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Abstract 31 

 32 

Sediment cores are a major source of sub-surface data for a variety of environmental research 33 

endeavors, as well as mining and civil engineering applications. In paleo-environmental studies, 34 

fluctuations in mineral abundances along sediment cores are used to study climate change, sea-level 35 

variations, sediment dynamics, and landscape evolution. Increasing reliance on such proxies spurs 36 

the need for reliable and time-saving analytical tools and procedures. Diffuse Reflectance Infrared 37 

Fourier Transform spectroscopy (DRIFTS) is a rapid, non-destructive and accurate tool for 38 

quantification of mineral abundances. We use DRIFTS to calibrate Short-Wave InfraRed (SWIR) 39 

hyperspectral images (HSI) of a sediment core, in order to convert point-specific DRIFTS 40 

measurement of mineral abundances into a continuous record of mineral abundances along the core. 41 

Initially, single-phase and mineral assemblages of quartz, calcite, and clay mineral are created and 42 

measured by DRIFTS to establish calibration curves to convert DRIFTS data into mineral 43 

abundances, as %wt of bulk sediment samples. Mineral abundances are then measured by DRIFTS in 44 

a set of 60 samples from a core drilled into the Albegna River delta, Tuscany, Italy in the Fall of 2020. 45 

SWIR-HSI of the core are then obtained and averaged over the areas corresponding to the samples 46 

taken for point-specific DRIFTS measurements. Least squares regressions are established between 47 

SWIR-HSI and DRIFTS data over these areas. This calibration is then used to convert SWIR-HSI of 48 

the entire core into a continuous prediction of quartz, calcite, and clay minerals abundances along the 49 

core. The continuous record highlights sharp changes in mineral composition, smeared out in the 50 

discontinuous DRIFTS record. The advantages and limitations of the method, as well as its 51 

applicability to other sedimentary environments are discussed.  52 

        53 

  54 

 55 
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1. Introduction 60 

 61 

Sediment cores are a major source of sub-surface information in stratigraphic and paleo-62 

environmental studies. They are used to reconstruct past- climate (Miller et al., 2020), sea-levels 63 

(Kelsey et al., 2015), landscapes (Pennington et al., 2017) archeological environments (Delile et al., 64 

2018; Salomon et al., 2018); for technical essays in mining and civil engineering (Kahraman et al., 65 

2016), and for the assessment of natural (Grand Pre et al., 2012) and anthropogenic (Bigus et al., 66 

2014) hazards. Variations of geochemical and mineralogical abundances along sediment cores are 67 

used as proxies for fluctuations of past climates (Solotchina et al., 2009; Wan et al., 2007; Tamburini 68 

et al., 2003), fluctuations in weathering rate, sedimentation rate, and shifts in depositional patterns 69 

(He et al., 2020; Wang et al., 2016; Hamdan et al., 2018; Lupker et al., 2012; Garzanti et al., 2010; 70 

2011; Martinelli et al., 1993). They are used to assess sediment provenance and thereby track 71 

landscape evolution (Li et al., 2014; Andrews and Eberl, 2012; Liu et al., 2020; Pe-Piper et al., 2016; 72 

Heroy et al., 2003; Wahab and Stanley, 1991). Geochemical and mineralogical quantitative analyses 73 

traditionally resort to precise but time-consuming and expensive analytical methods, such as atomic 74 

absorption spectroscopy - AAS, inductive coupled plasma mass spectroscopy – ICP-MS (Willis, 75 

1986), Scanning electron microscopy - SEM (Schulz et al., 2020), X-Ray diffraction - XRD (Moore and 76 

Robert, 1997) and Raman spectroscopy (Larkin, 2011). The accelerating growth of sediment core 77 

libraries worldwide has motivated the use of faster and less costly analytical approaches, such as 78 

portable X-ray fluorescence - PXRF (Duee et al., 2019), Attenuated Total Reflectance Fourier 79 

Transform Infrared spectroscopy - ATR-FTIRS (Milosevic, 2012), and Diffuse Reflectance Infrared 80 

Fourier Transform spectroscopy - DRIFTS (Frei and MacNeil, 2018). In the meantime, the need for 81 

high-resolution information on finely laminated sediments spurred the adaptation of non-destructive 82 

scanning and imaging techniques to sediment cores (Rothwell and Rack, 2006), most notably XRF 83 

core scanning (Davies et al., 2015), X-Ray tomography (Zonta et al., 2021; Paris et al., 2020), and 84 

hyperspectral imaging - HSI (Jacq et al., 2019a, b). Pioneering HSI on soils (Zaeem et al., 2021) and 85 

lake sediments (Makri et al., 2020; Rapuc et al., 2020; Ghanbari et al., 2020; Jacq et al., 2019a, b; 86 

Van Exem et al., 2018; Rivard et al., 2018; Butz et al., 2017; Aymerich et al., 2016) yields 87 

encouraging results. So far, HSI has been applied to organic-rich and silty-clayey lacustrine 88 

sediments and to nonwater-saturated sedimentary rocks with fairly homogenous grain size distribution 89 



along core. The conversion of HSI data into chemical and mineral abundances requires calibration 90 

against standard analytical methods such as ICP-MS (Zaeem et al., 2021; Rivard et al., 2018), Loss 91 

on Ignition – LOI (Jacq et al., 2019b), particle size distribution – PSD (Jacq et al., 2019), and XRD 92 

(Greene et al., 2019).  93 

FTIRS has been used for five decades (Srodo, 2002) to determine the abundance of 94 

carbonates (So et al., 2020; Henry et al., 2017), clay minerals (Srodo, 2002; Joussein et al., 2001), 95 

amorphous silica and quartz (Bertaux et al., 1998, Bandopadhyay, 2010; Melucci et al., 2019), other 96 

tectosilicates and sulfates (Muller et al., 2014; Bosch-Reig et  al., 2017; Painter et al., 1978), total 97 

organic carbon (Vogel et al., 2008; Rosen et al., 2010; 2011; Hahn et al., 2011), metals (Moros et al., 98 

2009; Siebielec et al., 2004), and plastic microparticles (Hahn et al., 2019).  99 

We used DRIFTS to analyze the evolution of the provenance of sediments deposited during 100 

the Holocene in the delta of the Albegna River, in Tuscany, Italy, starting with a 14 m-long core 101 

obtained in 2020 (sediment core ALB-1). The analysis was conducted on samples, presenting an 102 

average separation of 20 cm. The analysis reveals that the sediment is almost exclusively composed 103 

of quartz, calcite and clay minerals, the abundances of which vary widely along core. In order to 104 

obtain a more continuous record of these variations, we use a high-resolution Short-Wave InfraRed 105 

(SWIR) hyperspectral images (HSI) of sediment core ALB-1, a core retrieved from the delta of the 106 

Albegna River, in Tuscany, Italy, in 2020. The HSI is averaged over the characteristic thickness (3 107 

cm) of each of the DRIFTS samples. A calibration of the HSI data using the DRIFTS data is then 108 

conducted. It allows converting the HSI into a continuous record of mineral abundances at a 109 

resolution of 3 cm. Tectosilicates in general, and quartz in particular, are not detected by SWIR-HIS. 110 

