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Achieving a high-resolution approximation and hitting the Pareto optimal set with some if not all members of the population is
the goal for multi- and many-objective optimization problems, and more so in real-world applications where there is also the
desire to extract knowledge about the problem from this set. ,e task requires not only to reach the Pareto optimal set but also to
be able to continue discovering new solutions, even if the population is filled with them. Particularly in many-objective problems
where the population may not be able to accommodate the full Pareto optimal set. In this work, our goal is to investigate some
tools to understand the behavior of algorithms once they converge and how their population size and particularities of their
selection mechanism aid or hinder their ability to keep finding optimal solutions. ,rough the use of features that look into the
population composition during the search process, we will look into the algorithm’s behavior and dynamics and extract some
insights. Features are defined in terms of dominance status, membership to the Pareto optimal set, recentness of discovery, and
replacement of optimal solutions. Complementing the study with features, we also look at the approximation through the
accumulated number of Pareto optimal solutions found and its relationship to a common metric, the hypervolume. To generate
the data for analysis, the chosen problem is MNK-landscapes with settings that make it easy to converge, enumerable for instances
with 3 to 6 objectives. Studied algorithms were selected from representative multi- and many-objective optimization approaches
such as Pareto dominance, relaxation of Pareto dominance, indicator-based, and decomposition.

1. Introduction

Multiobjective evolutionary algorithms (MOEAs) have been
the choice to solve complex multiobjective optimization
problems from a variety of domains [1, 2] and in cases where
mathematical methods computational costs are high or the
problem representation is not compatible (simulators). ,eir
application mainly had focused on bi- and triobjective cases
[3], with an increasing demand on real-world problems of
four or more objectives, the so-called many-objective prob-
lems [4]. ,ese had been attracting the attention of the

research community [5–9] to develop algorithms aimed at
them.

However, in high-dimensional spaces, difficulties arise
by the curse of dimensionality, as shown by early studies
[10–14]; algorithms’ efficiency and effectiveness are im-
pacted by the size of the objective space, demanding research
in new algorithms, design components, and tuning proce-
dures [15, 16], for which a deeper understanding is needed.

Better algorithms will not only fulfill the main goal of
solving these many-objective problems but also ease an
important secondary goal in real-world applications, which
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is to extract knowledge about the problem from the obtained
approximation of the Pareto optimal set. Such a task requires
a high-resolution approximation, that is, it contains as many
nondominated solutions as possible, with good convergence
and diversity properties.

Most studies evaluate these properties on the final
population, implicitly bounding the approximation obtained
by the algorithm to its size; when for many-objective
problems, a Pareto optimal set is expected to be much larger
than the chosen population size. Even if some algorithms
include a bounded archive to collect the approximation,
their size can still be insufficient. ,us, to get the highest
possible resolution approximation, it is common to compute
it from all solutions visited by the algorithm. However,
MOEAs are not designed to maximize such approximation,
which again demands a better understanding of them to
clarify the mechanism that can facilitate such a task.

To better illustrate this, let us assume a scenario where an
algorithm is able to converge with its population to a subset
of the Pareto optimal set. Improving the resolution of the
approximation from this point implies that the algorithm
somehow must continue finding other optimal solutions
even if the population is already filled with them. For this,
the algorithm has at its disposition (i) operators of variation
to continuously explore solutions not seen before and (ii) its
selection mechanism to preserve some optimal solutions for
exploitation by the operators while also allowing their re-
placement to give room to the newly discovered ones. In
addition, population size also plays a role since it determines
the upper limit for the number of optimal solutions that an
algorithm can keep simultaneously at a given time.

In this work, we aim to understand selection and pop-
ulation size effects on the algorithms’ ability to improve the
resolution of a well-converged approximation so that a high-
resolution can be achieved, with the hope that this is a step
towards a better understanding of them. Looking at some
representative algorithms with different selection mecha-
nisms from multi- and many-objective optimization, such as
Pareto dominance, relaxation of Pareto dominance, indica-
tor-based, and decomposition, under various population sizes
and varying number of problem objectives. Only the oper-
ation of variation remains the same for all algorithms.

