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Abstract

Relationship between agents can be conveniently represented by graphs. When these rela-
tionships have different modalities, they are better modelled by multilayer graphs where each
layer is associated with one modality. Such graphs arise naturally in many contexts including
biological and social networks. Clustering is a fundamental problem in network analysis where
the goal is to regroup nodes with similar connectivity profiles. In the past decade, various clus-
tering methods have been extended from the unilayer setting to multilayer graphs in order to
incorporate the information provided by each layer. While most existing works assume – rather
restrictively - that all layers share the same set of nodes, we propose a new framework that
allows for layers to be defined on different sets of nodes. In particular, the nodes not recorded
in a layer are treated as missing. Within this paradigm, we investigate several generalizations
of well-known clustering methods in the complete setting to the incomplete one and prove some
consistency results under the Multi-Layer Stochastic Block Model assumption. Our theoretical
results are complemented by thorough numerical comparisons between our proposed algorithms
on synthetic data, and also on real datasets, thus highlighting the promising behaviour of our
methods in various settings.

1 Introduction

Graphs are a powerful tool to represent relationships between agents. Due to applications in a wide
array of fields including biology, sociology, ecology and economics (see for e.g., Braun et al. (2015);
Han et al. (2015); Kivelä et al. (2014); Kim and Lee (2015)), the analysis of networks has received
significant interest over the last two decades. One fundamental problem of network analysis is
clustering which involves detecting communities by regrouping nodes having similar connectivity
properties. Numerous clustering algorithms have been developed over the years based on different
approaches such as modularity maximization, maximum likelihood, random walks, semi-definite
programming and spectral clustering (see for instance the survey articles by Fortunato (2009) and
Abbe (2018)).

Often, relationships are better understood through different modalities. These multiple aspects
of relationships can be represented by a multilayer graph where each layer is a graph representing
the interactions between agents for one modality. For e.g., social interaction between a set of
people can be recorded via email exchanges, phone calls, professional links, and so on. Each level
of interaction can be encoded into a simple graph and the collection of these graphs leads to a
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multilayer representation. Another important example of a multilayer graph is given by a time-
varying network where each view of the network at a given time corresponds to a different layer.

Over the last decade, many methods have been proposed for clustering multilayer graphs such
as those based on matrix factorization, spectral methods, maximisation of a modularity function
or probability model-based approaches; see Kim and Lee (2015) for a survey. Consistency results
for the recovery of the partition under a stochastic generative model have also been shown for
some algorithms, see for example Paul and Chen (2020), Pensky and Zhang (2019), Lei (2020) and
Bhattacharyya and Chatterjee (2018).

Most existing approaches assume that all the layers share the same set of nodes. In practice,
however, data are often incomplete; in particular, the set of observed nodes can clearly vary across
layers. For example, in social networks evolving over time, the set of nodes can change due to
people leaving/joining the network. This is the setting considered in the present paper.

1.1 Related work

Clustering on multi-layer graphs. As noted by Paul and Chen (2020), clustering strategies
for multilayer graphs can be roughly categorized into three groups: early fusion methods where
all views are aggregated and then clustering is performed, intermediate fusion methods where
the algorithm finds a factor common to all the views, and final aggregation methods where
each individual view is processed separately and a consensus partition is formed. In the complete
setting, different algorithms have been proven to be consistent under a multilayer stochastic block
model assumption (see Section 2.2). Among them are spectral clustering on the sum of adjacency
matrices (e.g., Bhattacharyya and Chatterjee (2018); Paul and Chen (2020)) or on the sum of
squared adjacency matrices with bias correction (e.g., Lei (2020); Bhattacharyya and Chatterjee
(2020)), orthogonal linked matrix factorization (e.g., Paul and Chen (2020)), and co-regularized
spectral clustering (e.g., Paul and Chen (2020)). Existing misclustering bounds for these methods
are gathered in the supplementary material.

Incomplete Multi-View Clustering (IMVC). Recently a similar problem has been addressed
in the context of IMVC, see for example Liu et al. (2020), Hu and Chen (2019) and references
therein. To the best of our knowledge, no consistency results for the recovery of the ground truth
clustering structure are shown in this line of work. Algorithms designed for the IMVC framework
cannot be directly applied to our setting since they apply to a collection of feature vectors. However
they could possibly be adapted, in a non trivial manner, to our framework. For example, in the
complete setting, the OMVC method proposed by Hu and Chen (2019) can be considered as a
variant of the OLMF estimator proposed by Paul and Chen (2020) where the optimization problem
is modified in order to take into account the symmetry of the inputs. Similarly, if there were no
missing views, the algorithm proposed by Liu et al. (2020) resembles a variant of the co-regularized
spectral clustering method of Paul and Chen (2020) for clustering multilayer graphs. We leave the
adaptation of the algorithm proposed by Liu et al. (2020) to our setting for future work.

1.2 Contributions

We consider the problem of clustering multilayer graphs with missing nodes under a Multi-Layer
Stochastic Block Model (MLSBM) described in Section 2. Our contributions are as follows.

• In Section 3.1 we propose a final aggregation method based on a variant of k-means for
incomplete data (Algorithm 1), and derive a bound for the misclustering rate.
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• Section 4 extends a popular early fusion method – based on spectral clustering applied to
the sum of adjacency matrices – to the missing nodes setting. Section 4.1 studies this by
imputing the missing entries with zeros (Algorithm 2), and contains an upper bound for
the misclutering rate. Section 4.2 proposes an alternative method (Algorithm 3) wherein
the missing entries are imputed iteratively. This method is shown to perform well in our
experiments.

• Section 5.2 proposes an extension of an intermediate fusion method – namely the Orthogonal
Linked Matrix Factorization (OLMF) method studied by Paul and Chen (2020) – to the
missing nodes setting.

• In Section 6 we empirically evaluate our algorithms on synthetic data, and also on real
datasets.

1.3 Notations

The set of integers {1, . . . , n} will be denoted by [n]. For a matrix M ∈ Rn×n, its Frobenius (resp.
operator) norm is denoted by ||M ||F (resp. ||M ||). The notation Mi∗ (resp. M∗j) denotes the
i-th row (resp. j-th column) of M . For any subset J of [n] and symmetric matrix M ∈ Rn×n,
MJ ∈ R|J |×|J | denotes the square submatrix of M obtained by deleting rows and columns whose
index doesn’t belong to J . For a non symmetric matrix Z ∈ Rn×K , ZJ denotes the submatrix of Z
obtained by deleting rows whose index doesn’t belong to J . Sometimes, it will also be convenient
to consider AJ (resp. ZJ) as a n × n (resp. n × K) matrix where the rows and columns (resp.
only the rows) whose index doesn’t belong to J are filled with zeros; this will be clear from the
context. In denotes the identity matrix of size n. Constants will be denoted by the letters c and
C, eventually indexed by a number to avoid confusion. Within proofs the values of constants can
change from line to line whereas they are denoted with the same letter for simplicity.

2 Problem setup

A multilayer graph is a sequence of graphs G = (G(1), . . . ,G(L)). If all the graphs are defined on the
same set of nodes N indexed by [n], then G is said to be pillar. Throughout, we will assume that
for all l ≤ L each graph G(l) is undirected and has no self-loop. This implies that its associated

adjacency matrix A(l) ∈ {0, 1}n×n is symmetric with A
(l)
ii = 0 for all i.

Given G as input, our goal is to recover a partition of N into K disjoint sets (or communities),
so that nodes belonging to the same community share a similar connectivity profile. To make the
setup more precise, we will study this problem in the setting where G is generated via an underlying
(unknown) stochastic model, with a latent community structure. This model is a common extension
of the well-studied stochastic block model (SBM) for the unilayer case which we now describe.

2.1 Stochastic Block Model (SBM)

The stochastic block model (SBM) – first proposed in Holland et al. (1983) – is a simple yet
popular stochastic generative model for unilayer graphs which captures the community structures
of networks often observed in the real world. A SBM with the set of nodes N and K communities
C1, . . . , CK forming a partition of N is parameterized as follows.

• There is a membership matrix Z ∈ Mn,K where Mn,K denotes the class of membership
matrices. Here, Zik = 1 if node i belongs to Ck, 0 otherwise. Each membership matrix Z
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can be associated bijectively with a function z : [n] → [K] such that z(i) = k where k is the
unique column index satisfying Zik = 1.