In the case at hand, however, the simplicity of the mineral assemblage allows to adduce quartz 111 

abundance from the abundance of the two other dominant mineral groups. We also attempt to provide 112 

a site-specific prediction of quartz by expecting inverse correlations with calcite or by grain-size 113 

texture effects. Practically, the method involves first the establishment of calibration curves of mineral 114 

assemblages and DRIFTS data using synthetic mixtures of minerals, in order to convert DRIFTS data 115 

into quartz, calcite, and clay content. The calibration is applied to convert the DRIFTS signature of 60 116 

samples from core ALB-1 into mineral abundances. The sediment displays marked variations in grain-117 

size (from clay to pebble) and of moisture content along core. The SWIR-HSI of untreated core 118 

surfaces is not only sensitive to carbonates and clay minerals content, but also to grain-size and 119 



moisture. We consider as work hypothesis that calibration of HSI data with DRIFTS of dry and 120 

powdered samples could improve the continuous mineral logging along sediment cores. This 121 

treatment reveals sharp step-chances in mineral abundances along the core that were poorly visible 122 

in the discontinuous record, revealing the existence of very rapid (< 100 y), irreversible paleo-123 

environmental changes. After exposing these results, we discuss several aspects of the methodology. 124 

We first discuss our selection of DRIFT spectra peaks to assess mineral abundances and the 125 

replicability of this approach. We then discuss the relevance of the approach presented here to the 126 

establishment of continuous records of mineral abundances in other geological settings. More 127 

generally, we discuss the complementarity, advantages and limits of using a two infrared sensors 128 

approach. Finally, we discuss the origin of the layering documented in core ALB-1 and the processes 129 

that control it.     130 

2. General context  131 

 132 

Core ALB-1 was retrieved in 2020 from the Holocene fluvio-deltaic plain of the Albegna River, in 133 

Tuscany, Italy (Fig.1). With a length of 70 km and a catchment area of 750 km², the Albegna River is 134 

one of the main coastal rivers of Tuscany. The river originates near the Quaternary Monte Amiata 135 

volcano, 1,738 m above sea-level (Fig. 1-A). The river flows south-westwards through Pliocene and 136 

Quaternary basins (Cornamusini et al., 2011; Bossio et al., 2004). It reaches the Thyrrenian Sea north 137 

of the Giannella sand spit (Fig.1-C). The tides along the Thyrrenian coast are microtidal averagely 138 

ranging ~ 30 cm (Bertoni et al., 2020). The climate in the area is Mediterranean, with a mean annual 139 

temperature of 13.8 °C along the coastal reaches and of 11°C in the Albegna headwaters. Mean 140 

annual precipitation ranges from 700 mm/year at the coast to 1500 mm/year on Monte Amiata 141 

(Marker et al., 2008). The Albegna River catchment drains Triassic-Cretaceous clayey calcareous 142 

limestones, succeeded downstream by Oligocene sandstone, Miocene lagoonal and marine deposits 143 

and finally Plio-Pleistocene marine clays close to the coast (Fig. 1-B, Cornamusini et al., 2011; Bossio 144 

et al., 2004; Bertini et al., 1967). A sizeable volume of sediments derived from these formations 145 

contributes to the > 30 m-thick Holocene infill of the Albegna lower valley, which was incised during 146 

the last glacial marine low stands (Mazzini et al., 1999). Geochemical and mineralogical data from 147 

widely scattered 30 surface silty-clay samples in the catchments of the Albegna and Fiora Rivers 148 

(Gliozzo et al., 2014) indicate mineral abundances in the range of 15-70% for phyllosilicates, 9- 58% 149 



for quartz, and 1-34% for calcite. Phyllosilicates consist mainly of kaolinite, illite, smectite and chlorite. 150 

Feldspars (2-6%), dolomite (0-3%) and hematite (0-1%) are detected but are much less abundant.   151 

3. Material and Methods 152 

3.1.  Field drilling  153 

 154 

Mechanical rotation coring was conducted on the left bank of the Albegna River, +1.5 m above the 155 

mean sea-level, close to the river mouth (Fig. 1C), next to the historic Forte delle Saline Renaissance 156 

fortified tower, and next to the Roman fluvial port of Albinia. The site lies 200 m south of the Albegna 157 

River channel, 500 m east of the sea, and 700 m north of the lagoon of Orbetello. An outer core liner 158 

was used to prevent contamination of core sections by core wall material during drilling operations. 159 

Coring allowed the retrieval of a 14 m-long continuous sedimentary succession. Stratigraphic 160 

description in the field includes estimates of sediment color, texture, hardness, and the presence of 161 

oxidation, shells, and plant fragments. Absolute ages were obtained by accelerator mass 162 

spectrometry radiocarbon dating. The samples were process in the Center for Radiocarbon dating of 163 

Lyon UMR 5138, and measured at the LMC14 Artemis Laboratory in Saclay, France (Table 1). 164 

Radiocarbon ages were converted into calendar years using the IntCal20 Northern Hemishpere 165 

atmospheric calibration curve (Reimer et al., 2020).  166 

 167 

3.2.  Methodological approach 168 

The approach involves five consecutive steps (Fig.2). The part of the sediment core comprised 169 

between 2 m and 13.5 m below the ground surface was extracted continuously using a 2 cm-wide 170 

plastic U-channel. A total of 11.5 meters, split into 23 U-channel sub-sections (50 cm each) were 171 

entirely scanned by SWIR-HSI (Step 1). U-channels prevent damaging of laminated sequences during 172 

transport, especially highly non-cohesive sand layers. After image acquisitions, sixty samples were 173 

taken from the U-channels (see section 3.2.2.) and measured by DRIFTS (Step 2). Synthetic mineral 174 

mixtures were prepared to calibrate the conversion of these DRIFTS data into mineral abundances 175 

(Step 3). DRIFTS and SWIR-HSI data were then compared over the areas of DRIFTS sampling to 176 

convert SWIR-HSI data into mineral abundances (Step 4). This calibration was then used to obtain a 177 

3 cm-resolution continuous record of mineral abundances along the core (Step 5).  178 

 179 



3.2.1.  Hyperspectral imaging (Step 1) 180 

Short-Wave Infrared (SWIR, Specim Ltd., Finland, OLES22.5) hyperspectral imaging of the sediment 181 

core was obtained following the protocol described in Jacq et al. (2020b). The resulting image is 1 cm 182 

wide and 11.5 m long. It consists of 45 columns and 53,220 lines of 185 µm²-sized pixels. Each pixel 183 

contains a record of 288 individual spectral channels spanning a range of 3,880-10,354 cm-1, 184 

corresponding to a wavelength range of 965 to 2,576 nm, with a 5.6 nm resolution. The spectra were 185 

subsampled between 3,966 and 9,781 cm-1 (1,016-2,526 nm) in order to remove noisy wavelengths. 186 

Reflectance spectra were then converted into pseudo-absorbance values, and pretreated by Standard 187 

Normal Variate and a baseline to be formatted in the same way as the DRIFTS data (Matlab R2020a, 188 

Mathworks, USA). SWIR-HSI spectra are presented in wavelength (nm) units. 189 

 190 

3.2.2. Sediment core sampling (Step 2) 191 

Magnetic susceptibility logging of the core (Dearing, 1999) was conducted at 3 cm-resolution using a 192 

Bartington MS2 susceptibilimeter and MS2F probe (Oxon, UK) in cgs units (centimeter-gram-second 193 

system) before the sampling of the core. Samples 3cm-thick were collected every 20 cm for DRIFTS 194 

(Figure 2, Step 2). Additional samples were collected in the thinnest stratigraphic units in order to 195 

prevent under-sampling of these units. The samples were dried in an oven at 50°C for seven days. 196 

The proportions of clay-silt, sand, and coarser fractions were measured by wet sieving through 0.063 197 

mm and 2 mm-mesh size stainless steel sieves of 10 g of sediment. The sand fraction was sieved at 198 

