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Superquantiles at Work: Machine Learning Applications and Efficient Subgradient Computation

R. Tyrell Rockafellar and collaborators introduced, in a series of works, new regression modeling methods based on the notion of superquantile (or conditional value-at-risk). These methods have been influential in economics, finance, management science, and operations research in general. Recently, they have been the subject of a renewed interest in machine learning, to address issues of distributional robustness and fair allocation. In this paper, we review some of these new applications of the superquantile, with references to recent developments. These applications involve nonsmooth superquantile-based objective functions that admit explicit subgradient calculations. To make these superquantile-based functions amenable to the gradient-based algorithms popular in machine learning, we show how to smooth them by infimal convolution and describe numerical procedures to compute the gradients of the smooth approximations. We put the approach into perspective by comparing it to other smoothing techniques and by illustrating it on toy examples.

Introduction 1.Superquantiles at Work: Old and New

Risk measures play a crucial role in optimization under uncertainty, involving problems with an aversion to worst-cases scenarios. Among popular convex risk measures, the superquantile -also called the Conditional Value at Risk, Tail Value at Risk, Mean Excess Loss, or Mean Shortfall -has received special attention. The superquantile has been extensively studied from a convex analysis perspective: we refer, for instance, to [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF] for a variational formulation of the superquantile, to [START_REF] Ben-Tal | An old-new concept of convex risk measures: The optimized certainty equivalent[END_REF] for its generalization to a larger class of risk measures, to [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF] for a dual formulation (also later generalized in [START_REF] Ruszczynski | Optimization of convex risk functions[END_REF] or [START_REF] Rockafellar | Conditional value-at-risk for general loss distributions[END_REF]) and [START_REF] Rockafellar | Random variables, monotone relations, and convex analysis[END_REF] for additional convex properties. The superquantile can be traced back to the paper [START_REF] Ben-Tal | Expected utility, penalty functions, and duality in stochastic nonlinear programming[END_REF]. These nice theoretical properties have given interesting results in various applications, ranging from finance [START_REF] Sarykalin | Value-at-risk vs. conditional value-at-risk in risk management and optimization[END_REF] to energy planning [START_REF] Guigues | Risk-averse feasible policies for large-scale multistage stochastic linear programs[END_REF]; for a thorough discussion and many references, we refer to the seminal work [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF], the classical textbook [START_REF] Shapiro | Lectures on Stochastic Programming -Modeling and Theory[END_REF]Chap. 6], or the tutorial paper [START_REF] Rockafellar | Superquantiles and their applications to risk, random variables, and regression[END_REF].

More recently, the superquantile has also drawn an increasing attention in machine learning. In this paper, we give an overview of some of the new applications of the superquantile in machine learning: we discuss the use of the superquantile for distributionally robust learning, fairness in machine learning, federated learning, adversarial classification, and risk-sensitive reinforcement learning; we also give toy illustrations and pointers to recent exciting developments. Superquantile optimization problems are nonsmooth, possibly non-convex, but also highly structured. In financial or operations research applications, these nonsmooth optimization problems are usually solved using one of two approaches: (a) extending specific algorithms (e.g., progressive hedging for risk-averse multi-stage programming [START_REF] Rockafellar | Solving stochastic programming problems with risk measures by progressive hedging[END_REF]), or, (b) relying on convex programming (e.g., linear programming coupled with Monte Carlo simulations for portfolio management [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF]). We refer to [START_REF] Rockafellar | Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk[END_REF] and [START_REF] Miranda | Superquantile regression: theory, algorithms, and applications[END_REF] for discussions on computational approaches. In machine learning, recent papers propose to use stochastic first-order optimization algorithms for superquantile learning; see e.g., [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF][START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF] and references therein.

In this paper, we propose a simple alternative. We study the smoothing of superquantile by infimal-convolution, extending and clarifying the results of [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF]Sec. 3]. This opens the way for using first-order methods for smooth optimization: this is of special interest for machine learning applications where standard algorithms and software rely heavily rely on gradient-based optimization [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF][START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. In fact, optimization guarantees in this context are typically given for smooth surrogates of the superquantile, e.g., [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF][START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF]; which we study and clarify. In view of these applications, we pay attention to provide efficient procedures for computing gradients of smooth approximations of superquantile-based functions. We illustrate these smoothed first-order oracles combined with quasi-Newton methods on simple problems with synthetic or real data. We refer to our recent work [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF][START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF] for more computational experiments, using particular cases of such efficient smoothed oracles.

More specifically, the contributions of this paper are multiple and can be pointed out, section by section, as follows:

• We formalize, in Section 2, the existing notion of empirical superquantile minimization and provide a convergence result for supervised learning.

• We propose, in Section 3, an overview of recent machine learning applications of superquantiles.

• We study in Section 4 the (sub)gradient calculus of superquantile-based functions with a focus on computational efficiency. In particular, Section 4.2 studies generalized subgradients of superquantilebased functions and Section 4.3 considers gradients of smooth approximations of the superquantile by inf-convolution. Finally, we establish in Section 4.4 the equivalence between different inf-convolution schemes, as well as the smoothing by convolution. We propose to use quasi-Newton algorithms to minimize these smoothed approximations.

Superquantiles: Review and Notation

We recall basic definitions and properties used in this paper. Our notation and terminology follow closely the ones of [START_REF] Ruszczynski | Optimization of convex risk functions[END_REF] and [START_REF] Rockafellar | Superquantiles and their applications to risk, random variables, and regression[END_REF]; we refer to these papers for more details and references.

Consider a probability space Ω, with probability denoted P. For p ∈ (0, 1), the p-quantile of a random variable U : Ω → R, denoted by Q p (U ), is the inverse of the cumulative distribution function of U . For all t ∈ R we have

Q p (U ) ≤ t ⇐⇒ P(U ≤ t) ≥ p . (1) 
When e.g., p = 1/2, the p-quantile corresponds the median value of the random variable. For p ∈ [0, 1), the p-superquantile of U is defined as the mean of values of quantiles greater than the threshold p:

S p (U ) = 1 1 -p 1 p Q p (U )dp . (2) 
The analogue to (1) for the superquantile is stronger:

S p (U ) ≤ t ⇐⇒ U is lower than t on average in its p-tail.
The superquantile is thus interpreted as a measure of the upper tail of the distribution of U . Another interpretation comes from the dual formulation of superquantiles [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF]: S p (U ) can be written as a maximal expectation of U with respect to probability measures having a (Radon-Nykodim) derivative bounded by 1 -p:

S p (U ) = max 0≤q(•)≤ 1 1-p Ω q d P(ω)=1 ω∈Ω U (ω)q(ω)dP(ω) . ( 3 
)
When U is a discrete random variable, the above expression simplifies; we come back to this in Section 4.

Finally, for an optimization perspective, the superquantile also has a nice variational formulation [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF]:

S p (U ) = min η∈R η + 1 1 -p E[max(U -η, 0)] . (4) 
In this expression, the quantile Q p (U ) is obtained as the left end-point of the solution. This last expression also reveals an important advantage of S p (U ) over Q p (U ) as a measure of the tail of U , from both theoretical and practical points of view: the superquantile is convex, positively homogeneous, monotonic, translation invariant; see, e.g.,, the tutorial article [START_REF] Rockafellar | Superquantiles and their applications to risk, random variables, and regression[END_REF].

Standard and Superquantile Machine Learning

Optimization is at the heart of machine learning, through the paradigm of empirical risk minimization, which we briefly recall in Section 2.1. In Section 2.2, we discuss superquantile learning, where the risk measure of the learning model is the superquantile. The material of this section also serves as a gentle introduction to the recent developments outlined in the next section.

Supervised Learning Review

We recall here the notation and basic notions of supervised learning; we refer to standard textbooks [START_REF] Cucker | Learning theory. An approximation theory viewpoint[END_REF] or [START_REF] Shalev-Shwartz | Understanding Machine Learning -From Theory to Algorithms[END_REF] for more details. In the training phase of supervised learning, we have access to n data-points: each data-point is a pair (x, y), where x ∈ X is a feature vector and y ∈ Y is its corresponding target. For instance, for a binary classification task, y is a Boolean encoding the membership of the image x to one of the two classes. From this training data, the aim is to learn a parameter w ∈ W ⊂ R d as "weights" of a given prediction function z = ϕ(w, x) that produces, for an input x ∈ X, a prediction z ∈ Z of the associated target y ∈ Y . Typical examples of prediction functions include simple linear models ϕ(w, x) = w x, polynomial models (as in Example 2.1 below), or artificial neural networks

ϕ(w, x) = w s σ(• • • σ(w 1 x)) , (5) 
which are successive compositions of linear models w j and non-linear activations σ. The prediction error is then measured by a loss function : Y × Z → R. Typical examples of loss functions include the least-squares loss (Y = R, Z = R) or the logistic loss (Y = {-1, 1}, Z = R), defined respectively as

(y, z) = 1 2 (y -z) 2 ,
and, (y, z) = log(1 + exp(-y z)) .

