Binned data modeling

Multivariate Mixtures Practical activity

Context and objectives of scalable clustering

Scalable clustering: • We have a sample x = ( 1 , . . . , n ), realizations of a real r.v. X .
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• Data come from K di↵erent sub-populations ⌦ k , k = 1, . . . , K .

• X follows a Gaussian mixture model (McLachlan & Peel, 2000) indexed by 2 : its p.d.f has the form

f ( ; ) = K X k=1 ⇡ k ( ; µ k , ⌃ k ) 2 R d , K X k=1 ⇡ k = 1, ⇡ k > 0 (k = 1, . . . , K ),
where = (⇡ 1 , . . . , ⇡ K , µ 1 , . . . , µ K , ⌃ 1 , . . . , ⌃ K ) and (•) are Gaussian densities.

Model-based clustering with GMM

Model-based clustering 1 ML estimation: find ˆ via EM algorithm maximizing `( ; x) = P n i=1 log(

P K k=1 ⇡ k ( i ; µ k , ⌃ k )).
2 Clustering phase: assign i to ⌦ k ⇤ if k ⇤ = argmax k=1,...,K ⇡k ( i ; μk , ⌃k ).

3 Evaluate clustering accuracy.

EM algorithm: brief description [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] 1 Introduce class labels z and fix starting value ˆ (0) .

2 Work with `c ( ; x, z) = P n i=1

P K k=1 z ik log(⇡ k ( i ; µ k , ⌃ k )). 3 At iteration j, select ˆ (j+1) = argmax 2 E ˆ (j) [`c ( ; , x)|x],
4 Repeat 3 until |`( (j+1) ; x) `( (j) ; x)| < ✏ (or up to J iterations).

If n and d too large, it requests too much time and memory. Binned data appears when it is impossible to collect data with infinite precision (censoring, truncation,...).

Instead of knowing a complete sample x = ( 1 , . . . , n ) ⇢ R d we know a vector of counts of observations lying in some regions of the space delimited by a grid G . Binned data: formalization Suppose:

• x ⇢ R d a d-dimensional real sample with p.d.f. f ( ; ), • R d is divided into R = Q d r =1 Rr regions {S 1 , . . . , S R } by a Cartesian grid G = G 1 ⇥ . . . ⇥ G d of dimension R 1 ⇥ . . . ⇥ R d . Binned data -= (n 1 , . . . , n R ), -n i = #{ j 2 S i } i = 1, . . . , R, - follows a multinomial model M( ) with = (p 1 , . . . , p R ), -p i = P(X 2 S i ; ) = R S i f (x; )dx i = 1, . . . , R,
-Trick for sample size reduction: select R << n.

For k = 1, . . . , K ⇡(j+1) k = P R i=1 n i Â(j) ik n , μ (j+1) k 
= P R i=1 n i B(j) ik P R i=1 n i Â(j) ik , ˆ 2(j+1) k = P R i=1 n i Ĉ (j) ik P R i=1 n i Â(j) ik .
Remark: It could be shown (not displayed) all Â(j) ik , B(j) ik , Ĉ (j) ik depend only on Gaussian pdfs and cdfs. +

Calculation is easy and fast.
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Simulation -Raw vs Binned 10 6 data from f (x; ) = 0.6 (x; 1, 2) + 0.3 (x; 1, 1) + 0.1 (x; 0, 0.5). Compare our method with the subsampling one (for di↵erent R and subsample percentage m) in terms of:

1 Classes selected by BIC;

2 Time and memory used;

3 Quality of estimation.
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Classes selected by BIC 

Multivariate EM: numerical issues

In a multivariate context, EM updates have this form [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF]: For k = 1, . . . , K :

⌧ (j) k ( ) = ⇡(j) k ( ; μ(j) k , ⌃(j) k ) f ( ; ˆ (j) ) , ⇡ (j+1) k 
= P R i=1 n i R S i ⌧ (j) k ( )d n , μ(j+1) k = P R i=1 n i R S i ⌧ (j) k ( )d P R i=1 n i R S i ⌧ (j) k ( )d , ⌃ (j+1) 
k = P R i=1 n i R S l ( μ(j+1) k )( μ(j+1) k ) t ⌧ (j) k ( )d P R i=1 n i R S i ⌧ (j) k ( )d
.

Issue: d-dimensional numerical integration is burdensome. ) Too complex computation.

Starting point: ˆ 0 = (⇡ 0 , ˆ 0 1 , ˆ 0 2 ).

For j = 0, . . . :

1 EM algorithm (1 iteration) on dimension 1 using 1 and (⇡ j , ˆ j 1 ) as starting point ! (⇡ j+ 1 2 , ˆ j+1 1 ).

2 EM algorithm (1 iteration) on dimension 2 using 2 and (⇡ j+ 1 2 , ˆ j 2 ) as starting point ! (⇡ j+1 , ˆ j+1

2 ).

3 Current estimate: 

ˆ j+1 = (⇡ j+1 , ˆ j+1 1 , ˆ j+1 2 ).

Results

Estimation from a further initial point. 

Future works

Assessment of theoretical properties alterned EM algorithm and ˆ .

Computation of L( , 1 , 2 ).

Study of local maxima.

Choice criterion for the binning grid.

Propose grid candidates.
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  Repeat 2-4 until || ˆ j+1 ˆ j || < ✏ or up to J iterations.

Univariate mixture models with binned data: Estimation Identifiability of univariate mixture binned models Identifiability is not trivial. It is satisfied for R > 4K 3.

Aim: ML estimation

Optimize `( ; ) = P R i=1 n i log(

Missing data EM algorithm

1 Class labels: z, 2 Raw data among each bin: x-.
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Bivariate diagonal mixtures

Let consider a bivariate mixture with diagonal variances and K = 2 (known). Thus, the parameters to estimate are:

).

1 How to save memory? 2 How to avoid numerical integration? 20/30

Marginal counts

Denoting with x 1 and x 2 the first and second component of x, we can define:

1 : binned data R 1 -vector of x 1 under G 1 .

2 : binned data R 2 -vector of x 2 under G 2 .

1 and 2 are the marginal counts of .

Trick to save memory: try to work with marginal counts 1 and 2 instead of .
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Joint EM for marginal counts

Having only marginal counts 1 and 2 we have to obtain ˆ maximizing L( ; 1 , 2 ). A classical EM needs numerical integrations and L( ; 1 , 2 ) is di cult to calculate, having only this mathematical relation: