mixed data: the features are independent conditionally to the group membership, f k (.; ✓ k ) is the product of univariate Gaussian and multinomial distributions Can also be extended to other cases (count data with Poisson distributions for instance)

Question we address in this work

Which distribution P(c|y , z; ) to propose in this clustering context? 6/39

Mixture model: y 1 , . . . , yn are i.i.d. from the mixture Proposed zoology of MNAR models in clustering

f (y i ; ⇡, ✓) = K X k=1 ⇡ k f k (y i ; ✓ k ) ⇡ k = P(z ik =
P(c i |y i , z ik = 1; ) = d Y j=1 P(c ij |y i , z ik = 1; ) MNARy k z j , with = (↵, ) where ↵ = (↵11, . . . , ↵ 1d , . . . , ↵ K 1 , . . . , ↵ K d ) T 2 R Kd and = ( 11 , . . . , 1d , . . . , K 1 , . . . , K d ) T 2 R Kd P(c ij = 1 | y i , z ik = 1; ) = ⇢(↵ kj + kj y ij ),
with ⇢ the cdf of any continuous distribution (logit, probit) 

MNARyz , MNARy k z , MNARyz j MNARy , MNARy k = ( 11 , . . . , 1d , . . . , K 1 , . . . , K d ) T P(c ij = 1 | y i , z ik = 1; ) = ⇢( kj y ij ) MNARz , MNARz j = (↵11, . . . , ↵ 1d , . . . , ↵ K 1 , . . . , ↵ K d ) T P(c ij = 1 | y i , z ik = 1; ) = ⇢(↵ kj ) MNARy k z j
j y k X X X X 2Kd K (d + P d j=1 (`j 1)) MNARyz j X 7 X X (K + 1)d Kd + P d j=1 (`j 1) MNARy k z X X 7 X K (d + 1) K (1 + P d j=1 (`j 1)) MNARyz X 7 7 X (K + d) K + P d j=1 (`j 1) MNARy X 7 7 7 d P d j=1 (`j 1) MNARy k X X 7 7 Kd K P d j=1 (`j 1) MNARz 7 7 7 X K K MNARz j 7 7 X X Kd Kd
Terminology in the sequel:

MNARz, MNARz j : the only e↵ect of missingness is on the class membership

MNARy ⇤: all the other models which considers the e↵ect of the missingness depending on the variable MNAR⇤: all the models 9/39

MNARz analysis: pattern c gives information on partition z! Draw Bayes error of a MNARz model with two components and 20% of missing data

⇡ k = 0.5, kµ 2 µ 1 k varies, ⌃ 1 = ⌃ 2 = I, | 2 1 | varies 0.5 0.6 0.7 0.8 0.9 1.0

Distance along one variable

Center's distance Good Classification 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

• • • • • • • • • • • • • ||β||2 0 0.4 0.8 1.2
Both µ k and k act on the Bayes error 11/39

Reinterpretation of the MNARz and MNARz j models as MAR

Commonly used in Machine Learning [START_REF] Jones | Indicator and stratification methods for missing explanatory variables in multiple linear regression[END_REF][START_REF] Little | Statistical Analysis with Missing Data[END_REF][START_REF] Josse | On the consistency of supervised learning with missing values[END_REF] Mixture model for Y obs and Bernoulli distribution for C , MAR mixture model for Ỹ obs = (Y obs |C )

For example,

Y obs = 0 @ ? 2.6 5 blue 1.9 4 red 2.3 ? 1 A , C = 0 @ 1 0 0 0 0 0 0 0 1 1 A then Ỹ obs is expressed as Ỹ obs = 0 @ ? 2.
6 5 1 0 0 blue 1.9 4 0 0 0 red 2.3 ? 0 0 1 1 A .

Proposition 1: in terms of maximum likelihood

The maximum likelihood estimate associated to the dataset Ỹ obs under MAR model is the one associated to the dataset Y obs under MNARz or MNARz j models.

) can be extended to other estimation strategies Continuous and count data (1)

Previous works: [START_REF] Teicher | Identifiability of finite mixtures[END_REF] (without NA), [START_REF] Miao | Identifiability of normal and normal mixture models with nonignorable missing data[END_REF] (for MNAR data)

Identifiability for a mixture model with MNAR data , Mixture/MNAR parameters are uniquely determined from available information

Proposition 2: identifiability for continuous and count data

Assume that

1 The marginal mixture P K k=1 ⇡ k f k (y i ; ✓ k ) is identifiable 2 There exists a total ordering of F j ⇥ R, for j 2 {1, . . . , d} fixed, where F j = {f 1j , . . . , f Kj } and R = {⇢ 1 , . . . , ⇢ K } = {⇢(.; 1 ), . . . , ⇢(.; K )}. The total ordering is s.

t. 8k < `, F k = ⇢ k f kj F `= ⇢ `f`j implies lim u!+1 ⇢ `(u)f `j (u) ⇢ k (u)f kj (u) = 0
Then the mixture model with one of the MNAR⇤ mechanisms is identifiable up to label swapping 

EM algorithm: looks simple

The expected complete log-likelihood knowing the observed data and a current value of the parameters can be decomposed into two parts

Q(✓, , ⇡; ✓ r , r , ⇡ r ) = E[`comp(✓, , ⇡; y , z, c)|y obs i , c i ; ✓ r , r , ⇡ r ] = Qy (✓, ⇡; ✓ r , r , ⇡ r ) + Qc ( ; ✓ r , r , ⇡ r ) Qy (✓, ⇡; ✓ r , r , ⇡ r ) = n X i=1 K X k=1 (⌧ ik ) r log(⇡ k ) + n X i=1 K X k=1 (⌧ ik ) r E r iy (✓) Qc ( ; ✓ r , r , ⇡ r ) = n X i=1 K X k=1 (⌧ ik ) r E r ic ( )
where for i = 1, . . . , n and k = 1, . . . , K ,

E r iy (✓) = E h log(f k (y i ; ✓ k )) | y obs i , z ik = 1, c i ; ✓ r , r i E r ic ( ) = E h log(P(c i | y i , z ik = 1; )) | y obs i , z ik = 1, c i ; ✓ r , r i (⌧ ik ) r = P(z ik = 1 | y obs i , c i ; ✓ r , r , ⇡ r ) / ⇡ r k f k (y obs i ; ✓ r k )P(c i | y obs i , z ik = 1; r )
EM algorithm for MNARz and MNARz j MNARz, MNARzj : needs some computations but still simple.

P(c ij = 1 | y i , z ik = 1; ) = ⇢(↵ kj ) (independent of y ) ( ) Gaussian data : (y i |z ik = 1; ✓ r ) ⇠ N (µ k , ⌃ k ) P(y mis i | y obs i , z ik = 1, c i ; ✓ r , r ) = P(y mis i | y obs i , z ik = 1; ✓ r ) using ( ) and ⇣ y mis i | y obs i , z ik = 1; ✓ r ⌘ ⇠ N ⇣ (μ mis ik ) r , ( ⌃mis ik ) r ⌘
where ( μmis ik ) r and ( ⌃mis ik ) r only depend on µ r k , ⌃ r and y obs i

) E r iy (✓) = E h log(f k (y i ; ✓ k )) | y obs i , z ik = 1, ; ✓ r i easy to compute (classical formulae) Using ( ) E r ic ( ) = log(P(c i | z ik = 1; )) = d X j=1 c ij log ⇢(↵ kj ) + (1 c ij ) log(1 ⇢(↵ kj ))
Using ( ) 

(⌧ ik ) r / ⇡ r k (y obs i ; (µ obs ik ) r , (⌃ obs,obs ik ) r )prod d j=1 ⇢(↵ r kj ) c ij (1 ⇢(↵ r kj )) 1 c ij 20/39
( ⌃mis ik ) r ! M-step : for k = 1, . . . , K , compute ⇡ r +1 k = 1 n n X i=1 (⌧ ik ) r µ r +1 k = P n i=1 (⌧ ik ) r (ỹ k,i ) r P n i=1 (⌧ ik ) r ⌃ r +1 k = P n i=1 h (⌧ ik ) r ⇣ (ỹ i,k ) r µ r +1 k )((ỹ i,k ) r µ r +1 k ) T + ⌃r ik ⌘i P n i=1 (⌧ ik ) r
For r +1 : maximization of Qc ( ; ✓ r , r , ⇡ r ) over with a Newton-Raphson algorithm (classical procedure for link functions of interest)