0.25, 0,5 and 1 mm to document grain-size distribution in the sand fraction (fine/medium/coarse 199 

sand). Subsamples of 5 g bulk sediment were set aside before the sieving and manually grinded 200 

using an agate mortar into a fine homogenous powder. The powder was dried at 50°C for 24h prior to 201 

spectroscopic measurement.  202 

 203 

3.2.3. Reference minerals and synthetic mineral assemblages (Step 3-A) 204 

42 synthetic mineral assemblages were produced for the calibration of the DRIFTS data. Powders of 205 

pure quartz (SiO2), calcite (CaCO3), kaolinite (Al₂Si₂O₅(OH)₄), montmorillonite 206 

((Na,Ca)0,3(Al,Mg)2Si4O10(OH)2)) and illite (K,H3O(Al,Mg,Fe)2(Si,Al)4O10[(OH)2·(H2O)]) were used from 207 

previously established mineral spectra databases (Chapkanski et al., 2021a,b). Samples (1 g each) of 208 

pure minerals were prepared by mixing oven-dried spectroscopic-grade potassium bromide (KBr) with 209 



quartz (Q) and calcite (Ca). The clay minerals (Cm) were represented by a 1:1:1 mixture of kaolinite, 210 

montmorillonite and illite. Clay species can be successfully discriminated by FTIR spectroscopy 211 

(Srodo, 2002; Joussein et al., 2001), but, because their specific absorption bands overlap, it was 212 

decided to only consider their spectral signature collectively, to avoid any confusion (Muller et al., 213 

2014). Further combinations were prepared: Q + Ca, Q + Cm, Ca + Cm and Q + Ca + Cm (Table 2). 214 

Precision of ± 0.1 mg is required when weighing. The powders were mixed by hand using an agate 215 

mortar and pestle for five minutes, in dry conditions. The samples were finally stored in an oven for 12 216 

hours prior to spectroscopic measurement to maintain a low moisture content.  217 

 218 

3.2.4. DRIFTS analysis (Step 3-B) 219 

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) was conducted on the 220 

sediment core samples and on the synthetic mixtures. The texture of the powders ensures a good 221 

and homogenous penetration of infrared light into the samples (Bertaux et al., 1998). The mid-222 

reflected infrared light spectrum of each sample was obtained using a FT-IR Frontier Spectrometer 223 

with a KBr beam splitter, a diffuse reflectance sampling accessory and a TGS detector (PerkinElmer, 224 

Waltham, MA, USA). Spectroscopic measurements were conducted in a temperature- and humidity-225 

controlled room to ensure stable and constant optical air properties during measurement. 10 mg of 226 

each sample was placed into a micro-cup and scanned from 4,000 to 450 cm-1, with a 1 cm-1 227 

resolution, corresponding to wavelengths of 2,500 to 22,222 nm. Dried powdered potassium bromide 228 

(KBr) was used as background sample. Supplementary technical details are provided in Chapkanski 229 

et al., (2020). Middle Infrared spectral data feed a data matrix of “n” lines (where “n” is the number of 230 

spectra/samples) and “p” columns (where “p” is the quantity of spectral bands). The reflectance 231 

spectra were converted to absorbance, standardized, and finely baselined using Standard Normal 232 

Variate and Baseline pretreatments (Camo Unscrambler 10.3, Oslo, Norway). DRIFT spectra are 233 

presented in wavenumber (cm-1) units.  234 

 235 

3.3.  Conversion of DRIFT spectra into mineral abundances (Step 3-C) 236 

Absorbance mid-infrared spectroscopy has been applied to the quantification of mineral assemblages 237 

(Srodon, 2002) because the amount of absorbed infrared radiation is proportional to the mineral mass 238 

fraction (%weight), thus obeying to the Lamber-Beer’s law (Pichard and Frohlich, 1986; Bertaux et al., 239 



1998). Therefore, simple linear regressions (Moosavi and Ghassabian, 2018) can be applied to 240 

convert the areas of absorbance peaks into weight concentrations (Table 2). Spectroscopic 241 

measurements were repeated three times on each synthetic mixture to assess reproducibility. The 242 

most discriminating absorbance peaks were selected to quantify the %weight of each mineral species. 243 

The center of these peaks are located as follows: for quartz (Q) at 1,874 cm-1, 1,160 cm-1, and 696 244 

cm-1; for calcite (Ca) at 2,512 cm-1, 875 cm-1, and 848 cm-1; and for clay minerals (Cm) at 3,696 cm-1, 245 

3,622 cm-1, and 1,112 cm-1. The baselined area of these peaks was quantified using the software 246 

PerkinElmer Spectrum (Waltham, MA, USA). Overlapping peak areas between the discriminating 247 

peaks were excluded to avoid over-quantification. Pure mineral end-members were used as zero-248 

abundance standards for other end-member minerals. For instance, the pure quartz spectrum was 249 

used as standard zero for calcite calibration. Therefore, the linear regression was used to provide Q, 250 

Ca and Cm mineral weight estimates for each sample following: Mineral weight % = (peak area - a)/b. 251 

Linear coefficient of determination (R2), mean values, and the standard deviations of residual values 252 

were used to evaluate the performance of the calibration (Moosavi and Ghassabian, 2018). Best 253 

curve calibrations were obtained at 1,160 cm-1 for quartz, 2,512 cm-1 for calcite, and 3,622 cm-1 for 254 

clays. The calibration was then used to quantify mineral species in the synthetic assemblages in order 255 

to evaluate the performance of the calibration on samples of known composition (Table 2). Finally, the 256 

calibration was used for the quantification of Q, Ca, and Cm abundances in the 60 samples of core 257 

ALB-1. 258 

 259 

3.4.  Calibration of HSI data for mineral abundance prediction (Step 4 and 5) 260 

The hyperspectral image was down-sampled to a 3 cm-core thickness resolution over the areas 261 

occupied by each DRIFTS sample, such as to match the DRIFTS measurements. The DRIFTS-262 

derived mineral abundance of the 60 sampling depth intervals (Fig. 2) was then matched to the 263 

corresponding SWIR-HSI spectra matrices. The two datasets were then subjected to partial least 264 

squares regressions (Wold et al., 1984) using the software Camo Unscrambler 10.3 (Oslo, Norway) to 265 

relate quartz, calcite and clay mineral abundances to the corresponding SWIR-HSI spectra obtained 266 

by hyperspectral imaging. Linear coefficients of determination (R2) and root mean square errors 267 

(RMSE) were used to evaluate the performance of these regressions and p-values were provided to 268 

verify their statistical significances. Regression coefficient weight vectors of cumulated PLSR 269 



components were used to assess the contribution of each wavelength to the correlation. The 270 

calibration was then used to assess the abundance of quartz, calcite, and clay minerals continuously 271 

along core ALB-1 at 3 cm-resolution using the SWIR-HSI spectral dataset, yielding a total of 313 272 

measurements over the 14 m-long core. The same PLSR model was also applied to produce maps of 273 

mineral abundances. The same PLSR model was also applied to all the HSI pixels (45 columns by 274 

53,220 lines) to produce mineral abundance maps and characterize the deposits at resolution of 185 275 

