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Take home message

The missing data pattern may convey some information on clustering

Embed the missingness mechanism directly within the clustering modeling step



Outline

Introduction

A model-based MNAR clustering approach
Identifiability

Inference procedures

Medical study illustration

[@ Concluding remarks

3/39



Introduction A model-based MNAR clustering approach  Identifiability Inference procedures  Medical study illustration  Concluding remarks
0e0000 000000 00000 00000000 000000000 000

Missing data: an inevitable event

The larger the datasets, the more missing data may appear. ..

Two traditional solutions (for obtaining a filled dataset)
m Discard individuals with missing data: more variance or a biased subset

m Impute missing data: possible bias and underestimation of the variability

General guidelines
m Obtaining a complete dataset is not the final goal

m Missing data management should take into account the initial analysis target

Our analysis target: model-based clustering

Embed missing data management into this paradigm. ..
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Missing data: notations

Y = {y1]...lyn}": full dataset with n individuals

my; = (¥i1,---,Yid) €Y, depending on the data type: individual i € {1,...,n}
m continuous data: ) = R?
m categorical data: Y = {0,1}1 x ... x {0,1}% where #; is the number of levels for
N
Yi = (y,-ll-, .. ,y,.j’), where yf = 1if y; takes the level ¢, 0 otherwise.

m mixed data: combination of continuous and categorical data.

C={cl...len}T € {0,1}"%9: pattern of missing data for the full dataset

m ¢ =(c1,---,Cq) € {0,1}9: pattern of missing data for individual i € {1,...,n}

cj = 1 & yj; is missing

5/30
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Missing data: typology of the missing mechanisms

m Missing completely at random (MCAR):
Plely;y) =P(ei9) Wy
m Missing at random (MAR):
P(cly: ) = P(cly®™ip)  vy™s

m Missing not at random (MNAR): the mechanism is not MCAR nor MAR

Example of MNAR data

The probability to have a missing value on income depends on the value of income (rich people
less inclined to reveal their income).

6/30
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Ignorable vs. non ignorable model

A missing mechanism is ignorable if likelihoods can be decomposed as

L(0,; y°%,c ) = L(; cly°™®) x L(6; y°®)
observed data

Some simple algebra show that this occurs when missing mechanism is not MNAR

Inference of 6

“If the missing mechanism is ignorable then likelihood-based inferences for 6 from
L(; y°P%) will be the same as likelihood based inference for 6 from L(6,); y°P%, c).”
([Little and Rubin, 2002] Section 6.2)

m M(C)AR is ignorable
m MNAR is not ignorable

7 /39
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Clustering: model-based approach

m Partition with K clusters: Z = (z1]...|z,)7 € {0,1}"*K where
m z; = (z1,...,2zik) € {0, l}K
m zy = 1if y; belongs to cluster k, zj = 0 otherwise
m Mixture model: yi,...,y, are i.i.d. from the mixture
K
Fyiim,0) = > mifi(yii Ok)
k=1
m =Pz =1), 7 = (71,...,7k)
m fi(.; 0k): pdf of the k th component parametrized by 0y, 0 = (01, ..., 0k)

B continuous data: fi(.;0x) = ¢(.; i, Li) is the d-variate Gaussian distribution with mean
vector py and covariance matrix ¥
B categorical data: the features are independent conditionally to the group membership i.e.
2; £
(- 0k) = ]_[ —1 fij (- 0kj), where fi; = Hejzl(eﬁj)y’l is the multinomial distribution with
Oy = (ij = ]P’(Y,j = Uzik = D)e=1,....4
B mixed data: the features are independent conditionally to the group membership, fi(.; 0) is
the product of univariate Gaussian and multinomial distributions
B Can also be extended to other cases (count data with Poisson distributions for instance)

Question we address in this work
Which distribution P(c|y, z; 1) to propose in this clustering context?

3/39
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Outline

A model-based MNAR clustering approach
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Proposed zoology of MNAR models in clustering

d
P(cilyi zi = 1) = [ [ P(cylyi zi = 1i9)
j=1

= | MNARy with ¢ = («, B) where v = (a1, ..., Qg -+ oy Ak, - - ‘,och)T € R¥? and
B=(Bi1,--sBids--sBris - Pra)] € R
P(cj =11 yi, zik = L) = plaug + Bijvi),

with p the cdf of any continuous distribution (logit, probit)
m | MNARyz | | MNARy ~ ,’MNARyzj‘
m | MNARYy |, | MNARy"
Y= (B, - Bids-- Br1r s Bra) MNARy | [MNARyz] [MNARy*z
P(cj = 1| yi, zik = 1;9) = p(Brjyij) ¢

