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f (x; ψ) = K k =1 π k ϕ(x; µ k , Σ k ) k π k = 1, π k > 0 (k = 1, . . . , K ) where ψ = (π 1 , . . . , π K , µ 1 , . . . , µ K , Σ 1 , . . . , Σ K ) and ϕ(.)
▶ the original sample space is divided into a partition

{B b ⊂ R d , b = 1, . . . , B} ▶ n b = #{x i ∈ B b } n arises from a multinomial model with pmf [Cadez et al. 2002] 1 p(n; ψ) ∝ B b=1 K k =1 π k B b ϕ(x; µ k , Σ k )dx n b
. Bin-marginal model

▶
▶ bin-marginal pdf p m (m; ψ) = n ′ ∈Fm p(n ′ ; ψ),
where F m is the set of tables n ′ sharing the same marginals m. Given the linear combination of K univariate Gaussian densities f

▶ issues → identifiability → mathematical
(x) = K k =1 π k ϕ(x; µ k , σ 2 k ), such that either µ i ̸ = µ j or σ 2 i ̸ = σ 2 j for i ̸ = j
and for all k π k ̸ = 0, the number of solutions to f (x) = 0 is at most 2(K -1). 

ψ (j) ) Qm(ψ, ψ (j) ) = E ψ (j) [ℓ c (ψ; X, Z)|m] = n∈Fm α (j) (n) K k =1 B b=1 n b B b τ (j) k (x) log[π k ϕ(x; µ k , Σ k )]dx ▶ α (j) (n) = p(n;ψ (j) )
n ′ ∈Fm p(n ′ ;ψ (j) ) and τ

(j) k (.) = π (j) k ϕ(.;µ (j) k ,Σ (j) 
k ) f (.;ψ (j) )

. Bin-marginal Composite Likelihood (bmCL)

M-step ▶ π (j+1) k = 1 n n∈Fm α (j) (n) B b=1 n b B b τ (j) k (x)dx → both
▶ our proposal: combine memory reduction (bin-marginal)

log pm(m; ψ) = log n ′ ∈Fm p(n ′ ; ψ)
and computational advantages of 1D-marginal CL

→ we aim at maximizing the bin-marginal composite log-lik.: ▶ bmCL E-step ▶ despite the loss of information, binned method seems to behave better than full GMM and subsampling

lm (ψ; m) = D d=1 ℓ d (ψ d ; m d ) = D d=1 B d b d =1 m db d log B d b d f d (x d ; ψ d )dx d . → diagonal
Qm (ψ, ψ (j) ) = D d=1 X d ×Z d ℓ c d (ψ d ; x d , z d ) f (x d , z d |m d ; ψ (j) d )dx d dz d . ▶ bmCL M-step straightforward τ (j) kd (.) = π (j) k ϕ(.; µ (j) kd , σ 2(j) kd ) f (.; ψ (j) d ) π (j+1) k = D d=1 B d b d =1 m db d B d b d τ (j) kd (x d )dx d Dn ; µ (j+1) kd = B d b d =1 m db d B d b d x d τ (j) kd (x d )dx d B d b d =1 m db d B d b d τ (j) kd (x d )dx d ▶ estimated partition: z = arg max k π k ϕ(.; µ k , Σ 2 k ) f (.; ψ)
▶ the tiny class contains the abnormal objects (no false negative) but low ARI (false positive) ▶ if G has R cut points, (a 1 , . . . , a R ) then it is needed to prove that the system has only the trivial solution ψ = ψ * at a up to a relabeling whatever the grid is

                   π K k =1 Φ( a 1 -µ k σ k ) = K * k =1 π * Φ( a 1 -µ * k σ * k ) π K k =1 Φ( a 2 -µ k σ k ) = K * k =1 π * Φ( a 2 -µ * k σ * k ) . . . π K k =1 Φ( a R -µ k σ k ) = K * k =1 π * Φ( a R -µ * k σ * k )
▶ deduce with [Prop. 11.5 -Valiant 2012] that binned univariate mixtures of at most K max Gaussian distributions are identifiable if the binning grid has R > 4K max -3 cut points.

▶ induction for D-variate mixtures

▶

  work with the 1-D binned data on each direction separately ▶ marginal counts: m = {m 1 , . . . , m D } for each direction d = 1, . . . , D, m d = (m d1 , . . . , m dB d ), component m db d is the count of observations x id in the b d -th bin of the d-th dimension → store D d=1 B d values instead of

  

  

  

  

  

  trick for sample size reduction: select B ≪ n
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