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Motivation: huge and imbalanced data sets

▶ huge in the sense tall data
↪→ number of observations (high dimension setting out of scope)
↪→ out of computer limits
↪→ or within computer limits but with frugal resource

consumption (green computing)

▶ discover new information
↪→ more and more clusters: not the focus of this talk

↪→ reveal (valuable) tiny clusters: imbalanced data sets
a few abnormal objects have to be recognized among a
large amount of normal ones
credit card fraud detection [Chan and Stolfo 1998)], cancer recognition [Yu et al.

2012], fraudulent calls [Fawcett and Provost 1997 ]
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Approaches

▶ supervised approach (classification) with imbalanced data sets
↪→ create artificial balanced data sets:

oversampling the minority class [Chawla et al. 2002],

undersampling the majority class [Tahir et al. 2009]

↪→ labeling could be difficult when sample size is very large

▶ unsupervised approach (clustering) with very large sample size
↪→ subsampling [Fraley and Raftery 2002, Xia et al. 2019]

↪→ difficult to detect very tiny clusters

↪→ computer science solutions
powerful computers or distributed architectures (MAP-reduce, ...)

↪→ not frugal

our aim: clustering of huge and imbalanced datasets under
memory contraints
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Another way for data reduction

▶ unsupervised approach (clustering)
↪→ from raw to binned data
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Our bin-marginal approach in a nutshell
Frugal unsupervised D-dim. GMM using marginal binned data:

1. from raw to binned data
↪→ particular version of the EM algorithm [McLachlan and Jones 1998;

Cadez et al. 2002]

↪→ but we will be face to another dimensionality problem. . .

2. from binned data to (1D-)marginal counts
↪→ need to design a new EM algorithm but computationally
intractable. . .

3. optimization of a composite likelihood (CL) [Lindsay 1988; Whitaker et al.

2020] instead of the full one
↪→ restriction for diagonal GMM

already exists: CL + GMM + 2D-bin [Ranalli and Rocci 2016]

novelty in our approach: harder data reduction (1D-bin)
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Model Based Clustering with finite GMM

Observations x = {x i ∈ RD, i = 1, . . . ,n} are i.i.d. according to a
D-dimensional Gaussian mixture model (GMM) with K components:

f (x ;ψ) =
K∑

k=1

πkϕ(x ;µk ,Σk )

∑
k

πk = 1, πk > 0 (k = 1, . . . ,K )

where ψ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK ) and ϕ(.) is the
D-variate Gaussian density
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Binned data

unobservable or too many raw data x i
↪→ vector of binned data n = (n1, . . . ,nB)

▶ the original sample space is divided into a partition
{Bb ⊂ Rd ,b = 1, . . . ,B}

▶ nb = #{x i ∈ Bb}

n arises from a multinomial model with pmf [Cadez et al. 2002]1

p(n;ψ) ∝
B∏

b=1

( K∑
k=1

πk

∫
Bb

ϕ(x ;µk ,Σk )dx
)nb

.

▶ trick for sample size reduction: select B ≪ n

1also provide an estimate of ψ with a binned version of EM
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Curse of dimensionality for binned data

▶ in our case: Cartesian grid G = G1 × . . .× GD where Gd is a
univariate grid with Rd + 2 cut points
↪→ B =

∏D
d=1(Rd + 1) bins, representing the grid’s coarseness

▶ works well if B ≪ n and univariate context

▶ when D increases
the number of non-empty bins
depends exponentially on the
dimension D
↪→ impossible to obtain a
manageable amount of binned
data
↪→ several D-dimensional
numerical integrations.

↪→ vanishes any kind of gain 10
2

10
3

10
4

10
5

2 3 4 5

Space dimension

N
o

n
−

e
m

p
ty

 b
in

s Grid coarseness per axis

5

10

20

50

10 / 40



Introduction Model Estimation Experiments Discussion

Marginal binned data
▶ work with the 1-D binned data on each direction separately
▶ marginal counts: m = {m1, . . . ,mD}

for each direction d = 1, . . . ,D, md = (md1, . . . ,mdBd ),
component mdbd is the count of observations xid in the bd -th bin
of the d-th dimension

store
∑D

d=1 Bd values instead of
∏D

d=1 Bd
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Bin-marginal model

▶ bin-marginal pdf

pm(m;ψ) =
∑

n′∈Fm

p(n′;ψ),

where Fm is the set of tables n′ sharing the same marginals m.