Assuming1 that the training data are generated from a given distribution P over X × Y , the "best" model parameter w solves the optimization problem

min w∈W R(w) = E (x,y)∼P [ (y, ϕ(w, x)] . (7) 
However, we can only access P via i.i.d. samples {(x i , y i )} 1≤i≤n . So we consider instead the empirical risk minimization approach, which solves the following optimization problem, analogous to [START_REF] Cucker | Learning theory. An approximation theory viewpoint[END_REF] but where the expectation is taken over P n , the empirical measure over the training examples:

min w∈W R n (w) = E (x,y)∼Pn [ (y, ϕ(w, x)] = 1 n n i=1 (y i , ϕ(w, x i ) . (8) 
Under suitable conditions, we have that the minimizer w n of (8) converges almost surely in mean error to the best population error as n → ∞, i.e.,

R(w n ) -→ n→∞ R(w ) almost surely. (9) 
For concreteness, we instantiate this general framework with a simple regression task, which will also be used in illustrations in subsequent sections.

Example 2.1 (Least-squares regression). Consider a dataset D = (x i , y i ) 1≤i≤n ∈ (R × R) n generated by noisy observations of a quadratic function: we have

y i = w0 + w1 x i + w2 x 2 i + ε i , where ε i ∼ N (0, σ 2 ) , (10) 
for an unknown vector w = ( w0 , w1 , w2 ) ∈ R 3 that we would like to approximate. In this case, [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF] instantiates as the ordinary least-squares problem

min w∈R 3 E (x,y)∼Pn (y -(w 2 x 2 + w 1 x + w 0 )) 2 , ( 11 
)
with a quadratic model ϕ(w, •) and the square loss.

Superquantile Learning

The standard framework, recalled above, is currently challenged by important domain applications [e.g., [START_REF] Kairouz | Advances and open problems in federated learning[END_REF][START_REF] Recht | Do imagenet classifiers generalize to imagenet[END_REF], in which several of the standard assumptions turn out to be limiting. Indeed, classical supervised learning assumes that, at training time, the examples (x 1 , y 1 ), . . . , (x n , y n ) are drawn i.i.d. from a given distribution P , and that, at testing time, we face a new example x , also drawn from the same distribution P . However, recent failures of learning systems when operating in unknown environments [START_REF] Knight | A self-driving Uber has killed a pedestrian in Arizona[END_REF][START_REF] Metz | Microsoft's neo-Nazi sexbot was a great lesson for makers of AI assistants[END_REF] underscore the importance of taking into account that we may not face the same distribution at test/prediction time.

Distributionally robust learning aims to bolster the safety of learning systems by enforcing robustness to heterogeneous data. This notion of robustness is aligned with the one in robust optimization [START_REF] Ben-Tal | Robust Optimization[END_REF]; it is, however, different from the notion of robustness in robust statistics [START_REF] Ben-Tal | Robust Optimization[END_REF]Sec. 12.6]. Here, we assume that the dataset is preprocessed to remove outliers such that the extreme data in the dataset is relevant to the learning process.

The superquantile can be used to build distributionally robust machine learning models, as studied recently in [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF][START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF][START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF][START_REF] Soma | Statistical learning with conditional value at risk[END_REF] among others. From the dual formulation (3), superquantiles are expected to produce models that perform better in case of changes in underlying distributions, compared to models trained using standard empirical risk minimization. Therefore, a natural approach to distributionally robust learning consists in replacing the expectation in [START_REF] Cucker | Learning theory. An approximation theory viewpoint[END_REF] 

As we establish in the forthcoming Theorem 1, the convergence property (9) also holds for S p n and S p . We refer to [START_REF] Duchi | Learning models with uniform performance via distributionally robust optimization[END_REF][START_REF] Shafieezadeh-Abadeh | Regularization via mass transportation[END_REF] for further discussions on statistical aspects of distributionally robust learning, and to [START_REF] Lee | Learning bounds for risk-sensitive learning[END_REF][START_REF] Mhammedi | Pac-bayesian bound for the conditional value at risk[END_REF][START_REF] Soma | Statistical learning with conditional value at risk[END_REF] for superquantile learning in particular.

In practice, superquantile has been shown experimentally to produce models more robust to distribution shifts in various contexts; we refer to [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF][START_REF] Fan | Learning with average top-k loss[END_REF][START_REF] Kawaguchi | Ordered SGD: A new stochastic optimization framework for empirical risk minimization[END_REF][START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF][START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF][START_REF] Soma | Statistical learning with conditional value at risk[END_REF]. For illustration, we include numerical experiments inspired from the ones of [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF] in the Appendix. We also include a short toy example here.

Example 2.2 (Superquantile regression). We illustrate the interest of superquantile learning in presence of heterogeneous data, on a variant of the regression task of Example 2.1. Consider a dataset gathering two different subgroups: 80% of the points are generated by [START_REF] Duchi | Learning models with uniform performance via distributionally robust optimization[END_REF] and the remaining 20% are also generated by [START_REF] Duchi | Learning models with uniform performance via distributionally robust optimization[END_REF] but with completely different parameters w. Then we can compare the usual approach using ordinary least-squares [START_REF] Fan | Learning with average top-k loss[END_REF] with its superquantile counterpart of the form (12) for p = 0.9.

Figure 1 shows the distribution of residuals r i = |y i -(w 2 x 2 i + w 1 x i + w 0 )| for models [START_REF] Fan | Learning with average top-k loss[END_REF] and [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF]. The superquantile model [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF] shows an improvement of 90/95th quantiles of the distribution of residuals, which appears on histograms as a shift of the upper tail to the left. This comes at the price of a degraded performance on average, which appears on the figure as the shift of the peak of residuals to the right.

We finish this section on superquantile learning with an asymptotic result generalizing [START_REF] Dantzig | Discrete-variable extremum problems[END_REF] for the superquantile. We present an elementary self-contained proof: we follow the general approach (see e.g. the monograph [START_REF] Cucker | Learning theory. An approximation theory viewpoint[END_REF]) that we combine with the specific expression of the superquantile.

We start with the mathematical framework. The input-output space X × Y is equipped with a σ-algebra F, which is complete with respect to the probability measure P . The almost sure convergence is proved with respect to a countable sequence of datapoints (x 1 , y 1 ), . . ., the associated product σ-algebra and product probability measure, which we denote P. The prediction space Z is equipped with a norm • . We consider the uniform pseudometric dist ϕ on the parameter set W dist ϕ (w, w ) = sup x∈X ϕ(w, x) -ϕ(w , x) . : x th perc. stands for x th percentile of final distribution of the residuals r i .

We assume W is bounded and we further make the following assumption on its size with respect to dist ϕ . Assumption 1 (On the "size" of W ). For any ε > 0, there exists a finite set T ⊂ W such that for every w ∈ W , there exists a w ∈ T with dist ϕ (w, w ) ≤ ε. Such a T is called a ε-cover of W , and the size of the smallest such a T is denoted N (ε).

For example for the set of d-dimensional linear functions ϕ(w, x) = w x for w 2 ≤ 1. If we take the norm z = |z| on the real line Z = R, one can prove that log N (W, dist ϕ , ε) ≤ C d log(1/ε) for some absolute constant C and normalized data (see e.g., [START_REF] Wainwright | High-dimensional statistics. A non-asymptotic viewpoint[END_REF]Lemma 5.7]). The second standard assumption that we consider is on the loss function (•, •).

Assumption 2 (On the loss). The map (x, y) → (y, ϕ(w, x)) is measurable for every w ∈ W . The map w → (y, ϕ(w, x)) is continuous, and hence Borel measurable, for each (x, y) ∈ X × Y . Furthermore, the loss is

• P -almost surely bounded, i.e., 0 ≤ (y, ϕ(w, x)) ≤ B for each w ∈ W , • M -Lipschitz in the second argument, i.e., | (y, z) -(y, z )| ≤ M z -z for every z, z ∈ Z.
We have the following result generalizing [START_REF] Dantzig | Discrete-variable extremum problems[END_REF]. Then, we have that S p (w n ) → S p (w ) almost surely.

Proof Sketch. We give a sketch here and defer technical details to Appendix.

