Frugal Gaussian clustering of huge imbalanced datasets through a bin-marginal approach

Filippo Antonazzo, Christophe Biernacki, Christine Keribin

To cite this version:

Filippo Antonazzo, Christophe Biernacki, Christine Keribin. Frugal Gaussian clustering of huge imbalanced datasets through a bin-marginal approach. Working Group - Model-based Clustering, Oct 2021, Athens, Greece. hal-03505673

HAL Id: hal-03505673

https://hal.science/hal-03505673

Submitted on 31 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Frugal Gaussian clustering of huge imbalanced datasets through a bin-marginal approach

F. Antonazzo ${ }^{1,2}$, Ch. Biernacki ${ }^{1,2}$, Ch. Keribin ${ }^{1,3}$

${ }^{1}$ Inria
${ }^{2}$ Laboratoire de mathématiques Painlevé, Université de Lille, Villeneuve d'Ascq, France
${ }^{3}$ Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, Orsay, France
WG-MBC-2021, Athens, October 25-29, 2021

Plan

(4) Experiments

(5) Discussion

Motivation: huge and imbalanced data sets

- huge in the sense tall data
\hookrightarrow number of observations (high dimension setting out of scope)
\hookrightarrow out of computer limits
\hookrightarrow or within computer limits but with frugal resource consumption (green computing)
- discover new information
\hookrightarrow more and more clusters: not the focus of this talk
\hookrightarrow reveal (valuable) tiny clusters: imbalanced data sets a few abnormal objects have to be recognized among a large amount of normal ones
credit card fraud detection [Chan and Stolfo 1998)], cancer recognition [Yu et al. 2012], fraudulent calls [Fawcett and Provost 1997]

Approaches

- supervised approach (classification) with imbalanced data sets
\hookrightarrow create artificial balanced data sets:
oversampling the minority class [Chawla et al. 2002],
undersampling the majority class [Tahir et al. 2009]
\hookrightarrow labeling could be difficult when sample size is very large
- unsupervised approach (clustering) with sample size is very large
\hookrightarrow subsampling [Fraley and Raftery 2002, Xia et al. 2019]
\hookrightarrow difficult to detect very tiny clusters
\hookrightarrow computer science solutions
powerful computers or distributed architectures (MAP-reduce, ...)
\hookrightarrow not frugal
- our aim : clustering of huge and imbalanced datasets under memory contraints

Another way for data reduction

- unsupervised approach (clustering)
\hookrightarrow from raw to binned data

(a) Raw data

(b) Binned data

Our bin-marginal approach in a nutshell

Frugal unsupervised MBC (D-dimensional Gaussian mixtures) using marginal binned data:

1. from raw to binned data
\hookrightarrow particular version of the EM algorithm [McLachlan and Jones 1998;
Cadez et al. 2002]
\hookrightarrow another dimensionality pb
2. from binned data to (1D-)marginal counts
\hookrightarrow need to design a new EM algorithm but computationally intractable
3. optimization of a composite likelihood (CL) [Lindsay 1988; Whitaker et al. 2020] instead of the full one
\hookrightarrow for diagonal GMM

- CL + GMM + 2D-bin [Ranalli and Rocci 2016] new in our approach: harder data reduction (1D-bin)

Plan

4. Experiments
(5) Discussion

Model Based Clustering with finite GMM

Observations $\mathbf{x}=\left\{\boldsymbol{x}_{i} \in \mathbb{R}^{D}, i=1, \ldots, n\right\}$ are i.i.d. according to a D-dimensional Gaussian mixture with K components:

$$
\begin{gathered}
f(\boldsymbol{x} ; \boldsymbol{\psi})=\sum_{k=1}^{K} \pi_{k} \phi\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \\
\sum_{k} \pi_{k}=1, \quad \pi_{k}>0 \quad(k=1, \ldots, K)
\end{gathered}
$$

where $\boldsymbol{\psi}=\left(\pi_{1}, \ldots, \pi_{K}, \boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}, \boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{K}\right)$ and $\phi($.$) is the$ D-variate Gaussian density