µm. 276 

4. Results  277 

4.1. Stratigraphy, grain-size and magnetic susceptibility in core ALB-1 278 

Sediment core ALB-1 intersected three main stratigraphic units (Fig.3). Basal Unit 1 (- 13.5 to - 8.5 m 279 

depth) is relatively homogenous and is composed of up to 70%wt fine- to medium-sized grey shelly 280 

sand. Its magnetic susceptibility (MS) is low (0-80 cgs). Shell concentration is highest at its base (sub-281 

unit 1-A) while the overlying sub-unit 1-B shows coarser and homogenous sands. Unit 2 (- 8.5 to - 3.5 282 

m depth) is extremely heterogeneous and composed of alternations of silty clays and sand layers. 283 

Brownish, poorly magnetic silty clays at the base of unit 2 (in SU2-A) amount to 70%wt of the 284 

sediment. The overlaying sub-unit 2-B is a succession of grey clayey/shelly sand and gravel. 285 

Magnetic values range from 0 to 300 cgs with marked peaks in coarse sand and gravely layers. The 286 

topmost sub-unit (2-C) is made of interbedded brown, weathered silty clay and sand layers. A well-287 

sorted brown medium sand (70%wt of the sand fraction) layer marks the top of sub-unit 2C. Magnetic 288 

susceptibly decreases upward throughout unit 2. The last, and topmost stratigraphic unit (SU3) 289 

consists of massive, weathered grey silty clay (90%wt of the sediment) dotted by carbonate 290 

concretions near its base (SU3-A). Its upper part (SU3-B) is made of dark brown alternations of silty 291 

clay and sand containing roman pottery sherds with MS values ranging from 0 to 200 cgs.   292 

     293 

4.2. Peak identification of Infrared spectra 294 

4.2.1. DRIFT spectra of synthetic assemblages 295 

A selection of DRIFT spectra of pure mineral species and species combination is provided on Figure 296 

4. Quartz exhibits distinctive absorbance peaks at 1,872 cm-1, 1,610 cm-1, 1,352 cm-1, 1,160 cm-1, 813 297 

cm-1 and 696 cm-1.  Calcite is identified by peaks at 2,984 cm-1, 2,874 cm-1, 2,512 cm-1, 1,797 cm-1, 298 



1,623 cm-1, 1,400 cm-1, 875 cm-1, 848 cm-1, and 714 cm-1. Clays (kaolinite, montmorillonite, and illite) 299 

absorb mostly at 3,696 cm-1, 3,624 cm-1, 1,240 cm-1, 1,111 cm-1 and 792 cm-1. 300 

 301 

4.2.2. DRIFT spectra of core samples 302 

Figure 5 provides descriptive statistics (mean, maximum, minimum, Q1 and Q3 quartiles) of all 303 

combined core sample DRIFT spectra in the SWIR and MIR light ranges. Absorbance peaks were 304 

attributed to specific inorganic and organic compounds using previously established mineralogical 305 

spectra database (Chapkanski et al., 2021a,b) as well as extensive spectra libraries (Chukanov and 306 

Chervonnyi, 2016). Clay minerals, especially Kaolinite - Al₂Si₂O₅(OH)₄ and Montmorillonite - 307 

(Na,Ca)0,3(Al,Mg)2Si4O10(OH)2) are associated with absorbance peaks at 3,696 and 3,626 cm-1 and 308 

around 3,400 to 3,350 cm-1 in the O - H stretching vibration region. Carbonates, especially calcite 309 

CaCO3 is associated with absorbance peaks at 2,986 cm-1, 2,876 cm-1, 2,640 to 2,460 cm-1, 1,460 to 310 

1,360 cm-1 and 874 cm-1. Tectosilicates, especially quartz (SiO2) clearly absorb at 1,160 and 696 cm-1 311 

while peak of feldspars occurs at 1,290 to 1,270 and 795 cm-1 and could be specifically attributed to 312 

albite NaAlSi3O8 and orthoclase KAlSi3O8. Inosilicate and nesosilicate minerals could absorb at 970 313 

and 650 cm-1. Chlorite and mica groups generated the absorbance peak observed at 1,630 cm-1. 314 

Aliphatic C-H bands absorb at 2,930 cm-1 and unsaturated bands of alkenes C=C absorb at 1,642 cm-315 

1. 316 

 317 

4.2.3. Short-Wave Infrared spectra of sediment core images  318 

The SWIR spectra show areas of absorbance related to organic and inorganic compounds (Fig. 5). 319 

The two main absorption peaks near 1,440 nm and 1,925 nm are produced by hydroxyl bonds mainly 320 

induced by moisture (Palmer and Williams, 1974), but they can also be produced by organic and 321 

inorganic compounds, especially clays. Clays show absorption peaks related to Al-OH bonds between 322 

2,200-2,220 nm and to O-H bonds around 1,410 nm, 2,340 nm and 2,450 nm (Madejova et al., 2017). 323 

Carbonates, chlorite and micas also produce multiple absorption peaks around 2,282 and between 324 

2,310-2340 nm, but these often overlap with other compounds, such as organic matter (Cloutis, 1989; 325 

Krupnik and Khan, 2019; Viscarra Rossel and Behrens, 2010). Organic (C-H) bonds produce 326 

numerous absorption peaks, especially around 1,056 nm, 1,146 nm, 1,400 nm, 2,300-2,350 nm and 327 



2,400-2,450 nm (Cloutis, 1989). Tectosilicates, including quartz, have no specific absorption peaks in 328 

the investigated spectral range (Krupnik and Khan, 2019). 329 

 330 

4.3.  Calibrations of mineral abundances 331 

4.3.1 Performance of the synthetic sample cross-calibration  332 

Weight concentrations (wt%) of minerals (quartz, calcite and clay minerals) were obtained using linear 333 

regression equations (Fig 6). Predicted values were plotted against known weight concentrations in 334 

order to evaluate the performance of the mineral quantifications (Fig. 6). Quartz, calcite and clay 335 

minerals were successfully predicted in single and multi-phase samples with R2 > of 0.9. All 336 

correlations are significant with p-values < 0.05. Mean and standard deviations of residual values 337 

show slight underestimation of the prediction in single and multi-phases (from -0.5 to -1.5). The 338 

standard deviation ranges from 2.2 to 7.  339 

 340 

4.3.2 Performance of the synthetic sample to core sample DRIFTS calibration  341 

The linear regressions established using our synthetic standards were applied to the mid- infrared 342 

spectrum of the sediment cores samples (total of 60) to calculate quartz, calcite and clay minerals 343 

abundances (Fig. 3.C). Predicted values (in wt%) range between 14 and 64% (±0.2) for quartz, 0 and 344 

43% (±0.7) for calcite, and 0 and 41% (±0.9) for clays. Quartz wt% is positively correlated with 345 

medium (0.48) and fine (0.53) sand fractions and bears negative correlation with the silty-clay (-0.56) 346 

fraction (Table 3). In contrast, clay minerals wt% is highly correlated to the clay-silt fraction (0.91) and 347 

negatively correlated to the medium (-0.78) and fine (-0.52) sand fractions. Calcite wt% shows no 348 

specific correlation with any grain-size fraction. 349 

       350 

4.4 Calculation of mineral abundance along core ALB-1 351 

4.4.1 Performance of the DRIFTS-core SWIR image calibration  352 

Partial least squares regression (PLSR) was used to create a predictive model of quartz, calcite and 353 

clay abundance at regularly spaced, 3 cm-thick intervals along core ALB-1. The PLSR calibration was 354 

carried out between DRIFTS-derived mineral abundances in the 60 core samples and their SWIR 355 

spectra obtained by hyperspectral imaging (see section 3.4). The PLSR statistical performance is 356 

shown on Fig. 7. Quartz wt%, calcite wt%, and clay minerals wt% are successfully predicted based on 357 



the SWIR spectra using seven latent variables (PLS components). In addition to statistical 358 

parameters, the plot analysis of the raw regression coefficients allows for evaluating the influence of 359 

absorbance bands on the PLS regression loading weights (Vogel et al., 2008; Hahn et al., 2011; 360 