The key step in the proof is to show the uniform convergence S p n (w) → S p (w) almost surely for all w ∈ W .

Indeed, once we have this, the result immediately follows as

0 ≤ S p (w n ) -S p (w ) = S p (w n ) -S p n (w n ) + S p n (w n ) -S p n (w ) + S p n (w ) -S p (w ) ≤ 2 sup w∈W |S p n (w) -S p (w)| → 0,
where we use S p n (w n ) ≤ S p n (w ) in the second inequality. The proof of the uniform convergence follows the general approach (see e.g. [START_REF] Cucker | Learning theory. An approximation theory viewpoint[END_REF]) adapted to variational expression of the superquantile (4). We introduce

Sp (w, η) = η + 1 1 -p E (x,y)∼P [max( (y, ϕ(w, x)) -η, 0)] ,
to write

S p (w) = min η∈[0,B] Sp (w, η),
as well as analogous empirical version Sp n (w). The proof now consists in two steps, for a given ε > 0

• to construct a cover T of W ×[0,B] from a cover of W (given by assumption);

• to control the convergence over the points of T , more precisely to control the probability of the event

E n (ε) = (w,η)∈T Sp n (w, η) -Sp (w, η) ≤ ε/2 .
In fact, we show that

∞ n=1 P sup w∈W |S p n (w) -S p (w)| > ε ≤ ∞ n=1 P E n (ε) < ∞,
from which we conclude the uniform convergence S p n (w) → S p (w) for all w ∈ W using the Borel-Cantelli Lemma.

Recent Applications of the Superquantile in Machine Learning

We now turn to some recent applications of the superquantile in machine learning.

Conformity in Distributed Learning on Mobile Devices

The superquantile can be leveraged in distributed learning on mobile devices to model conformity to the population [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF]. Each mobile device contains the data generated by a single user, and thus the data distribution across devices is highly heterogeneous.

Concretely, suppose we have m training devices with respective data distribution q i and losses L i (w) = E (x,y)∼q i [ (y, ϕ(w, x))]. Federated learning [START_REF] Kairouz | Advances and open problems in federated learning[END_REF] is a distributed learning paradigm which aims to collaboratively learn a common model across all devices without moving data between devices. The empirical risk minimization approach to federated learning consists in assigning a weight α i > 0 to each device to minimize the aggregate loss, which corresponds to an expectation over a mixture p α of the training distributions q i :

L(w) = m i=1 α i L i (w) = E (x,y)∼pα [ (y, ϕ(w, x))] with p α = m i=1 α i q i , n i=1 α i = 1 .
While minimizing such an objective might offer good performance for test devices which conform to the population of training devices (i.e., distribution q of the test device is close to p α ), one can expect poor predictive performance when q largely departs from p α . An alternative is to model the heterogeneity of devices by considering data distribution p π written as a convex combinaison of the training distributions, but with weights π i different from α i :

p π = m i=1 π i q i , with 0 ≤ π i ≤ 1 and m i=1 π i = 1.
In this context, [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF] proposes to measure how close a test device's distribution p π is to the training distribution p α by the so-called conformity level

conf(p π ) = min 1≤i≤m α i /π i ∈ (0, 1].
We see that the closer the conformity level is to 1, the closer p π is to p α , and thus the device and its user tightly conform to the population trend. To learn a robust model w performing well on reasonably non-conforming devices, [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF] proposes to find the best w for the set of devices with a conformity of at least a given threshold c ∈ (0, 1); this leads to the optimization problem

min w∈R d max pπ∈P E (x,y)∼pπ [ (y, ϕ(w, x))] , with P = {p π : conf(p π ) ≥ c} . (13) 
We observe now that the condition conf(p π ) ≥ c can be written π i /α i ≤ 1/c for all i. Thus this constraint coincides, for the level p = 1 -c, with the constraint q i ≤ 1 m(1-p) in the dual formulation of the superquantile (3); see more precisely the discrete version of the dual formulation [START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF]. The extensive computational experiments of [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF]Sec. 4] show that such superquantile federated learning has, as expected, superior performances for heterogeneous devices. Here we provide a toy example illustrating the interest of the approach.

Example 3.1 (Federated regression). Consider a specific instance of Example 2.2 in a federated setting. We consider that 80% of the data corresponds to four devices having the same data distribution following [START_REF] Duchi | Learning models with uniform performance via distributionally robust optimization[END_REF], while the remaining 20% corresponds to a fifth device having its own distribution. In this example, the solution to federated regression problem with α being the uniform distribution over the five devices coincides with the ordinary least squares model on the whole dataset. Figure 2 shows this bivalent dataset: the blue points correspond to the data of the four first devices, and the red points correspond to the last device. We would like to have a regression that captures worst-cases for both behaviours. We take the conformity level of c = 1 -p = 1/5, using the knowledge on how the dataset is constructed.

Figure 2 shows the the regression curves fit by (8) (specifically, [START_REF] Fan | Learning with average top-k loss[END_REF] in this case), [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF], and the (13). We can make three observations. First, the standard model [START_REF] Fan | Learning with average top-k loss[END_REF] (in purple) tends to follow the trend imposed by the first four devices. Second, the superquantile model (12) (in red) has better regression on worst-case data, irrespective of the group of the data point. Finally, the federated superquantile model (13) finds, in contrast, a compromise between the two trends. Thus, federated superquantile regression better captures the (orange) data points of the non-conforming user. 8), superquantile minimization [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF] and its federated counterpart [START_REF] Guigues | Risk-averse feasible policies for large-scale multistage stochastic linear programs[END_REF] for the toy federated learning setting described in Example 3.1. We wish to have good performance on individual users. Graphically, this is equivalent to fitting a curve to be at the same distance from the data-points of the conforming users (blue bullet) and the non-conforming user (orange cross).

Fairness-aware Machine Learning

The superquantile naturally appears when considering the notion of fairness in machine learning (see e.g., [START_REF] Holstein | Improving fairness in machine learning systems: What do industry practitioners need[END_REF][START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF]), which we turn to next.

Fairness in machine learning is studied with reference to a sensitive attribute, such as race or gender; see e.g., [START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF]. Suppose that we have a population that can be partitioned unambiguously between G subgroups with respect to this attribute. We denote L(w) = (L 1 (w), . . . , L G (w)) the vector of losses on each of the subgroups of the training set. Fairness in such situation would require independence between the sensible attribute and either predicted value or averaged losses per group L i (w). An ideal group fairness of the model w would then imply that L 1 (w) = • • • = L n (w) [57, Def. 1]; but such a model could be no better than random guessing in the worst case. So [START_REF] Williamson | Fairness risk measures[END_REF] considers approximate group fairness and introduces the notion of fairness risk measures. As explained in detail in Section 4 and supplementary material of [START_REF] Williamson | Fairness risk measures[END_REF], key properties for fairness risk measures includes convexity, positively homogeneity and monotonicity: the superquantile is thus a prominent example of such a measure. Experiments in [START_REF] Williamson | Fairness risk measures[END_REF]Sec. 7] show that superquantile indeed allows for a good balance between predictive accuracy and fairness violation. For completeness, we provide here a simple illustration in the context of Example 3.1.

Example 3.2 (Fair regression).

Let us come back to the toy example of Example 3.1. We look at it with the perspective of fairness between the predominant group (the four blue users) and the minority group (the fifth "red" user). Table 2 compares (i) the average performance over the predominant group and (ii) the average performance on the minority group. We observe that the difference between these performance is minimal for the user-level superquantile model provided by [START_REF] Guigues | Risk-averse feasible policies for large-scale multistage stochastic linear programs[END_REF] 

Adversarial Classification

The superquantile also appears in generalized classification tasks when studying robustness to perturbations of data distributions [START_REF] Ho-Nguyen | Adversarial classification via distributional robustness with wasserstein ambiguity[END_REF].

In binary classification, we have Y = {-1, +1} and the prediction function ϕ(w, x) correctly classifies a data point (x, y) if y ϕ(w, x) > 0.

For an underlying data distribution P , we may want to choose w so as either to minimize the probability P (x,y)∼P y ϕ(w, x) ≤ 0 of encountering an error, or to control the distance d(w, (x, ȳ)) to misclassification of a data point (x, ȳ):

d(w, (x, ȳ)) = inf x x -x 2 : ȳ ϕ(w, x) ≤ 0 .
In this context, robustness against perturbations of the data distribution P can be guaranteed by minimizing the worst-case error probability over a ball (e.g., for Wasserstein distance d W ) around P

min w sup Q: d W (Q,P )≤ε P (x,y)∼Q y ϕ(w, x) ≤ 0 . (14) 
Interestingly, optimal solutions of this problem coincide with those solving:

min w [S p ] (x,ȳ)∼P -d(w, (x, ȳ)) , (15) 
for a well-chosen p; see [START_REF] Ho-Nguyen | Adversarial classification via distributional robustness with wasserstein ambiguity[END_REF]Theorem 2.6]. When the distance function d has a computable closed form, formulation ( 15) is simpler to handle than [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]. We refer to [START_REF] Ho-Nguyen | Adversarial classification via distributional robustness with wasserstein ambiguity[END_REF] for results in the general case and for related literature.

