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Degeneracy relatively slow: log-likelihood linear according to the nb of it.

Number of points of the degenerated solution greater than the space dimension d (but the number of complete points lower than d)
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Suppose equivalently that n 1 data are unobserved (unchanged likelihood)

Here is one iteration of a (useless) EM algorithm (it. q)

(n 1)µ (q) + y n and 2(q+1) =

(n 1) 2(q) + (y µ (q+1) ) 2 n Linear grow of the log-likelihood (have a look also when n increases!)

`(✓ (q) ; x) ⇠ 0.5q log n 1 n

Geometrical convergence rate towards 0 for the variance

Influence of the missing data rate When the rate of missing data increases:

The rate of degeneracy increases

The number of iterations before degeneracy seems to (globally) increase

Again, statisticians should be aware of such dangerous EM behaviour. . .

. . . since missing data are more and more frequent

Proposed MNAR models in clustering

Question we address now

Since MNAR is not ignorable, which distribution p(c|y , z; ) to propose?

Hypothesis 1: conditional independence

Hypothesis 2: linear function within canonical link functions ⇢ 

Remarks:

MNARz j y k is the most complex model MNARz, MNARz j : the only e↵ect of missingness is on the class membership, = (↵ 11 , . . . , ↵ 1d , . . . ,

MCAR is a specific and simple case MNARz analysis: pattern c gives information on partition z! Draw Bayes error of a MNARz model with two components and 20% of missing data
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Both µ k and ↵ k act on the Bayes error

Reinterpretation of the MNARz and MNARz j models as MAR

Commonly used in Machine Learning [Jones, 1996], [Little and Rubin, 2002], [Josse et al., 2019] Mixture model for y obs and Bernoulli distribution for C , MAR mixture model for ỹ obs = (y obs |c)

For example, y obs = 0 @ ? 2.6 5 blue 1.9 4 red 2.3 ?

then ỹ obs is expressed as ỹ obs = 0 @ ? 2.6 5 1 0 0 blue 1.9 4 0 0 0 red 2.3 ? 0 0 1 1 A .

Proposition 3: in terms of maximum likelihood

The maximum likelihood estimate associated to the dataset ỹ obs under MAR model is the one associated to the dataset y obs under MNARz or MNARz j models.

Identifiability

Previous works: [Teicher, 1963] (without NA), [Miao et al., 2016] (for MNAR data)

Proposition 4

Assume that 1 The marginal mixture

2 There exists a total ordering of F j ⇥ R, for j 2 {1, . . . , d} fixed, where

Then the mixture model with one of the MNAR⇤ mechanisms is identifiable up to label swapping

All MNAR models are identifiable (or at least generically identifiable) for probit/logit 
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