= [naRz ] [mnarz |

Y =(01, ., Qs KL, OKa) |
P(cj =11 yi, zik = L) = p(ak)
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Overview of the proposed MNAR models
EfFfect on the Effect on t_he class Nb parameters
variable j membership k
Dep_ends Depends Dep.ends Depends Continuous Categorical
on j on k on j on k
MNARZ y* v v v v 2Kd K(d+ 7,06 — 1))
MNARyz/ v x v v (K+1)d | Kd+37,(6—1)
MNARy*z v v x v Kd+1) | KO+ X206 —1)
MNARyz v X X v (K +d) K+32,0-1)
MNARy v x x x d S —1)
MNARy* v v X X Kd K>, (6 —1)
MNARz X X X v K K
MNARZ/ X X v v Kd Kd

Terminology in the sequel:

m MNARz, MNARZ/: the only effect of missingness is on the class membership

m MNARyx*: all the other models which considers the effect of the missingness
depending on the variable

m MNAR:x: all the models

11/30
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MNARZz analysis: it depends on y through Zz!

K
P(cj =1ly;; 0,¢) = Z P(cij = 1lyi, zik = 1;¥)P(zik = 1|y;; 0)
k=1

Example of a univariate Gaussian model with the three components
0.2N(+;0,1) +0.3N(-;1,2) + 0.5N(-; 2,3)

and with parameters of the logit expression: ag = 1,81 =1,8=—-1,83=1

MNAR property of the model LogitP(C;=1 | y,2)=x, + T, B, 2,
0.

088
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MNARZz analysis: pattern ¢ gives information on partition z!

Draw Bayes error of a MNARz model with two components and 20% of missing data

m = 0.5, ||p2 — pa| varies, ¥4 = ¥y =1, |82 — B1] varies

Distance along one variable

Good Classification

025 05 075 1 125 15 175 2 225 25 275 3

Center's distance

Both py and Bk act on the Bayes error

13/30
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Reinterpretation of the MNARz and MNARZ/ models as MAR

Commonly used in Machine Learning
[Jones, 1996, Little and Rubin, 2002, Josse et al., 2019]

Mixture model for Y©bs and Bernoulli distribution for C
< MAR mixture model for Y°Ps = (Y°Ps|(C)

? 26 5 1 0
yoP = | blue 19 4 |, c=[ 0 o
red 23 7 0 0

then Y°P® is expressed as

; ? 26 5 1 0 0
vobs — | blue 19 4 0 0 0 |.
1

For example,

red 23 ? 0 O

Proposition 1: in terms of maximum likelihood

The maximum likelihood estimate associated to the dataset Y°P$ under MAR
model is the one associated to the dataset Y°PS under MNARz or MNARZ models.
= can be extended to other estimation strategies

14/30
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Continuous and count data (1)

Previous works: [Teicher, 1963] (without NA), [Miao et al., 2016] (for MNAR data)

Identifiability for a mixture model with MNAR data
& Mixture/ MNAR parameters are uniquely determined from available information

Proposition 2: identifiability for continuous and count data
Assume that
The marginal mixture Zszl i f(yii Ok) is identifiable

There exists a total ordering < of F; x R, for j € {1,...,d} fixed, where

Fi=A{fy,..., fkj} and R ={p1,...,px} = {p(.;¥1),...,p(.;¥K)}. The total
ordering is s.t. Vk < £, Fx = pxfij = Fyp = pefy; implies

pe(u)foj(u) _
u=rtoo py(u)fii(u)

Then the mixture model with one of the MNAR* mechanisms is identifiable up to
label swapping

16/30
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Continuous and cound data (2)

Is the total ordering checked for classical distributions ?

fx

Gaussian

Poisson

Pk
MNARZ/ y*

Probit

Logit

Probit

Logit

MNARy*z
MNARy*

v

generic idenfiability

v

generic idenfiability

MNARyZ
MNARyz
MNARy
MNARz
MNARZ/

Generic identifiability: all not-identifiable parameter choices lie within a proper
subvariety, and thus form a set of Lebesgue zero measure

17/30
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Categorical data

Previous work: [Allman et al., 2009] (without NA)
Recall that for categorical data: conditional independence of the features given the

group membership holds i.e. fi(+;0x) = Hle fii (- 0j)

Proposition 3: identifiability for categorical data

Assume that d > 2[log, K|+ 1 and fi(:; 0k) = [T}, fig (- : i)
v Then the mixture model with MNARz or MNARZ/ mechanism is identifiable up
to label swapping

X The mixture model with one of the MNARy* mechanisms is not identifiable

18/30
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Mixed data

(v 0k) = HJ‘-’ZI fii (- ; 0kj), thus identifiability of mixed data directly follows from
Proposition 2 for continuous variables and from Proposition 3 for categorical variables

19/30
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EM algorithm: looks simple

