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Abstract

R. Tyrell Rockafellar and collaborators introduced, in a series of works, new regression modeling
methods based on the notion of superquantile (or conditional value-at-risk). These methods have been
influential in economics, finance, management science, and operations research in general. Recently,
they have been the subject of a renewed interest in machine learning, to address issues of distributional
robustness and fair allocation. In this paper, we review some of these new applications of the superquantile,
with references to recent developments. These applications involve nonsmooth superquantile-based
objective functions that admit explicit subgradient calculations. To make these superquantile-based
functions amenable to the gradient-based algorithms popular in machine learning, we show how to smooth
them by infimal convolution and describe numerical procedures to compute the gradients of the smooth
approximations. We put the approach into perspective by comparing it to other smoothing techniques and
by illustrating it on toy examples.

1 Introduction

1.1 Superquantiles at Work: Old and New

Risk measures play a crucial role in optimization under uncertainty, involving problems with an aversion to
worst-cases scenarios. Among popular convex risk measures, the superquantile – also called the Conditional
Value at Risk, Tail Value at Risk, Mean Excess Loss, or Mean Shortfall – has received special attention. The
superquantile has been extensively studied from a convex analysis perspective: we refer, for instance, to
[44] for a variational formulation of the superquantile, to [4] for its generalization to a larger class of risk
measures, to [12] for a dual formulation (also later generalized in [46] or [42]) and [41] for additional convex
properties. The superquantile can be traced back to the paper [3]. These nice theoretical properties have given
interesting results in various applications, ranging from finance [47] to energy planning [13]; for a thorough
discussion and many references, we refer to the seminal work [44], the classical textbook [50, Chap. 6], or
the tutorial paper [40].

More recently, the superquantile has also drawn an increasing attention in machine learning. In this paper, we
give an overview of some of the new applications of the superquantile in machine learning: we discuss the
use of the superquantile for distributionally robust learning, fairness in machine learning, federated learning,
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adversarial classification, and risk-sensitive reinforcement learning; we also give toy illustrations and pointers
to recent exciting developments.

Superquantile optimization problems are nonsmooth, possibly non-convex, but also highly structured. In
financial or operations research applications, these nonsmooth optimization problems are usually solved using
one of two approaches: (a) extending specific algorithms (e.g., progressive hedging for risk-averse multi-stage
programming [39]), or, (b) relying on convex programming (e.g., linear programming coupled with Monte
Carlo simulations for portfolio management [44]). We refer to [45] and [29] for discussions on computational
approaches. In machine learning, recent papers propose to use stochastic first-order optimization algorithms
for superquantile learning; see e.g., [8, 25] and references therein.

In this paper, we propose a simple alternative. We study the smoothing of superquantile by infimal-convolution,
extending and clarifying the results of [22, Sec. 3]. This opens the way for using first-order methods for
smooth optimization: this is of special interest for machine learning applications where standard algorithms
and software rely heavily rely on gradient-based optimization [1, 35]. In fact, optimization guarantees in this
context are typically given for smooth surrogates of the superquantile, e.g., [23, 25]; which we study and
clarify. In view of these applications, we pay attention to provide efficient procedures for computing gradients
of smooth approximations of superquantile-based functions. We illustrate these smoothed first-order oracles
combined with quasi-Newton methods on simple problems with synthetic or real data. We refer to our recent
work [22, 23] for more computational experiments, using particular cases of such efficient smoothed oracles.

More specifically, the contributions of this paper are multiple and can be pointed out, section by section, as
follows:

• We formalize, in Section 2, the existing notion of empirical superquantile minimization and provide a
convergence result for supervised learning.

• We propose, in Section 3, an overview of recent machine learning applications of superquantiles.

• We study in Section 4 the (sub)gradient calculus of superquantile-based functions with a focus on
computational efficiency. In particular, Section 4.2 studies generalized subgradients of superquantile-
based functions and Section 4.3 considers gradients of smooth approximations of the superquantile by
inf-convolution. Finally, we establish in Section 4.4 the equivalence between different inf-convolution
schemes, as well as the smoothing by convolution. We propose to use quasi-Newton algorithms to
minimize these smoothed approximations.

1.2 Superquantiles: Review and Notation

We recall basic definitions and properties used in this paper. Our notation and terminology follow closely the
ones of [46] and [40]; we refer to these papers for more details and references.

Consider a probability space Ω, with probability denoted P. For p ∈ (0, 1), the p-quantile of a random
variable U : Ω→ R, denoted by Qp(U), is the inverse of the cumulative distribution function of U . For all
t ∈ R we have

Qp(U) ≤ t ⇐⇒ P(U ≤ t) ≥ p . (1)

When e.g., p = 1/2, the p-quantile corresponds the median value of the random variable. For p ∈ [0, 1), the
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p-superquantile of U is defined as the mean of values of quantiles greater than the threshold p:

Sp(U) =
1

1− p

∫ 1

p
Qp′(U)dp′ . (2)

The analogue to (1) for the superquantile is stronger:

Sp(U) ≤ t ⇐⇒ U is lower than t on average in its p-tail.

The superquantile is thus interpreted as a measure of the upper tail of the distribution of U . Another
interpretation comes from the dual formulation of superquantiles [12]: Sp(U) can be written as a maximal
expectation of U with respect to probability measures having a (Radon-Nykodim) derivative bounded by
1− p:

Sp(U) = max
0≤q(·)≤ 1

1−p∫
Ω q dP(ω)=1

∫
ω∈Ω

U(ω)q(ω)dP(ω) . (3)

When U is a discrete random variable, the above expression simplifies; we come back to this in Section 4.
Finally, for an optimization perspective, the superquantile also has a nice variational formulation [44]:

Sp(U) = min
η∈R

{
η +

1

1− p
E[max(U − η, 0)]

}
. (4)

In this expression, the quantile Qp(U) is obtained as the left end-point of the solution. This last expression
also reveals an important advantage of Sp(U) over Qp(U) as a measure of the tail of U , from both theoretical
and practical points of view: the superquantile is convex, positively homogeneous, monotonic, translation
invariant; see, e.g.,, the tutorial article [40].

2 Standard and Superquantile Machine Learning

Optimization is at the heart of machine learning, through the paradigm of empirical risk minimization, which
we briefly recall in Section 2.1. In Section 2.2, we discuss superquantile learning, where the risk measure of
the learning model is the superquantile. The material of this section also serves as a gentle introduction to the
recent developments outlined in the next section.

2.1 Supervised Learning Review

We recall here the notation and basic notions of supervised learning; we refer to standard textbooks [7] or [49]
for more details. In the training phase of supervised learning, we have access to n data-points: each data-point
is a pair (x, y), where x ∈ X is a feature vector and y ∈ Y is its corresponding target. For instance, for a
binary classification task, y is a Boolean encoding the membership of the image x to one of the two classes.
From this training data, the aim is to learn a parameter w ∈ W ⊂ Rd as “weights” of a given prediction
function z = ϕ(w, x) that produces, for an input x ∈ X , a prediction z ∈ Z of the associated target y ∈ Y .
Typical examples of prediction functions include simple linear models ϕ(w, x) = w>x, polynomial models
(as in Example 2.1 below), or artificial neural networks

ϕ(w, x) = w>s σ(· · ·σ(w>1 x)) , (5)
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which are successive compositions of linear models wj and non-linear activations σ. The prediction error is
then measured by a loss function ` : Y ×Z → R. Typical examples of loss functions include the least-squares
loss (Y = R, Z= R) or the logistic loss (Y = {−1, 1}, Z = R), defined respectively as

`(y, z) =
1

2
(y − z)2 , and, `(y, z) = log(1 + exp(−y z)) . (6)

Assuming1 that the training data are generated from a given distribution P over X × Y , the “best" model
parameter w solves the optimization problem

min
w∈W

[
R(w) = E(x,y)∼P [`(y, ϕ(w, x)]

]
. (7)

However, we can only access P via i.i.d. samples {(xi, yi)}1≤i≤n. So we consider instead the empirical risk
minimization approach, which solves the following optimization problem, analogous to (7) but where the
expectation is taken over Pn, the empirical measure over the training examples:

min
w∈W

[
Rn(w) = E(x,y)∼Pn [`(y, ϕ(w, x)] =

1

n

n∑
i=1

`(yi, ϕ(w, xi)

]
. (8)

Under suitable conditions, we have that the minimizer w?n of (8) converges almost surely in mean error to the
best population error as n→∞, i.e.,

R(w?n) −→
n→∞

R(w?) almost surely. (9)

For concreteness, we instantiate this general framework with a simple regression task, which will also be
used in illustrations in subsequent sections.