▶ issues
↪→ identifiability
↪→ mathematical complexity of the likelihood
↪→ optimization of the likelihood
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Identifiability
▶ GMM identifiable up to a label permutation [Yakowitz and Spragings 1968]

(raw data)
▶ as so far, no reference for the binned case

Proposition ( Full binned diagonal GMM - ABK 2021)
Under hypothesis of diagonal covariance matrices, binned D-variate
mixtures of at most Kmax components are identifiable if
Rd > 4Kmax − 3, d = 1, . . . ,D.
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Identifiability
▶ GMM identifiable up to a label permutation [Yakowitz and Spragings 1968]

(raw data)
▶ as so far, no reference for the binned case

Proposition ( Full binned diagonal GMM - ABK 2021)
Under hypothesis of diagonal covariance matrices, binned D-variate
mixtures of at most Kmax components are identifiable if
Rd > 4Kmax − 3, d = 1, . . . ,D.

▶ the proof relies on an existing result

Proposition (11.5 - Valiant 2012)
Given the linear combination of K univariate Gaussian densities
f (x) =

∑K
k=1 πkϕ(x ;µk , σ

2
k ), such that either µi ̸= µj or σ2

i ̸= σ2
j for

i ̸= j and for all k πk ̸= 0, the number of solutions to f (x) = 0 is at
most 2(K − 1).
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Identifiability
▶ GMM identifiable up to a label permutation [Yakowitz and Spragings 1968]

(raw data)
▶ as so far, no reference for the binned case

Proposition ( Full binned diagonal GMM - ABK 2021)
Under hypothesis of diagonal covariance matrices, binned D-variate
mixtures of at most Kmax components are identifiable if
Rd > 4Kmax − 3, d = 1, . . . ,D.

Proposition (Marginal-binned diag. GMM - ABK 2021)

Bin-marginal D-variate mixtures of at most Kmax components are
identifiable if binned D-variate mixtures are identifiable.
So, under diagonal covariance matrices hypothesis, identifiability is
achieved if Rd > 4Kmax − 3, d = 1, . . . ,D.
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EM algorithm for bin-marginal model

▶ complete log-likelihood

ℓc(ψ; x, z) =
K∑

k=1

n∑
i=1

zik log(πkϕ(x i ,µk ,Σk ))

where z gathers all zik = 1Iobservation i in cluster k
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EM algorithm for bin-marginal model
E-step
▶ expectation respectively to p(x , z|m;ψ(j))

Qm(ψ,ψ
(j)) = Eψ(j) [ℓ

c(ψ;X,Z)|m]

=
∑

n∈Fm

α(j)(n)
K∑

k=1

B∑
b=1

nb

∫
Bb

τ
(j)
k (x) log[πkϕ(x ;µk ,Σk )]dx

▶ α(j)(n) = p(n;ψ(j))∑
n′∈Fm

p(n′;ψ(j))
and τ

(j)
k (.) =

π
(j)
k ϕ(.;µ

(j)
k ,Σ

(j)
k )

f (.;ψ(j))
.

M-step

▶ π
(j+1)
k = 1

n

∑
n∈Fm

α(j)(n)
∑B

b=1 nb
∫
Bb

τ
(j)
k (x)dx

both steps involve intractable computation of all crossed tables Fm
alternative: use of marginal composite likelihood
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Marginal Composite Likelihood

Let x be a D-dimensional sample with n observations
x i = (xi1, . . . , xiD), i = 1, . . . , n, generated by a GMM with parameter ψ

▶ pseudo-likelihood only relying on the likelihood of the marginals
Ld (ψd ; xd )

↪→ xd = (x1d , . . . , xnd ) the component d of the dataset
↪→ with parameter ψd = (π1, . . . , πK , µ1d , . . . , µKd , σ

2
1d , . . . , σ

2
Kd )

L̃(ψ;x) =
D∏

d=1

Ld (ψd ; xd )

▶ the estimator ψ̃ maximizing L̃(ψ;x) is consistent and
asymptotically normal [Molenberghs and Verbeke 2005]