• There is a full-rank, symmetric, connectivity matrix of probabilities

Π = (πkk′)k,k′∈[K] ∈ [0, 1]K×K .

Let us denote P = (pij)i,j∈[n] := ZΠZT . A graph G is distributed according to a stochastic block
model SBM(Z,Π) if the corresponding symmetric adjacency matrix A has zero diagonal entries
and

Aij
ind.∼ B(pij), 1 ≤ i < j ≤ n,

where B(p) denotes a Bernoulli distribution with parameter p. Hence the probability that two
nodes are connected depends only on the community memberships of these two nodes.

Let us denote by nk the size of the community Ck, nmin (resp. nmax) to be the size of the
smallest (resp. largest) community, and β = nmax

nmin
. The communities are said to be balanced if

they all have the same size (equivalently, β = 1). The communities are approximately balanced if
β = O(1). The maximum value of the connectivity parameter is denoted by pmax := maxi,j pij and
can be interpreted as the sparsity level (depending on n).

The misclustering rate associated to an estimated membership matrix Ẑ is measured by

r(Ẑ, Z) = r(ẑ, z) =
1

n
min
σ∈S

∑
i

1{ẑ(i)6=σ(z(i))},

where S denotes the set of permutations on [K]. A clustering algorithm is said to be strongly
consistent – or achieving exact recovery – if r(Ẑ, Z) = 0 with probability 1 − o(1) as n tends to
infinity. It is said to be weakly consistent – or achieving almost exact recovery – if P(r(Ẑ, Z) =
o(1)) = 1−o(1) as n tends to infinity. A more complete overview of the different types of consistency
and the sparsity regimes where they occur can be found in Abbe (2018).

2.2 Multilayer Stochastic Block Model (MLSBM)

We now describe the multilayer stochastic block model (MLSBM), which is a common extension
of the SBM to the setting of multilayer graphs (see for e.g., Paul and Chen (2020); Bhattacharyya
and Chatterjee (2018); Lei et al. (2019)). The MLSBM is parametrized by the number of layers
L, a common block membership matrix Z ∈ Mn,K , and connectivity matrices Π(1), . . . ,Π(L) ∈
[0, 1]K×K .

Similar to the unilayer case, let us denote P (l) = ZΠ(l)ZT for l = 1, . . . , L. A multilayer graph
G is distributed according to the model MLSBM(Z,Π(1), . . . ,Π(L)) if the adjacency matrix A(l) of
each layer is distributed according to a SBM(Z,Π(l)) for l = 1, . . . , L. Hence, while the probability
that two nodes are connected can vary across layers, the block membership of each node remains

unchanged. As in the unilayer case we can define the quantities p
(l)
max = maxi,j p

(l)
ij , pmax =

maxl p
(l)
max.

2.3 Missing nodes

The assumption that all the layers share the same set of nodes is quite restrictive since real world
multilayer networks are often ‘non-pillar’. We propose to deal with such networks by considering
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nodes present in some layers but not in others as missing. Let w
(l)
i be a binary variable that records

the presence of node i in the layer l where w
(l)
i = 1 if node i is observed in layer l and 0 otherwise.

Denoting w(l) = (w
(l)
1 , . . . , w

(l)
n )T , let Ω(l) = w(l)(w(l))T be the mask matrices and Ã(l) = A(l)�Ω(l)

for l ≤ L where � is the usual Hadamard product. Let Jl denote the set of non-missing nodes in

layer l with nJl = |Jl|. By a slight abuse of notation we will denote by AJl the matrix A
(l)
Jl

. The
number of observed nodes in Ck will also be denoted by nJl,k. Throughout, we assume that the

missing nodes are generated as w
(l)
i

ind.∼ B(ρ) for i = 1, . . . , n.

3 Final aggregation methods

A natural way to extend unilayer graph clustering to the multilayer setting is to analyze each
layer separately and then find a consensus partition – such approaches are referred to as final
aggregation methods. For example, one can apply any clustering method on each individual layer,
take one layer’s labels as a reference, find for each remaining layer the permutation of its labels
that maximizes the agreement with the reference layer, and then define a consensus community
by majority voting as discussed in Han et al. (2015). There exist alternative ways to avoid the
cumbersome issue of label switching ambiguity such as the ‘aggregate spectral kernel’ considered
in Paul and Chen (2020). Such methods rely on the quality of each individual layer and are often
empirically outperformed by other methods as shown in Paul and Chen (2020); Han et al. (2015).

Final aggregation methods are still relevant in the missing nodes context. Indeed, if we have
exact recovery for each layer, and if for all k there is at least one common node between two layers
belonging to Ck, then we can easily reconstruct the whole partition even when the set of common
nodes is very small. Hence such methods can be considered as baseline methods.

3.1 A method based on a variant of k-means for incomplete data

We now propose a final aggregation method for clustering multilayer graphs in the incomplete
setting; it avoids the aforementioned label switching problem.

For each layer l, we can compute the matrix ÛJl of size |Jl|×K corresponding to the eigenvectors
associated with the top K eigenvalues (in absolute value) of AJl ∈ R|Jl|×|Jl|. The matrix ÛJl can
be transformed to a matrix Û (l) of size n × K by completing with 0 the rows of the nodes that
haven’t been observed1. Let Û be the n×KL matrix obtained by stacking Û (l).

Analogously, let UJl be the matrix formed by the K eigenvectors corresponding to non-zero
eigenvalues of ZJlΠ

(l)ZTJl , U
(l) be the n × K matrix obtained from UJl by filling the rows corre-

sponding to unobserved nodes with the row corresponding to an observed node (belonging to the
same community), and U be the matrix obtained by stacking all the matrices U (l). For each l, let
Ol be a K ×K orthogonal matrix such that

Ol ∈ argmin
OTO=Ik

||ÛJl − UJlO||F .

As in the unilayer setting, k-means could be applied on the rows of Û (l) in order to recover the
community structure for each l. But in order to avoid the label switching problem we propose to
apply on the rows of Û a variant of k-means described in Chi et al. (2015) that can handle missing
values, see Algorithm 1.

1It is easy to verify that Û (l) is also the eigenvector matrix corresponding to the top K eigenvalues (in absolute
value) of A(l) � Ω(l).
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Let us describe the principle behind this algorithm. The classical k-means problem seeks a
partition Z and centroid values (encoded in the matrix C) that solves

min
Z∈Mn,K

C∈RK×KL

||Û − ZM ||2F .

When there are missing values one can instead solve

min
Z∈Mn,K

C∈RK×KL

||(Û − ZM)� ΩU ||2F (3.1)

where ΩU = (w(1) ⊗ 1K · · · w(L) ⊗ 1K) is the n × KL mask matrix with 1K ∈ R1×K denoting
the all ones vector. It is a matrix composed of L blocks where the rows of each block are 1 if the
corresponding node is observed and 0 otherwise.

Algorithm 1 k-pod clustering

Input: The number of communities K, the sets Jl and the adjacency matrices AJl .

1: Form Û (l) from AJl as explained at the beginning of Section 3.1.
2: Form the matrix Û by stacking the matrices Û (l).
3: Initialize the partition Ẑ and the centroid matrix M̂ .
4: repeat
5: Replace Û by Û � ΩU +(ẐM̂)� (11T − ΩU).
6: Apply K-means on the complete matrix Û and update M̂ and Ẑ.
7: until convergence.

Output: A partition of the nodes N = ∪Ki=1Ci based on Ẑ.

In the worst case, the complexity of the algorithm is O((L+K)n2). But in practice the layers
are often sparse and so the complexity will be much less2.

Theorem 1. Consider the missing nodes MLSBM in Section 2.3, and suppose that ρL ≥ 1, KL ≤
C0n, ρnmin ≥ C1K

2 max(log2 n,
√
npmax) and np

(l)
max ≥ C2ρ

−1 log n. Let λ
(l)
K be the K-th largest

singular value of Π(l) and recall that β = nmax/nmin. If

1

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

< (30C3β
4K3)−1

then with probability at least 1−O(n−1), it holds that the solution Ẑ ∈Mn,K of (3.1) satisfies

r(Ẑ, Z) ≤ C4 exp(−c′ρL) +
C5β

3K2

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

.

The proof of all our theoretical results are deferred to the supplementary material.

Remark 1. The assumption ρL ≥ 1 is natural since ρL corresponds to the expected total number of
times a node is observed, and a node needs to be observed at least once in order to be classified. The
condition ρnmin ≥ C1K

2 log2 n ensures that ρ and nmin are not too small. If the communities are
well-balanced and the parameters ρ and K are fixed independently of n, then the previous condition
is satisfied for n large enough.