Example 2.1 (Least-squares regression). Consider a dataset D = (xi, yi)1≤i≤n ∈ (R× R)n generated by
noisy observations of a quadratic function: we have

yi = w̄0 + w̄1 xi + w̄2 x
2
i + εi , where εi ∼ N (0, σ2) , (10)

for an unknown vector w̄ = (w̄0, w̄1, w̄2) ∈ R3 that we would like to approximate. In this case, (8)
instantiates as the ordinary least-squares problem

min
w∈R3

E(x,y)∼Pn
[
(y − (w2x

2 + w1x+ w0))2
]
, (11)

with a quadratic model ϕ(w, ·) and the square loss.

2.2 Superquantile Learning

The standard framework, recalled above, is currently challenged by important domain applications [e.g.,
18, 38], in which several of the standard assumptions turn out to be limiting. Indeed, classical supervised
learning assumes that, at training time, the examples (x1, y1), . . . , (xn, yn) are drawn i.i.d. from a given

1When the assumption of the existence of an underlying distribution P is not realistic, the usual approach is to still use the
empirical risk minimization (8) from the given training dataset Pn = {(xi, yi)}1≤i≤n.

4



distribution P , and that, at testing time, we face a new example x′, also drawn from the same distribution P .
However, recent failures of learning systems when operating in unknown environments [21, 27] underscore
the importance of taking into account that we may not face the same distribution at test/prediction time.

Distributionally robust learning aims to bolster the safety of learning systems by enforcing robustness to
heterogeneous data. This notion of robustness is aligned with the one in robust optimization [5]; it is, however,
different from the notion of robustness in robust statistics [5, Sec. 12.6]. Here, we assume that the dataset is
preprocessed to remove outliers such that the extreme data in the dataset is relevant to the learning process.

The superquantile can be used to build distributionally robust machine learning models, as studied recently
in [8, 22, 25, 51] among others. From the dual formulation (3), superquantiles are expected to produce models
that perform better in case of changes in underlying distributions, compared to models trained using standard
empirical risk minimization. Therefore, a natural approach to distributionally robust learning consists in
replacing the expectation in (7) by the superquantile (2). The resulting objective function is

min
w∈W

[
Sp(w) = [Sp](x,y)∼P

[
`(y, ϕ(w, x)

]]
,

as well as its empirical version analogous to (8)

min
w∈W

[
Spn(w) = [Sp](x,y)∼Pn

[
`(y, ϕ(w, x)

]]
. (12)

As we establish in the forthcoming Theorem 1, the convergence property (9) also holds for Spn and Sp.
We refer to [10, 48] for further discussions on statistical aspects of distributionally robust learning, and to
[24, 28, 51] for superquantile learning in particular.

In practice, superquantile has been shown experimentally to produce models more robust to distribution shifts
in various contexts; we refer to [8, 11, 20, 22, 25, 51]. For illustration, we include numerical experiments
inspired from the ones of [8] in the Appendix. We also include a short toy example here.

Example 2.2 (Superquantile regression). We illustrate the interest of superquantile learning in presence of
heterogeneous data, on a variant of the regression task of Example 2.1. Consider a dataset gathering two
different subgroups: 80% of the points are generated by (10) and the remaining 20% are also generated by
(10) but with completely different parameters w̄. Then we can compare the usual approach using ordinary
least-squares (11) with its superquantile counterpart of the form (12) for p = 0.9.

Figure 1 shows the distribution of residuals ri = |yi − (w2x
2
i + w1xi + w0)| for models (11) and (12).

The superquantile model (12) shows an improvement of 90/95th quantiles of the distribution of residuals,
which appears on histograms as a shift of the upper tail to the left. This comes at the price of a degraded
performance on average, which appears on the figure as the shift of the peak of residuals to the right.

We finish this section on superquantile learning with an asymptotic result generalizing (9) for the superquantile.
We present an elementary self-contained proof: we follow the general approach (see e.g. the monograph [7])
that we combine with the specific expression of the superquantile.

We start with the mathematical framework. The input-output space X × Y is equipped with a σ-algebra
F , which is complete with respect to the probability measure P . The almost sure convergence is proved
with respect to a countable sequence of datapoints (x1, y1), . . ., the associated product σ-algebra and product
probability measure, which we denote P. The prediction space Z is equipped with a norm ‖ · ‖. We consider
the uniform pseudometric distϕ on the parameter set W

distϕ(w,w′) = sup
x∈X
‖ϕ(w, x)− ϕ(w′, x)‖.
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Figure 1: Superquantile regression improves the prediction on the worst-case datapoints. Left figure:
histograms of residuals ri = |yi− (w2x

2
i +w1xi+w0)| for model (11) (in violet) and model (12) (in orange).

Right table: xth perc. stands for xth percentile of final distribution of the residuals ri.

We assume W is bounded and we further make the following assumption on its size with respect to distϕ.

Assumption 1 (On the "size" of W ). For any ε > 0, there exists a finite set T ⊂ W such that for every
w ∈W , there exists a w′ ∈ T with distϕ(w,w′) ≤ ε. Such a T is called a ε-cover of W , and the size of the
smallest such a T is denoted N(ε).

For example for the set of d-dimensional linear functions ϕ(w, x) = w>x for ‖w‖2 ≤ 1. If we take the
norm ‖z‖ = |z| on the real line Z = R, one can prove that logN(W, distϕ, ε) ≤ C d log(1/ε) for some
absolute constant C and normalized data (see e.g., [56, Lemma 5.7]). The second standard assumption that
we consider is on the loss function `(·, ·).

Assumption 2 (On the loss). The map (x, y) 7→ `(y, ϕ(w, x)) is measurable for every w ∈ W . The map
w 7→ `(y, ϕ(w, x)) is continuous, and hence Borel measurable, for each (x, y) ∈ X × Y . Furthermore, the
loss is

• P -almost surely bounded, i.e., 0 ≤ `(y, ϕ(w, x)) ≤ B for each w ∈W ,

• M -Lipschitz in the second argument, i.e., |`(y, z)− `(y, z′)| ≤M‖z − z′‖ for every z, z′ ∈ Z.

We have the following result generalizing (9).

Theorem 1. Let Assumptions 1 and 2 hold. Fix p ∈ (0, 1) and assume that the minimizers of Sp and Spn are
attained:

w? ∈ arg min
w∈W

Sp(w) and w?n ∈ arg min
w∈W

Spn(w).

Then, we have that Sp(w?n)→ Sp(w?) almost surely.

Proof Sketch. We give a sketch here and defer technical details to Appendix.

The key step in the proof is to show the uniform convergence

Spn(w)→ Sp(w) almost surely for all w ∈W .
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Indeed, once we have this, the result immediately follows as

0 ≤ Sp(w?n)− Sp(w?) = Sp(w?n)− Spn(w?n) + Spn(w?n)− Spn(w?) + Spn(w?)− Sp(w?)
≤ 2 sup

w∈W
|Spn(w)− Sp(w)| → 0,

where we use Spn(w?n) ≤ Spn(w?) in the second inequality.

The proof of the uniform convergence follows the general approach (see e.g. [7]) adapted to variational
expression of the superquantile (4). We introduce

S̄p(w, η) = η +
1

1− p
E(x,y)∼P [max(`(y, ϕ(w, x))− η, 0)] ,

to write
Sp(w) = min

η∈[0,B]
S̄p(w, η),

as well as analogous empirical version S̄pn(w). The proof now consists in two steps, for a given ε > 0

• to construct a cover T of W×[0,B] from a cover of W (given by assumption);

• to control the convergence over the points of T , more precisely to control the probability of the event

En(ε) =
⋂

(w,η)∈T

{
S̄pn(w, η)− S̄p(w, η) ≤ ε/2

}
.