2018). High coefficients (either positive or negative) contribute significantly to the prediction of the 361 

major mineralogical components (Fig. 7). Calcite regression coefficients show positive values for 362 

spectral regions specific to carbonates (2,237 nm, 2,500 nm) and organic matter (1,056 nm, 1,146 363 

nm), and negative values for spectral regions induced by clays (1,422 nm, 2,208 nm and 2,415 nm, 364 

Cloutis, 1989; Krupnik and Khan, 2019; Madejova et al., 2018; Viscarra Rossel and Behrens, 2010). 365 

Positive regression coefficients of clay minerals are related to specific wavelengths of phyllosilicates 366 

(1,411 nm, 1,900 nm, 2,202 nm and between 2,380-2,450 nm), while the negative coefficients are 367 

related to hydroxyl bonds probably induced by interstitial moisture between the coarser grains (1,445 368 

nm, 1,838 nm, 1,945 nm) and to chlorites (2,292 nm, Palmer and Williams, 1974; Cloutis, 1989; 369 

Krupnik and Khan, 2019; Viscarra Rossel and Behrens, 2010). Quartz regression coefficients show 370 

positive values for spectral regions specific to hydroxyl bonds (1,445 nm and 1,945 nm) and stand out 371 

for their anti-correlation with carbonates (-0.82) and clay minerals (-0.42), particularly pronounced for 372 

the hydroxyl and carbonates bonds (2,237 nm, 2,500 nm, Fig. 7). 373 

 374 

4.4.2. Performance of the continuous logging and mineral mapping along core ALB-1   375 

The calibrated PLSR model was applied to each hyperspectral image data averaged over 3 cm bins, 376 

along the sediment (total of 313 bins) in order to assign continuous logging mineral abundances of 377 

quartz, calcite and clay minerals (Fig. 3.D). Predicted values range within 19-58% (±4) for quartz, 4-378 

48% (±3) for calcite and 0-37% (±3) for clay minerals. They display a high degree of agreement with 379 

DRIFTS-derived abundances. Predicted quartz wt% is positively correlated with fine-sand (0.62) and 380 

total sand (0.60) fractions, and shows negative correlations with clay minerals (-0.68) and the clay-silt 381 

fraction (-0.58, Table 3). Predicted calcite wt% shows no specific correlations with other mineralogical 382 

or physical properties of sediments. Predicted clay minerals wt% show strong correlation with the 383 

clay-silt fraction (0.86) and hydroxyl bonds peak at 1,450 nm (0.68) and are negatively correlated to 384 

the total and medium sand fractions. The basal stratigraphic unit (SU1) is notably rich in quartz and 385 

poor in clay compared to other units. For SU1, differences between SWIR-HSI predicted and DRIFTS 386 

inferred mineral abundances are averagely 0.33, -0.44 and -0.27 for quartz, calcite and clays 387 



respectively. The high resolution maps of mineral abundances (Fig.3D) reveal a faint layering 388 

produced by fluctuations in quartz abundance, while calcite and clay content remains fairly stable. 389 

The medium stratigraphic units (SU2) is highly heterogeneous, but it stands out for its higher calcite 390 

content than units SU1 and SU3, and for its higher clay content relative to SU1. For SU2, differences 391 

between predicted and observed mineral abundances are averagely -1.07, 0.26 and -0.35 for quartz, 392 

calcite and clays. SU3 is notably clay-rich and calcite-poor compared to the other units. For this unit, 393 

differences between predicted and observed mineral abundances are averagely 5.07, 0.17 and 1.34 394 

for quartz, calcite and clays respectively. 395 

 396 

5. Discussion 397 

5.1. Peak selection for DRIFTS assessment of mineral abundances and replicability 398 

Numerous studies reported satisfactory mineral calibrations and predictions using Fourier Transform 399 

InfraRed (FTIR) measurements on samples with known mineral contents (Pichard and Frohlich, 1986; 400 

Bertaux et al., 1998; Moosavi and Ghassabian, 2018). Based on these previous approaches, we 401 

converted DRIFTS data into mineral abundances using linear regressions calibrated on single and 402 

multi-phase synthetic mineral assemblages. Qualitatively, quartz, calcite and clay minerals can be 403 

identified easily in the infrared spectra (Fig. 4) owing to their specific peaks. In quantitative 404 

investigations, however, non-overlapping peaks should be selected (Pichard and Frohlich, 1986). 405 

Previous quantitative studies used peaks centered at 693 cm-1 and 712 cm-1 to respectively assess 406 

quartz and calcite abundances (Pichard and Frohlich, 1986). At these wavenumbers, however, 407 

overlaps with clay mineral peaks tend to generate unwanted quantitative distortions, so that better 408 

predictions were obtained using 1,160 cm-1 for quartz and 2,512 cm-1 for calcite. Calcite is the most 409 

abundant carbonate mineral in our sedimentary sequence, but its peak could be produced in other 410 

natural environments by additional carbonates, in particular aragonite (triple bond at 2,546, 2,524 and 411 

2,500 cm-1), dolomite (2,526 cm-1) and magnesite (2,538 cm-1). Among clay minerals, slight chemical 412 

variations can induce overlapping bonds (Madejova and Komadel, 2001) and different peak shapes 413 

(Henry et al., 2017). To overcome this problem, we have combined kaolinite, montmorillonite, and illite 414 

absorbances (Muller et al., 2014). The best calibration was obtained using a peak centered at 3,622 415 

cm-1, where the three clay species absorb. The accuracy of the linear regressions (Fig. 6) is 416 

satisfactory, with high R² coefficients, low residual values, and therefore a direct relationship between 417 



absorbance and mineral abundance. Still, discrepancies between known single-phase mineral 418 

concentrations and DRIFTS-inferred abundances tend to increase at very low (< of 2%) and high (> of 419 

50%) mineral concentration (Henry et al., 2017). Departure from the linear regression at high 420 

concentration could result from the lower density of the synthetic powder at such values, whereas 421 

departures at low concentration could be influenced by detection limits (Vogel et al., 2016). In multi-422 

phase mineral concentrations, DRIFTS-inferred abundances remain satisfactory (Fig. 6) showing that 423 

the chosen peaks are not influenced by the absorbance of other minerals.  424 

PLS regressions have been widely used to calibrate mineral abundances in FTIR spectra (Fernandes 425 

et al., 2020; Hahn et al., 2018; Muller et al., 2014). Predictions often show great performances and 426 

efficiency because the calibrations are based on the entire set of wavenumbers and therefore all 427 

absorbance peaks are considered. However, as certain peaks are common for two or more mineral 428 

phases, leading to over or under estimations (Vogel et al., 2016). Besides, the PLS calibration is 429 

population-specific, and must be rerun on each new dataset requiring the availability of the entire 430 

calibration dataset. However, these later are often inaccessible. To overcome this issue, this study 431 

provides linear regressions that are easily reusable for natural sediment spectra.  432 