2This remark regarding the complexity applies to our other methods as well.
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Remark 2. Our analysis assumes that each layer is sufficiently informative, and doesn’t use the
fact that there is more information contained in the whole set of layers than in individual layers.
This is why the bound does not improve when L increases. The obtained upper-bound is unlikely to
be optimal since as shown in the experiments, the clustering performance does seem to improve a
bit when L increases.

4 Early fusion methods: spectral clustering on sum of adjacency
matrices

Late fusion methods rely heavily on the quality of each layer. However, by simultaneously using
all the information contained in all layers, the clustering performance can be improved in some
settings (see the numerical experiments in Paul and Chen (2020) or Han et al. (2015)). One way to
do this is to aggregate the information across layers and then apply a suitable clustering method.
This approach will be referred to as an early fusion method. One simple but popular way to do this
is to take the mean of the adjacency matrices (see for e.g., Bhattacharyya and Chatterjee (2018);
Paul and Chen (2020)). Then, the k-means algorithm can be applied to the rows of the n × K
eigenvector matrix associated with the top K eigenvalues (in absolute value) of A = L−1

∑
lA

(l).

4.1 Imputing missing entries with zeros

A natural way to extend the aforementioned approach to the setting of missing nodes is to fill the
missing entries with zeros, thus leading to Algorithm 2. The worst-case complexity of the algorithm
is O((L+K)n2).

Algorithm 2 Sum of adjacency matrices with missing entries filled with zeros

Input: The number of communities K, the matrices A(l) and Ω(l).

1: Compute A = L−1
∑

lA
(l) � Ω(l).

2: Compute the eigenvectors u1, . . . , uK associated with the K largest eigenvalues of A (ordered
in absolute values) and form UK = [u1 u2 · · · uK ].

3: Apply K-means on the rows of UK to obtain a partition of N into K communities.

Output: A partition of the nodes N = ∪Ki=1Ci.

Let us denote Ã = ρ−2L−1
∑

lA
(l) � Ω(l) (clustering on A or Ã is equivalent since the two

matrices are proportional, but for the analysis it is more convenient to work with Ã). Clearly
E(Ã) = L−1

∑
l E(A(l)) (since the diagonal entries of A(l) are zero). Denote by E(X|Ω) to be the

expectation of X conditionally on Ω = (Ω(1), . . . ,Ω(L)) and let λK denote the Kth largest singular
value of E(Ã). We have E(Ã|Ω) = ρ−2L−1

∑
l E(A(l))� Ω(l). Using the same kind of perturbation

arguments and concentration inequalities as in Lei and Rinaldo (2015), we can relate Ã to E(Ã|Ω)
and then use Bernstein inequality to relate E(Ã|Ω) with E(Ã). This leads to the following bound
on the misclustering rate.

Theorem 2. Under the missing nodes MLSBM in Section 2.3, there exist constants C0, C1 > 0
such that with probability at least 1 − O(n−1), the solution Ẑ ∈ Mn,K obtained from Algorithm 2
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satisfies

r(Ẑ, Z) ≤ C0K

ρ4λ2K

(
npmax
L

+
log n

L

)
︸ ︷︷ ︸

noise error

+

C1K
(ρ−2 − 1)2

λ2K

(
(npmax)2

log(n)

L
+

(
npmax log n

L

)2
)

︸ ︷︷ ︸
missing data error

.

If L is small then the missing data error could be larger than one making the upper bound
trivial. In the best case scenario, we expect that λK scales as npmax. So we need at least C log n
layers to get a non trivial upper bound. In order to obtain asymptotic consistency, it is necessary
that L � log n. However, experiments show that even when L is small, Algorithm 2 gives good
results as long as the layers are dense enough and the number of missing nodes is not too large.

When ρ = 1 and npmax ≥ log n the upper bound becomes O((Lnpmax)−1/2) thus matching
the bound obtained by Bhattacharyya and Chatterjee (2018) in a more general regime. See the
supplementary material for other comparisons.

4.2 Iteratively imputing the missing entries

When the number of missing nodes is important, filling missing entries with zero can lead to a huge
bias and hence poor clustering performances. In order to reduce the bias we propose an alternative
way of imputing the missing values (outlined as Algorithm 3) based on the fact that each adjacency
matrix is a noisy realization of a structured matrix.

At iteration t, given an initial estimate Û tK ∈ Rn×K of the common subspace we can estimate

the membership matrix Ẑt by applying k-means on Û tK . Then, we can estimate the connectivity

matrix Π̂(l),t for each l as

Π̂(l),t = ((Ẑt)T Ẑt)−1(Ẑt)TA(l),tẐt((Ẑt)T Ẑt)−1. (4.1)

Given Ẑt and Π̂(l),t we estimate the rows and columns corresponding to missing nodes. Indeed, the
connectivity profile of a node i in layer l is given by the ith row of ẐtΠ̂(l),t(Ẑt)T . By replacing the
rows and columns of missing nodes by their estimated profiles, and leaving the value of observed
nodes unchanged, we obtain the updated imputed matrix A(l),t+1. Applying spectral clustering on
L−1

∑
lA

(l),t+1 then leads to an updated estimate Û t+1
K of the common subspace. The procedure

can be repeated using Û t+1
K and A(l),t+1, thus iteratively imputing the missing values in order to

obtain “completed” adjacency matrices that share the same K rank structure across layers. In the
worst case, the complexity of the algorithm run with T iterations is O((K + L)n2T + LKnT ).

Similar iterative imputation methods have been studied in the context of principal component
analysis, see for e.g., Zhang et al. (2018); Zhu et al. (2019). In our experiments, Algorithm 3 is seen
to perform significantly better than other methods when ρ decreases. While we do not currently
have any statistical performance guarantee for Algorithm 3, establishing this is an interesting
direction for future work.

5 Intermediate fusion methods: OLMF estimator

Orthogonal linked matrix factorization (OLMF) is a clustering method for multilayer graphs that
originated in the work of Tang et al. (2009) in the complete data setup, and was later analysed
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Algorithm 3 Sum of adjacency matrices with missing entries filled iteratively

Input: Number of communities K; Jl and AJl ∈ Rn×n for each l; initial estimate of the common
subspace Û0

K ∈ Rn×K (with orthonormal columns) obtained from Algorithm 2; number of
iterations T .

1: Initialize t = 0 and A(l),0 = AJl for all l.
2: repeat
3: Given Û tK , estimate the membership matrix Ẑt and the connectivity parameters Π̂(l),t for

all l by using (4.1).
4: For each l, replace rows (and corresponding columns) of A(l) corresponding to a missing

node i by the ith row of ẐtΠ̂(l),tẐt
T

to form A(l),t+1.
5: Compute the eigenvector matrix Û t+1

K = [ut+1
1 ut+1

2 · · · ut+1
K ] associated with the K largest

(in absolute order) eigenvalues of L−1
∑

lA
(l),t+1. Update t← t+ 1.

6: until t ≤ T
7: Apply K-means on ÛTK to get a partition of N .

Output: A partition of the nodes N = ∪Ki=1Ci.

in Paul and Chen (2020). It shows good performance in various settings and outperforms spectral
clustering when the multilayer network contains homophilic and heterophilic communities (see the
numerical experiments in Paul and Chen (2020)).

5.1 The complete data setting

In the complete data setting, the OLMF estimator is a solution of the following optimization
problem

(Q̂, B̂(1), . . . , B̂(L)) ∈ argmin
QTQ=Ik

B(1),...,B(L)

∑
l

||A(l) −QB(l)QT ||2F , (5.1)

where Q ∈ Rn×K , B(l) ∈ RK×K . Note that there is no constraint on the values taken by the entries
of B(l).

A little algebra (see Paul and Chen (2020)) shows that the optimization problem (5.1) is equiv-
alent to

Q̂ ∈ argmax
QTQ=Ik

∑
l

||QTA(l)Q||2F , B̂(l) = Q̂TA(l)Q̂ (5.2)

for l = 1, . . . , L. The OLMF estimator can be computed with a gradient descent on the Stiefel man-
ifold (see Paul and Chen (2020) and supplementary material therein). The community estimation
is then obtained by applying K-means on the rows of Q̂.