In fact, we show that

∞∑
n=1

P
(

sup
w∈W

|Spn(w)− Sp(w)| > ε
)
≤
∞∑
n=1

P
(
En(ε)

)
<∞,

from which we conclude the uniform convergence Spn(w)→ Sp(w) for all w ∈W using the Borel-Cantelli
Lemma.

3 Recent Applications of the Superquantile in Machine Learning

We now turn to some recent applications of the superquantile in machine learning.

3.1 Conformity in Distributed Learning on Mobile Devices

The superquantile can be leveraged in distributed learning on mobile devices to model conformity to the
population [23]. Each mobile device contains the data generated by a single user, and thus the data distribution
across devices is highly heterogeneous.

Concretely, suppose we have m training devices with respective data distribution qi and losses Li(w) =
E(x,y)∼qi [`(y, ϕ(w, x))]. Federated learning [18] is a distributed learning paradigm which aims to collabora-
tively learn a common model across all devices without moving data between devices. The empirical risk
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minimization approach to federated learning consists in assigning a weight αi > 0 to each device to minimize
the aggregate loss, which corresponds to an expectation over a mixture pα of the training distributions qi:

L(w) =

m∑
i=1

αiLi(w) = E(x,y)∼pα [`(y, ϕ(w, x))] with
{
pα =

∑m
i=1 αiqi ,∑n

i=1 αi = 1 .

While minimizing such an objective might offer good performance for test devices which conform to the
population of training devices (i.e., distribution q of the test device is close to pα), one can expect poor
predictive performance when q largely departs from pα. An alternative is to model the heterogeneity of
devices by considering data distribution pπ written as a convex combinaison of the training distributions, but
with weights πi different from αi:

pπ =
m∑
i=1

πiqi, with 0 ≤ πi ≤ 1 and
m∑
i=1

πi = 1.

In this context, [23] proposes to measure how close a test device’s distribution pπ is to the training distribution
pα by the so-called conformity level

conf(pπ) = min
1≤i≤m

αi/πi ∈ (0, 1].

We see that the closer the conformity level is to 1, the closer pπ is to pα, and thus the device and its user tightly
conform to the population trend. To learn a robust model w performing well on reasonably non-conforming
devices, [23] proposes to find the best w for the set of devices with a conformity of at least a given threshold
c ∈ (0, 1); this leads to the optimization problem

min
w∈Rd

max
pπ∈P

E(x,y)∼pπ [`(y, ϕ(w, x))] , with P = {pπ : conf(pπ) ≥ c} . (13)

We observe now that the condition conf(pπ) ≥ c can be written πi/αi ≤ 1/c for all i. Thus this constraint
coincides, for the level p = 1−c, with the constraint qi ≤ 1

m(1−p) in the dual formulation of the superquantile
(3); see more precisely the discrete version of the dual formulation (19). The extensive computational
experiments of [23, Sec. 4] show that such superquantile federated learning has, as expected, superior
performances for heterogeneous devices. Here we provide a toy example illustrating the interest of the
approach.

Example 3.1 (Federated regression). Consider a specific instance of Example 2.2 in a federated setting.
We consider that 80% of the data corresponds to four devices having the same data distribution following
(10), while the remaining 20% corresponds to a fifth device having its own distribution. In this example, the
solution to federated regression problem with α being the uniform distribution over the five devices coincides
with the ordinary least squares model on the whole dataset. Figure 2 shows this bivalent dataset: the blue
points correspond to the data of the four first devices, and the red points correspond to the last device. We
would like to have a regression that captures worst-cases for both behaviours. We take the conformity level of
c = 1− p = 1/5, using the knowledge on how the dataset is constructed.

Figure 2 shows the the regression curves fit by (8) (specifically, (11) in this case), (12), and the (13). We can
make three observations. First, the standard model (11) (in purple) tends to follow the trend imposed by the
first four devices. Second, the superquantile model (12) (in red) has better regression on worst-case data,
irrespective of the group of the data point. Finally, the federated superquantile model (13) finds, in contrast,
a compromise between the two trends. Thus, federated superquantile regression better captures the (orange)
data points of the non-conforming user.
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Figure 2: Comparison of ERM (8), superquantile minimization (12) and its federated counterpart (13) for the
toy federated learning setting described in Example 3.1. We wish to have good performance on individual
users. Graphically, this is equivalent to fitting a curve to be at the same distance from the data-points of the
conforming users (blue bullet) and the non-conforming user (orange cross).

3.2 Fairness-aware Machine Learning

The superquantile naturally appears when considering the notion of fairness in machine learning (see e.g.,
[16, 19]), which we turn to next.

Fairness in machine learning is studied with reference to a sensitive attribute, such as race or gender; see
e.g., [19]. Suppose that we have a population that can be partitioned unambiguously between G subgroups
with respect to this attribute. We denote L(w) = (L1(w), . . . , LG(w)) the vector of losses on each of the
subgroups of the training set. Fairness in such situation would require independence between the sensible
attribute and either predicted value or averaged losses per group Li(w). An ideal group fairness of the model
w would then imply that L1(w) = · · · = Ln(w) [57, Def. 1]; but such a model could be no better than
random guessing in the worst case. So [57] considers approximate group fairness and introduces the notion of
fairness risk measures. As explained in detail in Section 4 and supplementary material of [57], key properties
for fairness risk measures includes convexity, positively homogeneity and monotonicity: the superquantile is
thus a prominent example of such a measure. Experiments in [57, Sec. 7] show that superquantile indeed
allows for a good balance between predictive accuracy and fairness violation. For completeness, we provide
here a simple illustration in the context of Example 3.1.

Example 3.2 (Fair regression). Let us come back to the toy example of Example 3.1. We look at it with the
perspective of fairness between the predominant group (the four blue users) and the minority group (the fifth

“red” user). Table 2 compares (i) the average performance over the predominant group and (ii) the average
performance on the minority group. We observe that the difference between these performance is minimal for
the user-level superquantile model provided by (13), achieving better approximate group fairness.

Model L1(w) (blue subgr.) L2(w) (red subgr.)

ERM/least-squares (11) 4.59 17.76
superquantile (12) 9.88 13.62
federated superquantile (13) 10.87 11.46

Table 2: Average performances of each model over both subgroups.
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3.3 Adversarial Classification

The superquantile also appears in generalized classification tasks when studying robustness to perturbations
of data distributions [15].

In binary classification, we have Y = {−1,+1} and the prediction function ϕ(w, x) correctly classifies a
data point (x, y) if

y ϕ(w, x) > 0.

For an underlying data distribution P , we may want to choose w so as either to minimize the probability
P(x,y)∼P

(
y ϕ(w, x) ≤ 0

)
of encountering an error, or to control the distance d(w, (x̄, ȳ)) to misclassification

of a data point (x̄, ȳ):
d(w, (x̄, ȳ)) = inf

x

{
‖x− x̄‖2 : ȳ ϕ(w, x) ≤ 0

}
.

In this context, robustness against perturbations of the data distribution P can be guaranteed by minimizing
the worst-case error probability over a ball (e.g., for Wasserstein distance dW) around P

min
w

sup
Q: dW(Q,P )≤ε

P(x,y)∼Q
(
y ϕ(w, x) ≤ 0

)
. (14)

Interestingly, optimal solutions of this problem coincide with those solving:

min
w

[Sp](x̄,ȳ)∼P
(
− d(w, (x̄, ȳ))

)
, (15)

for a well-chosen p; see [15, Theorem 2.6]. When the distance function d has a computable closed form,
formulation (15) is simpler to handle than (14). We refer to [15] for results in the general case and for related
literature.

3.4 Risk-Sensitive Reinforcement Learning

In a framework different from the supervised learning ones considered so far, the superquantile plays a role
in risk-sensitive reinforcement learning. Reinforcement learning methods attempt to find decision rules to
minimize a cumulative cost [52] in a sequential decision-making setting.