Binned data

unobservable or too many raw data \boldsymbol{x}_{i}
\hookrightarrow vector of binned data $\boldsymbol{n}=\left(n_{1}, \ldots, n_{B}\right)$

- the original sample space is divided into a partition $\left\{\mathcal{B}_{b} \subset \mathbb{R}^{d}, b=1, \ldots, B\right\}$
- $n_{b}=\#\left\{\boldsymbol{x}_{i} \in \mathcal{B}_{b}\right\}$
\boldsymbol{n} arises from a multinomial model with pmf [Cadez et al. 2002] ${ }^{1}$

$$
p(\boldsymbol{n} ; \psi) \propto \prod_{b=1}^{B}\left(\sum_{k=1}^{K} \pi_{k} \int_{\mathcal{B}_{b}} \phi\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) d \boldsymbol{x}\right)^{n_{b}} .
$$

- trick for sample size reduction: select $B \ll n$

[^0]
Curse of dimensionality for binned data

- in our case: Cartesian grid $G=G_{1} \times \ldots \times G_{D}$ where G_{d} is a univariate grid with $R_{d}+2$ cut points
$\hookrightarrow B=\prod_{d=1}^{D}\left(R_{d}+1\right)$ bins, representing the grid's coarseness
- works well if $B \ll n$ and univariate context
- when D increases
the number of non-empty bins depends exponentially on the dimension D
\hookrightarrow impossible to obtain a manageable amount of binned data
\hookrightarrow several D-dimensional numerical integrations.
\hookrightarrow vanishes any kind of gain

Marginal binned data

- work with the 1-D binned data on each direction separately
- marginal counts: $\boldsymbol{m}=\left\{\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{D}\right\}$
for each direction $d=1, \ldots, D, \boldsymbol{m}_{d}=\left(m_{d 1}, \ldots, m_{d B_{d}}\right)$, component $m_{d b_{d}}$ is the count of observations $x_{i d}$ in the b_{d}-th bin of the d-th dimension

\hookrightarrow store $\sum_{d=1}^{D} B_{d}$ values instead of $\prod_{d=1}^{D} B_{d}$

Bin-marginal model

- bin-marginal pdf

$$
p_{m}(\boldsymbol{m} ; \psi)=\sum_{\boldsymbol{n}^{\prime} \in \mathcal{F}_{\boldsymbol{m}}} p\left(\boldsymbol{n}^{\prime} ; \boldsymbol{\psi}\right)
$$

where $\mathcal{F}_{\boldsymbol{m}}$ is the set of tables \boldsymbol{n}^{\prime} sharing the same marginals \boldsymbol{m}.

- issues
\hookrightarrow identifiability
\hookrightarrow mathematical complexity of the likelihood
\hookrightarrow optimization of the likelihood

Identifiability

- GMM identifiable up to a label permutation [rakowitz and Spragings 1968] (raw data)
- as so far, no reference for the binned case

Proposition (Full binned Gaussian diagonal mixtures - ABK 2021)

Under hypothesis of diagonal covariance matrices, binned D-variate mixtures of at most $K_{\text {max }}$ components are identifiable if $R_{d}>4 K_{\max }-3, d=1, \ldots, D$.

Identifiability

- GMM identifiable up to a label permutation [rakowitz and Spragings 1968] (raw data)
- as so far, no reference for the binned case

Proposition (Full binned Gaussian diagonal mixtures - ABK 2021)

Under hypothesis of diagonal covariance matrices, binned D-variate mixtures of at most $K_{\text {max }}$ components are identifiable if $R_{d}>4 K_{\text {max }}-3, d=1, \ldots, D$.