5.2 Extension to the missing nodes setting

We now present an extension of the OLMF estimator to the setting of missing nodes. By replacing
the matrices A(l), Q in the objective function in (5.1) with AJl ∈ Rn×n, QJl ∈ Rn×K , we end up
with the following modification for the incomplete setting

(Q̂, B̂(1), . . . , B̂(L)) ∈ argmin
QTQ=Ik
B(1),...,B(l)

∑
l

||AJl −QJlB
(l)QTJl ||

2
F . (5.3)
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In our experiments, we employ a BFGS algorithm for solving (5.3). The worst-case complexity of
the algorithm is O(LK(n2 +Kn)). Denoting the objective function in (5.2) by F , its gradients are
given by

∂F

∂Q
= −2

∑
l

(AJl −QJlB
(l)QTJl)QJlB

(l),

∂F

∂B(l)
= −QTJl(AJl −QJlB

(l)QTJl)QJl .

We relax the constraint that the gradient remains on the Stiefel manifold of n × k matrices, and
initialize the parameters using Algorithm 2.

The optimization problem in (5.2) can be motivated via the missing nodes MLSBM as follows.
If we replace the noisy realization AJl with (ZΠ(l)ZT ) � Ω(l) then one can show (under some
conditions) that the solution Q̂ of (5.3) has the same column span as the ground truth Z ∈Mn,K .
This is shown formally in the following proposition.

Proposition 1. Assume that Π(l) is full rank for each l, and that for each l, l′ the sets Jl ∩ Jl′
intersect all communities. Then if AJl = (ZΠ(l)ZT ) � Ω(l), it holds that the solution of (5.3) is
given by Q̂ = Z(ZTZ)−1/2 and B̂(l) = (ZTZ)1/2Π(l)(ZTZ)1/2 and is unique up to an orthogonal
transformation. Moreover if i, j belong to the same community, then Q̂i∗ = Q̂j∗.

The matrix E(A(l)) can be considered as a slight perturbation of ZΠ(l)ZT since the former has
zeros on the diagonal. Thus the proposition shows that when there is no noise, the column-span of
Q̂ (the solution of (5.3)) is the same as the ground truth partition Z.

6 Numerical experiments

6.1 Synthetic data

We now describe simulation results when the multilayer graph is generated from the missing nodes
MLSBM. The normalized mutual information (NMI) criterion is used to compare the estimated
community to the ground truth partition. It is an information theoretic measure of similarity
taking values in [0, 1], with 1 denoting a perfect match, and 0 denoting completely independent
partitions. Nodes that are not observed at least once are removed. The diagonal (resp. off-
diagonal) entries of the connectivity matrices are generated uniformly at random over [0.18, 0.19]
(resp. 0.7 ∗ [0.18, 0.19]). The ground truth partition is generated from a multinomial law with
parameters 1/K. While K = 3 is fixed throughout, the parameters n, ρ and L are varied suitably.
The average NMI is reported over 20 Monte Carlo trials. As shorthand, we denote Alg. 1 by k-pod,
Alg. 2 by sumAdj0, Alg. 3 by sumAdjIter, and (5.3) by OLMFm.

Figure 1 shows that sumAdj0 gives good results unless ρ is too small. Then, the performance of
this method decreases quickly. This suggests that there is a threshold involving ρ and the difference
between intra and inter connectivity parameters. Figure 3 supports this claim. When ρ is small,
the performance of sumAdj0 doesn’t improve when n increases. So even if the separation between
communities improves, the intra and inter connectivity parameters remain the same suggesting a
link between these parameters and ρ.

When L increases (see Figs. 1 and 2), the performance of all methods improves. However,
performance of k-pod improves less quickly than other methods. This is expected since con-
trary to other methods, k-pod relies more on the quality of each individual layer. OLMFm and
sumAdjIter exhibit better performance than others in the challenging situation when ρ is small,
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and perform as well as the others when ρ ≈ 1. They perform significantly better than k-pod,
especially when L is large.

Figure 1: NMI vs ρ for different values of L

Figure 2: NMI vs L for different values of ρ

Figure 3: NMI vs n for different values of ρ
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6.2 MIT Reality Mining dataset

This dataset records interactions (measured by cell phones activities) between 96 students and staff
at MIT in the 2004-05 school year (see Eagle and Pentland (2006)). We used the dataset as provided
by the R package ‘GreedySTBM’. As in Han et al. (2015) we removed the first and last layers, then
discretized the time into one week intervals. The number of times two persons had an interaction
during the week is not conserved in order to have a simple undirected graph corresponding to each
layer. In total we obtained 32 layers. For different values of ρ, we randomly removed nodes in each
layer of the multilayer network. The average NMI over 50 Monte Carlo trials is reported in Table 1
for our methods. The ground truth partition here is taken to be that obtained from sumAdj0 when
ρ = 1. We disregarded k-pod because even when ρ = 1, its performance was disappointing and

ρ sumAdj0 OLMFm sumAdjIter

1 1.00 1.00 1.00
0.9 0.99 0.96 0.99
0.8 0.97 0.86 0.97
0.7 0.96 0.93 0.96
0.6 0.94 0.79 0.94
0.5 0.89 0.91 0.90
0.4 0.76 0.73 0.78
0.3 0.56 0.57 0.62
0.2 0.26 0.41 0.36
0.1 0.09 0.10 0.11

Table 1: NMI vs ρ for MIT Reality Mining dataset

very sensitive to the initialization. This is not very surprising since this method works only if each
layer is informative enough while we have a multilayer network where individual layers can be very
sparse.

The performance of the other three methods studied are quite similar when ρ is not too small
(ρ ≥ 0.4). However, the performance of OLMFm seems to be quite sensitive to initialization since
for ρ ∈ {0.6, 0.8} its performance is worse than sumAdj0 and sumAdjIter. Even if we remove half
of the nodes in each layer we can still approximately recover the partition.

6.3 Malaria parasite genes network

The dataset was constituted by Larremore et al. (2013) to study the var genes parasite Plasmodium
falciparum involved in Malaria. The nodes of the dataset correspond to 307 different amino acid
sequences and each of the 9 layers corresponds to a highly variable region (HVR). Two nodes are
linked in a given layer if there is a common block sequence between the corresponding amino acid
sequences within the HVR associated to the layer. The analysis in Larremore et al. (2013) and Jing
et al. (2020) shows that the first six layers share the same community structure with K = 4. Hence
we restrict our study to the first six layers with K = 4. We use the same procedure as before to
delete nodes and to select the ground truth partition. k-pod was disregarded for the same reason
as the previous experiment. As ρ decreases, the clustering performance decreases rapidly due to a
weak separation between the clusters as shown in Table 2.
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ρ sumAdj0 OLMFm sumAdjIter

1 1.00 0.99 1.00
0.9 0.75 0.75 0.72
0.8 0.63 0.62 0.58
0.7 0.47 0.49 0.47
0.6 0.32 0.37 0.34
0.5 0.22 0.20 0.26
0.4 0.13 0.07 0.16

Table 2: NMI vs ρ for Malaria parasite genes network

7 Future work

Our theorems require different conditions for consistency (each layer has to be informative enough
for Algorithm 1 and L has to be large for Algorithm 2). It would be interesting to gain a better
understanding of the fundamental limit of clustering with missing nodes. In this regard the use of
two-round algorithms (see for e.g., Abbe (2018)) that do local refinement after having found a global
partition could improve the misclustering rate. It would also be interesting to consider model-based
approaches by considering variational methods (Daudin et al. (2008)) or Stochastic-EM algorithms
(Celeux et al. (1996)).

We assumed for simplicity that the nodes are missing under a Bernoulli sampling scheme,
but other missing patterns could be considered. Another important direction would be to relax
the strong condition imposed by MLSBM that all layers share the same common partition. For
example, it would be more realistic to assume that the partition of networks evolving over time
also evolves slowly.
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U. Braun, A. Schäfer, H. Walter, S. Erk, N. Romanczuk-Seiferth, L. Haddad, J. Schweiger,
O. Grimm, A. Heinz, H. Tost, A. Meyer-Lindenberg, and D. Bassett. Dynamic reconfigura-
tion of frontal brain networks during executive cognition in humans. Proceedings of the National
Academy of Sciences of the United States of America, 112, 08 2015.

V. Buldygin and K. Moskvichova. The sub-gaussian norm of a binary random variable. Theory of
Probability and Mathematical Statistics, 86:33–49, 2013.

