. With the same notations that the ones of the previous section and introducing the Artstein transformation ( 14), the control input is defined as

u(t) = K ẐN0 A (t), t ≥ 0 ( 31 
)
where K ∈ R 1×N0 is the feedback gain.

Remark 12

The well-posedness of the closed-loop system in terms of classical solutions for initial condition z 0 ∈ H 2 (0, 1) so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, with null control in negative times (u(τ ) = 0 for τ < 0) and zero initial condition for the observer (ẑ n (0) = 0), follows the same arguments as Remark 6.

We finally introduce the same matrices as at the end of Subsection 4.1 except that we replace the definitions of C 0 , C1 by C 0 = φ 1 (0) . . . φ N0 (0) and C1 = φ N0+1 (0)/λ N0+1 . . . φ N (0)/λ N .

Main stability result

Theorem 13 Let θ 1 ∈ [0, π/2), θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]
) with p > 0, and q ∈ C 0 ([0, 1]). Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (5) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Let h > 0 be given. For a given N ≥ N 0 + 1, assume that there exist P 0, Q 1 , Q 2 0, ∈ (0, 1/2], α > 1, and β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0, Θ 3 ≥ 0, R 1 0, R 2 0 (32)
where Θ 1 , R 1 , R 2 are defined by (17a), (17c), and (17d), respectively, while

Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM φ ( )λ 1/2+ N +1 Θ 3 = 2γ 1 - 1 α - βM φ ( ) λ 1/2- N +1 with Q1 = diag(Q 1 , 0, 0, 0) and M φ ( ) = n≥N +1 |φ n (0)| 2 λ 3/2+ n < +∞.
Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, the trajectories of the closed-loop system composed of the plant (2), the Neumann measurement (4), and the controller [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] with null control in negative times (u(τ ) = 0 for τ < 0) and zero initial condition for the observer (ẑ n (0

) = 0) satisfy z(t, •) 2 H 1 + sup τ ∈[t-h,t] |u(τ )| 2 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2
H 1 for all t ≥ 0. Moreover, for any given h > 0, the constraints (32) are always feasible for N selected large enough.

Proof. Proceeding as in the first part of the proof of Theorem 8 but with ẽn = λ n e n and ζ(t) = n≥N +1 w n (t)φ n (0), we infer that (25) holds.

Consider the functional defined by V (t) = V 0 (t)+V 1 (t)+ V 2 (t) where V 0 , V 1 , V 2 are defined by [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]. Proceeding as in the proof of Theorem 8 but replacing the estimate of ζ by:

ζ 2 ≤ M φ ( ) n≥N +1 λ 3/2+ n w 2 n , we infer that V + 2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n w 2 n + ẐN0 A (• -h) R 1 ẐN0 A (• -h) + ŻN0 A (• -h) R 2 ŻN0 A (• -h) holds for t > h with Γ n = 2γ -(1 -1 α )λ n + q c + δ + βM φ ( )λ 1/2+ n . For n ≥ N + 1 we note that λ 1/2+ n = λ n /λ 1/2- n ≤ λ n /λ 1/2- N +1 hence Γ n ≤ -Θ 3 λ n + 2γ {q c + δ} ≤ -Θ 3 λ N +1 + 2γ {q c + δ} = Θ 2 ≤ 0
where we used that Θ 3 ≥ 0. Therefore, the assumptions imply that V + 2δV ≤ 0 for t > h. Similarly to the proof of Theorem 8, it can also be seen that V + 2δV ≤ 0 for t ∈ (0, h). Gathering these two results together, we infer that V (t) ≤ e -2δt V (0) for all t ≥ 0, implying the claimed stability estimate.

Regarding the feasibility of the constraints (32) for N ≥ N 0 + 1 large enough, this is achieved following the same procedure as in the proof of Theorem 8 with α > 1 arbitrarily fixed, = 1/8, β = N 1/8 , and γ = 1/N 

hence ζ 2 ≤ M φ ( ) n≥N +1 λ 3/2+ n w 2 n with M φ ( ) = n≥N +1 |φ n (0)| 2 λ 3/2+ n
where all the terms are finite provided ∈ (0, 1/2]. However a term in λ 3/2+ n cannot be asymptotically dominated by a term in λ n . Hence the procedure of Theorem 10 for a Dirichlet measurement cannot be used anymore in the case of a Neumann measurement.