As the study focuses on the postconvergence state to the
Pareto optimal set, which in many-objective problems can be
an issue, we have chosen a test problem that can be tuned to
present a relatively small search spacewithmild difficulty so the
algorithms can hit the Pareto optimal set. MNK-landscape [12]
allows us to tune not only the number of objectives but also
variables and introduce random nonlinear correlations be-
tween them. In our experiments, we created problem instances
with M � 3 − 6 objectives, N � 20 binary variables, and K � 1
epistasis that defines the correlation between them. Taking
advantage of the small number of variables, we find by enu-
meration the true Pareto optimal set of these instances to
compare against it the approximations obtained by the algo-
rithms.,is knowledge is used to investigate their behavior and
performance on cases when our population size is large enough
to contain the whole Pareto optimal set and when it can only
contain a fraction of it.

Instead of only using quality indicators [17] to measure
the algorithms’ ability to reach better approximation sets, we
will look into the dynamics of the search process through
features on the population, to gain insights into how and
why they work or fail. MOEAs are tracked over the gen-
erations, and by analyzing their change, we can look at the
algorithms’ dynamics.,e features are the ones presented by
Aguirre et al. [18], defined as generational assessment in-
dices, they are independent of the selection mechanism used
by the algorithm and can study their effects by looking at
solutions in terms of dominance status, membership to the
Pareto optimal set, recentness of discovery, and how their
numbers change generation by generation. Since features
will be measured on the population after truncation, they in
fact are tracing the combined effect of variation operators
and selection mechanisms, giving the dynamics of the
population after truncation, that is, survival selection.

Complementing these features, we will also look at the
accumulated gain of the Pareto optimal solutions, a basic
operator for resolution, as well as a commonly used quality
indicator, the hypervolume [19] of the approximation.

While only one benchmark problem may seem not
enough, this work’s main focus is the algorithms and what
can the features tell us on their dynamics. To keep the study
manageable, we have chosen a problem capable of gener-
ating situations that allow the algorithms to achieve con-
vergence quickly and see how each of them deals with the
discovery of new Pareto optimal solutions. In particular, we
hope to make the following contributions:

(i) Look at the effect of population size on the achieved
approximation through the resolution index

(ii) Show how the accumulated number of PO solutions
is related to performance

(iii) Use features on the composition of the population
to study algorithm dynamics

(iv) Explain some behaviors in terms of the population
composition change

,e organization of this work is as follows. Section 2
presents the search-assessment indices that are used as
features to look at the dynamics. Section 3 describes the
experimental setup, test problem, and the algorithms ana-
lyzed. Section 4 focuses on the performance and analysis of
the dynamics of the population based on the proposed
features. Section 5 summarizes this work and proposes some
future directions.

2. Understanding Population Dynamics

Looking into the effects of algorithm choices for operators
and selection mechanisms naturally leads to analyzing the
population composition, so let’s first define some sets
around it.

Let P(t) be the population at generation t, F1(t)⊆P(t)

the first front, that is, the nondominated solutions, POS is
the Pareto optimal set of the problem, and ∪ t−1

k�0F1(k) is the
union of all nondominated solutions from generation 0 to
t − 1. Do note that this set is used to check if a solution has
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appeared in any generation from the beginning to just before
the current one, so Pareto dominance is not used to con-
struct this set.

Using the previous sets, we can compute the generational
search-assessment indices [18] used to track the progress of
the search. In this work, for simplicity, we will refer to them
as population features or just features. ,ey look at the
composition of the population in a given generation t, by
counting how many solutions are part of some set (the
current generation nondominated set, POS), counting their
dominance status, or looking into their recentness (has been
part of the population in any previous generation). ,e
features range lies in the interval [0, |P|], where |P| denotes
the population size, and their full mathematical definition is
presented in Table 1.

,e first two indices are obtained from the Pareto
dominance relationship. ,e first index is the number of
nondominated solutions in the population at generation t,
which may include solutions that are part of the POS. ,e
second index is the number of dominated solutions, and it
considers all the dominated solutions in the population at
time t. Other indices are computed by comparing the set of
nondominated solutions in the current population F1(t)

with the POS or with the POS and nondominated solutions
at previous generations. ,ese indices are as follows: Pareto
optimal solutions count all the solutions in the current
generation that are part of the POS. Pareto optimal possibly

new considers solutions that are part of the POS and
appeared in this generation but not in the previous one.
Pareto optimal absolutely new considers solutions that are
part of the POS and only appeared in the current gener-
ation, while Pareto optimal not absolutely new counts
optimal solutions that appeared in any previous generation
and also in the current one. Pareto optimal dropped counts
howmany Pareto optimal solutions that were present in the
previous generation are not present in the current one.
Nondominated non-Pareto optimal counts the solutions
that are nondominated but also not part of the POS in the
current generation.