G. Celeux, D. Chauveau, and J. Diebolt. Stochastic versions of the em algorithm: an experimental
study in the mixture case. Journal of statistical computation and simulation, 55(4):287–314,
1996.

13



J. Chi, E. Chi, and R. Baraniuk. k -pod a method for k -means clustering of missing data. The
American Statistician, 70:1–29, 2015.

J.-J. Daudin, F. Picard, and S. Robin. A mixture model for random graph. Statistics and Com-
puting, 18:173–183, 06 2008. doi: 10.1007/s11222-007-9046-7.

N. Eagle and A. Pentland. Reality mining: Sensing complex social systems. Personal Ubiquitous
Comput., 10(4):255–268, 2006.

S. Fortunato. Community detection in graphs. Physics Reports, 486, 2009.

C. Giraud and N. Verzelen. Partial recovery bounds for clustering with the relaxed k-means.
Mathematical Statistics and Learning, 1:317–374, 05 2019.

Q. Han, K. Xu, and E. Airoldi. Consistent estimation of dynamic and multi-layer block models.
In Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, page 1511–1520, 2015.

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109 – 137, 1983.

M. Hu and S. Chen. One-pass incomplete multi-view clustering. In The Thirty-Third Conference
on Artificial Intelligence, pages 3838–3845, 2019.

B.-Y. Jing, T. Li, Z. Lyu, and D. Xia. Community detection on mixture multi-layer networks via
regularized tensor decomposition. arXiv, 2002.04457, 2020.

J. Kim and J.-G. Lee. Community detection in multi-layer graphs: A survey. SIGMOD Record,
44:37–48, 2015.
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Supplementary Material

The proof of Theorem 1 is presented in Appendix A and that of Theorem 2 is presented in Appendix
B. Proposition 1 is proved in Appendix D and auxiliary lemmas are gathered in Appendix E.
Appendix C is devoted to discussing the missing edges setting. Existing bounds for the misclustering
rate under the MLSBM in the complete setting are gathered in Appendix F.

A Proof of Theorem 1

Let Ẑ and Ĉ be solutions of the optimization problem (3.1) and write Ū := ẐĈ. Define U ′ as the
block matrix obtained by stacking the matrices U (l)Ol, Li = {l ∈ [L] : i ∈ Jl} be the indices of
layers where the node i appears, and Nu = {i : |Li| ≥ ρL/c} where c > 1 is a constant that will be
fixed later. Let Sk be the set of ‘bad nodes’ defined as

Sk := {i ∈ Ck ∩Nu : ∀l ∈ Li, ||U (l)
i∗ Ol − Ū

(l)
i∗ || ≥ δ

(l)
k /2}

where
δ
(l)
k := min

i∈Ck
i′∈Ck′
k′ 6=k

||U (l)
i′∗ − U

(l)
i∗ || = min

i∈Ck
i′∈Ck′
k′ 6=k

||U (l)
i′∗Ol − U

(l)
i∗ Ol||

is the smallest distance between two rows of U (l) corresponding to different communities. Let
Tk := (Ck \ Sk) ∩Nu be the complement of Sk in Nu ∩ Ck and T = ∪kTk.

Step 1. First let us show by contradiction that if for all k, |Tk| > nk/30 and nk satisfies the
assumptions of the theorem, then all the nodes in T are well classified with probability at least
1− O(n−1). Assume that there exist i ∈ Tk and j ∈ Tk′ such that Ūi = Ūj . If Li ∩ Lj 6= ∅, every
l ∈ Li ∩ Lj satisfies

max(δ
(l)
k , δ

(l)
k′ ) ≤ ||U

(l)
i∗ − U

(l)
j∗ || ≤ ||U

(l)
i∗ − Ū

(l)
i∗ ||+ ||U

(l)
j∗ − Ū

(l)
j∗ || <

δ
(l)
k

2
+
δ
(l)
k′

2

contradicting the fact that i ∈ Tk and j ∈ Tk′ . It remains to treat the case Li ∩ Lj = ∅. Let C1 be
a cluster induced by Ū containing the nodes i and j. If there were other nodes belonging to Ck and
Ck′ but appearing in a common layer, the previous argument can be used to obtain a contradiction.
So we can assume that all the nodes of community Ck in C1 and all nodes of community Ck′ in
C1 appear on distinct layers. We are going to show this property implies that for all k the size of
Ck ∩ C1, and thus the size of C1, is small with high probability. Let l1 be a layer where a node in
Ck′ ∩ C1 appears. The probability that none of the nodes in Ck ∩ C1 appear in l1 is (1 − ρ)|Ck∩C1|

and this probability is O(1/n2) if |Ck ∩ C1| ≥ 2ρ−1 log n (we used the fact that − log(1 − ρ) ≥ ρ).
By symmetry, the result holds for every k such that |Ck ∩ C1| > 0. Therefore we can assume that
|C1 ∩ Ck| ≤ 2ρ−1 log n. Since for all k, |Tk| ≥ nk/30 ≥ 3K2ρ−1 log n by assumption, there are
nodes in Tk and Tk′ that are not in C1. Hence there is another cluster C2 induced by Û containing
nodes from two different communities. The same argument can be applied to C2 and iteratively to
C3, . . . , CK . At the end, since the Ck form a partition of the set of nodes, we obtain

|Tk′ | =
∑
k

|Ck ∩ Tk′ | ≤ 2K2ρ−1 log n

contradicting the fact that |Tk| ≥ 3K2ρ−1 log n.
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We are now going to show that under the assumptions of the theorem, for all k, Tk satisfies
|Tk| > nk/30 with probability at least 1 − O(n−1). In order to prove this result we will first show
that |Sk| is small (Step 2) and then show that Nu ∩ Ck is large (Step 3).

Step 2. Observe that if i ∈ Sk then ∀l ∈ Li, 4(δ
(l)
k )−2||(U (l)Ol)i∗ − Ū

(l)
i∗ ||2 ≥ 1. So for all k,

|Sk|δ2k ≤ 4
∑

i∈Ck∩Nu

min
l∈Li

||(U (l)Ol)i∗ − Ū
(l)
i∗ ||

2 ≤ 4
∑

i∈Ck∩Nu

∑
l∈Li
||(U (l)Ol)i∗ − Ū

(l)
i∗ ||2

|Li|
(A.1)

where we used the fact δ
(l)
k ≥ δk for the first inequality, and the fact that the minimum is always

bounded by the mean for the second inequality.
By summing over k, and using the fact that |Li| ≥ ρL/c for i ∈ Nu, we get∑

k

|Sk|δ2k ≤
4c

ρL

∑
i∈Nu

∑
l∈Li

||(U (l)Ol)i∗ − Ū
(l)
i∗ ||

2 ≤ C

ρL
||(U ′ − Ū)� ΩU ||2F . (A.2)

Using triangular inequality we get

||(U ′ − Ū)� ΩU ||2F ≤ ||(U ′ − Û)� ΩU ||2F + ||(Û − Ū)� ΩU ||2F ≤ 2||(Û − U ′)� ΩU ||2F (A.3)

where the second inequality follows from the fact that U ′ is feasible for (3.1), i.e., it can be written
as a product of a membership matrix Z and a centroid matrix C ∈ RK×KL.

Notice that
||(Û − U ′)� ΩU ||2F =

∑
l

||ÛJl − UJlOl||
2
F .

Let λK,Jl be the Kth largest singular value of ZJlΠ
(l)ZTJl . This last quantity depends on the missing

patterns, but the concentration results established in Lemma 2 shows that for all l, nJl ≤ 1.5ρn
with probability at least 1 − O(n−1) and Lemma 6 applied with ZJl instead of Z and nJl,min

instead of nmin shows that λK,Jl ≥ nJl,minλ
(l)
K ≥ 0.5ρnminλ

(l)
K with probability at least 1−O(n−1).

