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Take home message

Missing data may change preconceptions

Mixtures: EM has unexpected behaviour concerning degeneracy dynamic

Clustering: the missing data pattern may convey some information on partition

These topics are in the research agenda of Statisticians since:
The larger the datasets, the more missing data may appear. . .
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Missing data: notations

y = {y1| . . . |yn}T : full dataset with n individuals

yi = (yi1, . . . , yid ) 2 Y = Rd
with individual i 2 {1, . . . , n}

c = {c1| . . . |cn}T 2 {0, 1}n⇥d
: pattern of missing data for the full dataset

ci = (ci1, . . . , cid ) 2 {0, 1}d : pattern of missing data for individual i 2 {1, . . . , n}

cij = 1 , yij is missing

yobs
i : the observed variables values for indiv. i (and yobs

= {yobs
1

| . . . |yobs
n }T )

ymis
i : the missing variables values for individual i (and ymis

= {ymis
1

| . . . |ymis
n }T )
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Typology of the missingness mechanisms

Missing completely at random (MCAR):

p(c|y ; ) = p(c; ) 8y

Missing at random (MAR):

p(c|y ; ) = p(c|yobs
; ) 8ymis

Missing not at random (MNAR): the mechanism is not MCAR nor MAR
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Ignorable vs. non ignorable model

A missing mechanism is ignorable if likelihoods can be decomposed as

L(✓, ; yobs, c| {z }
observed data

) = L( ; c|yobs
)⇥ L(✓; yobs

)

Some simple algebra show that this occurs when missing mechanism is not MNAR

Inference of ✓
“If the missing mechanism is ignorable then likelihood-based inferences for ✓ from

L(✓; yobs
) will be the same as likelihood based inference for ✓ from L(✓, ; yobs, c).”

[Little and Rubin, 2002 Section 6.2]

M(C)AR is ignorable

MNAR is not ignorable
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Mixture model and clustering

Partition (K clusters): z = (z1| . . . |zn)T 2 {0, 1}n⇥K
where

zi = (zi1, . . . , ziK ) 2 {0, 1}K

zik = 1 if yi belongs to cluster k, zik = 0 otherwise

Mixture model: y1, . . . , yn are i.i.d. from the d-variate Gaussian mixture

f (yi ;⇡, ✓) =
KX

k=1

⇡k fk (yi ; ✓k )

⇡k = p(zik = 1), ⇡ = (⇡1, . . . ,⇡K )

fk (.; ✓k ) = �(.;µk ,⌃k ) is the d-variate Gaussian distribution with mean vector µk and

covariance matrix ⌃k

✓ = (✓1, . . . , ✓K ) is the whole mixture parameter

Clustering: MAP principle from the mixture output to estimate the partition
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Outline

2 Impact of MAR data on the EM algorithm

Gaussian mixture degeneracy without missing data

Gaussian mixture degeneracy with missing data
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Degeneracy genesis: unbounded likelihood

d-variate Gaussian mixture

f (yi ; ✓) =
KX

k=1

⇡k
1

(2⇡)d/2|⌃k |1/2
exp

⇣
�

1

2
(yi � µk )

T
⌃

�1

k (yi � µk )

⌘

| {z }
�(yi ;µk ,⌃k )

Sampling: y1, . . . , yn
i.i.d.⇠ p(.; ✓) without any missing data (yobs

= y)

Likelihood: `(✓; y) = ln L(✓; y) =
Pn

i=1
ln f (yi ; ✓)

particular center µ2 = yi ) lim
|⌃2|!0

`(✓; y) = +1

[Kiefer and Wolfowitz, 1956] [Day, 1969]
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EM behaviour: illustration
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degeneracy may occur even when starting from large variances

convergence can be slow when far from the degenerate limit

convergence extremely fast near degeneracy
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EM behaviour: results
pi0k0

pik0

component k0

xixi0

u0 =


1

pi0k0
, {pik0}i 6=i0

�

degeneracy of component k0 at yi0
,

ku0k ! 0

[Biernacki and Chrétien, 2003]

[Ingrassia and Rocci, 2009]

Proposition 1: Existence of a bassin of attraction
9✏ > 0 s.t. if ku0k  ✏ then ku+

0
k = oku0k with probability 1.

Proposition 2: Speed towards degeneracy is exponential
9✏ > 0, ↵ > 0 and � > 0 s.t. if ku0k  ✏ then, with probability 1,

|⌃+

k0
|  ↵/|⌃k0

| · exp
⇣
� �/|⌃k0

|
⌘
.
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Outline

2 Impact of MAR data on the EM algorithm

Gaussian mixture degeneracy without missing data

Gaussian mixture degeneracy with missing data
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EM behaviour illustration

Breast cancer tissue of the UCI database repository: 106 units, 9 variables.