Numerical illustration

We consider the parameters p = 1, q = -5, θ 1 = π/5, θ 2 = 0 (Dirichlet boundary control), and the input delay h = 1 s. In this setting, the reaction-diffusion PDE described by ( 2) is open-loop unstable. We set the feedback gain K = -0.6950. The observer gain is set as L = 1.7695 in the case of the Dirichlet measurement (3) while L = 1.2856 in the case of the Neumann measurement [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. With δ = 0.5 and for the Dirichlet measurement (3), the constraints of Theorems 8 and 10 are feasible for N = 2 modes estimated by the observer, ensuring the exponential stability of the closed-loop system in H 1 and L 2 norms. Considering now the case of the Neumann boundary measurement (4), the application of the constraints of Theorem 13 are found feasible for N = 6 modes estimated by the observer, ensuring the exponential stability of the closed-loop system in H 1 norm.

For numerical illustration, we consider the Dirichlet measurement (3) along with the initial condition z 0 (x) = 10x 2 (x -1). The evolution of the closed-loop system is depicted in Fig. 1. We observe the exponential decay of the both state of the PDE and observation error in spite of the h = 1 s input delay. This is compliant with the theoretical prediction of Theorems 8 and 10.

Conclusion

This paper solved the boundary stabilization problem of general 1-D reaction-diffusion PDEs in the presence of an arbitrarily large input delay. The approach is very general as it covers the cases of Dirichlet/Neumann/Robin boundary control/condition with Dirichlet/Neumann boundary measurement and for system trajectories evaluated in H 1 norm (also in L 2 norm for Dirichlet measurement). The control strategy couples of finite-dimensional observer that observes a finite number of modes of the PDE and a predictor to compensate the arbitrarily long input delay. Future research directions may be concerned with nonlinear PDEs and non collocated boundary conditions. 

A Useful lemma

The following lemma is borrowed from [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF]Appendix] and is a generalization of a result presented in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. We assume that there exist constants C 0 , κ 0 > 0 such that e M N 33 t ≤ C 0 e -κ0t and e M N 44 t ≤ C 0 e -κ0t for all t ≥ 0 and all N ≥ 1. Moreover, we assume that there exists a constant C 1 > 0 such that M N 14 ≤ C 1 , M N 24 ≤ C 1 , and M N 31 ≤ C 1 for all N ≥ 1. Then there exists a constant C 2 > 0 such that, for any N ≥ 1, there exists a symmetric matrix P N ∈ R n+m+2N with P N 0 such that (F N ) P N + P N F N = -I and P N ≤ C 2 .

Remark 7

 7 0 0 e A0h L C1 e A0h L , and K = K 0 0 0 . Since A 0 is diagonal, the Hautus test combined with the boundary conditions involved in the definition of D(A) show that the pairs (A 0 , B 0 ) and (A 0 , C 0 ) both satisfy the Kalman condition. The same remark applies in the case of the Neumann boundary measurement (4) studied in Section 5. Subsequently, the feedback gain K from (

Fig. 1 .

 1 Fig. 1. Time evolution of the closed-loop system for Dirichlet measurement yD(t) = z(t, 0) with delay h = 1 s

Lemma 16

 16 Let n, m, N ≥ 1, M 11 ∈ R n×n and M 22 ∈ R m×m Hurwitz, M 12 ∈ R n×m , M N 14 ∈ R n×N , M N 24 ∈ R m×N , M N 31 ∈ R N ×n , M N 33 , M N 44 ∈ R N ×N , and

  Remark 15 In the case of a Dirichlet measurement, it was possible to propose a L 2 version of the stability result, namely Theorem 10. However, the approach used in the proof of this latter result fails when trying to study the trajectories in L 2 norm for a Neumann measurement. This is because, in this setting, ζ = n≥N +1 w n φ n (0)
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. 2 Remark 14 Similarly to Remark 11, LMIs can be derived from the constraints (13) of Theorem 13 by fixing the values of α > 1 and ∈ (0, 1/2]. Moreover, as shown in the proof of the theorem, the subsequent LMI conditions with any fixed α > 1 and when setting = 1/8 remain feasible for a number of observed modes N selected large enough.