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f (x; ψ) = K k =1 π k ϕ(x; µ k , Σ k ) k π k = 1, π k > 0 (k = 1, . . . , K ) where ψ = (π 1 , . . . , π K , µ 1 , . . . , µ K , Σ 1 , . . . , Σ K ) and ϕ(.)
Bin-marginal model

▶ bin-marginal pdf p m (m; ψ) = n ′ ∈Fm p(n ′ ; ψ),
where F m is the set of tables n ′ sharing the same marginals m. (raw data) ▶ as so far, no reference for the binned case Proposition ( Full binned diagonal GMM -ABK 2021)

▶ issues → identifiability → mathematical
Under hypothesis of diagonal covariance matrices, binned D-variate mixtures of at most K max components are identifiable if R d > 4K max -3, d = 1, . . . , D.
▶ the proof relies on an existing result Proposition (11.5 -Valiant 2012) Given the linear combination of K univariate Gaussian densities f

(x) = K k =1 π k ϕ(x; µ k , σ 2
k ), such that either µ i ̸ = µ j or σ 2 i ̸ = σ 2 j for i ̸ = j and for all k π k ̸ = 0, the number of solutions to f (x) = 0 is at most 2(K -1). EM algorithm for bin-marginal model

▶ complete log-likelihood ℓ c (ψ; x, z) = K k =1 n i=1 z ik log(π k ϕ(x i , µ k , Σ k ))
where z gathers all z ik = 1I observation i in cluster k

EM algorithm for bin-marginal model

E-step

▶ expectation respectively to p(x, z|m; ψ (j) )

Qm(ψ, ψ (j) ) = E ψ (j) [ℓ c (ψ; X, Z)|m] = n∈Fm α (j) (n) K k =1 B b=1 n b B b τ (j) k (x) log[π k ϕ(x; µ k , Σ k )]dx ▶ α (j) (n) = p(n;ψ (j) )
n ′ ∈Fm p(n ′ ;ψ (j) ) and τ

(j) k (.) = π (j) k ϕ(.;µ (j) k ,Σ (j) 
k ) f (.;ψ (j) )

. ▶ bmCL E-step ▶ if G has R cut points, (a 1 , . . . , a R ) then it is needed to prove that the system has only the trivial solution ψ = ψ * at a up to a relabeling whatever the grid is

M-step

▶ π (j+1) k = 1 n n∈Fm α (j) (n) B b=1 n b B b τ (j) k (x)
Qm (ψ, ψ (j) ) = D d=1 X d ×Z d ℓ c d (ψ d ; x d , z d ) f (x d , z d |m d ; ψ (j) d )dx d dz d . ▶ bmCL M-step straightforward τ (j) kd (.) = π (j) k ϕ(.; µ (j) kd , σ 2(j) kd ) f (.; ψ (j) d ) π (j+1) k = D d=1 B d b d =1 m db d B d b d τ (j) kd (x d )dx d Dn ; µ (j+1) kd = B d b d =1 m db d B d b d x d τ (j) kd (x d )dx d B d b d =1 m db d B d b d τ (j) kd (x d )dx d ▶ final estimated partition: z = arg max k π k ϕ(.; µ k , Σ 2 k ) f (.; ψ)
                   π K k =1 Φ( a 1 -µ k σ k ) = K * k =1 π * Φ( a 1 -µ * k σ * k ) π K k =1 Φ( a 2 -µ k σ k ) = K * k =1 π * Φ( a 2 -µ * k σ * k ) . . . π K k =1 Φ( a R -µ k σ k ) = K * k =1 π * Φ( a R -µ * k σ * k )
▶ deduce with [Prop. 11.5 -Valiant 2012] that binned univariate mixtures of at most K max Gaussian distributions are identifiable if the binning grid has R > 4K max -3 cut points.

▶ induction for D-variate mixtures

▶

  work with the 1-D binned data on each direction separately ▶ marginal counts: m = {m 1 , . . . , m D } for each direction d = 1, . . . , D, m d = (m d1 , . . . , m dB d ), component m db d is the count of observations x id in the b d -th bin of the d-th dimension store D d=1 B d values instead of

  

  

  

  

  

  complexity of the likelihood → optimization of the likelihood
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▶ GMM identifiable up to a label permutation

[Yakowitz and Spragings 1968] 
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  dx both steps involve intractable computation of all crossed tables F m alternative: use of marginal composite likelihood D-dimensional sample with n observations x i = (x i1 , . . . , x iD ), i = 1, . . . , n, generated by a GMM with parameter ψ ▶ pseudo-likelihood only relying on the likelihood of the marginals LWith ψ d = (π 1 , . . . , π K , µ 1d , . . . , µ Kd , σ 2 1d , . . . , σ 2 Kd )