- the proof relies on an existing result

Proposition (11.5-Valiant 2012)

Given the linear combination of K univariate Gaussian densities $f(x)=\sum_{k=1}^{K} \pi_{k} \phi\left(x ; \mu_{k}, \sigma_{k}^{2}\right)$, such that either $\mu_{i} \neq \mu_{j}$ or $\sigma_{i}^{2} \neq \sigma_{j}^{2}$ for $i \neq j$ and for all $k \pi_{k} \neq 0$, the number of solutions to $f(x)=0$ is at most $2(K-1)$.

Identifiability

- GMM identifiable up to a label permutation [Yakowitz and Spragings 1968] (raw data)
- as so far, no reference for the binned case

Proposition (Full binned Gaussian diagonal mixtures - ABK 2021)
Under hypothesis of diagonal covariance matrices, binned D-variate mixtures of at most $K_{\text {max }}$ components are identifiable if $R_{d}>4 K_{\max }-3, d=1, \ldots, D$.

Proposition (Marginal-binned Gaussian diagonal mixtures - ABK 2021)

Bin-marginal D-variate mixtures of at most $K_{\text {max }}$ components are identifiable if binned D-variate mixtures are identifiable.
So, under diagonal covariance matrices hypothesis, identifiability is achieved if $R_{d}>4 K_{\max }-3, d=1, \ldots, D$.

Plan

4. Experiments
(5) Discussion

EM algorithm for bin-marginal model

- complete log-likelihood

$$
\ell^{c}(\psi ; \mathbf{x}, \mathbf{z})=\sum_{k=1}^{K} \sum_{i=1}^{n} z_{i k} \log \left(\pi_{k} \phi\left(\boldsymbol{x}_{i}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right)
$$

where \mathbf{z} gathers all $z_{i k}=\mathbb{1}_{\text {observation }} i$ in cluster k

EM algorithm for bin-marginal model

E-step

- expectation respectively to $p\left(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{m} ; \psi^{(j)}\right)$

$$
\begin{aligned}
Q_{m}\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{(j)}\right) & =\mathbb{E}_{\boldsymbol{\psi}(j)}\left[\ell^{c}(\boldsymbol{\psi} ; \mathbf{X}, \mathbf{Z}) \mid \boldsymbol{m}\right] \\
& =\sum_{n \in \mathcal{F}_{m}} \alpha^{(j)}(\boldsymbol{n}) \sum_{k=1}^{K} \sum_{b=1}^{B} n_{b} \int_{\mathcal{B}_{b}} \tau_{k}^{(j)}(\boldsymbol{x}) \log \left[\pi_{k} \phi\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right] d \boldsymbol{x} \\
-\alpha^{(j)}(\boldsymbol{n})= & \frac{p\left(\boldsymbol{n} ; \boldsymbol{\psi}^{(j)}\right.}{\sum_{\boldsymbol{n}^{\prime} \in \mathcal{F}_{m}} p\left(\boldsymbol{n}^{\prime} ; \boldsymbol{\psi}^{(j)}\right)} \text { and } \tau_{k}^{(j)}(.)=\frac{\pi_{k}^{(j)} \phi\left(\cdot ; \cdot \boldsymbol{\mu}_{k}^{(j)}, \boldsymbol{\Sigma}_{k}^{(j)}\right)}{f\left(\cdot ; \boldsymbol{\psi}^{(j)}\right)} .
\end{aligned}
$$

M-step

- $\pi_{k}^{(j+1)}=\frac{1}{n} \sum_{\boldsymbol{n} \in \mathcal{F}_{m}} \alpha^{(j)}(\boldsymbol{n}) \sum_{b=1}^{B} n_{b} \int_{\mathcal{B}_{b}} \tau_{k}^{(j)}(\boldsymbol{x}) d \boldsymbol{x}$
\hookrightarrow both steps involve the computation of all crossed tables $\left(\mathcal{F}_{\boldsymbol{m}}\right)$: intractable
\hookrightarrow alternative: use of marginal composite likelihood