 433 

5.2. Calibration of high-resolution imaging SWIR spectra and DRIFTS-inferred mineral 434 

abundances 435 

In the mid-infrared range used in DRIFTS, absorbance is controlled by vibrations of molecular bonds 436 

and functional groups. Therefore, peaks are very meaningful in the detection of carbonates and 437 

silicates (Fig. 5). By contrast, in the shorter infrared range (SWIR), absorbance is controlled by broad 438 

bonds, overtones and combination of functional groups (Robertson et al., 2016). Consequently, HSI-439 

derived spectra are not sensitive to certain mineral phases such as tectosilicates (quartz and 440 

feldspar), some oxides, phosphates and sulfides (Krupnik and Khan, 2019). Moreover, spectral 441 

analyses are commonly based on chemometrics which, to overcome the absence of well-defined 442 

peaks, handle the entire range of wavelengths. Here, we use a PLS regression to assess the 443 

relationship between the DRIFTS-inferred mineral abundances and core image spectra, because the 444 

PLS regression allows us to assess the accuracy of the calibration. The analysis of PLS regression 445 

coefficients is commonly used to evaluate the performance of prediction models (Vogel et al., 2008; 446 

Hahn et al., 2011). Models relying on direct relationships between the investigated minerals and the 447 



spectra (such as the SWIR-HSI models for calcite and clay minerals) are considered reliable and 448 

replicable because absorbance is directly influenced by specific functional bands in the crystalline 449 

structure of the minerals (Hahn et al., 2011, 2018). In contrast, models based on indirect relationships 450 

(such as the SWIR-HSI model for quartz) rely on inter-correlations between different mineralogical or 451 

physical properties that occur in specific sedimentological configurations and may, therefore, not be 452 

replicable elsewhere. In the present study, the good SWIR-HSI predictions of calcite and clay 453 

minerals result from a direct relationship to their respective functional groups. In the case of the clays, 454 

the correlation (> 0.60) that exists between clay minerals and clay-silt texture and hydroxyl bonds (see 455 

section 4.4.1, Table 3) may not result from intrinsic spectral properties of the clays, but rather from 456 

grain-size and moisture effects affecting the SWIR spectra. Nonetheless, dried and ground samples 457 

yield DRIFTS-derived abundance trends and values that are similar to that of the SWIR data implying 458 

that the SWIR-HSI prediction of clay minerals is mainly based on their spectral functional bonds, not 459 

by grain-size or moisture in the core. Similarly calcite predictions show no correlations with the 460 

physical properties of the core. By contrast, the acceptable prediction of quartz abundance by SWIR-461 

HSI cannot result from the direct measurement of functional groups, as they do not reflect in that 462 

spectral range (see section 4.2.3.). The SWIR-HSI predicted quartz show significant positive 463 

correlations (> 0.60) with fine and total sand fractions (Table 3) and negative correlations (< -0.6) with 464 

the clay minerals. Moreover, the raw PLSR coefficients of quartz are negatively correlated (-0.82) with 465 

the calcite coefficients (Fig. 7). Therefore, quartz prediction by SWIR-HSI is made successful here 466 

owing to its close association to a fine and medium sand characterized by a relatively low calcite and 467 

clay mineral content, as opposed to silty-clay (rich of clay minerals) or shelly (rich of calcite) sediment 468 

with more heterogeneous textures. This association between well sorted, fine-to medium sand, and 469 

abundant quartz is a common characteristics of sediments that however is far from systematic. 470 

Therefore, the use of the methodology should be conducted with care, with a substantial site-specific 471 

foreknowledge of the sediment composition and of its variations. Used inappropriately, the model will 472 

generate significant inaccuracies.  473 

 474 

5.3. Two-sensors infrared approach: complementarity, advantages and limits.  475 

The two-sensor approach relies on the near- and mid-infrared electromagnetic ranges (Fig. 5). 476 

DRIFTS provides a precise quantification of quartz, calcite and clay minerals content owing to its high 477 



sensitivity to specific functional bands in the mid-infrared range: O-H, N-H, C-H stretching, H-O-H 478 

deformation, CO3, Si-O stretching, Si-O-Al and Fe-O (Russell & Fraser, 1994; Chukanov & 479 

Chervonnyi, 2016). The use of dried, ground samples ensures homogeneity and replicability of 480 

measurements. The analysis does not alter the chemistry and mineralogy of the samples, which can 481 

therefore be reused in other analyses. Compared to X-Ray Diffraction, DRIFTS is less sensitive to 482 

mineral phases present in small amount.  However, is not subject to analytical biases introduced by 483 

the differential settling or preferred orientations of minerals (Herbert et al., 1992). Besides, owing to its 484 

wide range of wavenumbers (from 4.000 to 450 cm-1), DRIFTS provides good qualitative 485 

determination of clay minerals directly on bulk sediments and it is sensitive to both amorphous silica 486 

(Meyer-Jacob et al., 2014; Frohlich, 1989) and organic compounds (Francos et al., 2021; Chapman et 487 

al., 2001). Therefore, it constitutes a relevant alternative to conventional XRD for the calibration of 488 

mineral abundance based on hyperspectral images (Greene et al., 2019). To conduct an optimal HSI 489 

modelling, calibration samples should cover the entire range of mineral concentrations (Vogel et al., 490 

2008), which is found in the image. To capture the expected range, samples should be collected at 491 

regular, and rather short depth-intervals along the core, generating a sizeable number of samples. To 492 

process such a large number of samples, DRIFTS is also appropriate because it can be carried out on 493 

small (10 mg) samples, because it do not involve hazardous chemical materials nor dangerous 494 

radiation emissions. Sample preparation is quick (~1 min/sample) and simple. The establishment of 495 

the calibration curves using synthetic mixtures is the most time-consuming step, but future users can 496 

simply reuse the linear regression coefficients provided in this study in order to obtain (semi) 497 

quantitative mineral abundances from the DRIFT spectra of natural sediments. 498 

Although near-infrared spectra obtained by hyperspectral core-imaging are less sensitive to mineral 499 

composition and not sensitive to tectosilicates, they provide unprecedented time-saving (2 min/meter), 500 

high-resolution investigations (185 µm² pixel) in a completely non-invasive and non-destructive 501 

manner. The main challenges arise from the irregular and heterogeneous state of the sediment core 502 

surface, which often presents particle size and humidity variations that strongly impact the near 503 

infrared spectrum, leading to prediction bias (Verpoorter et al., 2014). For this reason, calibrations 504 

with mineral abundance values inferred by the DRIFTS on powdered and dry samples constraint the 505 

PLSR algorithm to specific-absorbance of minerals and reduce the effects of moisture and grain-size. 506 

The latter can be easily detected using two main absorptions bands by O-H bonds around 1,440 nm 507 



and 1,925 nm, but also by the rise of the spectra baseline in the Near- and Mid-Infrared ranges (Fig 508 

5). In the present study, low deviations between DRIFTS-inferred and SWIR-HSI predictions of 509 

minerals (< 1.5, see section 4.4.2.) suggest that the heterogeneous grain-size state of the sediment 510 

core surface is overcome by the PLSR modelling. By contrast, the prediction of quartz remains 511 

strongly dependent of site-specific sediment and mineralogical characteristics.    512 