Risk-Sensitive Reinforcement Learning

In a framework different from the supervised learning ones considered so far, the superquantile plays a role in risk-sensitive reinforcement learning. Reinforcement learning methods attempt to find decision rules to minimize a cumulative cost [START_REF] Sutton | Reinforcement learning. An introduction[END_REF] in a sequential decision-making setting.

Concretely, a learning agent acts in a Markov decision process using a policy π which maps a state to a distribution over an action space. The agent's aim is to minimize the total cost c(τ ) = n i=1 c(s i ) of a trajectory τ = (s 1 , . . . , s n ) of states taken by the agent while following the policy π. Letting Γ(π) denote the induced distribution over trajectories of length n under policy π, standard reinforcement learning methods minimize the expected cumulative cost as

min w E τ ∼Γ(πw) [c(τ )] ,
where w ∈ R d parameterizes the policy π w . The so-called policy gradient methods aim to solve this by firstorder optimization methods where the gradient of the objective is estimated by Monte Carlo simulations [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF].

However, in safety-critical applications, we are interested in accounting for unlikely events with high cost [START_REF] Howard | Risk-sensitive Markov decision processes[END_REF]. In particular, [START_REF] Morimura | Nonparametric return distribution approximation for reinforcement learning[END_REF] considers sensitivity to risky high-cost trajectories by minimizing the superquantile counterpart min

w [S p ] τ ∼Γ(πw) [c(τ )] . (16) 
This risk-sensitive reinforcement learning setting thus leads to similar superquantile problems as in the supervised learning setting. We refer to [START_REF] Tamar | Policy gradient for coherent risk measures[END_REF] on how to adapt policy gradient methods to estimate the gradient of the objective with respect to the parameters. 

Efficient (Sub)differential Calculus

The applications sketched in the previous section reveal optimization problems with objective functions2 written as the composition of a superquantile and a general loss function

f (w) = S p (L(w)). (17) 
For example, [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF] involves L : R d → R n defined component-wise for each data point by L i (w) = (y i , ϕ(w, x i )); similar expressions follow from ( 13), ( 15) and ( 16). We notice first that L is usually non-convex (e.g., with ϕ as ( 5)) but smooth (e.g., with as ( 6)).

In this section, we provide easy-to-implement expressions of subgradients of superquantile-based functions [START_REF] Howard | Risk-sensitive Markov decision processes[END_REF], in Section 4.2, and of gradients of smoothed approximations of them in Section 4.3. Finally, in Section 4.4, we compare the proposed smoothing with others considered in the literature (e.g., [START_REF] Chen | A class of smoothing functions for nonlinear and mixed complementarity problems[END_REF][START_REF] Luna | An approximation scheme for a class of risk-averse stochastic equilibrium problems[END_REF]).

Computing the (sub)gradients would be the first step toward using first-order optimization algorithms for solving superquantile problems. Though simple, this idea of using first-order methods is not widely used for such problems; among the few exceptions, we mention the PhD thesis [START_REF] Miranda | Superquantile regression: theory, algorithms, and applications[END_REF] using subgradient algorithms (in a special case) and our conference paper [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF] presenting a toolbox for using first-order methods in superquantile learning. The developments of this section detail and extend those of [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF]Sec. 3].

Computing the Superquantile

For the practical developments of this section, we consider a data-driven setting where the random variable U takes equiprobable values u 1 , . . . , u n3 . In this setting, the three representations of superquantile recalled in Section 1.2 take explicit forms that are especially interesting from a computational perspective.

• Integral representation. By splitting the integral, (2) can be written as

S p (U ) = 1 n(1-p) i∈I> u i + δ 1-p Q p (U ) with I > = {i : u i > Q p (U )}. (18) 
This expression involves the distance from p to the next discontinuity point of the quantile function p → Q p (U ) (see Figure 3):

δ = F U (Q p (U )) -p = 1 n (n -|I > |) -p.
Thus [START_REF] Kairouz | Advances and open problems in federated learning[END_REF] gives an efficient way to compute superquantiles from the following three step procedure: (a) compute the p-quantile with the specialized algorithm (called quickfind) of complexity O(n); (b) select all values greater or equal than the quantile; (c) average values along [START_REF] Kairouz | Advances and open problems in federated learning[END_REF].

• Dual representation. The expression (3) simplifies to

S p (U ) = max q∈∆p q u with ∆ p = q ∈ R n + : n i=1 q i = 1, q i ≤ 1 n(1 -p) . ( 19 
)
In words, the superquantile is the support function of the intersection of the simplex with a box (see Figure 4). This problem also corresponds to a classical optimization problem, called fractional knapsack problem, which is solved, after sorting the u i 's, by a simple greedy strategy of the associated q i 's [START_REF] Dantzig | Discrete-variable extremum problems[END_REF]. For our purposes, this expression of superquantile, as a direct max, is useful when applying dual smoothing techniques; see Section 4.3.

• Variational representation. The expression (4) writes

S p (U ) = inf η∈R η + 1 n(1 -p) n i=1 max(u i -η, 0) . ( 20 
)
This expression is often used in solving approaches for superquantile optimization; see e.g., the progressive hedging for risk-averse multistage programming of [START_REF] Rockafellar | Solving stochastic programming problems with risk measures by progressive hedging[END_REF]. Here, this expression will provide a nice interpretation of the infimal convolution smoothing (Corollary 6).

Subdifferentials

In this section, we provide explicit and implementable expressions of the subdifferential of superquantilebased functions. Expressions of (convex) subdifferential of superquantile are well-known in general settings; see e.g., [START_REF] Ruszczynski | Optimization of convex risk functions[END_REF] for a thorough study. Here we study non-convex subdifferentials and derive concrete expressions in the data-driven context; we give direct proofs as applications of basic definitions and properties of nonsmooth analysis.

We start by recalling the standard notions of subgradients for nonsmooth functions (in finite dimension), following the terminology of [START_REF] Rockafellar | Variational analysis[END_REF]. For a function ψ : R d → R∪{+∞}, the regular (or Fréchet) subdifferential of ψ at w (such that ψ( w) < +∞) is defined by The regular subdifferential thus corresponds to the set of gradients of smooth functions that are below ψ and coincide with it at w. The limiting subdifferential is the set of all limits produced by regular subgradients

∂ R ψ( w) = s ∈ R d : ψ(w) ≥ ψ( w) + s (w -w) + o( w -w ) .
∂ L ψ( w) = lim sup w→ w,ψ(w)→ψ( w) ∂ R ψ(w).
These notions generalize (sub)gradients of both smooth functions and convex functions. The two subdifferentials coincide and reduce to the singleton {∇ψ( w)} when ψ is smooth and to the standard subdifferential from convex analysis when ψ is convex.

For the function [START_REF] Howard | Risk-sensitive Markov decision processes[END_REF], which is the composition of a convex function and a continuously differentiable function, we get from basic chain rules that the two subdifferentials coincide; we simply denote it by ∂f (w). Moreover the dual representation [START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF] expressing S p as a support function allows to obtain readily an expression of the subdifferential of ∂S p and, as a result, of the one of f . We formalize all this in the following proposition.

Proposition 2 (Explicit subdifferential of superquantile-based functions). Consider the superquantile-based function [START_REF] Howard | Risk-sensitive Markov decision processes[END_REF] with L continuously differentiable. We have

∂f ( w) = ∂ L f ( w) = ∂ R f ( w) = ∇L( w) * ∂ S p (L( w)) (21) 
where ∇L( w) * is the adjoint of the Jacobian of L at w and ∂ S p (L( w)) the (convex) subdifferential of S p taken at L( w). Moreover, for w ∈ R d , compute L(w) ∈ R n and Q p (L(w)) ∈ R. Consider I > the set of indices such that L i (w) > Q p (L(w)) and I = the set of indices such that L i (w) = Q p (L(w)). Then the subdifferential of f at w can be written with the gradients ∇L i (w) for i ∈ I > ∪ I = , as follows

∂f (w) = 1 n(1 -p) i∈I> ∇L i (w) + δ 1 -p conv {∇L i (w) : i ∈ I = } .
Proof. We apply the chain rule of [43, 10.6] to the composition S p • L: we have that S p is convex with full domain, which implies that the two subdifferentials 4 As a consequence, the Clarke subdifferential is the convex hull of the limiting subdifferential [START_REF] Rockafellar | Variational analysis[END_REF]Thm. 8.49]. Thus we have, in our case, that the three subdifferentials (regular, limiting and Clarke) coincide. of f coincide (i.e., f is regular in the terminology of [START_REF] Rockafellar | Variational analysis[END_REF]) and we have [START_REF] Knight | A self-driving Uber has killed a pedestrian in Arizona[END_REF].