The concentration inequality used in Lemma 5 and Lemma 2 show that with probability at least

1 − O(n−1), ||AJl − E(AJl)|| ≤ C

√
nJlp

(l)
max ≤ C

√
ρnp

(l)
max. But ρnminλ

(l)
K ≥ 4C

√
ρnp

(l)
max for all l

due to our assumptions. Moreover, since with high probability, nJlp
(l)
max ≥ c log n for each l (using

the fact that w.h.p, nJl ≥ c′ρn for each l, the condition in the theorem statement suffices), hence
Lemma 5 applies and we get that for for each l that with probability 1−O(n−2)

||ÛJl − UJlOl||
2
F ≤

C||AJl − E(AJl)||2F
λ2K,Jl

≤ CKnJlp
(l)
max

λ2K,Jl
. (A.4)

So by Lemma 6 and Lemma 2 there exists C > 0 such that with probability at least 1−O(Ln−2)
(via union bound), we have for all l ≤ L that

nJlp
(l)
max

λ2K,Jl
≤ C np

(l)
max

ρ(nminλ
(l)
K )2

. (A.5)

Plugging equations (A.2), (A.3), (A.5) and (A.4) into (A.1) we obtain with probability at least
1−O(n−1) ∑

k

|Sk|δ2k ≤ CK
∑
l

np
(l)
max

ρ2L(nminλ
(l)
K )2

.
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We have δk = minl δ
(l)
k = minl

√
1

nk,Jl
by Lemma 2.1 in Lei and Rinaldo (2015). Moreover

minl
√

1
nk,Jl

≥ c√
ρnk

with probability at least 1 − O(n−1) by Lemma 2 since ρnk ≥ C log2 n by

assumption. Thus we obtain

∑
k

|Sk| ≤
∑
k

|Sk|(c−1
√
ρnk)

2(δk)
2 ≤ CKnmax

∑
l

np
(l)
max

ρL(nminλ
(l)
K )2

.

Observe that nmax
n ≤ β

K . If ∑
l

np
(l)
max

ρL(nminλ
(l)
K )2

< (30Cβ2K)−1,

then |SK | < nk/30 for all k By using nmin ≥ n
βK this last condition can be simplified as

1

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

< (30Cβ4K3)−1.

Step 3. We are now going to show that |Nu ∩ Ck| is large. Let p(ρ, L) = P(|Li| < ρL/c). For
the choice c = 25, we always have p < 8/10 since ρL ≥ 1 by assumption. Chernoff bound (Lemma
1) shows that p(ρ, L) ≤ e−ρL(1−c

−1)/3. If ρL > 12 log n then with probability at least 1 − O(n−2),
Nu = N and |N c

u| = 0. Let us assume that ρL < 12 log n. The number of nodes in N c
u ∩ Ck can be

written as a sum nk independent Bernoulli variables with parameter p = p(ρ, L) (we will omit the
dependence on ρ and L in the following for notation convenience):

|N c
u ∩ Ck| =

∑
i≤nk

bi.

In expectation E(|N c
u ∩ Ck|) = pnk and Hoeffding’s bound implies that P(||N c

u ∩ Ck| − pnk| ≥ t) ≤
2e−t

2/nk for any choice of t > 0. So we can take t = C
√
nk log n = o(nk) and obtain that with

probability at least 1−O(Kn−2) for all k

|N c
u ∩ Ck| ≤ nkp+ C

√
nk log n.

Thus |Ck ∩Nu| ≥ nk(1− p−
√

C logn
nk

). If n is large enough, then
√

C logn
nk

< 1/30.

Since the sets Sk have cardinalities at most nk
30 we obtain that |Tk| ≥ 5nk

30 .
Conclusion. Steps 1,2 and 3 show that all nodes that belong to Tk are well classified with

probability at least 1 − O(n−1). Hence the number of misclustered nodes is bounded by the sum
of the cardinalities of Sk plus |N c

u|. So with probability at least 1−O(n−1) we get

r(Ẑ, Z) ≤ 1

n
(|N c

u|+
∑
k

|Sk|)

≤ 31

30
p(ρ, L) + Cβ

∑
l

np
(l)
max

ρL(nminλ
(l)
K )2

≤ C exp(−c′ρL) +
Cβ3K2

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

.
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B Proof of Theorem 2

In order to prove Theorem 2, we are going to show that Ã is close to E(Ã|Ω) with high probability
for every realization of Ω and that E(Ã|Ω) concentrates around E(Ã) if L is large enough. These
results are summarized in the following proposition.

Proposition 2. There exist constants c1 and c2 such that the following holds.

1. P(||Ã− E(Ã|Ω)|| ≥ c1ρ−2
(√

npmax

L +
√

logn
L )|Ω

)
≤ n−1;

2. ||E(Ã|Ω)−E(Ã)|| ≤ c2(ρ−2−1)

[
npmax

(√
logn
L + logn

L

)]
with probability at least 1−o(n−1).

Proof. The proof of the first statement is the same as the proof of the corresponding inequality
if there are no missing values. Since we reason conditionally to the missingness mechanism, the
zero entries of Ã can also be considered as the realization of independent Bernoulli variables with
parameter zero.

Let E = ρ2(Ã − E(Ã|Ω)) and E′ be an independent copy of E. Define Es = E − E′ as the
symmetrized version of E. Jensen’s inequality implies that ||E|| = ||E(E −E′|E)|| ≤ E(||Es|| | E),
so it is enough to control ||Es||.

The ψ2 norm (see for example Vershynin (2016), Proposition 1.2.1) of each entry of Es is

bounded by KL := C
√
L−1K where K = maxi,j,l ||A

(l)
ij ||ψ2 and A

(l)
ij are centered Bernoulli random

variables with parameters p
(l)
ij . By definition of the ψ2 norm there exists a constant c0 such that

for each i, j ≤ n
P(|Esij | ≥ c0KL

√
log n) ≤ n−4.

Define Tij = Esij1|Es
ij |≤c0KL

√
logn and let T = (Tij) ∈ Rn×n. By a union bound argument the

matrix Es − T has entries that are not zero with probability at most n−2, thus ||Es|| = ||T || with
probability at least 1 − O(n−2). Since the entries of Es are symmetric, the matrix T is centered
and has entries bounded by c0KL

√
log n by construction. So we can apply the bound from Lemma

4 to T and obtain

||T || ≤ C
√
npmax
L

+KL log n

with probability at least 1 − O(n−1). We can use the following theorem to get a sharp bound for
KL.

Theorem 3 ((Buldygin and Moskvichova, 2013, Theorem 2.1, Lemma 2.1 (K6))). Let Y be a
centered Bernoulli random variable with parameter p, i.e., Y = 1 − p with probability p, and
Y = −p with probability 1− p. Then,

‖Y ‖2ψ2
=


0 ; p ∈ {0, 1} ,

1/4 ; p = 1/2,
1−2p

2 log( 1−p
p

)
; p ∈ (0, 1) \

{
1
2

}
.

In particular, it holds that ‖Y ‖ψ2
≤ 1√

2|log(min{2p,2(1−p)})|
.

If npmax ≤ log2 n, then KL ≤ C(L log n)−1/2 and we obtain the first part of the proposition by
dividing by ρ2. If npmax ≥ log2 n then we can bound use the trivial bound KL ≤ CL−1/2 to see
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that KL log n ≤ C
√

npmax

L . Hence

||Ã− E(Ã|Ω)|| ≤ Cρ−2
(√

npmax
L

+

√
log n

L

)

with probability at least 1−O(1/n) for all Ω.
It remains to bound the difference between E(Ã|Ω) and E(Ã). We do so using the matrix

Bernstein inequality (Lemma 3). Let Xl := ρ−2E(A(l))�Ω(l)−E(A(l)); clearly each Xl is centered.
Moreover ||Xl|| ≤ ||Xl||F ≤ pmaxn(ρ−2 − 1).

For notation convenience, we will write X instead of Xl. We have E(X2)ij =
∑

k≤nXikXjk

because X is symmetric. Recall that Xik = aik(ρ
−2ωiωk − 1) where aik corresponds to A

(l)
ik . A

simple calculation shows that

E(X2)ij =
∑
k

E(aikajk(ρ
−2ωiωk − 1)(ρ−2ωjωk − 1)))

=
∑
k

aikajkE((ρ−2ωiωk − 1)(ρ−2ωjωk − 1))).

If i = j, E((ρ−2ωiωk − 1)2) = ρ−2 − 1 and if i 6= j, E((ρ−2ωiωk − 1)(ρ−2ωjωk − 1))) = ρ−1 − 1.
So in both cases, |E(X2)ij | ≤ np2max(ρ−2 − 1). We can now bound ||E(X2

l )|| by ||E(X2
l )||F ≤

[npmax(ρ−2 − 1))]2 and σ2 := ||
∑

l E(X2
l )|| by L[npmax(ρ−2 − 1)]2.