Concretely, a learning agent acts in a Markov decision process using a policy π which maps a state to a
distribution over an action space. The agent’s aim is to minimize the total cost c(τ) =

∑n
i=1 c(si) of a

trajectory τ = (s1, . . . , sn) of states taken by the agent while following the policy π. Letting Γ(π) denote the
induced distribution over trajectories of length n under policy π, standard reinforcement learning methods
minimize the expected cumulative cost as

min
w

Eτ∼Γ(πw)[c(τ)] ,

where w ∈ Rd parameterizes the policy πw. The so-called policy gradient methods aim to solve this by first-
order optimization methods where the gradient of the objective is estimated by Monte Carlo simulations [53].

However, in safety-critical applications, we are interested in accounting for unlikely events with high cost [17].
In particular, [30] considers sensitivity to risky high-cost trajectories by minimizing the superquantile
counterpart

min
w

[Sp]τ∼Γ(πw)[c(τ)] . (16)

This risk-sensitive reinforcement learning setting thus leads to similar superquantile problems as in the
supervised learning setting. We refer to [54] on how to adapt policy gradient methods to estimate the gradient
of the objective with respect to the parameters.
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Figure 3: Illustration of the integral expression of the superquantile. Cumulative distribution function (on
the left) and quantile function (on the right) are inverse one of the other. Sp(U) is obtained by averaging the
quantiles greater than p (red section on right graph).

4 Efficient (Sub)differential Calculus

The applications sketched in the previous section reveal optimization problems with objective functions2

written as the composition of a superquantile and a general loss function

f(w) = Sp(L(w)). (17)

For example, (12) involves L : Rd → Rn defined component-wise for each data point by Li(w) =
`(yi, ϕ(w, xi)); similar expressions follow from (13), (15) and (16). We notice first that L is usually
non-convex (e.g., with ϕ as (5)) but smooth (e.g., with ` as (6)).

In this section, we provide easy-to-implement expressions of subgradients of superquantile-based func-
tions (17), in Section 4.2, and of gradients of smoothed approximations of them in Section 4.3. Finally,
in Section 4.4, we compare the proposed smoothing with others considered in the literature (e.g., [6, 26]).
Computing the (sub)gradients would be the first step toward using first-order optimization algorithms for
solving superquantile problems. Though simple, this idea of using first-order methods is not widely used for
such problems; among the few exceptions, we mention the PhD thesis [29] using subgradient algorithms (in a
special case) and our conference paper [22] presenting a toolbox for using first-order methods in superquantile
learning. The developments of this section detail and extend those of [22, Sec. 3].

4.1 Computing the Superquantile

For the practical developments of this section, we consider a data-driven setting where the random variable U
takes equiprobable values u1, . . . , un

3. In this setting, the three representations of superquantile recalled in
Section 1.2 take explicit forms that are especially interesting from a computational perspective.

2In coherence with the previous section and to comply with common notation in machine learning, we stick to the notation w for
the variable of the functions.

3In the sequel, we make a slight abuse of notation by not distinguishing between the random variable U and the vector of its
equiprobable realizations u = (u1, . . . , un). Thus we consider the superquantile function Sp : Rn → R as a function of u ∈ Rn,
and we study the differentiability properties of compositions with Sp.
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• Integral representation. By splitting the integral, (2) can be written as

Sp(U) =
1

n(1−p)
∑
i∈I>

ui +
δ

1−p
Qp(U) with I>= {i : ui>Qp(U)}. (18)

This expression involves the distance from p to the next discontinuity point of the quantile function
p′ 7→ Qp′(U) (see Figure 3):

δ = FU (Qp(U))− p =
1

n
(n− |I>|)− p.

Thus (18) gives an efficient way to compute superquantiles from the following three step procedure:
(a) compute the p-quantile with the specialized algorithm (called quickfind) of complexity O(n); (b)
select all values greater or equal than the quantile; (c) average values along (18).

• Dual representation. The expression (3) simplifies to

Sp(U) = max
q∈∆p

q>u with ∆p=

{
q ∈ Rn+ :

n∑
i=1

qi = 1, qi ≤
1

n(1− p)

}
. (19)

In words, the superquantile is the support function of the intersection of the simplex with a box
(see Figure 4). This problem also corresponds to a classical optimization problem, called fractional
knapsack problem, which is solved, after sorting the ui’s, by a simple greedy strategy of the associated
qi’s [9]. For our purposes, this expression of superquantile, as a direct max, is useful when applying
dual smoothing techniques; see Section 4.3.

• Variational representation. The expression (4) writes

Sp(U) = inf
η∈R

{
η +

1

n(1− p)

n∑
i=1

max(ui − η, 0)

}
. (20)

This expression is often used in solving approaches for superquantile optimization; see e.g., the
progressive hedging for risk-averse multistage programming of [39]. Here, this expression will provide
a nice interpretation of the infimal convolution smoothing (Corollary 6).

4.2 Subdifferentials

In this section, we provide explicit and implementable expressions of the subdifferential of superquantile-
based functions. Expressions of (convex) subdifferential of superquantile are well-known in general settings;
see e.g., [46] for a thorough study. Here we study non-convex subdifferentials and derive concrete expressions
in the data-driven context; we give direct proofs as applications of basic definitions and properties of
nonsmooth analysis.

We start by recalling the standard notions of subgradients for nonsmooth functions (in finite dimension),
following the terminology of [43]. For a functionψ : Rd → R∪{+∞}, the regular (or Fréchet) subdifferential
of ψ at w̄ (such that ψ(w̄) < +∞) is defined by

∂Rψ(w̄) =
{
s ∈ Rd : ψ(w) ≥ ψ(w̄) + s>(w − w̄) + o(‖w − w̄‖)

}
.

12



Figure 4: Illustration of the dual expression of the superquantile. Sp is the support function of the red polytope.
The red point represents the uniform distribution.

The regular subdifferential thus corresponds to the set of gradients of smooth functions that are below ψ and
coincide with it at w̄. The limiting subdifferential is the set of all limits produced by regular subgradients

∂Lψ(w̄) = lim sup
w→w̄,ψ(w)→ψ(w̄)

∂Rψ(w).

These notions generalize (sub)gradients of both smooth functions and convex functions. The two subdifferen-
tials coincide and reduce to the singleton {∇ψ(w̄)} when ψ is smooth and to the standard subdifferential
from convex analysis when ψ is convex.

For the function (17), which is the composition of a convex function and a continuously differentiable
function, we get from basic chain rules that the two subdifferentials coincide; we simply denote it by
∂f(w). Moreover the dual representation (19) expressing Sp as a support function allows to obtain readily an
expression of the subdifferential of ∂Sp and, as a result, of the one of f . We formalize all this in the following
proposition.

Proposition 2 (Explicit subdifferential of superquantile-based functions). Consider the superquantile-based
function (17) with L continuously differentiable. We have

∂f(w̄) =
(
∂Lf(w̄) = ∂Rf(w̄) =

)
∇L(w̄)∗∂ Sp(L(w̄)) (21)

where ∇L(w̄)∗ is the adjoint of the Jacobian of L at w̄ and ∂ Sp(L(w̄)) the (convex) subdifferential of Sp
taken at L(w̄). Moreover, for w ∈ Rd, compute L(w) ∈ Rn and Qp(L(w)) ∈ R. Consider I> the set of
indices such that Li(w) > Qp(L(w)) and I= the set of indices such that Li(w) = Qp(L(w)). Then the
subdifferential of f at w can be written with the gradients∇Li(w) for i ∈ I> ∪ I=, as follows

∂f(w) =
1

n(1− p)
∑
i∈I>

∇Li(w) +
δ

1− p
conv {∇Li(w) : i ∈ I=} .

Proof. We apply the chain rule of [43, 10.6] to the composition Sp ◦ L: we have that Sp is convex with
full domain, which implies that the two subdifferentials4 As a consequence, the Clarke subdifferential is
the convex hull of the limiting subdifferential [43, Thm. 8.49]. Thus we have, in our case, that the three

4Remark on the Clarke subdifferential: As another by-product of the chain rule [43, Thm. 10.6], the set of horizon subgradients
of f is reduced to 0 since so is the one of Sp (convex and defined on Rn).
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subdifferentials (regular, limiting and Clarke) coincide. of f coincide (i.e., f is regular in the terminology of
[43]) and we have (21).