▶ ↪→ EM algorithm with CL for HMM [Gao and Song 2011]

↪→ CL on bivariate-binned data [Ranalli and Rocci 2016]
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Bin-marginal Composite Likelihood (bmCL)
▶ our proposal: combine memory reduction (bin-marginal)

log pm(m;ψ) = log
∑

n′∈Fm

p(n′;ψ)

and computational advantages of 1D-marginal CL
↪→ we aim at maximizing the bin-marginal composite log-lik.:

ℓ̃m(ψ;m) =
D∑

d=1

ℓd (ψd ;md )

=
D∑

d=1

Bd∑
bd=1

mdbd log
(∫

Bd
bd

fd (xd ;ψd )dxd

)
.

↪→ diagonal mixtures only...

what about identifiability again?

20 / 40



Introduction Model Estimation Experiments Discussion

Bin-marginal CL: generic identifiability

A case of non identifiability
▶ blue mixture:

0.5N
((

µ1
µ2

)
,

(
v1 0
0 v2

))
+

0.5N
((

ν1
ν2

)
,

(
w1 0
0 w2

))
▶ red mixture:

0.5N
((

µ1
ν2

)
,

(
v1 0
0 w2

))
+

0.5N
((

ν1
µ2

)
,

(
w1 0
0 v2

))
↪→ Eψ∗ [ℓ̃m(ψ∗; M)] = Eψ∗ [ℓ̃m(ψ; M)]

Identifiability except on the set of null measure composed by mixtures
having two equal proportions with two components sharing the same
projection

generic identifiability, then consistency [Whitaker et al. 2020]
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A naive EM algorithm for bin-marginal CL

on each direction d : work with md

▶ associate the missing vectors (xd , zd ), where zd is n × K
indicator membership matrix for xd .

▶ run 1D EM algorithm separately
▶ how to conciliate the partitions from each direction ?

↪→ use the same π1, . . . , πK on each direction, in a global EM

formalize more this idea now with a unique EM algorithm. . .
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EM algorithm for bin-marginal CL (bmCL)
With ψd = (π1, . . . , πK , µ1d , . . . , µKd , σ

2
1d , . . . , σ

2
Kd)

▶ bmCL E-step

Q̃m(ψ,ψ
(j)) =

D∑
d=1

∫
Xd×Zd

ℓc
d (ψd ;xd , zd ) f (xd , zd |md ;ψ

(j)
d )dxddzd .

▶ bmCL M-step straightforward

τ
(j)
kd (.) =

π
(j)
k ϕ(.;µ

(j)
kd , σ

2(j)
kd )

f (.;ψ(j)
d )

π
(j+1)
k =

∑D
d=1

∑Bd
bd=1 mdbd

∫
Bd

bd

τ
(j)
kd (xd)dxd

Dn
; µ

(j+1)
kd =

∑Bd
bd=1 mdbd

∫
Bd

bd

xdτ
(j)
kd (xd)dxd∑Bd

bd=1 mdbd

∫
Bd

bd

τ
(j)
kd (xd)dxd

▶ final estimated partition: ẑ = argmaxk
π̂kϕ(.;µ̂k ,Σ̂

2
k )

f (.;ψ̂)
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Numerical experiment on simulated data

▶ ability to recognize the minority class
▶ comparison with two competitors (estimation with Rmixmod)

↪→ classic estimation with the full dataset
↪→ a subsampling strategy

▶ clustering quality measured by the ARI score and time, under
same memory constraints:
↪→ bin marginal: grid coarseness R ↪→ 2R memory space
↪→ subsampling: 100 different subsamples of size 2R

↪→ R=50, 100, 200
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Experimental settings: 1M obs from 3D 2-classes mixtures

20 replications of each scenario
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Results (partition quality)

quality vs memory
▶ bmCL (black) mostly

outperforms
subsampling (red), even
with coarser grid,

▶ some difficulties only
with very little separation
and small proportion

▶ in general, bmCL
approaches full data set
results (dotted), with
drastically less amount of
memory
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A zoom on some (partition quality) results. . .
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Results (subsampling failures)

subsampling failures
▶ probability of failure ↗ if

separation ↗ and if
imbalance ratio ↘

▶ astonishing... but

▶ if subsampling does not
fail, it works badly
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Results (computation time)

time vs grid/subsample size
equal memory occupancy

▶ - subsampling EM (red)
- bin-marginal CL-EM (black)
- expected CL-EM time after
optimization in language C++ (blue)
- full dataset (dotted line)