Marginal Composite Likelihood

Let \mathbf{x} be a D-dimensional sample with n observations
$\boldsymbol{x}_{i}=\left(x_{i 1}, \ldots, x_{i D}\right), i=1, \ldots, n$, generated by a GMM with parameter ψ

- pseudo-likelihood only relying on the likelihood of the marginals $L_{d}\left(\psi_{d} ; \mathbf{x}_{d}\right)$
$\hookrightarrow \mathbf{x}_{d}=\left(x_{1 d}, \ldots, x_{n d}\right)$ the component d of the dataset
\hookrightarrow with parameter $\psi_{d}=\left(\pi_{1}, \ldots, \pi_{K}, \mu_{1 d}, \ldots, \mu_{K d}, \sigma_{1 d}^{2}, \ldots, \sigma_{K d}^{2}\right)$

$$
\tilde{L}(\psi ; \mathbf{x})=\prod_{d=1}^{D} L_{d}\left(\psi_{d} ; \mathbf{x}_{d}\right)
$$

- the estimator $\tilde{\psi}$ maximizing $\tilde{L}(\boldsymbol{\psi} ; \mathbf{x})$ is consistent and asymptotically normal [Molenberghs and Verbeke 2005]
- \hookrightarrow EM algorithm with CL for HMM [Gao and Song 2011]
\hookrightarrow CL on bivariate-binned data [Ranalli and Rocci 2016]

Bin-marginal Composite Likelihood (bmCL)

- our proposal: combine memory reduction (bin-marginal)

$$
\log p_{m}(\boldsymbol{m} ; \boldsymbol{\psi})=\log \sum_{\boldsymbol{n}^{\prime} \in \mathcal{F}_{\boldsymbol{m}}} p\left(\boldsymbol{n}^{\prime} ; \boldsymbol{\psi}\right)
$$

and computational advantages of 1D-marginal CL
\hookrightarrow we aim at maximizing the bin-marginal composite log-lik.:

$$
\begin{aligned}
\tilde{\ell}_{m}(\boldsymbol{\psi} ; \boldsymbol{m}) & =\sum_{d=1}^{D} \ell_{d}\left(\boldsymbol{\psi}_{d} ; \boldsymbol{m}_{d}\right) \\
& =\sum_{d=1}^{D} \sum_{b_{d}=1}^{B_{d}} m_{d b_{d}} \log \left(\int_{\mathcal{B}_{b_{d}}^{d}} f_{d}\left(x_{d} ; \boldsymbol{\psi}_{d}\right) d x_{d}\right)
\end{aligned}
$$

\hookrightarrow diagonal mixtures only...
\hookrightarrow identifiability?

Bin-marginal CL: generic identifiability

A case of non identifiability

- blue mixture:

$$
\begin{aligned}
& 0.5 \mathcal{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
v_{1} & 0 \\
0 & v_{2}
\end{array}\right)\right)+ \\
& 0.5 \mathcal{N}\left(\binom{\nu_{1}}{\nu_{2}},\left(\begin{array}{cc}
w_{1} & 0 \\
0 & w_{2}
\end{array}\right)\right)
\end{aligned}
$$

- red mixture:

$$
\begin{aligned}
& 0.5 \mathcal{N}\left(\binom{\mu_{1}}{\nu_{2}},\left(\begin{array}{cc}
v_{1} & 0 \\
0 & w_{2}
\end{array}\right)\right)+ \\
& 0.5 \mathcal{N}\left(\binom{\nu_{1}}{\mu_{2}},\left(\begin{array}{cc}
w_{1} & 0 \\
0 & v_{2}
\end{array}\right)\right) \\
& \hookrightarrow \mathbb{E}_{\psi^{*}}\left[\tilde{\ell}_{m}\left(\psi^{*} ; \boldsymbol{M}\right)\right]=\mathbb{E}_{\psi^{*}}\left[\tilde{\ell}_{m}(\boldsymbol{\psi} ; \boldsymbol{M})\right]
\end{aligned}
$$