The expected complete log-likelihood knowing the observed data and a current
value of the parameters can be decomposed into two parts

Q(O, v, m; 07,0, 7") = Elleomp(0, %, T3 y, 2, €) |y 13 07, 40", 7]
= Qy(0, 70", ", 7)) + Qe(v; 07,9, ")

n K n K
Qu(0,m 07,9, 7" ) => > (i) log(mi) + > > (i) Ef (6)
i=1 k=1 i=1 k=1
n K
QC(¢;0r5wr>7‘— ZZ le) Ec(’d})
i=1 k=1

where fori=1,...,nand k=1,...,K

EL(0) = E|[log(fi(yi00) |y 2k = L,cii6", ¢
E.(¥) = E [|Og(P(Ci | yirzie = L) | v,z = 1, i 9r7¢']
(ra)” = Plzu =11y, c;; 07,97, 7") o mphi(y?™ 00)P(c | yP°%, zie = 1;9")

21 /30
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EM algorithm for MNARz and MNARZ/

’ MNARz, MNARzj ‘: needs some computations but still simple.

P(cj =11 yi,zik = 1;9) = p(a;) (independent of y) (A)

e [Gavsson daa} (vl = 1:07) ~ A, )

n IP‘(y,-miS | y,-c’bs, zie =1,¢;0",¢") = IP‘(y,.miS | y,-c’bs, zj = 1;0") using (A) and

(yimis ‘ y,‘Obsyzik =1, 9') ~N ((ﬂ;,x:is)r, (i;}:{;is)r)

where (A55%)" and (£%)" only depend on pf, ¥ and y°b®

= E (0) =E [Iog(fk(y,-; 0k)) | y,-ObS7 z =1,; 0’] easy to compute (classical formulae)
m Using (A)
d
Ei () = log(P(ci | zi = 1;9)) = > cilog paukj) + (1 — ) log(1 — p(avy;))
j=1

m Using (A)

d
(i) o< (™% (™) (257" TT ple) i (1 = plag))'
j=1
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EM algorithm for MNARz and MNARZ/
Recall that: (yl.miS \yfbs,z,-k = 1;9’)

[ ] : fork=1,...,Kandi=1,...
G obs (- mis . O?bs,obs O;)bs,mis
Vi) = (7%, (B3)") ik = < 0:'1115,0})5 (iﬁfis)’ >

] : for k =1,..., K, compute

n

1 " () (Ve )
mtl = - Sr) ot = 2o (7ik)" (9, )"

i=1 > (Tik)”
zr+1 _ 27:1 |:(T’-k)r ((yi,k)r - /Lk )((y’ k)’ _ r+l) +il,k>:|
' S ()

For 1" 1: maximization of Qc(%;6",", ") over ¢ with a Newton-Raphson
algorithm (classical procedure for link functions of interest)

[e]e]e}

N (o), (Exey).

, n, compute (fifis)", (Zmls)rv(Tik)r and

An EM algorithm can also be easily derived for categorical data ‘

Concluding remarks
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Not EM algorithm for MNARy

MNARy* |: needs approximations

P(cj = 1| yi, zik = 1;9) = p(aj + Bijyi) (not independent of y)

B (0 %z =1, )
X not classical if p is Logit, v' truncated Gaussian distribution if p is Probit
m No closed form of E{ (1)) neither for Probit nor for Logit:

mis\Cj; mis bs r
. misvy Pl + By ) TP(y |y 2 = 1,07) Lo
) =Y [ los(plan+Biy™) - . ™
Z u n J ] fygnis P((l;j T ﬁ;jX)C'J]P)(X | y,vas,Zik =1 gr)dX i
b
+ (1 = c5) log(1 — peug + Bujys )

X not concave function if p is Logit
m No closed form of (7i)" neither for Probit nor for Logit

m In the Gaussian case, there is no closed form [Pirjol, 2013]

m SEM easier? random drawing instead of expectation

24 /30
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SEM algorithm for MNARy

[ : draw the missing data ((yl.mis)"*'l,z,.’H) ~ (] yPPs, i 07, 9T 7))

‘ Use of One-Gibbs sampling ‘:

B )~ (0 2 67, )
X not classical if p is Logit, ’ v’ truncated Gaussian distribution if p is Probit ‘

w oz~ (| y 6 07,97, m): draw the membership k of z/ ! from the multinomial

distribution with probabilities

Bz = 1)y e 0, g7 a7y = — P 2w = LYPO e = 167
ik i oYY K P(cily ™, zip = 1;9")P(y | zin = 1; 07)m!
h=1 ilY; s Zih ; Yi " |Zih ; s

Let Y™+ = (y/ ™ .. |yith), Z74 = (/™ ... |z;*!) be the imputed matrix and

the partition

] : for k=1,..., K, compute

] 7r;Jrl with the proportion of rows of yrt belonging to class k
] ,u,'fl, Z;H with the mean and covariance matrix of rows of Y'*! belonging to class k

] d)'“ with a Newton-Raphson algorithm

25 /30
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Summary for algorithms

MNARz
MNARZ/

no closed | 1° closed ;qurli'"cehms
MNARy * P form, not ident. & not ident.
orm optim. pb as SIR
pum. (costly)

26 /30
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What about model selection?