▶ remarkable improvement relatively to
full data set
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Real imbalanced datasets

▶ image segmentation, fraud
detection, hazardous
asteroid detection

▶ three variables

31 / 40



Introduction Model Estimation Experiments Discussion

Results: Image segmentation Comet (R=400, K=3)
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Results: Image segmentation Cell-1 (R=20, K=4)
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Results: Image segmentation Cell-2 (R=20, K=4)
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Results: Image segmentation Cell-3 (R=20, K=4)
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Results: asteroids and credit card

asteroids credit card
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I

subsampled EM (red boxplots), bin-marginal CL-EM (black circle) and full dataset EM (blue circle)

▶ two known clusters

▶ ARI very low for all methods, included the full dataset one, but it is not the concern of this
experiment

▶ despite the loss of information, binned method behave similarly than full dataset and
subsampling

▶ subsampling has high variability (dependency to the drawn subsample)
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Sum-up
clustering of huge and imbalanced datasets under memory
contraints:

▶ bin marginal composite likelihood (bmCL) approach allows to
answer:
↪→ memory requirements
↪→ tractability of EM algorithm
↪→ recovery of tiny classes
↪→ not very sensitive to grid coarseness

▶ subsampling
↪→ easy to implement
↪→ pb to recover tiny clusters
↪→ high variability
↪→ number of subsamples (in clustering, no information on the

tiny cluster)?
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Discussion

▶ bmCL clearly outperforms subsampling under same memory
constraint, and is frugal compared to full sample but
↪→ generates a lot of missing data
↪→ prone to slow convergence, open algorithmic question
↪→ hybrid method bmCL / subsampling?

▶ preliminary study, seminal for further researches
↪→ how to deal with frugality while increasing number of clusters
↪→ strategy when many (tiny) clusters
↪→ grid definition as a model choice?
↪→ specific criterion for selecting the number of clusters and

grid definition (remind: likelihood value is intractable)
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Thank you for your attention!
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Identifiability (main steps)
▶ work with binned univariate mixtures of at most Kmax

components: pmf reduces to

∀ψ,ψ∗ ∈ Ψ : p(n;ψ) = p(n;ψ∗) ∀G,n ⇒ ψ = ψ∗

▶ if G has R cut points, (a1, . . . ,aR) then it is needed to prove that
the system has only the trivial solution ψ = ψ∗ at a up to a
relabeling whatever the grid is



π
∑K

k=1 Φ(
a1−µk

σk
) =

∑K∗
k=1 π

∗Φ(
a1−µ∗

k
σ∗

k
)

π
∑K

k=1 Φ(
a2−µk

σk
) =

∑K∗
k=1 π

∗Φ(
a2−µ∗

k
σ∗

k
)

...

π
∑K

k=1 Φ(
aR−µk

σk
) =

∑K∗
k=1 π

∗Φ(
aR−µ∗

k
σ∗

k
)

▶ deduce with [Prop. 11.5 - Valiant 2012] that
binned univariate mixtures of at most Kmax Gaussian distributions
are identifiable if the binning grid has R > 4Kmax − 3 cut points.

▶ induction for D-variate mixtures
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EM algorithm for bin-marginal data
▶ complete log-likelihood

ℓc(ψ; x, z) =
K∑

k=1

n∑
i=1

zik log(πkϕ(x i ,µk ,Σk ))

where zik = 1Iobservation i in cluster k
▶ E-step

Qm(ψ,ψ
(j−1)) = Eψ(j−1) [ℓc(ψ;X,Z)|m]

=
∑

n∈Fm

p(n|m;ψ(j−1))Eψ(j−1) [ℓc(ψ;X,Z)|n]

=
∑

n∈Fm

α(j−1)(n)Eψ(j−1) [ℓc(ψ;X,Z)|n]

=
∑

n∈Fm

α(j−1)(n)
K∑

k=1

B∑
b=1

nb

∫
Bb

τ
(j−1)
k (x)

× log[πkϕ(x ;µk ,Σk )]dx
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