Since S p is the support function of the set ∆ p , standard subdifferential calculus [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]Cor. 4.4.4] gives that ∂S p (L(w)) is the set of optimal solutions of ( 19) with u = L(w). Knowing I > and I = , the so-called fractional knapsack problem [START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF] can be solved by the simple greedy strategy [START_REF] Dantzig | Discrete-variable extremum problems[END_REF] of taking the largest q i for i ∈ I > and completing to 1 with the q i for i ∈ I = . Thus

q solution of (19) ⇐⇒      q i = 1 n(1-p) if i ∈ I > 0 ≤ q i ≤ 1 n(1-p) if i ∈ I = s.t. i∈I= q i = δ 1-p q i = 0 otherwise.
By [START_REF] Knight | A self-driving Uber has killed a pedestrian in Arizona[END_REF], this gives:

∂f (w) = 1 n(1 -p) i∈I> ∇L i (w) + i∈I= q i ∇L i (w), s.t. 0 ≤ q i ∀i ∈ I = i∈I= q i = δ 1-p .
Finally, introducing weights α i = q i (1-p) δ for i ∈ I = , the right-hand term can be written as the convex hull of ∇L i (w) for i ∈ I = , which gives the expression.

We observe that the expression of ∂f (w) does not involve the gradients of all the L i 's, but only of those associated to the largest values. We also see that f is differentiable at w if and only if I = is reduced to a singleton. The objective function is not differentiable in general, which poses a problem for a direct application of machine-learning gradient-based algorithms.

Smoothing by Infimal Convolution

In this section, we study a smoothing of nonsmooth superquantile-based functions [START_REF] Howard | Risk-sensitive Markov decision processes[END_REF]. We propose to use the infimal convolution smoothing of [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]; the comparison to other smoothing approaches is postponed to the next section.

Following the guidelines laid out by [START_REF] Beck | Smoothing and first order methods: A unified framework[END_REF], we smooth only the superquantile S p rather than the whole function f . Thus, we consider

f ν (w) = S ν p (L(w)) , for S ν p a smooth approximation of S p . ( 22 
)
Regularizing the dual representation [START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF] of superquantile, we consider the function, parameterized by the smoothing parameter ν,

S ν p (u) = max q∈∆p q u -νD(q) , (23) 
for a given strongly convex function D. The following proposition establishes that the resulting function f ν as ( 22) is a smooth approximation of f , as a direct application of e.g., [ 

f ν (w) ≤ f (w) ≤ f ν (w) + ν 2 for all w ∈ R d .
Moreover S ν p is differentiable, with ∇S ν p (u) being the argmax of (23), unique by strong convexity of D. When L is differentiable, f ν is differentiable as well, with

∇f ν (w) = ∇ L(w) * ∇S ν p (L(w)). (24) 
In our quest for simple and implementable expressions, we study in the rest of this section the case of separable strongly functions of the form:

D(q) = n i=1 d(q i ) given a strongly convex function d : [0, 1] → R. ( 25 
)
In Corollary 5, we provide a general scheme to compute the gradient with explicit expressions in Examples 4.1 and 4.2 for special choices of d. Finally we discuss the role of the smoothing parameter ν in a numerical illustration.

We start with a lemma gathering the nice duality properties of [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF]. A one-dimensional convex function plays a special role: it is the convex conjugate of the sum of νd and the indicator of the segment [0, 1/n(1 -p)]

g ν (s) = νd + i 0, 1 n(1-p) * (s) = max 0≤t≤ 1 n(1-p) {s t -ν d(t)} . ( 26 
)
Since d is strongly convex, standard (one-dimensional) convex analysis gives (see e.g., [14, Prop. I.6.2.2]) that g ν is continuously differentiable with derivative g ν (s) being the (unique) t achieving the above max. Simple calculus yields Lemma 4 (Duality). The dual problem of the convex problem (23) (with a separable D as in [START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF]) can be expressed as the (smooth convex) one-dimensional problem:

g ν (s) =      0 if s ≤ ν d + (0) 1 n(1-p) if s ≥ ν d -(1/(n(1 -p))) (d *
min η θ(η) = η + n i=1 g ν (u i -η). ( 28 
)
Moreover, there is no duality gap between ( 23) and [START_REF] Mhammedi | Pac-bayesian bound for the conditional value at risk[END_REF]. There exists a primal-dual solution (q ν , η ) and the unique primal solution can be written q ν = (g ν (u i -η )) i=1,...,n with the help of [START_REF] Metz | Microsoft's neo-Nazi sexbot was a great lesson for makers of AI assistants[END_REF].

Proof. This lemma could be proved by applying a sequence of results from abstract Lagrangian duality [14, Chap. XII]. Instead, we provide a simple proof from the direct calculus developed so far. Consider the dualization of the constraint n i=1 q i -1 = 0 in ∆ p . For a primal variable q ∈ B p = 0, 1 n(1-p) n and a dual variable η ∈ R, we write the Lagrangian

L(q, η) = n i=1 q i u i -νd i (q i ) -η n i=1 q i -1 = η + n i=1 q i (u i -η) -νd i (q i ) ,
and the associated dual function

θ(η) = max q∈Bp L(q, η) = η + n i=1 max 0≤q i ≤ 1 n(1-p) {q i (u i -η) -ν d i (q i )} ,
which gives the expression of the dual function ( 28) from [START_REF] Luna | An approximation scheme for a class of risk-averse stochastic equilibrium problems[END_REF]. We have the so-called weak duality inequality by construction:

θ(η) ≥ L(q, η) = n i=1
q i u i -νd i (q i ) , for all η and all feasible q ∈ ∆ p .

(

) 29 
Now recall that g ν in ( 26) is differentiable and so is the dual function with

θ (η) = 1 - n i=1 g ν (u i -η) . ( 30 
)
The above expression also shows that

lim η→+∞ θ (η) = 1 and lim η→-∞ θ (η) = 1 - n i=1 1 n(1 -p) = -p 1 -p .
By continuity of g ν and θ , this implies that there exists η such that θ (η ) = 0, i.e., there exists a dual solution η . On the primal side, the compactness of B p and strong convexity of d gives existence and uniqueness of the primal solution, denoted q ν . Next, we have a simple consequence of (30): the vector (g ν (u i -η )) i=1,...,n , which lies in B p by construction, is primal feasible. From [START_REF] Miranda | Superquantile regression: theory, algorithms, and applications[END_REF] and uniqueness of the primal solution, this implies that q ν = (g ν (u i -η )) i=1,...,n and that there is no duality gap.

From Lemma 4, we get an almost explicit expressions of values and gradients of the smooth approximation f ν .

Corollary 5 (Oracle for smooth approximation). Consider f ν defined by [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF] with L differentiable. With η an optimal solution of (28) with u i = L i (w),

f ν (w) = η + n i=1 g ν (L i (w) -η ) , ∇f ν (w) = n i=1 g ν (L i (w) -η ) ∇L i (w)
where g ν and g ν are given by ( 26) and [START_REF] Metz | Microsoft's neo-Nazi sexbot was a great lesson for makers of AI assistants[END_REF].

Proof. The no-gap result of Lemma 4 gives that S ν p (u) is equal to the optimal value of (28). This gives directly the above expression of f ν (w) = S ν p (L(w)) with η an optimal solution of (28) with u i = L i (w). Regarding the expression of the gradient, Proposition 3 states that ∇S ν p (u) is the optimal solution of (23), and Lemma 4 expresses it as (g ν (u i -η )) i=1,...,n . We then get the expression of ∇f ν (w) from [START_REF] Lee | Learning bounds for risk-sensitive learning[END_REF].

Therefore from η and η in N , finding η in the interval [η, η] simply reduces to interpolating linearly as

η = η - θ (η)(η -η) θ (η) -θ (η) .
We can apply Corollary 5 to get an efficiently implemented expression of the gradient. Note that the obtained expression of ∇f ν (w) involves only the gradients ∇L i (w) for largest values of L i (w) (comparable to the expression of ∂L(w) in Proposition 2).