We will also analyze the algorithms’ ability to achieve a
high-resolution approximation of the POS, that is, being able
to not only evolve the population towards the POS and reach
some Pareto optimal solutions but keep discovering them,
even if the population has converged to good solutions. ,is
becomes challenging in many-objective problems, as com-
mon choices for population sizes may not be enough to
contain the complete POS. For this, we have chosen to first
compute the approximation set of our algorithm A(T),
which contains all nondominated solutions discovered by it.
,at is, looking at the nondominated sets F1(t) from gen-
eration T to 0, collect all nondominated solutions, eliminating
duplicates and applying Pareto dominance to eliminate so-
lutions that have become dominated by the presence of better
solutions found in later generations. More formally:

A(t) � x|x ∈ X(t) � A(t − 1)∪F1(t)\A(t − 1)∩F1(t)∄y ∈ X(t)y≽x􏼈 􏼉, (1)

where generation 0 approximation set is simply its non-
dominated set

A(0) � F1(0), (2)

and y≽x denotes that solution y Pareto dominates x, defined
as follows for maximization problems:

y⪰x if andonly if
∀i ∈ 1, . . . ,M, fi(y)≥fi(x)∧,

∃i ∈ 1, . . . ,M fi(y)>fi(x).
(3)

Using these definitions, we can define the resolution
index or α ∈ [0, 1] of the approximation at generation t as
follows:

α(t) �
| x|x ∈ A(t)∧x ∈ POS{ }|

|POS|
, (4)

which gives the fraction of the accumulated number of
Pareto optimal solutions found until generation t to the size
of the POS. Here, a value of 1 indicates that all Pareto
optimal solutions were found by the algorithm.

3. Experimental Setup

To study the dynamics of several MOEAs and measure the
ability of the algorithms to find a high-resolution

approximation of the POS, we useMNK-landscapes [12, 20], a
multiobjective extension of Kauffman’s NK-landscapes [21],
where M indicates the number of objectives, N the number of
decision variables, and K the number of epistatic interactions
between variables. ,e epistatic model is random. ,us, for
the same values of N, K, and M, we can generate as many
instances as necessary. Here, we use problem instances
generated with M � 3, 4, 5, 6 objectives, N � 20 bits, and K �

1 epistatic bit, which determine that the contribution to the
fitness of each variable is affected by one other variable
(Appendix A includes a more detailed explanation of epistasis
as well as its effect on problem difficulty). In this work, our
interest is to observe how the population dynamics of the
algorithms change when the number of objectives of the
problem increases, relating it to the effectiveness of selection
to find good approximations of the Pareto optimal set. ,us,
we vary M but keep the interactions and number of variables
unchanged. We use N � 20 and K � 1 because it gives us
problems with minimum nonlinearity and a rather small
search space (220), where the algorithms are expected to
converge to the POS and the challenge is to findmost if not all
Pareto optimal solutions. ,ese small problems also allow us
to enumerate all Pareto optimal solutions to verify the se-
lection effectiveness of the algorithms. Although at this time
we use MNK-landscapes, the features used in this work are
independent of the benchmark problems used.

Advances in Operations Research 3



,e exact number of Pareto optimal solutions found by
enumeration and the total number of nondominated fronts
are shown in Table 2 under columns |POS| and Fronts,
respectively. ,e same table also shows the corresponding
fraction (%) of the population sizes |P| to the |POS| for
various population sizes investigated here. Note that for all
objectives, we chose 50, 100, and 200 as the population size,
which are values commonly used in the literature. On M � 3
objectives, these population sizes can hold around 30%, 60%,
and 130% of the POS of the problem instances used in the
study. On problems with more than 3 objectives, these
percentages drop significantly. ,us, to investigate the ef-
fects of population size when we increase the number of
objectives, we also chose population sizes that can contain
around 30% and 60% of the POS on M> 3 objectives.