Since Sp is the support function of the set ∆p, standard subdifferential calculus [14, Cor. 4.4.4] gives that
∂Sp(L(w)) is the set of optimal solutions of (19) with u = L(w). Knowing I> and I=, the so-called
fractional knapsack problem (19) can be solved by the simple greedy strategy [9] of taking the largest qi for
i ∈ I> and completing to 1 with the qi for i ∈ I=. Thus

q solution of (19) ⇐⇒


qi = 1

n(1−p) if i ∈ I>
0 ≤ qi ≤ 1

n(1−p) if i ∈ I= s.t.
∑

i∈I= qi = δ
1−p

qi = 0 otherwise.

By (21), this gives:

∂f(w) =
1

n(1− p)
∑
i∈I>

∇Li(w) +

{∑
i∈I=

qi∇Li(w), s.t.
{

0 ≤ qi ∀i ∈ I=∑
i∈I= qi = δ

1−p

}
.

Finally, introducing weights αi = qi(1−p)
δ for i ∈ I=, the right-hand term can be written as the convex hull of

∇Li(w) for i ∈ I=, which gives the expression.

We observe that the expression of ∂f(w) does not involve the gradients of all the Li’s, but only of those
associated to the largest values. We also see that f is differentiable at w if and only if I= is reduced to
a singleton. The objective function is not differentiable in general, which poses a problem for a direct
application of machine-learning gradient-based algorithms.

4.3 Smoothing by Infimal Convolution

In this section, we study a smoothing of nonsmooth superquantile-based functions (17). We propose to use
the infimal convolution smoothing of [33]; the comparison to other smoothing approaches is postponed to the
next section.

Following the guidelines laid out by [2], we smooth only the superquantile Sp rather than the whole function f .
Thus, we consider

fν(w) = Sνp(L(w)) , for Sνp a smooth approximation of Sp. (22)

Regularizing the dual representation (19) of superquantile, we consider the function, parameterized by the
smoothing parameter ν,

Sνp(u) = max
q∈∆p

{
q>u− νD(q)

}
, (23)

for a given strongly convex function D. The following proposition establishes that the resulting function fν
as (22) is a smooth approximation of f , as a direct application of e.g., [2, Theorem 4.1, Lemma 4.2], or [33,
Theorem 1].

Proposition 3 (Smoothed approximation). The function fν defined by (22) (with Sνp in (23)) provides a global
approximation of f , i.e.,

fν(w) ≤ f(w) ≤ fν(w) +
ν

2
for all w ∈ Rd.
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Moreover Sνp is differentiable, with∇Sνp(u) being the argmax of (23), unique by strong convexity of D. When
L is differentiable, fν is differentiable as well, with

∇fν(w) = ∇L(w)∗∇Sνp(L(w)). (24)

In our quest for simple and implementable expressions, we study in the rest of this section the case of
separable strongly functions of the form:

D(q) =
n∑
i=1

d(qi) given a strongly convex function d : [0, 1]→ R. (25)

In Corollary 5, we provide a general scheme to compute the gradient with explicit expressions in Exam-
ples 4.1 and 4.2 for special choices of d. Finally we discuss the role of the smoothing parameter ν in a
numerical illustration.

We start with a lemma gathering the nice duality properties of (23). A one-dimensional convex function plays
a special role: it is the convex conjugate of the sum of νd and the indicator of the segment [0, 1/n(1− p)]

gν(s) =

(
νd+ i[

0, 1
n(1−p)

])∗ (s) = max
0≤t≤ 1

n(1−p)

{s t− ν d(t)} . (26)

Since d is strongly convex, standard (one-dimensional) convex analysis gives (see e.g., [14, Prop. I.6.2.2])
that gν is continuously differentiable with derivative g′ν(s) being the (unique) t achieving the above max.
Simple calculus yields

g′ν(s) =


0 if s ≤ ν d′+(0)

1
n(1−p) if s ≥ ν d′−(1/(n(1− p)))

(d∗)′
(
s
ν

)
otherwise.

(27)

where d′+(0) ∈ [−∞,+∞) and d′−(1/(n(1− p))) ∈ [−∞,+∞) are respectively the right-derivative of d at
0 and the left-derivative of d at 1/(n(1− p)). Note finally that gν ′ is a non-decreasing function.

Lemma 4 (Duality). The dual problem of the convex problem (23) (with a separable D as in (25)) can be
expressed as the (smooth convex) one-dimensional problem:

min
η

θ(η) = η +

n∑
i=1

gν(ui − η). (28)

Moreover, there is no duality gap between (23) and (28). There exists a primal-dual solution (q?ν , η
?) and the

unique primal solution can be written q?ν = (g′ν(ui − η?))i=1,...,n with the help of (27).

Proof. This lemma could be proved by applying a sequence of results from abstract Lagrangian duality [14,
Chap. XII]. Instead, we provide a simple proof from the direct calculus developed so far. Consider the
dualization of the constraint

∑n
i=1 qi − 1 = 0 in ∆p. For a primal variable q ∈ Bp =

[
0, 1

n(1−p)

]n
and a

dual variable η ∈ R, we write the Lagrangian

L(q, η) =

n∑
i=1

qiui − νdi(qi)− η
( n∑
i=1

qi − 1
)

= η +

n∑
i=1

qi(ui − η)− νdi(qi) ,
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and the associated dual function

θ(η) = max
q∈Bp

L(q, η) = η +
n∑
i=1

max
0≤qi≤ 1

n(1−p)

{qi(ui − η)− ν di(qi)} ,

which gives the expression of the dual function (28) from (26). We have the so-called weak duality inequality
by construction:

θ(η) ≥ L(q, η) =
n∑
i=1

qiui − νdi(qi) , for all η and all feasible q ∈ ∆p. (29)

Now recall that gν in (26) is differentiable and so is the dual function with

θ′(η) = 1−
n∑
i=1

g′ν(ui − η) . (30)

The above expression also shows that

lim
η→+∞

θ′(η) = 1 and lim
η→−∞

θ′(η) = 1−
n∑
i=1

1

n(1− p)
=
−p

1− p
.

By continuity of g′ν and θ′, this implies that there exists η? such that θ′(η?) = 0, i.e., there exists a dual
solution η?. On the primal side, the compactness of Bp and strong convexity of d gives existence and
uniqueness of the primal solution, denoted q?ν . Next, we have a simple consequence of (30): the vector
(g′ν(ui − η?))i=1,...,n, which lies in Bp by construction, is primal feasible. From (29) and uniqueness of the
primal solution, this implies that q?ν = (g′ν(ui − η?))i=1,...,n and that there is no duality gap.

From Lemma 4, we get an almost explicit expressions of values and gradients of the smooth approximation
fν .

Corollary 5 (Oracle for smooth approximation). Consider fν defined by (22) with L differentiable. With η?

an optimal solution of (28) with ui = Li(w),

fν(w) = η? +
n∑
i=1

gν(Li(w)− η?) ,

∇fν(w) =
n∑
i=1

g′ν(Li(w)− η?)∇Li(w)

where gν and g′ν are given by (26) and (27).

Proof. The no-gap result of Lemma 4 gives that Sνp(u) is equal to the optimal value of (28). This gives
directly the above expression of fν(w) = Sνp(L(w)) with η? an optimal solution of (28) with ui = Li(w).
Regarding the expression of the gradient, Proposition 3 states that ∇Sνp(u) is the optimal solution of (23),
and Lemma 4 expresses it as (g′ν(ui − η?))i=1,...,n. We then get the expression of∇fν(w) from (24).
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Thus the computation of the first-order oracle of fν boils down to solving the one-dimensional convex
problem (28) with ui = Li(w). This easy task can be solved in general by bisection or higher-order schemes.
Here Lemma 4 allows us to make an additional simplification with an initial interval tightening. We can
indeed shrink the segment where to find η? to two consecutive points in

N =

{
ui − ν d′+(0), ui − ν d′−

( 1

(n(1− p)

)
i = 1, . . . , n

}
which is a set of special points regarding the structure of the dual function (recall (27) and (28)). Denoting η
and η̄, defined respectively as the largest point in N such that θ′(η) ≤ 0 and the smallest point in N such that
θ′(η̄) ≥ 0, we get η? by testing three cases:

• if θ′(η) = 0, take η? = η ; if θ′(η̄) = 0, take η? = η̄ ;

• otherwise, compute η? in the small interval [η, η̄].