Example 4.2 (KL smoothing). We use here the Kullback-Leibler divergence to the uniform probability

d(q) = n i=1 q i log(q i /q i ) with q = 1 n , . . . , 1 n . 
which consists in taking d(t) = t log(t) in [START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF]. Elementary calculus then gives

d + (0) = -∞, d - 1 n(1 -p) = 1 -log(n(1 -p)), and 
(d * ) t ν = exp t ν - 1 
which in turn yields

g ν (u i -η) = 1 n(1-p) if η ≤ u i + ν (log(n(1 -p)) -1) exp ( u i -η ν -1) otherwise N = {u i + ν (log(n(1 -p)) -1) i = 1, . . . , n} .
On the interval [η, η], we have that

θ (η) = 1 - i∈I 1 n(1 -p) - i / ∈I exp u i -η ν - 1 
with I = {i, u i + ν (log(n(1 -p)) -1) ≤ η} the set of indices of points in N smaller than η. This yields

η = ν log i / ∈I exp(u i /ν -1) 1 -|I|/ n(1 -p) .
We can then apply Corollary 5 to get the smoothed gradient.

We conclude this section on the infimal-smoothing of the superquantile with two remarks illustrating the impact of the smoothing parameter ν. Remark 1 (Impact of the smoothing parameter on the weights). We illustrate the impact of the smoothing parameter ν on the relative weights given to the data. We consider the Euclidean smoothing of Example 4.1 with p = 0.5. We sample n = 500 points from a Gaussian distribution and compute the distribution of weights q i of (31), solutions to smoothed problem [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF] for different values of the smoohting parameter ν.

The right-hand side of Figure 5 displays the impact of ν of the obtained weights. In particular, we note that as ν grows, the distribution q i tends to spread uniformly over all data-points, so that the smoothed superquantile acts like the expectation. In contrast, when ν is close to 0, the distribution approximates the uniform distribution over the interval [p, 1], so that the smoothed superquantile acts like the superquantile. This approximation is further discussed in the next remark. Figure 5: Impact of the smoothing parameter ν on the weights assigned to the data points. Left: empirical cumulative distribution of n = 500 points sampled from a standard Gaussian distribution. Right: distribution of weights, i.e., the optimal solution of ( 23) for p = 0.5, with respect to sorted data points (i.e., value at abscissa t is the weight attached to the t-quantile). Different colours correspond to different values of ν.

Remark 2 (Impact of the smoothing parameter on the approximation). We illustrate here the impact of the smoothing parameter ν on the approximation of the superquantile by its smoothed variant (Proposition 3).

To do so, we fix a vector w and we observe the values of smoothed approximations of a superquantile-based function for different values of ν. More precisely, we consider the logistic regression problem used in Appendix B; we use the quadratic smoothing of Example 4.1 with ν = 0.1; and we solve the problem by L-BFGS to get the reference point w. We compute the following values at w:

• the underlying superquantile-based objective (12) which corresponds to the case ν = 0;

• the smoothed approximations (which corresponds to (12) with S ν p replacing S p ) for a sequence of ν evenly spread on a log scale;

• the usual empirical risk minimization objective [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF], which corresponds to the case ν = +∞. Indeed, in this regime ν → +∞, the impact of the quadratic penalization term (q -q) increases so that the solution of (23) eventually becomes the uniform distribution q, in which case S ν p coincides with the expectation.

The observations from Figure 6 are as expected. For small values of ν, the difference between the superquantilebased objective and its smooth approximations vanishes. On the other hand, for large values of ν, the smoothed superquantile loss tends to the average loss and does not approximate the nonsmooth superquantile loss well.

A key benefit of smoothing the superquantile is to leverage efficient smooth optimization algorithms, such as L-BFGS, for superquantile learning. When ν is too small, the problem is almost non-smooth, which leads to numerical issues with convergence (on this instance, L-BGFS fails to converge when ν too small or when used with the nonsmooth oracle of Proposition 2 due to a line search failure). When ν is too large, the smoothed superquantile gets close to the expectation and the interest of using a superquantile approach disappears. This illustrates the interest of having a moderate ν for superquantile learning, where the smoothed objective is an reasonable approximation of the nonsmooth superquantile, while still being smooth enough to leverage fast optimization algorithms. 

Comparison to Other Smoothing Schemes

We compare the proposed infimal convolution smoothing of the superquantile ( 23) to other possible smoothing schemes. Classical smoothing techniques are based either on convolution or infimal convolution. For superquantile, one could either smooth the dual representation [START_REF] Kamishima | Fairness-aware classifier with prejudice remover regularizer[END_REF] or the variational representation [START_REF] Kawaguchi | Ordered SGD: A new stochastic optimization framework for empirical risk minimization[END_REF]. Together, this yields four natural ways to smooth the superquantile.

We first formalize the equivalence between the two infimal convolution smoothings: indeed, smoothing the dual representation considered in the preceding section corresponds to a smoothing of max{•, 0} in the variational formulation.

Corollary 6 (Equivalence of smoothings with infimal convolution). With the notation of Section 4.3, the infimal convolution smoothing of S p with a separable strongly convex function [START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF] is equivalent to the infimal convolution smoothing of the positive part max{•, 0} as

m ν (η) = max 0≤t≤1 η t -ν d(t) with d(t) = n(1 -p)d t n(1 -p) . ( 32 
)
More precisely, we have the following equality (to be compared with (20))

S ν p (u) = min η η + 1 n(1 -p) n i=1 m ν (u i -η) . Proof. A direct change of variable in (26) gives g ν (u i -η) = 1 n(1-p) m ν (u i -η).
The proof is direct from the expression of the dual problem [START_REF] Mhammedi | Pac-bayesian bound for the conditional value at risk[END_REF] and the no-gap result stated in Lemma 4.

Next, we show an equivalence between the smoothing by infimal convolution [START_REF] Nesterov | Introductory Lectures on Convex Optimization -A Basic Course[END_REF], and by convolution, as considered in [START_REF] Chen | A class of smoothing functions for nonlinear and mixed complementarity problems[END_REF][START_REF] Luna | An approximation scheme for a class of risk-averse stochastic equilibrium problems[END_REF]. Suppose we are given a continuous probability density ρ : R → R + such that ∞ -∞ |s|ρ(s)ds is finite). The smoothing by convolution of the function max{•, 0} with density ρ and smoothing parameter ν > 0 is defined by5 

mν (η) = 1 ν ∞ -∞ max{η -s, 0}ρ s ν ds = 1 ν η -∞ (η -s)ρ s ν ds . ( 33 
)
The function mν is convex and smooth, with derivative

m ν (η) = 1 ν η -∞ ρ s ν ds . (34) 
The next proposition, relating this smoothing to the previous one, involves Q t (ρ) the quantile function of a random variable with density ρ.

Proposition 7 (Equivalence of convolution/inf-convolution smoothings).

With the above notation, the convolution smoothing mν of (33) for ν = 1 can be written as the infimal-convolution smoothing (to be compared with [START_REF] Nesterov | Introductory Lectures on Convex Optimization -A Basic Course[END_REF])

m1 (η) = max 0≤t≤1 η t -d(t)
where

d(t) = tQ t (ρ) -m1 (Q t (ρ)). (35) 
Conversely, the infimal convolution smoothing m ν of (32) for ν = 1 can be written as the convolution smoothing (to be compared with (33))

m 1 (η) = lim s→-∞ m 1 (s) + η -∞ (η -s)ρ(s)ds where ρ(s) = m 1 (s) a.e. ( 36 
)
Proof. For the first part, we consider the convex conjugate of m1 m *

1 (t) = sup η∈R {η t -m1 (η)} . If t / ∈ [0, 1], the supremum is +∞ since | m1 (η) -max{η, 0}|
is bounded by an absolute constant. For t ∈ [0, 1], the concave function η → ηt -m1 (η) is maximized at η if and only if it satisfies the first-order optimality condition

t = m 1 (η ) = η -∞ ρ(s)ds.
Since the latter is the cumulative distribution function, η = Q t (ρ) is the corresponding quantile function (well-defined since ρ is continuous). This yields

m * 1 = d + i [0,1] , (37) 
which in turn gives [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. Finally to establish the strong convexity of d, we use again [START_REF] Pollard | A user's guide to measure theoretic probability[END_REF] together with the smoothness of m1 . Thus m1 corresponds to the infimal-convolution smoothing with d.