An EM algorithm can also be easily derived for categorical data 

  1), ⇡ = (⇡1, . . . , ⇡ K ) f k (.; ✓ k ): pdf of the k-th component parametrized by ✓ k , ✓ = (✓1, . . . , ✓ K ) continuous data: f k (.; ✓ k ) = (.; µ k , ⌃ k ) is the d-variate Gaussian distribution with mean vector µ k and covariance matrix ⌃ k categorical data: the features are independent conditionally to the group membership i.e. f k (.; ✓ k ) = Q d j=1 f kj (.; ✓ kj ), where f kj = Q`j `=1 (✓ kj ) y ìj is the multinomial distribution with ✓ kj = (✓ kj = P(y ìj = 1|z ik = 1)) `=1,...,`j -based MNAR clustering approach Identifiability Inference procedures Medical study illustration Concluding remarks Practical activity

  

  Then the mixture model with MNARz or MNARz j mechanism is identifiable up to label swapping 7 The mixture model with one of the MNARy ⇤ mechanisms is not identifiable

	Introduction
	Previous work: [Allman et al., 2009] (without NA)
	14/39 Recall that for categorical data: conditional independence of the features given the group membership holds i.e. f k (•; ✓ k ) = A model-based MNAR clustering approach Q d Identifiability Inference procedures Medical study illustration Concluding remarks Practical activity j=1 f 16/39 18/39

kj (• ; ✓ kj ) Proposition 3: identifiability for categorical data

Assume that d 2dlog 2 K e + 1 and f k (•; ✓ k ) = Q d j=1 f kj (• ; ✓ kj ) X

  Introduction A model-based MNAR clustering approach Identifiability Inference procedures Medical study illustration Concluding remarks Practical activity EM algorithm for MNARz and MNARz j

	Recall that: y mis i	| y obs i	, z ik = 1; ✓ r ⇠ N	⇣	(μ mis ik ) r , ( ⌃mis ik ) r	⌘	.
	E-step : for k = 1, . . . , K and i = 1, . . . , n, compute (μ mis ik ) r , ( ⌃mis ik ) r , (⌧ ik ) r and
	(ỹ i,k ) r = (y obs i	, (μ mis ik ) r )		⌃r ik =	0 obs,obs i 0 mis,obs i	0 obs,mis i

z i = (z i1 , . . . , z iK ) 2 {0, 1} K z ik = 1 if y i belongs to cluster k, z ik = 0 otherwise

MNARz analysis: it depends on y through z! P(c ij = 1|y i ; ✓, ) = Continuous and cound data (2)

Is the total ordering checked for classical distributions ?

Generic identifiability: all not-identifiable parameter choices lie within a proper subvariety, and thus form a set of Lebesgue zero measure

Not EM algorithm for MNARy ⇤ MNARy ⇤ : needs approximations

Gaussian data :

ic ( ) neither for Probit nor for Logit:

7 not concave function if ⇢ is Logit No closed form of (⌧ ik ) r neither for Probit nor for Logit

In the Gaussian case, there is no closed form [START_REF] Pirjol | The logistic-normal integral and its generalizations[END_REF] SEM easier? random drawing instead of expectation SEM algorithm for MNARy ⇤ SE-step : draw the missing data ((

Use of One-Gibbs sampling : 

ICL Comparison

Number Nb Clusters

Not accounting for possible conditional dependencies between the continuous variables is inappropriate for this dataset.

Exploration 2: mixture model bias vs missing model bias A simulated data set with the following parameters: Mixture model: varying from diagonal to non diagonal hypotheses 2 clusters, dimension 7 5 000 individuals ⇡1 = 0.3, ⇡2 = 0.7, µ1 = (0, 0, 0, 0, 0, 0, 0), µ2 = (2, 2, 2, 2, 2, 2, 2) Covariance matrices: r 2 {1, . . . , 10, 1} (r = 1 is the diagonal case) 

Ongoing works

Deeper analysis of the previous results with doctors. . . Implement the proposed models/algo. in the Mixmod software a

Address the trade-o↵ between biased mixture model and biased missingness mechanism in particular for the mixed data case a http://www.mixmod.org