The initial interval tightening thus boils down to having sorted points in the set N , which is obtained directly
from sorting the given data.

Finally we emphasize that we can sometimes go one step further ahead and obtain explicit expressions of η?

and thus, readily implementable expressions of ∇fν(w). In the next two examples, we illustrate this for two
cases of interest, when we smooth the superquantile by a divergence to the uniform probability (which is at
the center of ∆p; recall Figure 4). In particular the smoothing detailed in the forthcoming Example 4.1 was
used in the numerical illustrations of Examples 2.2, 3.1, and 3.2 (where the resulting smoothed superquantile
optimization problems were solved by L-BFGS).

Example 4.1 (Euclidean smoothing). We suggest to smooth the superquantile with the Euclidean distance to
the uniform distribution

D(q) =
1

2
‖q − q̄‖2 with q̄ =

(
1

n
, . . . ,

1

n

)
.

This corresponds to (25) with

d(t) =
1

2

(
t− 1

n

)2

.

In this case, elementary calculus gives

d′−(0) = − 1

n
, d′+

(
1

n(1− p)

)
=

p

n(1− p)
, and (d∗)′

(
t

ν

)
=
t

ν
+

1

n

so that we get from (27) the following expression

qi = g′ν(ui − η) =


0 if η ≥ ui + ν

n
1

n(1−p) if η ≤ ui − ν
n

p
1−p

ui−η
ν + 1

n otherwise,
(31)

for the entries of the solution of (23). We also have that θ′ is piecewise linear in this case and that

N =

{
xi +

ν

n
, xi −

ν

n

p

1− p
i = 1, . . . , n

}
.
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Therefore from η and η̄ in N , finding η? in the interval [η, η̄] simply reduces to interpolating linearly as

η? = η −
θ′(η)(η̄ − η)

θ′(η̄)− θ′(η)
.

We can apply Corollary 5 to get an efficiently implemented expression of the gradient. Note that the obtained
expression of ∇fν(w) involves only the gradients ∇Li(w) for largest values of Li(w) (comparable to the
expression of ∂L(w) in Proposition 2).

Example 4.2 (KL smoothing). We use here the Kullback-Leibler divergence to the uniform probability

d(q) =

n∑
i=1

qi log(qi/q̄i) with q̄ =

(
1

n
, . . . ,

1

n

)
.

which consists in taking d(t) = t log(t) in (25). Elementary calculus then gives

d′+(0) = −∞, d′−

(
1

n(1− p)

)
= 1− log(n(1− p)), and (d∗)′

(
t

ν

)
= exp

(
t

ν
− 1

)
which in turn yields

g′ν(ui − η) =

{
1

n(1−p) if η ≤ ui + ν (log(n(1− p))− 1)

exp (ui−ην − 1) otherwise

N = {ui + ν (log(n(1− p))− 1) i = 1, . . . , n} .

On the interval [η, η̄], we have that

θ′(η) = 1−
∑
i∈I

1

n(1− p)
−
∑
i/∈I

exp

(
ui − η
ν
− 1

)
with I = {i, ui + ν (log(n(1− p))− 1) ≤ η} the set of indices of points in N smaller than η. This yields

η? = ν log

(∑
i/∈I exp(ui/ν − 1)

1− |I|/
(
n(1− p)

) ) .
We can then apply Corollary 5 to get the smoothed gradient.

We conclude this section on the infimal-smoothing of the superquantile with two remarks illustrating the
impact of the smoothing parameter ν.
Remark 1 (Impact of the smoothing parameter on the weights). We illustrate the impact of the smoothing
parameter ν on the relative weights given to the data. We consider the Euclidean smoothing of Example 4.1
with p = 0.5. We sample n = 500 points from a Gaussian distribution and compute the distribution of
weights qi of (31), solutions to smoothed problem (23) for different values of the smoohting parameter ν.
The right-hand side of Figure 5 displays the impact of ν of the obtained weights. In particular, we note
that as ν grows, the distribution qi tends to spread uniformly over all data-points, so that the smoothed
superquantile acts like the expectation. In contrast, when ν is close to 0, the distribution approximates the
uniform distribution over the interval [p, 1], so that the smoothed superquantile acts like the superquantile.
This approximation is further discussed in the next remark.
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Figure 5: Impact of the smoothing parameter ν on the weights assigned to the data points. Left: empirical
cumulative distribution of n = 500 points sampled from a standard Gaussian distribution. Right: distribution
of weights, i.e., the optimal solution of (23) for p = 0.5, with respect to sorted data points (i.e., value at
abscissa t is the weight attached to the t-quantile). Different colours correspond to different values of ν.

Remark 2 (Impact of the smoothing parameter on the approximation). We illustrate here the impact of the
smoothing parameter ν on the approximation of the superquantile by its smoothed variant (Proposition 3).
To do so, we fix a vector w̄ and we observe the values of smoothed approximations of a superquantile-based
function for different values of ν. More precisely, we consider the logistic regression problem used in
Appendix B; we use the quadratic smoothing of Example 4.1 with ν = 0.1; and we solve the problem by
L-BFGS to get the reference point w̄. We compute the following values at w̄:

• the underlying superquantile-based objective (12) which corresponds to the case ν = 0;

• the smoothed approximations (which corresponds to (12) with Sνp replacing Sp) for a sequence of ν
evenly spread on a log scale;

• the usual empirical risk minimization objective (8), which corresponds to the case ν = +∞. Indeed,
in this regime ν → +∞, the impact of the quadratic penalization term (q − q̄) increases so that the
solution of (23) eventually becomes the uniform distribution q̄, in which case Sνp coincides with the
expectation.

The observations from Figure 6 are as expected. For small values of ν, the difference between the superquantile-
based objective and its smooth approximations vanishes. On the other hand, for large values of ν, the
smoothed superquantile loss tends to the average loss and does not approximate the nonsmooth superquantile
loss well.

A key benefit of smoothing the superquantile is to leverage efficient smooth optimization algorithms, such as
L-BFGS, for superquantile learning. When ν is too small, the problem is almost non-smooth, which leads to
numerical issues with convergence (on this instance, L-BGFS fails to converge when ν too small or when used
with the nonsmooth oracle of Proposition 2 due to a line search failure). When ν is too large, the smoothed
superquantile gets close to the expectation and the interest of using a superquantile approach disappears.
This illustrates the interest of having a moderate ν for superquantile learning, where the smoothed objective
is an reasonable approximation of the nonsmooth superquantile, while still being smooth enough to leverage
fast optimization algorithms.
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Figure 6: Impact of the smoothing parameter ν when solving a superquantile logistic regression on a classical
dataset (Australian Credit dataset).

4.4 Comparison to Other Smoothing Schemes

We compare the proposed infimal convolution smoothing of the superquantile (23) to other possible smoothing
schemes. Classical smoothing techniques are based either on convolution or infimal convolution. For
superquantile, one could either smooth the dual representation (19) or the variational representation (20).
Together, this yields four natural ways to smooth the superquantile.

We first formalize the equivalence between the two infimal convolution smoothings: indeed, smoothing
the dual representation considered in the preceding section corresponds to a smoothing of max{·, 0} in the
variational formulation.

Corollary 6 (Equivalence of smoothings with infimal convolution). With the notation of Section 4.3, the
infimal convolution smoothing of Sp with a separable strongly convex function (25) is equivalent to the infimal
convolution smoothing of the positive part max{·, 0} as

mν(η) = max
0≤t≤1

{
η t− ν d̃(t)

}
with d̃(t) = n(1− p)d

(
t

n(1− p)

)
. (32)

More precisely, we have the following equality (to be compared with (20))

Sνp(u) = min
η

{
η +

1

n(1− p)

n∑
i=1

mν(ui − η)

}
.