Identifiability except on the set of null measure composed by mixtures having two equal proportions with two components sharing the same projection
\hookrightarrow generic identifiability, then consistency [Whitaker et al. 2020]

A naive EM algorithm for bin-marginal CL

on each direction d : work with \boldsymbol{m}_{d}

- associate the missing vectors $\left(\mathbf{x}_{d}, \mathbf{z}_{d}\right)$, where \mathbf{z}_{d} is $n \times K$ indicator membership matrix for \mathbf{x}_{d}.
- run 1D EM algorithm separately
- how two conciliate the partitions from each direction?
\hookrightarrow use the same π_{1}, \ldots, π_{K} on each direction, in a global EM

EM algorithm for bin-marginal CL (bmCL)

With $\psi_{d}=\left(\pi_{1}, \ldots, \pi_{K}, \mu_{1 d}, \ldots, \mu_{K d}, \sigma_{1 d}^{2}, \ldots, \sigma_{K d}^{2}\right)$

- bmCL E-step

$$
\tilde{Q}_{m}\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{(j)}\right)=\sum_{d=1}^{D} \int_{\mathcal{X}_{d} \times \mathcal{Z}_{d}} \ell_{d}^{c}\left(\boldsymbol{\psi}_{d} ; \boldsymbol{x}_{d}, \boldsymbol{z}_{d}\right) f\left(\boldsymbol{x}_{d}, \boldsymbol{z}_{d} \mid \boldsymbol{m}_{d} ; \boldsymbol{\psi}_{d}^{(j)}\right) d \boldsymbol{x}_{d} d \boldsymbol{z}_{d}
$$

- bmCL M-step straightforward

$$
\begin{gathered}
\tau_{k d}^{(j)}(.)=\frac{\pi_{k}^{(j)} \phi\left(. ; \mu_{k d}^{(j)}, \sigma_{k d}^{2(j)}\right)}{f\left(. ; \psi_{d}^{(j)}\right)} \\
\pi_{k}^{(j+1)}=\frac{\sum_{d=1}^{D} \sum_{b_{d}=1}^{B_{d}} m_{d b_{d}} \int_{\mathcal{B}_{b_{d}}^{d}} \tau_{k d}^{(j)}\left(x_{d}\right) d x_{d}}{D n} ; \mu_{k d}^{(j+1)}=\frac{\sum_{b_{d}=1}^{B_{d}} m_{d b_{d}} \int_{\mathcal{B}_{b_{d}}^{d}} x_{d} \tau_{k d}^{(j)}\left(x_{d}\right) d x_{d}}{\sum_{b_{d}=1}^{B_{d}} m_{d b_{d}} \int_{\mathcal{B}_{b_{d} d}^{d}} \tau_{k d}^{(j)}\left(x_{d}\right) d x_{d}}
\end{gathered}
$$

- estimated partition: $\widehat{\boldsymbol{z}}=\arg \max _{k} \frac{\widehat{\pi}_{k} \phi\left(: ; \widehat{\widehat{N}}_{\kappa}, \hat{\Sigma}_{k}^{2}\right)}{f(; \cdot, \hat{\psi})}$

Plan

(5) Discussion

Numerical experiment on simulated data

- ability to recognize the minority class
- comparison with two competitors (estimation with Rmixmod)
\hookrightarrow classic estimation with the full dataset
\hookrightarrow a subsampling strategy
- clustering quality measured by the ARI score and time, under same memory constraints:
\hookrightarrow bin marginal: grid coarseness $\mathrm{R} \hookrightarrow$ 2R memory space
\hookrightarrow subsampling: 100 different subsamples of size $2 R$
$\hookrightarrow R=50,100,200$