We analyze NSGA-II (nondominated sorting genetic
algorithm II) [22], AϵSϵH (Adaptive ϵ-Sampling ϵ-Hood)
[23], IBEA (indicator-based evolutionary algorithm) [24],
and MOEA/D (multiobjective evolutionary algorithm based
on decomposition) [25] which are some representative al-
gorithms from the main approaches to multi- and many-
objective optimization, that is, Pareto dominance, exten-
sions of Pareto dominance, indicator-based, and decom-
position-based. ,ese algorithms differ in the way ranking
and selection of the individuals is performed but share the
property of implementing a kind of (μ + λ) elitism to select
the next population (Appendix B includes a brief description
of the algorithms, focusing particularly on selection). ,ey
were chosen given they represent an easy-to-understand
implementation of commonly used approaches; some are
the common choice in literature; and their inner workings
do not add too much noise to the effect of the selection
operator. In our study of MOEAs, we focus on the pop-
ulation after truncation. ,us, the features capture the
collective effect of the operators, parent selection, and
truncation selection.

,e reader is referred to the original papers for more
details. For each algorithm, an out-of-the-box imple-
mentation and recommended parameters are considered.
Additional settings are as follows. All algorithms use a two-
point crossover with rate pc � 1 and bit-flip mutation with
rate pm � (1/n). For AϵSϵH, the reference neighborhood
size is set to 20 individuals and the function used for
ϵ-dominance is additive (fi

′ � fi + ϵ). ,e ϵ+ and hyper-
volume are used as quality indicators in IBEA, that is,
IBEAϵ+ and IBEAHV, setting the scaling factor of the quality

indicator to k � 0.001. For MOEA/D, the Tchebycheff
scalarizing function is used, and the neighborhood size is set
to 10. ,e weight vectors are generated using the meth-
odology presented in [26], where the number of weights and
population size can be freely set.

Each of the selected algorithms was run for a fixed
number of T generations, collecting each time in separate
files the sets of nondominated solutions F1(t) found at
generation t, t � 1, . . . , T.

4. Performance and Analysis of Dynamics

4.1. Resolution Index. We first look at the resolution index
α(T) of the approximation at the end of the run, that is, the
ratio of the accumulated number of PO solutions found to
the size of the POS. Figure 1 shows boxplots of the results for
all algorithms with population sizes of 50, 100, 200{ } on 3, 4,
5, and 6 objectives problems. ,e algorithms are labeled as
A, Ie, Ih, M, and N, corresponding to AϵSϵH, IBEAϵ+,
IBEAHV, MOEA/D, and NSGA-II, respectively.

On M � 3 objectives, it can be noted that compared to all
the other algorithms, AϵSϵH finds the largest number of PO
solutions when population sizes 50, 100, 200{ } are used.
When the population size is 50, MOEA/D finds more PO
solutions than NSGA-II. ,is situation is reversed for
population sizes 100 and 200. IBEAϵ+ and IBEAHV find the
lowest number of PO solutions. Note that the differences in
resolutions among algorithms reduce as the ratio |P|/|POS|

between population size and POS size increases. For 3
objectives, |P|/|POS|∼{33, 66, 133} (%) for
|P| � 50, 100, 200{ }, respectively. ,us, even the smaller
population |P| � 50 can potentially contain a considerable
number of PO solutions, and |P| � 200 can contain all of
them.

For M � 4, the ratios are (|P|/|POS|)∼{3.2, 6.4, 12.9}
(%). For 3.2% and 6.4% ratios, MOEA/D shows an ad-
vantage against AϵSϵH. ,is advantage disappears when the
ratio is 12.9%, that is, population size is 200. For the
remaining objectives M � 5 and M � 6, the ratios are {0.8,
1.6, 3.2} (%) and {0.3, 0.6, 1.2} (%), respectively. For 5 and 6
objectives, MOEA/D finds more PO solutions than any of
the other algorithms, with AϵSϵH as the second-best one.
NSGA-II scales up poorly with the increase in the number of
objectives, becoming even similar or worse than the IBEAs.

With 3-, 4-, and 5-objectives landscapes on N � 20 bits,
the algorithms can easily hit the POS after some generations,

Table 1: Generational search-assessment indices.