Proof. A direct change of variable in (26) gives gν(ui − η) = 1
n(1−p)mν(ui − η). The proof is direct from

the expression of the dual problem (28) and the no-gap result stated in Lemma 4.

Next, we show an equivalence between the smoothing by infimal convolution (32), and by convolution,
as considered in [6, 26]. Suppose we are given a continuous probability density ρ : R → R+ such that∫∞
−∞ |s|ρ(s)ds is finite). The smoothing by convolution of the function max{·, 0} with density ρ and

smoothing parameter ν > 0 is defined by5

m̄ν(η) =
1

ν

∫ ∞
−∞

max{η − s, 0}ρ
(
s
ν

)
ds =

1

ν

∫ η

−∞
(η − s)ρ

(
s
ν

)
ds . (33)

5Applied to max{x, ·}, the general smoothing by convolution as defined in (33) coincides with the double integral representation
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The function m̄ν is convex and smooth, with derivative

m̄′ν(η) =
1

ν

∫ η

−∞
ρ
(
s
ν

)
ds . (34)

The next proposition, relating this smoothing to the previous one, involves Qt(ρ) the quantile function of a
random variable with density ρ.

Proposition 7 (Equivalence of convolution/inf-convolution smoothings). With the above notation,
the convolution smoothing m̄ν of (33) for ν = 1 can be written as the infimal-convolution smoothing (to be
compared with (32))

m̄1(η) = max
0≤t≤1

{
η t− d̄(t)

}
where d̄(t) = tQt(ρ)− m̄1(Qt(ρ)). (35)

Conversely, the infimal convolution smoothing mν of (32) for ν = 1 can be written as the convolution
smoothing (to be compared with (33))

m1(η) = lim
s→−∞

m1(s) +

∫ η

−∞
(η − s)ρ̃(s)ds where ρ̃(s) = m′′1(s) a.e. (36)

Proof. For the first part, we consider the convex conjugate of m̄1

m̄∗1(t) = sup
η∈R
{η t− m̄1(η)} .

If t /∈ [0, 1], the supremum is +∞ since |m̄1(η) − max{η, 0}| is bounded by an absolute constant. For
t ∈ [0, 1], the concave function η 7→ ηt− m̄1(η) is maximized at η? if and only if it satisfies the first-order
optimality condition

t = m̄′1(η?) =

∫ η?

−∞
ρ(s)ds.

Since the latter is the cumulative distribution function, η? = Qt(ρ) is the corresponding quantile function
(well-defined since ρ is continuous). This yields

m̄∗1 = d̄+ i[0,1], (37)

which in turn gives (35). Finally to establish the strong convexity of d̄, we use again (37) together with the
smoothness of m̄1. Thus m̄1 corresponds to the infimal-convolution smoothing with d̄.

For the second part, we start by noting that since m′1 is Lipschitz, m′′1 exists almost everywhere, and ρ̃ is
well-defined. Since m1 is convex, it also holds that m′′1(s) ≥ 0, and then that we have the normalization∫ ∞

−∞
ρ̃(s)ds =

∫ ∞
−∞

m̃′′1(s)ds = lim
η→∞

m′1(η)− lim
η→−∞

m′1(η) = 1− 0 = 1 ,

used in [6, 26]. Indeed, integrating (34) yields

m̄ν(η) = 1
ν

∫ η

−∞

∫ η′

−∞
ρ
(
s
ν

)
dsdη′ .
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where we use m′(η) is the (unique) optimal solution of (32). Then the proof follows from the next two
claims.

Claim 1: m1 admits a limit at−∞. Convexity ofm1 gives thatm′1 is non-decreasing. Since lims→−∞m
′
1(s) =

0, we get that m′1 is non-negative. Thus, m1 is non-decreasing and, since it is bounded from below, this
implies that m1 admits a limit at −∞. We denote it as m1(−∞).

Claim 2: lims→−∞ sm
′
1(s) = 0. For a given s, we write:

s m′1(2s) ≤
∫ s

2s
m′1(t)dt = m1(s)−m1(2s),

where the inequality comes from the fact that m′1 is non-decreasing. Using that m1 admits a limit at −∞
(Claim 1), we get Claim 2.

Finally, we can conclude the proof with integration by parts:

m1(η) = m1(−∞) +

∫ η

−∞
m′1(s)ds

= m1(−∞) + [(s− η)m′1(s)]η−∞ +

∫ η

−∞
(η − s)ρ̃(s)ds

= m1(−∞) +

∫ η

−∞
(η − s)ρ̃(s)ds.

This establishes (36) and ends the proof.

Finally, we comment the smoothing of the dual representation (19) using convolution, which is defined as

S̄νp (u) =
1

ν

∫
Rn
Sp(u− z)ρ

(
z
ν

)
dz = EZ∼ρ[Sp(u− νZ)] ,

for the density ρ : Rn → R and the parameter ν > 0. We do not consider this smoothing approach because
it suffers from two drawbacks in view of practical implementation. First, it usually cannot be computed
in closed form, unlike the other smoothing approaches considered here. Second, the Lipschitz constant
of the gradient (appearing in condition numbers, constant scalings, and rates of convergence of first-order
methods [32]) scales badly: as O(

√
n/ν) for the Lipschitz constant of∇S̄νp [31, Lemma 2], as opposed to

the dimension-independent O(1/ν) for the one of∇Sνp [33, Theorem 1].

5 Conclusion

In this paper, we have developed two different aspects of the superquantile, a famous risk measure studied and
popularized by R. T. Rockafellar and co-authors. First, we have reviewed recent applications of superquantiles
in machine learning, keeping our discussion at a high-level, omitting details, and just providing basic
illustrations and pointers to recent research. Second, we have provided explicit expressions of (sub)gradients
of (smoothed) superquantiles; here, in contrast, we go down to the details of computation in order to get
efficient first-order oracles for superquantile-based functions. In particular, we have proved that smoothed
oracles have essentially the same computational complexity as for the corresponding superquantile functions
(Corollary 5 and following discussions).
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These fast oracles are implemented in the toolbox6 spqr build on top of the popular Python machine learning
library scikit-learn [36]. This toolbox provides an interface for using standard first-order algorithms;
we refer to our numerical experiments of [22] and [23] (see also Appendix B). From this experimental
experience, we advocate the use of quasi-Newton methods (and in particular L-BGFS; see e.g., [34]) that
gives good performances in practice.
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6The code is publicly available at https://github.com/yassine-laguel/spqr.
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A Proof of Theorem 1

In this appendix, we provide a complete proof of Theorem 1. For classical results in this spirit, we refer to
the monograph [7]. For discussions on statistical aspects of statistical learning, we refer to e.g., [10, 24, 28].

The key step in the proof of Theorem 1 is to show the uniform convergence

Spn(w)→ Sp(w) almost surely for all w ∈W . (38)

Indeed, once we have this, the result immediately follows as

0 ≤ Sp(w?n)− Sp(w?) = Sp(w?n)− Spn(w?n) + Spn(w?n)− Spn(w?) + Spn(w?)− Sp(w?)
≤ 2 sup

w∈W
|Spn(w)− Sp(w)| → 0,

where we use Spn(w?n) ≤ Spn(w?) in the second inequality.

In order to prove (38), we use the variational expression of the superquantile (4). We define

S̄p(w, η) = η +
1

1− p
E(x,y)∼P [max(`(y, ϕ(w, x))− η, 0)] ,

so that, using that the loss is bounded by B, we can write

Sp(w) = min
η∈[0,B]

S̄p(w, η).

We define the analogous empirical version S̄pn(w, η) so that Spn(w) = minη∈[0,B] S̄
p
n(w, η). Note that

S̄pn(w, η) is measurable for each fixed (w, η) and Spn(w) is measurable for each fixed w.