Therefore matrix Bernstein inequality implies that

||
∑
l

Xl|| ≤ C(ρ−2 − 1)(npmax
√
L log n+ npmax log n)

with probability at least 1−O(n−1) for a constant C chosen appropriately.

Proof of Theorem 2. Triangle inequality gives ||Ã − E(Ã)|| ≤ ||Ã − E(Ã|Ω)|| + ||E(Ã|Ω) − E(Ã)||
and we can use Proposition 2 to bound with high probability each term. So with probability at
least 1−O(n−1)

||Ã− E(Ã)|| ≤ C

ρ2

(√
npmax
L

+

√
log n

L

)
+ C(ρ−2 − 1)

(
npmax

√
log n

L
+
npmax log n

L

)
.

We can now use the relation established in (Lei and Rinaldo, 2015, Lemma 2.1), and a immediate
adaptation of Lemma 5 to conclude as in Theorem 1.

C Missing edges

Assume that each edge is observed independently with probability ρ. So we can write Ω(l) = (w
(l)
ij )i,j

where w
(l)
ij

ind.∼ B(ρ) for i < j. Let us denote Ã = (Lρ)−1
∑

lA
(l) � Ω(l), we then have E(Ã|Ω) =

L−1
∑

l E(A(l)).
We are going to show that in this setting E(Ã|Ω) concentrates around E(Ã). Contrary to

the missing nodes setting the entries of E(Ã|Ω) are independent. Hence this matrix concentrates
around its expectation faster than in the case where nodes are missing. This is shown in the
following proposition.
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Proposition 3. There exists a constant C > 0 such that with probability 1− o(1),

||E(Ã|Ω)− E(Ã)|| ≤ C

(
pmax

√
n

ρ
√
L

+ pmax

√
log n

ρ2

)
.

Proof. We have E(Ã|Ω)ij − E(Ã)ij = (ρL)−1
∑

l a
(l)
ij (w

(l)
ij − ρ) where a

(l)
ij = E(A(l))ij . Hence the

matrix E(Ã|Ω) − E(Ã) is centered and has independent subgaussian entries. As in the proof of
Proposition 2, we can use Remark 3.13 in Bandeira and van Handel (2016). Observe that

max
i

√∑
j

Var(E(Ã|Ω)ij − E(Ã)ij) ≤
√

n

ρ2L
pmax

and ||E(Ã|Ω)ij − E(Ã)ij ||∞ ≤ ρ−1pmax .Therefore

||E(Ã|Ω)− E(Ã)|| ≤ Cρ−1
(√

np2max
L

+ pmax
√

log n

)
.

The difference ||Ã − E(Ã|Ω)|| can be bound as in Proposition 2. With probability at least
1−O(n−1)

||Ã− E(Ã|Ω)|| ≤ Cρ−1
(√

npmax
L

+

√
log n

L

)
.

Then we can conclude as in Theorem 2 by using Lemma 5 that if λK(E(Ã)) = cnpmax and npmax ≥
c′ log n then with probability at least 1−O(n−1)

r(Ẑ, Z) ≤ C ||Ã− E(Ã|Ω)||+ ||E(Ã|Ω)− E(Ã)||
λK(E(Ã))

≤ C

ρ
√
Lnpmax

because the error due to missing values is negligible compared to the error due to the noise when
L ≤ p−1max, contrary to the missing nodes setting.

D Proof of Proposition 1

Observe that (ZΠ(l)ZT ) � Ω = ZJlΠ
(l)ZTJl and (Z(ZTZ)−1/2)Jl = ZJl(Z

TZ)−1/2. Hence Q̂ :=

Z(ZTZ)−1/2 and B̂(l) := (ZTZ)1/2Π(l)(ZTZ)1/2 are solutions of the optimization problem (5.3).
Any other solution (Q̂′, B̂

′(1), . . . , B̂
′(L)) should cancel the objective function and satisfy (Q̂′)>Q̂′ =

IK and for all l ≤ L,
ZJlΠ

(l)ZTJl = Q̂′JlB̂
′(l)(Q̂′Jl)

T . (D.1)

Since Π(l) is rank K and ZJl injective because by assumption Jl intersects every community, the
space spanned by the columns of Q̂′Jl is equal to the space spanned by the columns of ZJl . So we

can write for each l, Q̂′Jl = ZJl(Z
TZ)−1/2Sl where Sl ∈ RK×K is invertible. Fix l and l′. For all

i ∈ Jl ∩ Jl′ ,

Q̂′i∗ = (ZJl(Z
TZ)−1/2Sl)i∗ = Zi∗(Z

TZ)−1/2Sl = (ZJl′ (Z
TZ)−1/2Sl′)i∗ = Zi∗(Z

TZ)−1/2Sl′ .
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Since by assumption Jl ∩ Jl′ intersects every community, we get (ZTZ)−1/2Sl = (ZTZ)−1/2Sl′ and
hence Sl = Sl′ := S for all l, l′. Finally the condition (Q̂′)T Q̂′ = IK implies STS = IK so Q̂′ = Q̂O
where O ∈ RK×K is orthogonal. The matrix B̂

′(l) solution of (D.1) is uniquely determined by

((Q̂′Jl)
T Q̂′Jl)

−1Q̂′TJlZJlΠ
(l)ZTJlQ̂

′
Jl

((Q̂′Jl)
T Q̂′Jl)

−1.

This last expression can be rewritten as

O(Q̂TJlQ̂Jl)
−1Q̂TJlZJlΠ

(l)ZTJlQ̂Jl(Q̂Jl)
T Q̂Jl)

−1OT = OB̂(l)OT .

So under the assumption of Proposition 1 the solutions of (5.3) are unique up to an orthogonal
transformation and the column span of Q̂ is the same as the column span of Z.

Remark 3. The event “for each l, l′ the sets Jl ∩ Jl′ intersect all communities” occurs with proba-
bility at least 1−O(KL2/n2) by replacing Jl by Jl ∩ Jl′ in Lemma 2.

E Auxiliary Lemmas

We first recall the standard Chernoff bound for sum of independent Bernoulli random variables.

Lemma 1 (Chernoff bound). Let X =
∑

i≤nXi where Xi
ind.∼ B(ρ). Then

P(X ≤ (1− δ)nρ) ≤ e−nρδ2/2

and
P(X ≥ (1 + δ)nρ) ≤ e−nρδ2/3

for all 0 < δ < 1.

Proof. See (Mitzenmacher and Upfal, 2005, Theorem 4.5 and Corollary 4.6) .

Lemma 2. Under the assumptions of Theorem 1, with probability at least 1−O(KL/n2), it holds
for each k = 1, . . . ,K and l = 1, . . . ,≤ L that

ρ

2
nk ≤ nk,Jl ≤ 2ρnk.

Proof. Recall that nk,Jl =
∑

i∈Ck 1i∈Jl is a sum of nk independent Bernoulli random variables with
parameter ρ. By applying Lemma 1 with δ = 1/2 we get

nk,Jl ≥
ρ

2
nk

and
nk,Jl ≤ 2nk

with probability at least 1 − O(1/n2), provided that nkρ ≥ C log n for a constant C large enough
as assumed in Theorem 1. The lemma follows from a union bound.

Lemma 3 (Matrix Bernstein inequality). Let X1, . . . , Xn be a sequence of independent zero-mean
random matrices of size d1 × d2. Suppose that ||Xi|| ≤ M almost surely, for all i. Then for all
positive t,

P(||
∑
i

Xi|| ≥ t) ≤ (d1 + d2) exp

(
− t2

2σ2 + 2M/3t

)
where σ2 = max(||

∑
i E(XiX

∗
i )||, ||

∑
i E(X∗iXi)||).
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Proof. See (Tropp, 2012, Theorem 1.6)

Lemma 4. Let X be an n×n symmetric matrix whose entries Xij are independent centered random
variables. Then there exists for any 0 < ε ≤ 1/2 a universal constant cε such that for every t ≥ 0

P(||X|| ≥ 2(1 + ε)σ̃ + t) ≤ exp

(
− t2

c̃εσ̃∗

)
where σ̃ = maxi

√∑
j E(X2

ij) and σ̃∗ = maxi,j E||Xij ||∞.

Proof. See (Bandeira and van Handel, 2016, Corollary 3.12 and Remark 3.13 ).