Experimental settings: 1M obs from 3D 2-classes mixtures

Scenario	Separation	Imbalance	Small class proportion $\left(\pi_{1}\right)$	Means
HH		High	10^{-4}	$\mu_{1}=(-4,-4,-4)$
HM	High	Medium	10^{-3}	$\mu_{2}=(4,4,4)$
HL		Low	10^{-2}	
MH		High	10^{-4}	$\mu_{1}=(-3,-3,-3)$
MM	Medium	Medium	10^{-3}	$\mu_{2}=(3,3,3)$
ML		Low	10^{-2}	
LH		High	10^{-4}	$\mu_{1}=(-2,-2,-2)$
LM	Low	Medium	10^{-3}	$\mu_{2}=(2,2,2)$
LL		Low	10^{-2}	$\mu_{1}=(-1,-1,-1)$
VH		High	10^{-4}	$\mu_{2}=(1,1,1)$
VM	Very low	Medium	10^{-3}	
VL		Low	10^{-2}	$\mu_{1}=(-1,-1,-4)$
			10^{-4}	$\mu_{2}=(1,1,4)$
1HH	One separated	High	Medium	10^{-3}
lHM	component	Low	10^{-2}	
lHL				

20 replications of each scenario

Results

(a) HH

(d) MH

(g) LH

(j) VH

(o) 1HL

Results

subsampling failures

- probability of failure \nearrow if separation \nearrow and if imbalance ratio \searrow
- astonishing... but
- if subsampling does not fail, it works badly

Results

time vs grid/subsample size equal memory occupancy

- - subsampling EM (red) - bin-marginal CL-EM (black)
- expected CL-EM time after
optimization in language C++ (blue)
- full dataset (dotted line)
- remarkable improvement relatively to full data set

Real imbalanced datasets

- image segmentation, fraud detection, hazardous asteroid detection
- three variables

Dataset	n	D	Small class proportion
Cell-1	101,430	3	unknown
Cell-2	65,536	3	unknown
Cell-3	685,020	3	unknown
Comet	$1,083,681$	3	unknown
Asteroids	932,341	3	0.002
Credit card	284,807	3	0.0014

Results: Image segmentation Comet ($\mathrm{R}=400, \mathrm{~K}=3$)

(a)

Results: Image segmentation Cell-1 (R=20, K=4)

(a)

(b)

Results: Image segmentation Cell-2 (R=20, K=4)

(a)

Results: Image segmentation Cell-3 (R=20, K=4)

(a)

(b)

Results: credit card and asteroids

- two known clusters
- Clustering for $K=2,3,4$, then clusters of highest proportions are grouped (mixture of mixtures)
- despite the loss of information, binned method seems to behave better than full GMM and subsampling
- the tiny class contains the abnormal objects (no false negative) but low ARI (false positive)

Plan

3 Estimation
(4) Experiments
(5) Discussion

Sum-up

clustering of huge and imbalanced datasets under memory contraints:

- bin marginal composite likelihood (bmCL) approach allows to answer:
\hookrightarrow memory requirements
\hookrightarrow tractability of EM algorithm
\hookrightarrow recovery of tiny classes
\hookrightarrow not very sensitive to grid coarseness
- subsampling
\hookrightarrow easy to implement
\hookrightarrow pb to recover tiny clusters
\hookrightarrow high variability
\hookrightarrow number of subsamples?

Discussion

- bmCL clearly outperforms subsampling under same memory constraint, and is frugal compared to full sample but
\hookrightarrow generates a lot of missing data
\hookrightarrow prone to slow convergence, open algorithmic question
\hookrightarrow hybrid method bmCL / subsampling?
- preliminary study, seminal for further researches
\hookrightarrow how to deal with frugality while increasing number of clusters
\hookrightarrow strategy when many (tiny) clusters
\hookrightarrow grid definition as a model choice?
\hookrightarrow specific criterion for selecting the number of clusters and grid definition

Thank you for your attention!