10% of missing data randomly generated

K = 4 clusters
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Detail from the illustration

1 2 3 4 5 6 7 8 9

1 211.00 0.09 30.75 151.98 4.94 14.27 27.24 217.13

2 196.86 0.02 0.09 28.59 82.06 2.87 7.97 27.66 200.75

3 144.00 0.12 0.05 19.65 70.43 3.58 7.57 160.37

4 172.52 0.13 0.04 192.22 5.12 19.32 32.19 174.93

5 121.00 0.17 0.09 24.44 144.47 5.91 22.02 10.59 141.77

6 223.00 0.12 0.08 33.10 197.01 5.95 30.45 12.96 252.48

7 0.17 0.23 34.22 94.35 2.76 31.28 13.88 180.61

8 303.00 0.06 0.04 22.57 4.54 21.83 5.72 321.65

9 250.00 0.09 0.09 29.64 180.76 6.10 26.14 13.96 280.12

10 391.00 0.06 0.01 35.78 7.41 22.13 28.11 400.99

11 176.00 0.09 0.08 20.59 79.71 18.23 9.58 191.99

12 145.00 0.11 21.22 82.46 3.89 20.30 6.17 162.51

13 124.13 0.13 0.11 20.59 18.46 9.12 134.89

14 103.00 0.16 0.29 23.75 78.26 3.29 22.32 8.12 124.98

Table : Data belonging to the degenerated component.

Cvg. towards a degenerated component (no plateau of the log-likelihood)

Degeneracy relatively slow: log-likelihood linear according to the nb of it.

Number of points of the degenerated solution greater than the space dimension

d (but the number of complete points lower than d)
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Intermediate conclusion on missing data

Like the complete data y case
Likelihood is unbounded

EM can be attracted by degenerate solutions

Unlike the complete data y case
Risk to consider a degenerated solution as valid

Risk of losing a lot of time in useless iterations

Statisticians should be aware of such dangerous EM behaviour. . .
. . . since missing data are more and more frequent
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Understanding degeneracy speed on a toy example

Univariate framework, no mixture, only one observed data: y

Maximum likelihood estimator (Unbounded likelihood!): µ = y , �2
= 0

Suppose equivalently that n � 1 data are unobserved (unchanged likelihood)

Here is one iteration of a (useless) EM algorithm (it. q)

µ(q+1)
=

(n � 1)µ(q)
+ y

n
and �2(q+1)

=
(n � 1)�2(q)

+ (y � µ(q+1)
)
2

n

Linear grow of the log-likelihood (have a look also when n increases!)

`(✓(q); x) ⇠ �0.5q log
n � 1

n

Geometrical convergence rate towards 0 for the variance

�2(q) ⇠ �2(0)

✓
n � 1

n

◆q
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Influence of the missing data rate

% missing data 0 5 10 15 20 25 30

% deg. 16 4 12 11 46 51 100

Average nb of iterations before deg. 2 13 13 82 304 138 215

Table : Frequency and speed of degeneracy (deg.) according to the rate of missing data on the

breast cancer data set.

When the rate of missing data increases:
The rate of degeneracy increases

The number of iterations before degeneracy seems to (globally) increase

Again, statisticians should be aware of such dangerous EM behaviour. . .
. . . since missing data are more and more frequent
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Outline

3 Impact of MNAR data on clustering

A model-based MNAR clustering approach

Medical study illustration
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Proposed MNAR models in clustering

Question we address now
Since MNAR is not ignorable, which distribution p(c|y , z; ) to propose?

Hypothesis 1: conditional independence

p(ci |yi , zik = 1; ) =
dY

j=1

p(cij |yi , zik = 1; )

Hypothesis 2: linear function within canonical link functions ⇢

p(cij = 1 | yi , zik = 1; ) = ⇢(↵kj + �kj yij )

 = (↵,�) where ↵ = (↵11, . . . ,↵1d , . . . ,↵K1, . . . ,↵Kd )
T 2 RKd

and

� = (�11, . . . ,�1d , . . . ,�K1, . . . ,�Kd )
T 2 RKd

⇢ is the cdf of any continuous distribution (logit, probit)
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A by-product zoology of MNAR models

E↵ect on the

variable j
E↵ect on the class

membership k
Nb parameters

Depends

on j
Depends

on k
Depends

on j
Depends

on k
Continuous

MNARzj yk X X X X 2Kd
MNARyzj X 7 X X (K + 1)d
MNARykz X X 7 X K(d + 1)