Claim 1: Under Assumption 2, the random variable

δn(w, η) := S̄pn(w, η)− S̄p(w, η)

has mean zero, lies almost surely in [−B,B], and satisfies

|δn(w, η)− δn(w′, η′)| ≤ 2M/(1− p) distϕ(w,w′) + 2(1 + 1/(1− p))|η − η′| . (39)
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Note first that E[S̄pn(w, η)] = S̄p(w, η) and that the boundedness of δn comes from the boundedness of the
loss function. The Lipschitzness of δn also comes from the one of the loss function, as follows. Using that
max{·, 0} is 1-Lipschitz and that the loss ` is M -Lipschitz, we get

|max{`(y, ϕ(w, x))− η, 0}−max{`(y, ϕ(w′, x))− η′, 0}|
≤ |`(y, ϕ(w, x))− `(y, ϕ(w′, x))|+ |η − η′|
≤M‖ϕ(w, x)− ϕ(w′, x)‖+ |η − η′|
≤M distϕ(w,w′) + |η − η′| .

Then, (39) simply follows from the triangle inequality, and Claim 1 is proved.

The next step in the proof is, for a given ε > 0

• to construct a cover T of W × [0, B], and then

• to control the convergence over the points of T , more precisely to control the probability of the event

En(ε) =
⋂

(w,η)∈T

{δn(w, η) ≤ ε/2} .

First, using Assumption 1, we consider T1 a (ε(1− p)/(8M))-cover of W with respect to distϕ. We also
consider T2 a uniform discretization of the line segment [0, B] at width ε(1+1/(1−p))/8. We can introduce
the cover of W × [0, B]

T = T1 × T2 ⊂W × [0, B].

Since, |T2| = 8B/((1 + 1/(1 − p))ε), we have that |T | = (8B/((1 + 1/(1 − p))ε))N(ε(1 − p)/(8M)).
Note that the event {δn(w, η) ≤ ε/2} for fixed (w, η) since δn(w, η) is measurable, and therefore, En(ε) is
measurable since it is a finite intersection.

To get uniform convergence, it is sufficient to control what happens at points of T . Indeed, for any (w, η),
there exists a point (w′, η′) ∈ T such that distϕ(w,w′) ≤ ε(1−p)/(8M) and |η−η′| ≤ ε(1+1/(1−p))/8.
As a consequence, if the event En(ε) holds, then

δn(w, η) ≤ δn(w′, η′) + |δn(w, η)− δn(w′, η′)|
(39)
≤ δn(w′, η′) + 2M/(1− p) distϕ(w,w′) + 2(1 + 1/(1− p))|η − η′|

≤ ε

2
+
ε

4
+
ε

4
= ε.

This implies that events of interest are included in En(ε), the complement of En(ε); we have indeed{
sup
w∈W

|Spn(w)− Sp(w)| > ε

}
⊂

{
sup

(w,η)∈W×[0,B]
δn(w, η) > ε

}
⊂ En(ε) .

Postponing the proof of measurability of these events to Claim 3 at the end of this proof, we have the
following bound on the sum of probabilities

∞∑
n=1

P
(

sup
w∈W

|Spn(w)− Sp(w)| > ε
)
≤
∞∑
n=1

P
(
En(ε)

)
. (40)
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Claim 2: The probabilities of the complements of En(ε) are summable, i.e.,

∞∑
n=1

P
(
En(ε)

)
<∞ .

This is a direct application of the Hoeffding’s inequality (see e.g. [55, Theorem 2.2.2]) as follows. For any
fixed (w, η) ∈W × [0, B], the Hoeffding’s inequality gives

P(|δn(w, η)| > ε/2) ≤ 2 exp

(
− nε

2

2B2

)
.

Applied to all (w, η) ∈ T , this yields

P
(
En(ε)

)
≤ 2|T | exp

(
− nε

2

2B2

)
=

16B

((1 + 1/(1− p))ε
N

(
ε(1− p)

8M

)
exp

(
− nε

2

2B2

)
.

and proves Claim 2.

We conclude on the uniform convergence (38) with the Borel-Cantelli Lemma by the classical rationale (see
e.g. the textbook [37, Chap. 2, Sec. 6]): the bound (40) and Claim 2 give that the probabilities for any ε are
summable; applying Borel-Cantelli with the sequence εk = 1/k gives the uniform convergence (38), which
completes the proof of the theorem.

Finally, it remains to show measurability of some events of interest.

Claim 3: The following events are measurable for each ε > 0:

E′n(ε) :=

{
sup
w∈W

|Spn(w)− Sp(w)| > ε

}
,

E′′n(ε) :=

{
sup

(w,η)∈W×[0,B]
δn(w, η) > ε

}
.

We prove the claim for E′n(ε) and the second one is entirely analogous. Since the set Qd of d-dimensional
rationals is dense in Rd and the map w 7→ |Spn(w)− Sp(w)| is continuous, we have that

sup
w∈W

|Spn(w)− Sp(w)| = sup
w∈W∩Qd

|Spn(w)− Sp(w)| .

Since the latter term is a supremum over a countable set of measurable random variables, we get that E′n(ε)
is measurable.

B Numerical Illustrations

We provide simple illustrations of the interest of using superquantile for machine learning. More precisely, we
reproduce the experimental framework of the computational experiments of [8] and we solve the superquantile
optimization problems with the approach depicted here, by combining smoothing and quasi-Newton. For
additional experiments with other datasets, metrics, and contexts, we refer to [8].
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We consider two basic machine learning tasks (regression and classification) with linear prediction functions
ϕ(w, x) = w>x and with two standard datasets, from the UCI ML repository. Denoting these datasets
Pn = {(xi, yi)}1≤i≤n, we introduce the (regularized) empirical risk minimization

min
w∈Rd

E(x,y)∼Pn

[
`(y, w>x)

]
+

1

2n
‖w‖2 ,

and its smoothed superquantile analogous

min
w∈Rd

[Sνp ]
(x,y)∼Pn

[
`(y, w>x)

]
+

1

2n
‖w‖2 .

We solve these problems using L-BFGS via the toolbox SPQR [22] offering an simple user-interface and
implementing the oracles (with the Euclidean smoothing of Example 4.1 for the smoothed approximation).
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Figure 7: Regression: histogram of the regression errors on the testing dataset for the model learning by the
superquantile approach (red) compared to the one of the classical empirical risk minimization (violet). We
see a reshaping of the histogram of errors and a gain on worst-case errors.

Regression and Least-Squares
We consider a regularised least square regression on the dataset Abalone from the UCI Machine learning
repository. We perform a 80%/20% train-test split on the dataset. We minimize the least-squares loss on the
training set both in expectation and with respect to the superquantile (with p = 0.98 and ν = 0.1).

We report on Figure 7 the distribution of errors |yi−w>xi| for the testing dataset for both models w (standard
in blue and superquantile in red). We observe that the superquantile model exhibits a thinner upper tail than
the risk-neutral model, which is quantified by the shift to the left of 0.98 quantile. This comes at the price
of lower performance in expectations than the model trained with expectation, which is clear visible on the
picture and quantified by the shift to the right of the mean.

Classification and Logistic regression
We consider a logistic regression on the Australian Credit dataset. We randomly split the dataset with a
80%/20% train-test split for 5 different seeds. For each seed, we perform a pessimistic distributional shift on
the training dataset by downsampling the majority class (similarly to what is done in [8, Sec. 5.2]). More
precisely, we remove an important fraction of the majority class, randomly selected, so that it counts afterward
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for only 10% of the minority class. We tune then the safety level parameter p by a k-cross validation on
the shifted dataset and select the safety parameter yielding the best validation accuracy. The grid we use
for tuning this parameter is [0.8, 0.85, 0.9, 0.95, 0.99] We finally compute with this parameter the testing
accuracy and the testing precision.

We report the testing accuracy and the testing precision averaged over the 5 different seeds on the table
of Figure 8 with the associated standard deviation. We observe that the superquantile model brings better
performance for both in terms of accuracy and precision than the standard model.

Model Accuracy Precision
Standard 0.65± 0.03 0.56± 0.04

Superquantile 0.69± 0.04 0.60± 0.05

Figure 8: Classification: better testing accuracy and precision for the superquantile approach, in the case of
distributional shifts.
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