Name Abbreviation Formula
Nondominated ND x|x ∈ F1(t)􏼈 􏼉

Dominated DOM x|x ∈ P∧x ∉ F1(t)􏼈 􏼉

Pareto optimal PO x|x ∈F1(t)∧x ∈ POS􏼈 􏼉

PO possibly new POpnew x|x ∈ F1(t)∧x ∉ F1(t − 1)∧x ∈ POS􏼈 􏼉

PO absolutely new POA x|x ∈F1(t)∧x ∉ ∪ t−1
k�0F1(k)∧x ∈ POS􏼈 􏼉

PO dropped POdrop x|x ∈ F1(t − 1)∧x ∉F1(t)∧x ∈ POS􏼈 􏼉

Nondominated non-PO NDNP x|x ∈F1(t)∧x ∉ POS􏼈 􏼉

Measures are taken on the population P(t) and checking membership to the current nondominated set F1(t), the previous one F1(t − 1), all seen
nondominated sets ∪ t−1

k�0F1(k), and/or the Pareto optimal set POS.
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and in particular when M � 6, even some random generated
solutions are optimal. ,e results described above show that
the algorithms are able to keep discovering PO solutions
once they hit the POS, which is particularly relevant for very
small values of |P|/|POS|. Note that, for example, on M � 6
objectives AϵSϵH finds around 700 of the 16,845 solutions
with a population size of |P| � 50 and MOEA/D around
1350. On problems with a large number of objectives, we see
that the resolution gap between the algorithms reduces when
the population size increases to a range it could hold a large
portion of the POS, as shown in Figure 2 where population
sizes are roughly 33%–66% of the POS for 4 and 5 objectives.
When the ratio is 33%, we see that AϵSϵH overcomes

MOEA/D finding in this case around 1,320 PO solutions
against 1,190 in 4 objectives and 5,310 against 5,090 in 5
objectives. Surprisingly, NSGA-II performs better when the
ratio is 66% finding more solutions than MOEA/D, while
AϵSϵH still retains its position as the best overall. For 6
objectives, although not depicted here, similar conclusions
can be drawn for population size 5,600, or 33% of the POS.

In summary, the trend observed on 3 objectives in
Figure 1(a) also repeats for 4, 5, and 6 objectives when
similar |P|/|POS| ratios happen. ,is suggests that a strong
correlation between population size and algorithm perfor-
mance. What this translates to is that when the population is
enough to contain the POS, then the performance gap

Table 2: Number of solutions in the Pareto optimal set |POS| and nondominated fronts in the landscapes with M � 3, 4, 5, and 6 objectives.
Also, fraction of |P|/|POS| (in %) for various population sizes |P| investigated in this study. A — indicates that for the corresponding
combination of M and |P|, no experiments were performed.

M |POS| Fronts
|P|/|POS| (%)

50 100 200 500 1000 2000 4000 5600
3 152 258 32.9 65.8 132.6 — — — — —
4 1,554 76 3.2 6.4 12.9 32.2 64.4 — — —
5 6,265 29 0.8 1.6 3.2 — — 31.9 63.8 -
6 16,845 22 0.3 0.6 1.2 — — — — 33.2
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Figure 1: Resolution of the approximation at the end of the run α(T), that is, ratio of the accumulated number of Pareto optimal solutions
found to the size of the POS. Population sizes 50, 100, and 200 for 3, 4, 5, and 6 objectives. Algorithms AϵSϵH(A), IBEAε+(Iε), IBEAHV(Ih),
NSGA-II (N), and MOEA/D (M). (a) M� 3 objectives, (b) M� 4 objectives, (c) M� 5 objectives, and (d) M� 6 objectives.
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between algorithms’ mechanisms is very close. On the other
hand, even if some methods can still work with smaller
populations, they too suffer a considerable loss in perfor-
mance if the ratio ends up being too small.

While it is difficult or impossible to know the POS of
some problems, a possible method to determine if we are
close to a good enough population size for a problem could
be as follows. Choose two algorithms, start them on the same
population size, run for the same number of generations,
and evaluate them on a performance metric. ,e population
size that makes the gap closer will indicate a good enough
choice for that particular problem.

4.2. Relationship of Resolution andPerformance. Since in our
resolution index we are looking at the ratio between the
accumulated number of PO solutions across all generations,
which can be used to evaluate the performance of an al-
gorithm, we want to compare it with a more commonly used
performance indicator, the hypervolume [19], and see if they
share some relationship.