 513 

5.4. Depositional environments encountered along core ALB-1 514 

 515 

The palaeovalley of the Albegna River has been incised during the last glacial sea-level low stands; it 516 

was subsequently infilled by marine and fluvial sediments during the Late-glacial to Holocene 517 

transgression (Mazzini et al., 1999). The delta of the Albegna River has progressively prograded and 518 

filled its valley, while a sand-spit was building up farther offshore, progressively isolating a lagoon 519 

from the open sea. The delta is therefore expected to have grown first in an open marine 520 

environment, and then in a lagoonal environment, before reaching the sand spit and shedding its 521 

sediment, along the sand spit foreshore. The core is located within the former lagoon, immediately 522 

behind the sand spit, at a location that probably emerged just as the emerged delta floodplain was 523 

reaching the sand spit,   524 

Non-continuous grain-size analysis, continuous magnetic susceptibility, and mineral core-logging 525 

reveal three stratigraphic units, which we subdivided into two-three sub-units (Fig. 3). The lower 526 

sequence SU1 contains thin (1 cm-thick) silty-clay layers interbedded with fine- to medium- grained, 527 

quartz-rich sand containing occasional shells and well-rounded gravel. Considering its age ( > 5,300 528 

BCE), unit SU1 can be interpreted as deposited in an open marine environment, during the 529 

transgression and maximum flooding of the Albegna palaeo-valley. The slight upward coarsening, 530 

from SU1-A to SU1-B, may reflect the progradation of the Albegna River delta (Styllas, 2014) after the 531 

maximum flooding. It is associated with a slight but continuous increase in quartz abundance, which 532 

may result from the positive correlation between quartz abundance and sand grain size. The 533 

continuous record (Fig. 3D) reveals an abrupt superposition of the overlying deposits (SU2-1), 534 

composed of organic clays. This facies is reminiscent of the quiet lagoonal environment still found 535 

today in the remain parts of the lagoon, and is therefore interpreted as resulting from the rapid 536 

development of lagoonal conditions behind the sand spit (5,500 to 5,370 BCE) during the Atlantic. 537 



This unit is overlaid by extremely heterogeneous sediments (SU2-B) consisting of fine- to medium-538 

grained sand deposits interbedded with silty-clayey layers. Calcite content is at its highest and 539 

correlates with layers of medium- to coarse-grained sand made of shell fragments. This facies 540 

indicates a highly biologically productive in the shallow lagoon occurring between 4,240 and 4,000 541 

BCE) at the end of the Atlantic. The greater abundance of sand, compared to the lagoon of Orbetello 542 

farther south, indicates the proximity of either an inlet in the sand spit, or/and, most likely, the 543 

increasing proximity of the Albegna River mouth, as the river delta progrades across the lagoon 544 

toward the coring site. Local peaks in magnetic susceptibility are produced by gravely beds rich in 545 

shell fragments and may represent the reworking of the coarsest river sediments. The SU2-B to SU2-546 

C evolution from a reducing to oxidizing environment (grey to brown-colored sediments) and the 547 

increase in grain-size (from fine-medium- to coarse-grained sand) reflects the progressive shoaling of 548 

the lagoon, as the Albegna River mouth gets closer to the coring site. The highest unit (SU3) is 549 

composed of emerged floodplain sediments, deposited on the banks of the Albegna River, once the 550 

coring site had been integrated into its delta plain between 2,880 and  2,630 cal BC, during the 551 

Subboreal. The overbank deposits consist of weathered silty-clay, rich in clay minerals, cemented by 552 

carbonate concretions deposited near the water table. The top of the core (SU3-B) consists of dark-553 

brown silty-clay and unsorted sands. Its dark brownish color may reflect more advanced pedogenesis, 554 

in a floodplain progressively less frequently subjected to flooding. However, interpretation is made 555 

difficult by the fact that this sediment has been strongly reworked by anthropogenic activity, which is 556 

attested by the high density of Roman sherds in this top unit. 557 

 558 

5.5. Wider significance 559 

The widespread use of sediment cores for a variety of environmental research, mining and civil 560 

engineering applications provides a favorable context for the development of fast techniques that do 561 

not require time-consuming pretreatments with chemical products. The need for fast and easily 562 

applied techniques encourages approaches based on continuous core-logging calibrated on punctual 563 

analyses (Greene et al., 2019). The two-sensor infrared methodology proposed here, involving 564 

DRIFTS and SWIR-HSI for the continuous logging of mineral abundances along sediment cores, 565 

provides a simple and time-saving approach. Hyperspectral imaging has already demonstrated its 566 

added value in the study of lacustrine environments (Sorrel et al., 2021; Makri et al., 2020; Butz et al., 567 



2017; Aymerich et al., 2016). Its application to a wider range of sedimentary environments remains to 568 

be tested, especially in contexts, such as here, where substantial grain-size variations occur along 569 

core. Here our combined two infrared sensor approach shows sharp mineralogical variations between 570 

subunits and within subunits. The maps of mineral abundances provide extremely high-resolution 571 

horizontal and vertical values of abundances, highlighting laminations and the fine-scale architecture 572 

of the sediment layers. Our analysis, albeit restricted to three major mineral species and groups, 573 

illustrates variations that can be tied to major changes in the depositional environment (open sea, 574 

lagoonal, fluvio-deltaic). We believe that the high resolution prediction of calcite and clay minerals 575 

could be easily applied in other sedimentological environments, but for prediction of quartz we rather 576 

recommend to use Mid-Wave InfraRed (MWIR: 2,700-5,300 nm) or Long-Wave InfraRed (LWIR: 577 

8,000-12,000 nm) hyperspectral cameras (Contreras Acosta et al., 2020; Lorenz et al., 2019) that are 578 

sensible to tectosilicates. To improve processing times, benchtop DRIFTS measurements could be 579 

replaced by the emerging hand-operated FTIR, but the use of such non-destructive techniques has to 580 

reckon with issues of sample humidity and grainsize variations at the sediment surface. Wider 581 

significance of this approach would be found in geoarchaeological stratigraphy (Haburaj et al., 2020; 582 

Linderholm et al., 2018) and sequence stratigraphy where hyperspectral imaging could be correlated 583 

with Ground Penetrating Radar (GPR) profiles. Moreover, in palaeo-lagoon investigations correlated 584 

with seasonal variations of macro- and micro-fauna.  585 

    586 

 587 

6. Conclusion 588 

This study demonstrates the potential of a two-sensor infrared methodology involving Diffuse 589 

Reflectance Infrared Fourier Transform spectroscopy (DRIFTS) and Short-Wave InfraRed (SWIR) 590 

hyperspectral imaging (HSI) to provide a simple and time-saving approach for continuous logging of 591 

mineral abundances along sediment cores. The DRIFT spectra were used to provide quantitative 592 

estimations for quartz, calcite and clay minerals abundances of single and multi-phase synthetic 593 

mixtures. Therefore, reliable DRIFTS-inferred estimations of these minerals were obtained for 60 594 

sediment samples from a 14 meters-depth core (ALB-1), drilled in the deltaic deposits of the Albegna 595 

River. The mineral abundance values were fused with the SWIR-HSI data in order to establish partial 596 

least squares regression (PLSR) model aiming to assign continuous logging of mineral abundances 597 



along the ALB-1 core. The PLSR statistical performance was satisfactory showing high degree of 598 

agreement between the DRIFT-induced and SWIR-HSI predicted results. The same predicting model 599 

was used to compute maps of mineral abundances evidencing the layered structure of mineral 600 

concentrations. The classical sedimentological non-continuous analyses (e.g. grain-size), 601 

complemented by combined DRIFTS and SWIR-HSI approach, bring into focus changes of sediment 602 

dynamics and depositional patterns recorded into the deltaic facies at high-resolution vertical scale. 603 

We contend here that the fused two-sensor infrared approach has a clear potential to help 604 

reconstructing fluvial-deltaic sedimentary successions. Calcite and clay minerals could be reliably 605 

predicted in other sedimentary environments. However, in terms of quartz prediction, the SWIR-HSI 606 

remain limited and it cannot be used for direct spectra modeling of tectosilicates. To overcome this 607 

issue, we rather recommend to use Mid-Wave InfraRed (MWIR: 2,700-5,300 nm) or Long-Wave 608 