Identifiability (main steps)

- work with binned univariate mixtures of at most $K_{\max }$ components: pmf reduces to

$$
\forall \boldsymbol{\psi}, \boldsymbol{\psi}^{*} \in \psi: \quad p(\boldsymbol{n} ; \boldsymbol{\psi})=p\left(\boldsymbol{n} ; \boldsymbol{\psi}^{*}\right) \forall G, \boldsymbol{n} \Rightarrow \boldsymbol{\psi}=\boldsymbol{\psi}^{*}
$$

- if G has R cut points, $\left(a_{1}, \ldots, a_{R}\right)$ then it is needed to prove that the system has only the trivial solution $\psi=\psi^{*}$ at a up to a relabeling whatever the grid is

$$
\left\{\begin{array}{l}
\pi \sum_{k=1}^{K} \Phi\left(\frac{a_{1}-\mu_{k}}{\sigma_{k}}\right)=\sum_{k=1}^{K^{*}} \pi^{*} \Phi\left(\frac{a_{1}-\mu_{k}^{*}}{\sigma_{k}^{*}}\right) \\
\pi \sum_{k=1}^{K} \Phi\left(\frac{a_{2}-\mu_{k}}{\sigma_{k}}\right)=\sum_{k=1}^{K^{*}} \pi^{*} \Phi\left(\frac{a_{2}-\mu_{k}^{*}}{\sigma_{k}^{*}}\right) \\
\vdots \\
\pi \sum_{k=1}^{K} \Phi\left(\frac{a_{R}-\mu_{k}}{\sigma_{k}}\right)=\sum_{k=1}^{K^{*}} \pi^{*} \Phi\left(\frac{a_{R}-\mu_{k}^{*}}{\sigma_{k}^{*}}\right)
\end{array}\right.
$$

- deduce with [Prop. 11.5-Valiant 2012] that binned univariate mixtures of at most $K_{\text {max }}$ Gaussian distributions are identifiable if the binning grid has $R>4 K_{\max }-3$ cut points.
- induction for D-variate mixtures

EM algorithm for bin-marginal data

- complete log-likelihood

$$
\ell^{c}(\psi ; \mathbf{x}, \mathbf{z})=\sum_{k=1}^{K} \sum_{i=1}^{n} z_{i k} \log \left(\pi_{k} \phi\left(\boldsymbol{x}_{i}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right)
$$

where $z_{i k}=\mathbb{1}_{\text {observation } i}$ in cluster k

- E-step

$$
\begin{aligned}
Q_{m}\left(\boldsymbol{\psi}, \boldsymbol{\psi}^{(j-1)}\right) & =\mathbb{E}_{\boldsymbol{\psi}^{(j-1)}}\left[\ell^{C}(\boldsymbol{\psi} ; \mathbf{X}, \mathbf{Z}) \mid \boldsymbol{m}\right] \\
& =\sum_{\boldsymbol{n} \in \mathcal{F}_{\boldsymbol{m}}} p\left(\boldsymbol{n} \mid \boldsymbol{m} ; \boldsymbol{\psi}^{(j-1)}\right) \mathbb{E}_{\boldsymbol{\psi}^{(j-1)}}\left[\ell^{c}(\boldsymbol{\psi} ; \mathbf{X}, \mathbf{Z}) \mid \boldsymbol{n}\right] \\
& =\sum_{\boldsymbol{n} \in \mathcal{F}_{\boldsymbol{m}}} \alpha^{(j-1)}(\boldsymbol{n}) \mathbb{E}_{\boldsymbol{\psi}^{(j-1)}}\left[\ell^{c}(\boldsymbol{\psi} ; \mathbf{X}, \mathbf{Z}) \mid \boldsymbol{n}\right] \\
& =\sum_{\boldsymbol{n} \in \mathcal{F}_{\boldsymbol{m}}} \alpha^{(j-1)}(\boldsymbol{n}) \sum_{k=1}^{K} \sum_{b=1}^{B} n_{b} \int_{\mathcal{B}_{b}} \tau_{k}^{(j-1)}(\boldsymbol{x}) \\
& \times \log \left[\pi_{k} \phi\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right] d \boldsymbol{x}
\end{aligned}
$$

[^0]: ${ }^{1}$ also provide an estimate of ψ with a binned version of EM