,e hypervolume gives the multidimensional volume of
the objective space that is dominated by a nondominated set
and enclosed by a reference point. Given that our objectives
are in the range [0,1] we set this point at the origin (all zeros).

For our analysis, we first compute the accumulated set of
nondominated solutions found until generation t, for each
generation and run, followed by the computation of the
hypervolume for each of these sets. Boxplots for the 3 ob-
jectives and population size of 200 are reported in Figure 3.

By comparing the accumulated number of PO solutions
with the hypervolume of the accumulated nondominated set
in Figure 3, we can see that the trend and growth rate in both
are similar for the AϵSϵH algorithm. From generation 1 to
30, we see rapid growth of the hypervolume and the number
of PO solutions found. After that, these values stagnate. A
similar trend is observed for the other algorithms.

We calculate the correlation between the hypervolume
values for each configuration and the number of PO

solutions found until a given generation using Spearman’s
correlation coefficient. For the example shown, the coeffi-
cients are 0.897, 0.786, 0.844, and 0.795 with p< 2.2 × 10− 16

for NSGA-II, AϵSϵH, IBEAHV, and MOEA/D, respectively,
which shows that both values are correlated.

Knowing that there is a positive correlation between the
accumulated number of PO solutions and the hypervolume
value, we verify if ranking algorithms according to each of
these metrics would yield similar results. For this purpose,
we report in Table 3 results by the algorithms obtained with
population size {50, 100, 200} on problems with 3, 4, and 5
objectives. ,e table shows the average values of accumu-
lated PO solutions found by the algorithm and the hyper-
volume of the joint set of nondominated solutions found
over all generations. ,e last two columns also include a
ranking between algorithms from 1 (best) to 4 (worst)
according to the measured value of accumulated PO solu-
tions and hypervolume, respectively. When all rankings
agree for a given algorithm, we show them in bold. ,e
hypervolume values for a given number of objectives and
population size are checked for a statistically significant
difference using the Mann–Whitney test with a 95% con-
fidence interval. If the hypervolume values are not statis-
tically different, the corresponding algorithms are given the
same ranking.

Note from this table that there is a very good agreement
between the rankings given by the measured number of PO
solutions and the hypervolume of all nondominated solu-
tions found by the algorithm. ,us, the partial orderings
given by this feature are useful, giving us a good idea of the
relative performance of the algorithms.

,at there is a correlation between both metrics is ex-
pected since an algorithm able to keep discovering new
Pareto optimal solutions will indeed improve its hyper-
volume evaluation. How much it improves will depend on
where this newly discovered solution is in the objective space
and how much they improve the already attained distri-
bution of solutions. On that note, this very reason is why we
can only have a partial ranking with accumulated Pareto
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Figure 2: Ratio of accumulated number of Pareto optimal solutions found to the size of the POS. Population sizes 500, 1000{ } and
2000, 4000{ } for 4 and 5 objectives, respectively. Algorithms AϵSϵH(A), MOEA/D (M), and NSGA-II (N). (a)M� 4 objectives and (b)M� 5
objectives.

6 Advances in Operations Research



0.0

0.2

0.4

0.6

A
cc

um
ul

at
ed

 P
O

/|P
|

10 20 30 40 50 60 70 80 90 1000
Generation

0.0

0.2

0.4

0.6

(a)

0.20

0.25

0.30

0.35

0.40

A
cc

um
ul

at
ed

 H
V

10 20 30 40 50 60 70 80 90 1000
Generation

(b)

Figure 3: Accumulated number of Pareto optimal solutions and hypervolume of the accumulated joint nondominated sets. Algorithm
AϵSϵH, M� 3 objectives, population size 200, and number of generations 100. (a) Accumulated PO solutions and (b) hypervolume.

Table 3: Algorithm comparison by accumulated PO solutions (APOS, feature) and hypervolume (HV, performance metric).