InfraRed (LWIR: 8,000-12,000 nm) hyperspectral cameras. However, these latter significantly costlier. 609 

Further analyses are intended in order to provide quantifications of specific phyllosilicates (kaolinite 610 

vs. illite vs. smectite) by DRIFTS in order to test whether they could be reliably predicted by SWIR-611 

HSI in complex fluvio-deltaic sediment mixtures. Moreover, research involving DRIFT-induced total 612 

organic matter and biogenic silica abundances are currently in progress in order to provide a wider 613 

understanding of the total sample composition.   614 
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Table 2:Radiocarbon age determination of the ALB-1 core sediments. 931 

Table 3: Correlation matrix of different mineralogical and physical properties of ALB-1 core sediment 932 
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 934 

Figures captions 935 

Figure 1: Location map of the Albegna fluvial-deltaic environment at different spatial scales. (A) the 936 

Albegna watershed limits and relief, (B) the simplified lithological map of the Albegna watershed and 937 

its surroundings and (C) the Albegna low-lying area and the current extensions of the Orbetello 938 

lagoon. 939 

Figure 2: Schematic demonstration of the research methodology. Step 1: Scanning of the core by 940 

SWIR-HSI; Step 2: Measurement of core samples by DRIFTS; Step 3: Conversion of core sample 941 

spectra into mineral abundances; Step 4: Combination of SWIR-HSI and DRIFTS spectra over the 942 

area sampled for DRIFTS; Step 5: Calibration of SWIR-HSI data to continuous record of mineral 943 

abundances along the core.   944 

Figure 3: Chronostratigraphy of the drill core ALB-1. The figure displays: (A) the texture of sediments, 945 

(B) the magnetic susceptibility and grain-size analyses, (C) the mineral abundances %wt by sample, 946 



inferred by DRIFT spectroscopy and (D) the high resolution prediction of mineral abundances 947 

obtained by the calibrated SWIR-HSI.    948 

Figure 4: Overview spectra obtained from the synthetic mixture samples composed of pure minerals 949 

and potassium bromide (KBr). The red line highlights the peaks, selected for the establishment of the 950 

calibration curves.   951 

Figure 5: Descriptive statistics of the short-wave spectra (nm units) obtained by the Hyperspectral 952 

Imaging and the mid-infrared spectra (cm-1 units) obtained by the Diffuse Reflectance Infrared Fourier 953 

Transform Spectroscopy. Grey lines highlight specific absorbance peaks discussed in this study. 954 

Statistics were performed on 60 SWIR-HSI and 60 DRIFTS corresponding spectra of sediment 955 

samples along the entire ALB-1 core.     956 

Figure 6: Two-dimensional scatter plot of the DRIFT-inferred mineral %wt and the known mineral 957 

%wt.  The regression line has drowned in black and the confident levels (0.95) in grey. Linear 958 

regression equations employed for the mineral %wt estimations are reported.   959 

Figure 7: Two-dimensional scatter plot of PLSR-SWIR predicted mineral %wt and the DRIFT-inferred 960 

mineral %wt.  The PLSR line is drown in black and the confident levels (0.95) in grey. Raw PLSR 961 

coefficients for each modeled mineral are reported. Most discriminant coefficients (peaks) are 962 

identified and highlighted.  963 
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ID Quartz wt% Calcite wt% KaolMontmIllite (1:1:1) wt% KBr wt%

Ca1 0 1 0 99

Ca2 0 2 0 98

Ca5 0 5 0 95

Ca10 0 10 0 90

Ca15 0 15 0 85

Ca20 0 20 0 80

Ca50 0 50 0 50

Ca100 0 100 0 0

Cm1 0 0 1 99

Cm2 0 0 2 98

Cm5 0 0 5 95

Cm10 0 0 10 90

Cm15 0 0 15 85

Cm20 0 0 20 80

Cm30 0 0 30 70

Cm40 0 0 40 60

Cm50 0 0 50 50

Cm70 0 0 70 30

Cm100 0 0 100 0

Q1 1 0 0 99

Q2 2 0 0 98

Q5K15Ca10 5 10 15 70

Q5 5 0 0 95

Q10K15Ca5 10 5 15 70

Q10 10 0 0 90

Q15K5Ca10 15 10 5 70

Q15 15 0 0 85

Q20 20 0 0 80

Q20Cm80 20 0 80 0

Q30 30 0 0 70

Q40Cm60 40 0 60 0

Q40 40 0 0 60

Q40Ca40 40 40 0 20

Q50Cm50 50 0 50 0

Q50 50 0 0 50

Q60Cm40 60 0 40 0

Q70Ca30 70 30 0 0

Q70 70 0 0 30

Q80Cm20 80 0 20 0

Q80Ca20 80 20 0 0

Q90Ca10 90 10 0 0

Q100 100 0 0 0



Core
Depth (below soil 

topographic level)

Stratigraphic 

Units

Laboratory 

code
Dating support

14 C age 

in BP

Age calibrated 

(Reimer et al., 2020)

ALB-1 349 cm SU2-C Lyon-18795 Wood 4155 ± 30 2877 to 2630 BC

ALB-1 597 cm SU2-C Lyon-18796 Organic matter 5300 ± 30 4241 to 4001 BC

ALB-1 790-792 cm SU2-B Lyon-18797 Charcoal 6015 ± 35 5000 to 4797 BC

ALB-1 823-826 cm SU2-A Lyon-18798 Organic matter 6485 ± 35 5520 to 5369 BC



DRIFTS inferred quartz (%) 1.00

DRIFTS inferred calcite (%) -0.36 1.00

DRIFTS inferred clay-minerals (%) -0.58 -0.39 1.00

PLSR-SWIR predicted quartz (%) 0.89 -0.36 -0.64 1.00

PLSR-SWIR predicted calcite (%) -0.35 0.92 -0.37 -0.39 1.00

PLSR-SWIR predicted clay-minerals (%) -0.60 -0.35 0.95 -0.68 -0.39 1.00

Clay-silt texture (%) -0.56 -0.36 0.91 -0.58 -0.37 0.86 1.00

Fine-Sand (%) 0.52 -0.13 -0.52 0.62 -0.10 -0.56 -0.62 1.00

Medium-Sand (%) 0.48 0.39 -0.78 0.46 0.40 -0.75 -0.74 0.23 1.00

Coarse-Sand (%) -0.16 0.39 -0.18 -0.21 0.37 -0.06 -0.25 -0.37 0.01 1.00

Total sand (%) 0.57 0.32 -0.90 0.60 0.34 -0.86 -0.99 0.65 0.74 0.23 1.00

Gravel (%) 0.00 0.27 -0.13 -0.07 0.25 -0.12 -0.15 -0.16 0.06 0.16 0.01 1.00

Magnetic susceptibility -0.25 0.37 -0.02 -0.22 0.45 -0.11 -0.03 0.04 0.08 -0.08 0.02 0.09 1.00

Moisture peak at 1935 nm 0.09 0.13 -0.04 0.06 0.17 -0.10 -0.06 -0.06 0.30 -0.25 0.03 0.24 0.23 1.00

Hydroxyl bonds peak at 1450 nm -0.41 -0.18 0.69 -0.47 -0.17 0.68 0.73 -0.61 -0.37 -0.20 -0.74 -0.01 0.03 0.44 1.00

Correlations 




