Mapping clusters as spherical Gaussians

Numerical illustrations for complex data Discussion

Model-based clustering: pitch 1 Data set: x = ( 1 , . . . , n ), each i 2 X with d X variables Partition (unknown): z = ( 1 , . . . , n ) with binary notation i = (z i1 , . . . , z iK ) Statistical model: couples ( i , i ) independently arise from the parametrized pdf

f ( i , i ) | {z } 2F = K Y k=1 [⇡ k f k ( i )] z ik
Estimating f : implement the MLE principle through an EM-like algorithm

Estimating K : use some information criteria as BIC, ICL,. . . Estimating z: use the MAP principle ẑik = 1 iif k = arg max `ti`( f ) where

t ik (f ) = p(z ik = 1| i ; f ) = ⇡ k f k ( i ) K X `=1 ⇡ `f`( i ) | {z } f ( i )
.

1 See for instance [McLachlan & Peel 2004], [Biernacki 2017] 4/36
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Model-based clustering: flexibility of F for complex X

Continuous data (X = R d X ): multivariate Gaussian/t distrib. [McNicholas 2016]
Categorical data: product of multinomial distributions [Goodman 1974] Mixing cont./cat.: product Gaussian/multinomial [Moustaki & Papageorgiou 2005] Functional data: the discriminative functional mixture [Bouveyron et al. 2015] Network data: the Erdös Rényi mixture [Zanghi et al. 2008] Other kinds of data, missing data, high dimension,. . . Nearly always, Y = R 2 Model f is is not taken into account through this approach which is focused on x 8/36

Overview of clustering visualization: pdf mapping

Aims at displaying information relative to the mapping of the f distribution

Transforms f = P k ⇡ k f k 2 F, into a new mixture g = P k ⇡ k g k 2 G M pdf 2 M pdf : f 2 F 7 ! g = M pdf (f ) 2 G
G is a pdf family defined on the space Y M pdf is often obtained as a by product of M ind (tedious outside linear mappings)

For large n, M ind finally displays M pdf Often, both y and g are overlaid 9/36
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Summary of traditional visualization strategies 2

Controlling the mapping family 

M pdf Strategy M : G(M pdf ) | {z } uncontrolled = ( g : g = M pdf (f ), f 2 F, M pdf 2 M pdf | {z } controlled ) Nature of G

New visualization strategy

Controlling the pdf family G 

Strategy G : M pdf (G) | {z } uncontrolled = 8 < : M pdf : g = M pdf (f ), f 2 F, g 2 G |{z} controlled 9 
(f ) = ( i (f )) n i=1 , with i (f ) = (t ik (f )) K 1 k=1 p g (•; µ): pdf of proba. of classif. t(g ) = ( i (g )) n i=1 , with i (g ) = (t ik (g )) K 1 k=1 T = { : = (t 1 , . . . , t K 1 ), t k > 0, P k t k < 1}
3 p f is the reference measure From a multivariate to a bivariate Gaussian mixture g is defined on R K 1 but it is more convenient to be on R 2

Just apply LDA on g to display this distribution on its most discriminative map It leads to the bivariate spherical Gaussian mixture g

g (˜; μ) = K X k=1 ⇡ k 2 (˜; μk , ),
where ˜2 R 2 , μ = ( μ1 , . . . , μK ) and μk 2 R 2

Use the % of inertia of LDA to measure the quality of the mapping from g to g

Remark

If X = R d and f is a Gaussian mixture with isotropic covariance matrices, then the proposed mapping is equivalent to applying a LDA to the centers of f

Overall accuracy of the mapping between f and g

Use the following di↵erence between the normalized entropies of f and g

E (f , g ) = 1 ln K K X k=1 ⇢Z X t k ( ; f ) ln t k ( ; f )d Z R 2 t k (˜; g ) ln t k (˜; g )d ˜
Such a quantity can be easily estimated by empirical values Its meaning is particularly relevant: E (f , g ) ⇡ 0: the component overlap conveyed by g (over f ) is accurate E (f , g ) ⇡ 1: g strongly underestimates the component overlap of f E (f , g ) ⇡ 1: g strongly overestimates the component overlap of f E (f , g ) permits to evaluate the bias of the visualization 