For the second part, we start by noting that since m 1 is Lipschitz, m 1 exists almost everywhere, and ρ is well-defined. Since m 1 is convex, it also holds that m 1 (s) ≥ 0, and then that we have the normalization

∞ -∞ ρ(s)ds = ∞ -∞ m 1 (s)ds = lim η→∞ m 1 (η) -lim η→-∞ m 1 (η) = 1 -0 = 1 ,
used in [START_REF] Chen | A class of smoothing functions for nonlinear and mixed complementarity problems[END_REF][START_REF] Luna | An approximation scheme for a class of risk-averse stochastic equilibrium problems[END_REF]. Indeed, integrating (34) yields

mν (η) = 1 ν η -∞ η -∞ ρ s ν ds dη .
where we use m (η) is the (unique) optimal solution of (32). Then the proof follows from the next two claims.

Claim 1: m 1 admits a limit at -∞. Convexity of m 1 gives that m 1 is non-decreasing. Since lim s→-∞ m 1 (s) = 0, we get that m 1 is non-negative. Thus, m 1 is non-decreasing and, since it is bounded from below, this implies that m 1 admits a limit at -∞. We denote it as m 1 (-∞).

Claim 2: lim s→-∞ s m 1 (s) = 0. For a given s, we write:

s m 1 (2s) ≤ s 2s m 1 (t)dt = m 1 (s) -m 1 (2s),
where the inequality comes from the fact that m 1 is non-decreasing. Using that m 1 admits a limit at -∞ (Claim 1), we get Claim 2.

Finally, we can conclude the proof with integration by parts:

m 1 (η) = m 1 (-∞) + η -∞ m 1 (s)ds = m 1 (-∞) + [(s -η)m 1 (s)] η -∞ + η -∞ (η -s)ρ(s)ds = m 1 (-∞) + η -∞ (η -s)ρ(s)ds.
This establishes [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] and ends the proof.

Finally, we comment the smoothing of the dual representation (19) using convolution, which is defined as

Sν p (u) = 1 ν R n S p (u -z)ρ z ν dz = E Z∼ρ [S p (u -νZ)] ,
for the density ρ : R n → R and the parameter ν > 0. We do not consider this smoothing approach because it suffers from two drawbacks in view of practical implementation. First, it usually cannot be computed in closed form, unlike the other smoothing approaches considered here. Second, the Lipschitz constant of the gradient (appearing in condition numbers, constant scalings, and rates of convergence of first-order methods [START_REF] Nesterov | Introductory Lectures on Convex Optimization -A Basic Course[END_REF]) scales badly: as O( √ n/ν) for the Lipschitz constant of ∇ Sν p [31, Lemma 2], as opposed to the dimension-independent O(1/ν) for the one of ∇S ν p [33, Theorem 1].

Conclusion

In this paper, we have developed two different aspects of the superquantile, a famous risk measure studied and popularized by R. T. Rockafellar and co-authors. First, we have reviewed recent applications of superquantiles in machine learning, keeping our discussion at a high-level, omitting details, and just providing basic illustrations and pointers to recent research. Second, we have provided explicit expressions of (sub)gradients of (smoothed) superquantiles; here, in contrast, we go down to the details of computation in order to get efficient first-order oracles for superquantile-based functions. In particular, we have proved that smoothed oracles have essentially the same computational complexity as for the corresponding superquantile functions (Corollary 5 and following discussions).

These fast oracles are implemented in the toolbox 6 spqr build on top of the popular Python machine learning library scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. This toolbox provides an interface for using standard first-order algorithms; we refer to our numerical experiments of [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF] and [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF] (see also Appendix B). From this experimental experience, we advocate the use of quasi-Newton methods (and in particular L-BGFS; see e.g., [START_REF] Nocedal | Numerical optimization[END_REF]) that gives good performances in practice.

Note first that E[ Sp n (w, η)] = Sp (w, η) and that the boundedness of δ n comes from the boundedness of the loss function. The Lipschitzness of δ n also comes from the one of the loss function, as follows. Using that max{•, 0} is 1-Lipschitz and that the loss is M -Lipschitz, we get

| max{ (y, ϕ(w, x)) -η, 0}-max{ (y, ϕ(w , x)) -η , 0}| ≤ | (y, ϕ(w, x)) -(y, ϕ(w , x))| + |η -η | ≤ M ϕ(w, x) -ϕ(w , x) + |η -η | ≤ M dist ϕ (w, w ) + |η -η | .
Then, [START_REF] Rockafellar | Solving stochastic programming problems with risk measures by progressive hedging[END_REF] simply follows from the triangle inequality, and Claim 1 is proved. The next step in the proof is, for a given ε > 0

• to construct a cover T of W × [0, B], and then • to control the convergence over the points of T , more precisely to control the probability of the event

E n (ε) = (w,η)∈T {δ n (w, η) ≤ ε/2} .
First, using Assumption 1, we consider T 1 a (ε(1 -p)/(8M ))-cover of W with respect to dist ϕ . We also consider T 2 a uniform discretization of the line segment [0, B] at width ε(1 δ n (w, η) > ε ⊂ E n (ε) .

+ 1/(1 -p))/8. We can introduce the cover of W × [0, B] T = T 1 × T 2 ⊂ W × [0, B].
Postponing the proof of measurability of these events to Claim 3 at the end of this proof, we have the following bound on the sum of probabilities Applied to all (w, η) ∈ T , this yields

P E n (ε) ≤ 2|T | exp - nε 2 2B 2 = 16B ((1 + 1/(1 -p))ε N ε(1 -p) 8M exp - nε 2 2B 2 .
and proves Claim 2.

We conclude on the uniform convergence [START_REF] Recht | Do imagenet classifiers generalize to imagenet[END_REF] with the Borel-Cantelli Lemma by the classical rationale (see e.g. the textbook [37, Chap. 2, Sec. 6]): the bound (40) and Claim 2 give that the probabilities for any ε are summable; applying Borel-Cantelli with the sequence ε k = 1/k gives the uniform convergence [START_REF] Recht | Do imagenet classifiers generalize to imagenet[END_REF], which completes the proof of the theorem.

Finally, it remains to show measurability of some events of interest. Since the latter term is a supremum over a countable set of measurable random variables, we get that E n (ε) is measurable.

B Numerical Illustrations

We provide simple illustrations of the interest of using superquantile for machine learning. More precisely, we reproduce the experimental framework of the computational experiments of [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF] and we solve the superquantile optimization problems with the approach depicted here, by combining smoothing and quasi-Newton. For additional experiments with other datasets, metrics, and contexts, we refer to [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF].

We consider two basic machine learning tasks (regression and classification) with linear prediction functions ϕ(w, x) = w x and with two standard datasets, from the UCI ML repository. Denoting these datasets P n = {(x i , y i )} 1≤i≤n , we introduce the (regularized) empirical risk minimization We solve these problems using L-BFGS via the toolbox SPQR [START_REF] Laguel | First-order optimization for superquantile-based supervised learning[END_REF] offering an simple user-interface and implementing the oracles (with the Euclidean smoothing of Example 4.1 for the smoothed approximation). 

Regression and Least-Squares

We consider a regularised least square regression on the dataset Abalone from the UCI Machine learning repository. We perform a 80%/20% train-test split on the dataset. We minimize the least-squares loss on the training set both in expectation and with respect to the superquantile (with p = 0.98 and ν = 0.1).

We report on Figure 7 the distribution of errors |y i -w x i | for the testing dataset for both models w (standard in blue and superquantile in red). We observe that the superquantile model exhibits a thinner upper tail than the risk-neutral model, which is quantified by the shift to the left of 0.98 quantile. This comes at the price of lower performance in expectations than the model trained with expectation, which is clear visible on the picture and quantified by the shift to the right of the mean.

Classification and Logistic regression

We consider a logistic regression on the Australian Credit dataset. We randomly split the dataset with a 80%/20% train-test split for 5 different seeds. For each seed, we perform a pessimistic distributional shift on the training dataset by downsampling the majority class (similarly to what is done in [START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF]Sec. 5.2]). More precisely, we remove an important fraction of the majority class, randomly selected, so that it counts afterward
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Theorem 1 .

 1 Let Assumptions 1 and 2 hold. Fix p ∈ (0, 1) and assume that the minimizers of S p and S p n are attained: w ∈ arg min w∈W S p (w) and w n ∈ arg min w∈W S p n (w).