Can select between MCAR and MNARx* with any information criterion (BIC, ICL)

Even if the missing mechanism is ignorable for MCAR. ..
...need to model ¢ to compare a MCAR and a MNAR model

CAUTION

m It is just a selection between several proposed MNAR models

m It is not deciding if missingness procedure is “genererically” MNAR or not

27 /30
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Hospital Data: continuous features case

® Number of patients: n =5 146

m Number of features: d =7

Age

Size

Weight

Cardiac frequency

Hemoglobin concentration

Temperature

Minimum Diastolic and Systolic Blood Pressure

m Percentage of missing data: 6.4%

20 /30
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ICL comparison

ICL Comparison

4 ! © MCAR

: A& MNARz

o ' + MNARy

S | ! X MNARyz
g 5 ; :
o : : :
g ; ; ;
g ; : :
8 ' ' '
g : x|
] * A\:

. ° :\*
g : N
£ : : :
' ‘\u‘. ,

g N
g : : L%
: : : : :
5 6 7 8

Number of Clusters

m MCAR, MNARy and MNARz are equivalent until K =3
m MNARz and MNARyz clearly indicate presence of an additional cluster (K = 4)

It seems to be an illustation of the effect of ¢ through MNARz and MNARyz

30/30
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Missing Pattern

Raw order MCAR order MNARz order

It seems that MNARZz modelling leads to a missing free cluster

31/30
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Hospital data: mixed features case

m Number of patients: n =5 146
m Number of features: d = 15 (7 continuous and 8 categorical)

m Percentage of missing data: ~ 4%

Model

Conditional independence of the variables knowing the cluster

32 /30
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ICL comparison

ICL Comparison

=) H SR —O
=1 —_— o '
g1 4’—_’A/\ x‘\A
T ' ' ' ' '
' ' ' : +
s N
g p—p— "
&7 / H H : : :
i : : : : :
Y : : : : :
o g ! ! ! ! !
= 84 : : : : :
& ' ' ' ' '
i ' ' ' ' '
s ' ' ' ' '
k=3 " " " " "
8
S J ' ' ' ' '
8 : : : : :
T : : : | |
' ' ' o MCAR
s : : : A MNARZ
S 4 | | | + MNARyz
2 t t t T T
4 5 6 7 8

Number of Clusters

m MCAR and MNARZz are equivalent
m MNARyz seems really inappropriate

m Seems to miss the previous latent structure: requires a specific exploration. . .

33/30
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Exploration 1: local independence is not relevant for this data set

T A
Iy e N
/N SN
s4y/ 0 aTGL  e
o T~

I N R S

gt 1 ¥—<*>‘§
B4 /;74’«>: Lo t
st
(Y A
S e
gli/ 0 0 b oo
27 ' ' ' | | + MNARz_Diag
T | | | | | x MCAR_Diag

e
1 2 3 4 5 6 7 8

Nb Clusters

Not accounting for possible conditional dependencies between the continuous
variables is inappropriate for this dataset.
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Exploration 2: mixture model bias vs missing model bias

A simulated data set with the following parameters:
m Mixture model: varying from diagonal to non diagonal hypotheses
m 2 clusters, dimension 7
m 5 000 individuals
mom =03 m =07 p = (0,0,0,0,0,0,0), o = (2,2,2,2,2,2,2)
m Covariance matrices: r € {1,...,10,00} (r = oo is the diagonal case)
1 0.5" 0.25"
0.5" 1 0.5"
0= 025" 05 1
0.25" 0.5" 1
m Missingness model: MNAR hypothesis
m Proportions of missingness: 0.001 for cluster 1 and 0.06 for cluster 2

35 /30
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000000

Results from exploration 2

00005~

00505~

00015~

701

00515~

00025~

True Model

m The mixture model bias can not be compensated by the (unbiased) missing

mechanism modeling

m It illustrates again the fact that information (on the latent partition) conveys

by data is much more important than information conveys by the pattern
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Summary
m Interest to put a model on ¢
m Interest of the simple but meaningful model MNARz

m Link between our models and usual methods

Ongoing works
m Deeper analysis of the previous results with doctors. . .
m Implement the proposed models/algo. in the Mixmod software?

m Address the trade-off between biased mixture model and biased missingness
mechanism in particular for the mixed data case

“http://www.mixmod.org
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