Algorithm M P
Measured Rank

APOS HV APOS HV
NSGA-II 3 50 105.93 0.373968 3 3
AϵSϵH 121.97 0.374248 1 1
IBEAHV 90.37 0.372361 4 4
MOEA/D 114.00 0.374201 2 1
NSGA-II 100 137.97 0.375304 2 3
AϵSϵH 141.700 0.375287 1 1
IBEAHV 123.70 0.373812 4 4
MOEA/D 135.50 0.375422 3 1
NSGA-II 200 148.03 0.375640 1 3
AϵSϵH 148.67 0.375904 1 1
IBEAHV 136.57 0.375140 4 4
MOEA/D 144.67 0.375757 3 1
NSGA-II 4 50 166.80 0.194207 4 3
AϵSϵH 346.77 0.196897 2 2
IBEAHV 195.50 0.191004 3 4
MOEA/D 436.10 0.197264 1 1
NSGA-II 100 343.23 0.197154 3 3
AϵSϵH 581.77 0.198445 2 1
IBEAHV 302.40 0.193841 4 4
MOEA/D 656.27 0.198507 1 1
NSGA-II 200 608.87 0.198481 3 3
AϵSϵH 863.77 0.199031 1 1
IBEAHV 468.10 0.197055 4 4
MOEA/D 857.50 0.199034 1 1
NSGA-II 5 50 157.80 0.146900 4 3
AϵSϵH 526.10 0.153434 2 2
IBEAHV 190.17 0.139987 3 4
MOEA/D 904.10 0.154429 1 1
NSGA-II 100 341.60 0.151905 3 3
AϵSϵH 986.43 0.156632 2 2
IBEAHV 329.70 0.145065 3 4
MOEA/D 1479.13 0.157620 1 1
NSGA-II 200 718.50 0.155398 3 3
AϵSϵH 1631.47 0.158275 2 2
IBEAHV 602.30 0.150032 4 4
MOEA/D 2219.17 0.159051 1 1
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optimal solutions. ,ey do not take into account the dis-
tribution, only the total number, giving place to situations
where an algorithm with a lower number of accumulated
Pareto optimal solutions could have a better hypervolume
than an algorithm that has found more Pareto optimal
solutions. Nevertheless, it is still interesting to look at both
metrics and use them to see if our algorithm is achieving not
only a good resolution but also a well-distributed one.

4.3. Feature-Based Analysis of Dynamics. To understand the
effects of the population size and selection mechanism on
the ability of the algorithm to achieve the resolutions ob-
served in Figure 1, we now concentrate on the dynamics of
the population tracking some of its features.

First, we focus on M � 3 objectives with population size
|P| � 50, where |P| is 32.9% of the |POS| and M � 6 with
|P| � 200, where |P| is 1.2% of the |POS|. In Figure 4, we see
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Figure 4: Pareto optimal solutions in the population that are new respect to the previous generation. Population sizes 50 and 200 for 3 and 6
objectives, respectively. Algorithms AϵSϵH, MOEA/D, and IBEAHV. (a) AϵSϵH, |P| � 50,M� 3; (b) AϵSϵH, |P| � 200,M� 6; (c) MOEA/D,
|P| � 50, M� 3; (d) MOEA/D, |P| � 200, M� 6; (e) IBEA IHD, |P| � 50, M� 3; (f ) IBEA IHD, |P| � 200, M� 6.
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the fraction of POpnew/|P|, that is, the PO solutions that are
part of the population at generation t but were not part of it
at generation t − 1 and are therefore possibly new. ,is
fraction could include solutions found several generations
ago that are being rediscovered, apart from the ones seen for
the first time. AϵSϵH and MOEA/D reach a peak in the
initial generations and remain close to this value during the
remaining generations. InM � 3 with |P| � 50 (32.9 % of the
|POS|) and also M � 6 with |P| � 200 (1.2% of the |POS|),
the value POpnew/|P| for AϵSϵH is around half of that of

MOEA/D. As for the IBEAs, once this value reaches its peak,
it drops to very small values. ,us, IBEA rediscovers and
finds very few new Pareto optimal solutions after the 30-
generation mark.

In Figure 5, we see the fraction POdrop/|P|, that is, the
PO solutions that were dropped from the population and
have been replaced by other nondominated solutions, op-
timal or not. It is interesting to point out that the trend of
this curve is very similar to the POpnew/|P| fraction. In both
cases studied here, MOEA/D drops around three times as
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Figure 5: Pareto optimal solutions dropped from the population. Population sizes 50 and 200 for 3 and 6 objectives, respectively. Al-
gorithms AϵSϵH, MOEA/D, and IBEAHV. (a) AϵSϵH, |P| � 50, M� 3; (b) AϵSϵH, |P| � 200, M� 6; (c) MOEA/D, |P| � 50, M� 3; (d)
MOEA/D, |P| � 200, M� 6; (e) IBEAHV, |P| � 50, M� 3; and (f) IBEAHV, |P| � 200, M� 6.
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many PO solutions as AϵSϵH.,e IBEAs at their peak drop a
number of PO solutions similar to AϵSϵH, but afterward, it
reduces rapidly to less than a third of AϵSϵH.