  Overview of clustering visualization: individual mapping Aims at visualizing simultaneously the data set x and its estimated partition ẑ Transforms x, defined on X , into y = ( 1 , . . . , n ), defined on a new space Y M ind 2 M ind : x 2 X n 7 ! y = M ind (x) 2 Y n Many methods, depending on X definition: PCA, MCA, MFA, FPCA, MDS. . . Some of them use ẑ in M ind : LDA, mixture entropy preservation [Scrucca 2010]

  = ; It is the reversed situation where G is defined instead of M pdf O↵er opportunity to impose directly G to be a user-friendly mixture family Strategy M and Strategy G are both valid but Strategy G is rarely explored! This work: explore Strategy G Users are usually familiar with multivariate spherical Gaussians on Y = R d Y Thus a simple and "user-friendly" candidate g is a mixture of spherical Gaussians g ( ; µ) = µ = (µ 1 , . . . , µ K ) and d Y (.; µ k , ) the pdf of the Gaussian distribution with mean µ k = (µ k1 , . . . , µ kd Y ) 2 R d Y with covariance matrix equal to identity g (•; µ) should be then linked with f in order to define a sensible G G = {g : g (•; µ), µ 2 arg min (f , g (•; µ)), f 2 F} g as the "clustering twin" of f Question: how to choose since generally X 6 = Y? Answer: in our clustering context, should measure the clustering ability di↵erence Kullback-Leibler divergence of clustering ability between both f and g (•; µ) 3 KL (f , g (•; µ)) = Z T p f ( ) ln p f ( ) p g ( ; µ) d where p f : pdf of proba. of classification t

G

  reduced to a unique distribution A natural requirement: p g (•; µ) and g should be linked by a one-to-one mapping Currently not true since rotations and/or translations are possible It means: for one distribution f , there is a unique optimal distribution g (•; µ)Additional constraints on g (•; µ): d Y = K 1, µ K = 0, µ kh = 0 (h > k),µ kk 0 The Kullback-Leibler divergence KL has generally no closed-form Estimate it by the following consistent (in S) Monte-Carlo expression ˆ KL(f , g (•; µ)) draws of conditional proba. t = ( (1) , . . . , (S) ) from p f It is the normalized (observed-data) log-likelihood function of a mixture model But, by construction, all the conditional probabilities are fixed in this mixture Thus, just maximize the normalized complete-data log-likelihood Lcomp(µ; t): K = 2: this maximization is straightforward K > 2: use a standard Quasi-Newton algorithm with di↵erent random initializations, for avoiding possible local optima 16/36 Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for complex data Discussion

  visualizing the results of any model-based clustering result Very easy to understand output since "Gaussian-like" Permit visualization for any type of data, because only based on proba. of classif. Can be used after any existing package of model-based clustering The overall accuracy of the visualization is also provided r package on the CRAN: ClusVis Extensions Possibility to provide more detailed new axes interpretability (ongoing work) Possibility to explore other pdf visualizations than Gaussians However, should keep in mind simple visualizations are targeted Possibility to compare/select pdf candidates through KL or E

  Votes of the n = 435 U.S. Congressmen on the d X = 16 key votes Categorical data: for each vote, three levels are considered (yea, nay, ?) Data clustered by a mixture of product of multinomial distributions[Goodman 1974] 
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K = 4 selected by BIC [Schwarz 1974] Use the r package Rmixmod [Lebret et al. 2015] Complex output: 435 individual memberships, 192 = 16 ⇥ 3 ⇥ 4 parameters 4 [Schlimmer (1987)]

[Bouveyron et al. (2015)]

Contraceptive method choice: data 5 and model 

About individual visualization

Theoretically, impossible to obtain individual visualization from pdf visualization However, we can propose a pseudo scatter plot of x as follows