	Model Marginal Composite Likelihood Estimation Experiments Let x be a Model Estimation Experiments Bin-marginal Composite Likelihood (bmCL) ▶ our proposal: combine memory reduction (bin-marginal) log pm(m; ψ) = log n ′ ∈Fm p(n ′ ; ψ) Introduction Model Estimation Experiments A naive EM algorithm for bin-marginal CL Estimation Experiments on each direction d: work with m Model EM algorithm for bin-marginal CL (bmCL)	Discussion Discussion Discussion Discussion
	and computational advantages of 1D-marginal CL
	→ we aim at maximizing the bin-marginal composite log-lik.:
	D	
	lm (ψ; m) =	ℓ d (ψ d ; m d )
	d=1	
	D	B d
	= f → diagonal mixtures only... d=1 b d =1 m db d log B d b d
	what about identifiability again?

d (ψ d ; x d ) → x d = (x 1d , . . . , x nd ) the component d of the dataset → with parameter ψ d = (π 1 , . . . , π K , µ 1d , . . . , µ Kd , σ 2 1d , . . . , σ 2 Kd ) L(ψ; x) = D d=1 L d (ψ d ; x d ) ▶ the estimator ψ maximizing L(ψ; x) is consistent and asymptotically normal [Molenberghs and Verbeke 2005] ▶ → EM algorithm with CL for HMM [Gao and Song 2011] → CL on bivariate-binned data [Ranalli and Rocci 2016] d (x d ; ψ d )dx d . d ▶ associate the missing vectors (x d , z d ), where z d is n × K indicator membership matrix for x d .

▶ run 1D EM algorithm separately ▶ how to conciliate the partitions from each direction ? → use the same π 1 , . . . , π K on each direction, in a global EM formalize more this idea now with a unique EM algorithm. . .

  ▶ work with binned univariate mixtures of at most K max components: pmf reduces to∀ψ, ψ * ∈ Ψ : p(n; ψ) = p(n; ψ * ) ∀G, n ⇒ ψ = ψ *
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	Numerical experiment on simulated data Results (partition quality) Results (subsampling failures) Results (computation time) Results: asteroids and credit card Sum-up Discussion	
	clustering of huge and imbalanced datasets under memory	
	contraints:	asteroids	HH	HM credit card	HL
	Introduction Model Estimation Experiments Discussion ▶ ability to recognize the minority class ▶ comparison with two competitors (estimation with Rmixmod) → classic estimation with the full dataset → a subsampling strategy ▶ clustering quality measured by the ARI score and time, under same memory constraints: → bin marginal: grid coarseness R → 2R memory space → subsampling: 100 different subsamples of size 2R → R=50, 100, 200 quality vs memory ▶ bmCL (black) mostly outperforms subsampling (red), even with coarser grid, ▶ some difficulties only with very little separation and small proportion ▶ in general, bmCL approaches full data set results (dotted), with drastically less amount of memory subsampling failures ▶ probability of failure ↗ if separation ↗ and if imbalance ratio ↘ ▶ astonishing... but ▶ if subsampling does not fail, it works badly 1HH 1HM 1HL VH VM VL LH LM LL MH MM ML 100 200 400 100 200 400 100 200 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 Subsample size Failures (%) time vs grid/subsample size equal memory occupancy ▶ -subsampling EM (red) -bin-marginal CL-EM (black) -expected CL-EM time after optimization in language C++ (blue) -full dataset (dotted line) ▶ remarkable improvement relatively to 50 50 100 100 Grid dimension/0.5*subsample size 200 ▶ two known clusters ▶ ARI very low for all methods, included the full dataset one, but it is not the concern of this experiment ▶ despite the loss of information, binned method behave similarly than full dataset and subsampling Experiments Discussion → high variability grid definition (remind: likelihood value is intractable) → pb to recover tiny clusters → specific criterion for selecting the number of clusters and → easy to implement → grid definition as a model choice? ▶ subsampling → strategy when many (tiny) clusters full data set 0.01 0.1 1 10 100 Execution time 0.07 0.08 0.09 0.10 ARI 0.000 0.025 0.050 0.075 0.100 ARI → how to deal with frugality while increasing number of clusters subsampled EM (red boxplots), bin-marginal CL-EM (black circle) and full dataset EM (blue circle) ▶ bmCL clearly outperforms subsampling under same memory Introduction Model → not very sensitive to grid coarseness ▶ preliminary study, seminal for further researches Estimation constraint, and is frugal compared to full sample but ▶ bin marginal composite likelihood (bmCL) approach allows to → generates a lot of missing data answer: → prone to slow convergence, open algorithmic question → memory requirements → hybrid method bmCL / subsampling? → tractability of EM algorithm → recovery of tiny classes Thank you for your attention!	400 200
	▶ subsampling has high variability (dependency to the drawn subsample) → number of subsamples (in clustering, no information on the
	tiny cluster)?			

also provide an estimate of ψ with a binned version of EM

replications of each scenario

Results: Image segmentation Cell-1 (R=20, K=4)

Results: Image segmentation Cell-2 (R=20, K=4)

Results: Image segmentation Cell-3 (R=20, K=4)

Model

Estimation Experiments Discussion

Bin-marginal CL: generic identifiability A case of non identifiability

Identifiability except on the set of null measure composed by mixtures having two equal proportions with two components sharing the same projection generic identifiability, then consistency EM algorithm for bin-marginal data

where

× log[π k ϕ(x; µ k , Σ k )]dx