Figure 2 :

 2 Figure 2: Comparison of ERM[START_REF] Curi | Adaptive sampling for stochastic risk-averse learning[END_REF], superquantile minimization[START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF] and its federated counterpart[START_REF] Guigues | Risk-averse feasible policies for large-scale multistage stochastic linear programs[END_REF] for the toy federated learning setting described in Example 3.1. We wish to have good performance on individual users. Graphically, this is equivalent to fitting a curve to be at the same distance from the data-points of the conforming users (blue bullet) and the non-conforming user (orange cross).

Figure 3 :

 3 Figure 3: Illustration of the integral expression of the superquantile. Cumulative distribution function (on the left) and quantile function (on the right) are inverse one of the other. S p (U ) is obtained by averaging the quantiles greater than p (red section on right graph).

Figure 4 :

 4 Figure 4: Illustration of the dual expression of the superquantile. S p is the support function of the red polytope. The red point represents the uniform distribution.

  d + (0) ∈ [-∞, +∞) and d -(1/(n(1 -p))) ∈ [-∞, +∞) are respectively the right-derivative of d at 0 and the left-derivative of d at 1/(n(1 -p)). Note finally that g ν is a non-decreasing function.

Figure 6 :

 6 Figure 6: Impact of the smoothing parameter ν when solving a superquantile logistic regression on a classical dataset (Australian Credit dataset).

Since, |T 2 |

 2 = 8B/((1 + 1/(1 -p))ε), we have that |T | = (8B/((1 + 1/(1 -p))ε))N (ε(1 -p)/(8M )). Note that the event {δ n (w, η) ≤ ε/2} for fixed (w, η) since δ n (w, η) is measurable, and therefore, E n (ε) is measurable since it is a finite intersection.To get uniform convergence, it is sufficient to control what happens at points of T . Indeed, for any (w, η), there exists a point (w , η ) ∈ T such that dist ϕ (w, w ) ≤ ε(1 -p)/(8M ) and |η -η | ≤ ε(1 + 1/(1 -p))/8. As a consequence, if the event E n (ε) holds, thenδ n (w, η) ≤ δ n (w , η ) + |δ n (w, η) -δ n (w , η )| (39) ≤ δ n (w , η ) + 2M/(1 -p) dist ϕ (w, w ) + 2(1 + 1/(1 -p))|η -This implies that events of interest are included in E n (ε), the complement of E n (ε); we have indeed sup w∈W |S p n (w) -S p (w)| > ε ⊂ sup (w,η)∈W ×[0,B]

29 Claim 2 :

 292 (w) -S p (w)| > ε ≤ ∞ n=1 P E n (ε) . (40)The probabilities of the complements of E n (ε) are summable, i.e.,∞ n=1 P E n (ε) < ∞ .This is a direct application of the Hoeffding's inequality (see e.g. [55, Theorem 2.2.2]) as follows. For any fixed (w, η) ∈ W × [0, B], the Hoeffding's inequality givesP(|δ n (w, η)| > ε/2) ≤ 2 exp -nε 2 2B 2 .

Claim 3 :

 3 The following events are measurable for each ε > 0:E n (ε) := sup w∈W |S p n (w) -S p (w)| > ε , E n (ε) := sup (w,η)∈W ×[0,B]δ n (w, η) > ε .We prove the claim for E n (ε) and the second one is entirely analogous. Since the set Q d of d-dimensional rationals is dense in R d and the map w → |S p n (w) -S p (w)| is continuous, we have that sup w∈W |S p n (w) -S p (w)| = sup w∈W ∩Q d |S p n (w) -S p (w)| .
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Figure 7 :

 7 Figure 7: Regression: histogram of the regression errors on the testing dataset for the model learning by the superquantile approach (red) compared to the one of the classical empirical risk minimization (violet). We see a reshaping of the histogram of errors and a gain on worst-case errors.

Table 2 :

 2 , achieving better approximate group fairness. Average performances of each model over both subgroups.

	Model	L 1 (w) (blue subgr.) L 2 (w) (red subgr.)
	ERM/least-squares (11)	4.59	17.76
	superquantile (12)	9.88	13.62
	federated superquantile (13)	10.87	11.46

When the assumption of the existence of an underlying distribution P is not realistic, the usual approach is to still use the empirical risk minimization (8) from the given training dataset Pn = {(xi, yi)} 1≤i≤n .

In coherence with the previous section and to comply with common notation in machine learning, we stick to the notation w for the variable of the functions.

In the sequel, we make a slight abuse of notation by not distinguishing between the random variable U and the vector of its equiprobable realizations u = (u1, . . . , un). Thus we consider the superquantile function Sp : R n → R as a function of u ∈ R n , and we study the differentiability properties of compositions with Sp.

Remark on the Clarke subdifferential: As another by-product of the chain rule[START_REF] Rockafellar | Variational analysis[END_REF] Thm. 10.6], the set of horizon subgradients of f is reduced to 0 since so is the one of Sp (convex and defined on R n ).

Applied to max{x, •}, the general smoothing by convolution as defined in[START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] coincides with the double integral representation

The code is publicly available at https://github.com/yassine-laguel/spqr.
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Thus the computation of the first-order oracle of f ν boils down to solving the one-dimensional convex problem [START_REF] Mhammedi | Pac-bayesian bound for the conditional value at risk[END_REF] with u i = L i (w). This easy task can be solved in general by bisection or higher-order schemes.

Here Lemma 4 allows us to make an additional simplification with an initial interval tightening. We can indeed shrink the segment where to find η to two consecutive points in

which is a set of special points regarding the structure of the dual function (recall ( 27) and ( 28)). Denoting η and η, defined respectively as the largest point in N such that θ (η) ≤ 0 and the smallest point in N such that θ (η) ≥ 0, we get η by testing three cases:

The initial interval tightening thus boils down to having sorted points in the set N , which is obtained directly from sorting the given data.

Finally we emphasize that we can sometimes go one step further ahead and obtain explicit expressions of η and thus, readily implementable expressions of ∇f ν (w). In the next two examples, we illustrate this for two cases of interest, when we smooth the superquantile by a divergence to the uniform probability (which is at the center of ∆ p ; recall Figure 4). In particular the smoothing detailed in the forthcoming Example 4.1 was used in the numerical illustrations of Examples 2.2, 3.1, and 3.2 (where the resulting smoothed superquantile optimization problems were solved by L-BFGS).

Example 4.1 (Euclidean smoothing). We suggest to smooth the superquantile with the Euclidean distance to the uniform distribution

This corresponds to [START_REF] Levy | Large-scale methods for distributionally robust optimization[END_REF] with

In this case, elementary calculus gives

, and

so that we get from (27) the following expression

for the entries of the solution of [START_REF] Laguel | A superquantile approach to federated learning with heterogeneous devices[END_REF]. We also have that θ is piecewise linear in this case and that

A Proof of Theorem 1

In this appendix, we provide a complete proof of Theorem 1. For classical results in this spirit, we refer to the monograph [START_REF] Cucker | Learning theory. An approximation theory viewpoint[END_REF]. For discussions on statistical aspects of statistical learning, we refer to e.g., [START_REF] Duchi | Learning models with uniform performance via distributionally robust optimization[END_REF][START_REF] Lee | Learning bounds for risk-sensitive learning[END_REF][START_REF] Mhammedi | Pac-bayesian bound for the conditional value at risk[END_REF].

The key step in the proof of Theorem 1 is to show the uniform convergence

Indeed, once we have this, the result immediately follows as

where we use S p n (w n ) ≤ S p n (w ) in the second inequality. In order to prove [START_REF] Recht | Do imagenet classifiers generalize to imagenet[END_REF], we use the variational expression of the superquantile (4). We define

so that, using that the loss is bounded by B, we can write

Sp (w, η).

We define the analogous empirical version Sp n (w, η) so that S p n (w) = min η∈[0,B] Sp n (w, η). Note that Sp n (w, η) is measurable for each fixed (w, η) and S p n (w) is measurable for each fixed w. Claim 1: Under Assumption 2, the random variable 

for only 10% of the minority class. We tune then the safety level parameter p by a k-cross validation on the shifted dataset and select the safety parameter yielding the best validation accuracy. The grid we use for tuning this parameter is [0.8, 0.85, 0.9, 0.95, 0.99] We finally compute with this parameter the testing accuracy and the testing precision.

We report the testing accuracy and the testing precision averaged over the 5 different seeds on the table of Figure 8 with the associated standard deviation. We observe that the superquantile model brings better performance for both in terms of accuracy and precision than the standard model.

Model

Accuracy Precision Standard 0.65 ± 0.03 0.56 ± 0.04 Superquantile 0.69 ± 0.04 0.60 ± 0.05 Figure 8: Classification: better testing accuracy and precision for the superquantile approach, in the case of distributional shifts.