MNARyz X 7 7 X (K + d)
MNARy X 7 7 7 d
MNARyk X X 7 7 Kd
MNARz 7 7 7 X K
MNARzj 7 7 X X Kd

Remarks:

MNARzj yk
is the most complex model

MNARz, MNARzj : the only e↵ect of missingness is on the class membership,

 = (↵11, . . . ,↵1d , . . . ,↵K1, . . . ,↵Kd )
T
, p(cij = 1 | yi , zik = 1; ) = ⇢(↵kj )

MCAR is a specific and simple case
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MNARz analysis: pattern c gives information on partition z!

Draw Bayes error of a MNARz model with two components and 20% of missing data

⇡k = 0.5, kµ2 � µ1k varies, ⌃1 = ⌃2 = I, |↵2 � ↵1| varies
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Reinterpretation of the MNARz and MNARz j models as MAR

Commonly used in Machine Learning [Jones, 1996], [Little and Rubin, 2002], [Josse et al., 2019]

Mixture model for yobs
and Bernoulli distribution for C

, MAR mixture model for ỹobs
= (yobs|c)

For example,

yobs
=

0

@
? 2.6 5

blue 1.9 4

red 2.3 ?

1

A , c =

0

@
1 0 0

0 0 0

0 0 1

1

A

then ỹobs
is expressed as

ỹobs
=

0

@
? 2.6 5 1 0 0

blue 1.9 4 0 0 0

red 2.3 ? 0 0 1

1

A .

Proposition 3: in terms of maximum likelihood

The maximum likelihood estimate associated to the dataset ỹobs
under MAR model

is the one associated to the dataset yobs
under MNARz or MNARzj models.
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Identifiability

Previous works: [Teicher, 1963] (without NA), [Miao et al., 2016] (for MNAR data)

Proposition 4
Assume that

1 The marginal mixture
PK

k=1
⇡k fk (yi ; ✓k ) is identifiable

2 There exists a total ordering � of Fj ⇥R, for j 2 {1, . . . , d} fixed, where

Fj = {f1j , . . . , fKj} and R = {⇢1, . . . , ⇢K} = {⇢(.; 1), . . . , ⇢(.; K )}. The total

ordering is s.t. 8k < `, Fk = ⇢k fkj � F` = ⇢`f`j implies

lim
u!+1

⇢`(u)f`j (u)

⇢k (u)fkj (u)
= 0

Then the mixture model with one of the MNAR⇤ mechanisms is identifiable up to

label swapping

All MNAR models are identifiable (or at least generically identifiable) for probit/logit
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Estimation procedure overview

Use EM or Stochastic EM (SEM) algorithms

MNARz and MNARzj : EM and SEM are very simple

MNARy⇤: the SE step requires a within Gibbs loop, sometimes involving itself a

Sampling Importance Resampling (SIR)

EM SEM

MNARz
MNARzj

X X
Probit Logit Probit Logit

MNARy⇤ no closed

form

no closed

form,

optim. pb

X
require

algorithms

as SIR

(costly)
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Model selection

Can select between MCAR and MNAR⇤ with any information criterion (BIC, ICL)

Even if the missing mechanism is ignorable for MCAR. . .
. . . need to model c to compare a MCAR and a MNAR model

CAUTION
It is just a selection between several proposed MNAR models

It is not deciding if missingness procedure is “genererically” MNAR or not
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Outline

3 Impact of MNAR data on clustering

A model-based MNAR clustering approach

Medical study illustration
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Hospital data description

Number of patients: n = 5 146

Number of features: d = 7

Age

Size

Weight

Cardiac frequency

Hemoglobin concentration

Temperature

Minimum Diastolic and Systolic Blood Pressure

Percentage of missing data: 6.4%

Doctors are convinced that their missing data are MNAR
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ICL comparison
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MCAR, MNARy and MNARz are equivalent until K = 3

MNARz and MNARyz clearly indicate presence of an additional cluster (K = 4)

It seems to be an illustation of the e↵ect of c through MNARz and MNARyz
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Outline

4 Concluding remarks
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To conclude

Summary
Statisticians should properly consider the potential missing data impact both

from an algorithmic and from a modeling point of view

EM: be careful about degeneracy which seems to exacerbated/masqued

MNAR: interest of the simple but meaningful model MNARz, link with usual

methods

Ongoing works
EM: propose mechanism to identify/discard degenerate runs

MNAR: extend to categorical, count and mixed data

Thanks!
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