Lemma 5. Let A ∈ Rn×n be an adjacency matrix generated by a SBM(Z,Π). Denote λK to be
the Kth largest singular value of P = ZΠZT . If λK > 2||A− E(A)||, then with probability at least
1−O(n−2)

||Û − UO||F ≤ C
√
K

√
max(npmax, log n)

λK

where Û is the matrix formed by the first K left singular vectors of A, U = Z(ZTZ)1/2 and O is
the orthogonal matrix that aligns Û and U .

Proof. By Remark 3.13 in Bandeira and van Handel (2016) we get that ||A−E(A)|| ≤ C
√

max(npmax, log n)

with probability at least 1−O(n−2). Moereover, since Û and UO are at most rank K matrices we
have

||Û − UO||F ≤
√

2K||Û − UO||.

Wedin’s theorem (see Wedin (1972)) implies that

||Û − UO|| ≤ ||A− E(A)||
δ

(E.1)

where δ := |λK(A)− λK+1(E(A))| represents the spectral gap. By Weyl’s inequality,

|λK+1(E(A))− λK+1(ZΠZT )| ≤ ||E(A)− ZΠZT ||.

Since E(A) − ZΠZT is a diagonal matrix, its spectral norm is bounded by its largest coefficient
that is bounded by pmax. Moreover since λK+1(ZΠZT ) = 0 we get λK+1(E(A)) ≤ pmax. The same
argument can be used to show that λK(E(A)) ≥ λK(ZΠZT )− pmax.

Weyl’s inequality also implies that

|λK(E(A))− λK(A)| ≤ ||A− E(A)||.

Thus

λK(A) ≥ λK(E(A))− ||A− E(A)|| ≥ λK(ZΠZT )− pmax − ||A− E(A)|| ≥ 1

2
λK(ZΠZT )− pmax.

The last inequality follows from the assumption that λK(ZΠZT ) ≥ 2||A − E(A)||. Since pmax ≤
ε(n)λK(ZΠZT ) where ε(n) → 0 when n → ∞, λK(A) ≥ cλK(ZΠZT ) and then δ ≥ cλK(ZΠZT ).
Therefore the concentration bound stated at the beginning of the proof and (E.1) implies

||Û − UO||F ≤
√

2K
||A− E(A)||

δ
≤ C
√
K

√
max(npmax, log n)

λK

with probability at least 1−O(n−2).
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Lemma 6. We have λK(ZΠZT ) ≥ nminλK(Π).

Proof. Let µ1 ≥ µ2 ≥ · · · ≥ µK be the K non-zero eigenvalues of ZΠZT . By the variational
characterization of eigenvalues we have for all k = 1, . . . ,K

µk(ZΠZT ) = min
V⊂Gn−k+1

max
x∈V
||x||=1

xTZΠZTx (E.2)

where Gn−k+1 denotes the set of n − k + 1 dimensional subset of Rn. Observe that ker(ZT ) =
Im(Z)⊥. An element x ∈ ker(ZT ) cannot be a solution because ZΠZT is a rank K matrix and thus
µk(ZΠZT ) 6= 0, so for k ≤ K the optimization problem (E.2) is equivalent to

µk(ZΠZT ) = min
V⊂Gn−k+1

max
x∈V ∩Im(Z)
||x||=1

xTZΠZTx. (E.3)

It implies in particular that any eigenvector of ZΠZT associated with µk belongs to Im(Z), so it
has a block structure. Let v be an eigenvector associated with µk(ZΠZT ) for 1 ≤ k ≤ K. Then
v = Zu where u ∈ RK . In particular ZΠZT v = Zw where w = ΠZTZu. Thus

µ2k(ZΠZT ) = ||ZΠZT v||2 ≥ nmin||w||2 ≥ nminλ2K(Π)||ZTZu||2 ≥ n2minλ2K(Π)||v||2

because the least singular value of Z is
√
nmin. Clearly, this in particular implies that λK(ZΠZT ) ≥

nminλK(Π).

F Comparison between misclustering bound under MLSBM in
the complete setting

Here we compare existing bounds for the misclustering rate under the MLSBM in the complete
data setting. In order to simplify the comparison between the existing bounds, we will assume that

K is a constant, the communities are well balanced and p
(l)
max ≈ pmax for each l.

• Co-regularized spectral clustering. This algorithm was introduced by Kumar et al.
(2011). It is an intermediate fusion method that aims to find the best set of eigenvectors that
simultaneously approximate the set of eigenvectors associated with each individual layer. It
was shown later by Paul and Chen (2020) that if Lnpmax ≥ C log n and Π(l) is full rank for
all l, then with high probability (w.h.p)

rcoreg = O

(√
log n

Lnpmax

)
.

• OLMF. This estimator was discussed earlier in Section 5.1. It was shown by Paul and Chen
(2020) that if npmax ≥ C log n and at least one of the matrices Π(l) is full rank then w.h.p.

rOLMF = O

(
1

√
npmax

max

{
1,

(log n)2+ε
√

logL

L1/4

})
.

• Sum of adjacency matrices. It was shown by Paul and Chen (2020) that if Lnpmax ≥ log n
and λK(

∑
l Π

(l)) ≈ Lpmax then w.h.p.

rsum = O

(
log n

Lnpmax

)
.
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Bhattacharyya and Chatterjee (2018) showed that if Lnpmax ≥ log n and λK(
∑

l Π
(l)) ≈

LλK(Π(1)) then w.h.p.

rsum = O

(
1√

Lnpmax

)
.

The condition Lnpmax ≥ log n is not stated in Bhattacharyya and Chatterjee (2018) and is
only assumed here for simplification. This last bound is better than the former in the sparse
case when Lnpmax ≈ log n. But when npmax � log n2 the first bound is sharper.

• Bias adjusted sum of the squared adjacency matrices. Sum of adjacency matrices
performs badly when some layers are associative and other disassociative. Taking the sum
of the square of adjacency matrices instead permits us to overcome this issue. However the
diagonal entries of these squared matrices introduce bias, so they are often removed. More
involved debiasing strategies have also been considered by Zhang et al. (2018) and Giraud
and Verzelen (2019). Assume L = O(n). In the sparse case when

√
Lnpmax ≥ C

√
log n and

npmax = O(1), Lei (2020) showed that w.h.p.

rsq = O

(
1

n
+

log n

L(npmax)2

)
.

If npmax ≥ C
√

log n they showed that w.h.p.

rsq = O

(
log n√
Lnpmax

)
.

This method was also analyzed by Bhattacharyya and Chatterjee (2020). They showed that
if Lnpmax ≥ C log n then w.h.p.

rsq = O

(
1

(Lnpmax)1/2

)
.

G Additional experiments

We added two alternative algorithms in our experiments.

• Laplacian: the matrix A = L−1
∑

lA
(l) � Ω(l) is replaced by its normalized Laplacian L :=

D−1/2AD−1/2 where D is a diagonal matrix such that Dii =
∑

j Aij . The experiments show
that using this normalization improves the misclustering rate only in regimes where the sum
of adjacency matrices gives good results.

• AggrKern: it is a generalization of the aggregate spectral kernel method introduced in Paul
and Chen (2020). For each layer l we compute Û (l) as in Algorithm 1, compute the top
K singular vectors of

∑
l Û

(l)(Û (l))T and then perform k−means on the rows of the matrix
formed by these singular vectors. This method performs slightly better than k-pod in our
experiments.

Figures 4, 5 and 6 correspond to simulations run for the same generative model as described in
Section 6.1. Figure 7 corresponds to simulations run for three unbalanced communities generated
from a multinomial law with parameters (1/6, 1/6, 2/3). The diagonal (resp. off-diagonal) entries
of the connectivity matrices are equal to 0.2 ( resp. 0.1). Figure 4 shows that when ρ and L are
small, sumAdj0 seems to be the best method. However, when L is much larger (and ρ small), OLMFm

25



performs best. When the number of layers increase, algorithms based on early or intermediate fusion
(sumAdj0,sumAdjIter, OLMFm) outperform algorithms based on final aggregation (k-pod, AggrKern)
as shown in Figure 5. Final aggregation methods (k-pod, AggrKern) are more sensitive to the
number of nodes than other methods, see Figure 6. When the community sizes are unbalanced,
we need a stronger separation between community to recover the small community but the relative
performance of the proposed algorithms seem to be similar as shown in Figure 7.

Figure 4: NMI vs ρ for different values of L

Figure 5: NMI vs L for different values of ρ
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Figure 6: NMI vs n for different values of ρ

Figure 7: NMI vs ρ for different values of L with unequal sized communities
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