In Figure 6, we see the fraction NDNPt/|P|, that is,
solutions that are nondominated but not Pareto optimal. For
around the first 10 or 20 generations, while it is still early in
the search and few solutions are expected to be PO, the value
of this indicator is two times higher in AϵSϵH than in
MOEA/D. On the other hand, during the latest stages of the
search, when it is expected that the algorithms would have
accumulated more PO than NDNP solutions, this fraction is

three times higher in MOEA/D than in AϵSϵH. In IBEA, this
indicator is also higher than MOEA/D at the initial stages of
the search, although smaller than AϵSϵH, and approaches 0
in the latest stages of the search.

From the previous plots, we can draw some conclusions
in this section. Independently of the fraction of the POS that
the population can hold, MOEA/D discovers and redis-
covers more PO solutions than AϵSϵH while at the same
time dropping more of these optimal solutions per gener-
ation and keeping more nondominated non-PO ones.
Finding new PO solutions by dropping already found ones
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Figure 6: Nondominated solutions in the population that are not Pareto optimal. Population sizes 50 and 200 for 3 and 6 objectives.
Algorithms AϵSϵH, MOEA/D, and IBEAHV. (a) AϵSϵH, |P| � 50, M� 3; (b) AϵSϵH, |P| � 200, M� 6; (c) MOEA/D, |P| � 50, M� 3; (d)
MOEA/D, |P| � 200, M� 6; (e) IBEAHV, |P| � 50, M� 3; (f ) IBEAHV, |P| � 200, M� 6.
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can be seen as explorative behavior. However, dropped
solutions can also be replaced with nonoptimal solutions. An
algorithm with this ability could escape local optima to find
optimal solutions unreachable unless there is a step down to
inferior solutions first. Both, MOEA/D and AϵSϵH present
this trait, with MOEA/D being more intense in its approach.
,is behavior on 3 objectives, where more fronts need to be
climbed and also observed on 4 to 6 objectives, where there
are fewer fronts, suggests that exploration could positively
impact algorithm performance. However, in larger search
spaces, where hitting the POS is harder, too much explo-
ration could actually be detrimental.

Focusing on the drop of PO solutions, it is interesting to
think how an algorithm can drop an already found optimal
solution sometimes in favor of an inferior one. Here are
some insights.

In Pareto dominance-based algorithms and their ex-
tensions, the algorithm will have to discard some non-
dominated solutions obtained after combining the current
population and the offspring if their number is larger than
the population size. Since dominance is computed within the
population, and not globally, during truncation the algo-
rithm cannot differentiate between optimal and suboptimal
solutions, that is, they appear nondominated at the pop-
ulation level. In this case, some optimal solutions could be
dropped. ,is happens more often when the ratio between
population size and the size of the POS is too small.

For decomposition, the subproblem strategy imposes a
stricter order between solutions. In combinatorial problems,
hopefully, the solutions regarded as optimal for the sub-
problem are also Pareto optimal. ,is is a key difference
between dominance-based algorithms and decomposition-
based ones. ,ere could be cases where a solution is globally
superior or even optimal in a multiobjective sense, that is, in
terms of Pareto dominance, but the subproblem formulation
ranks it lower and replaces it with some other solution that is
better for the local subproblem.

For indicator-based algorithms, since they try to induce a
total ordering between solutions according to their contri-
bution to the performance indicator, they converge to the
subset of solutions with the highest rank, which cardinality is
the size of the population. Once the algorithm finds this
subset, the operators of variation could discover other Pareto
optimal solutions. However, these solutions will have a rank
inferior to those already in the population; therefore, no
replacement of optimal solutions will occur. Eventually, the
algorithm will stagnate not being able to find new solutions.
,ese traits could be helpful to converge on larger subspaces,
although diversity could still be an issue. In IBEA, the fitness
of a solution x represents the loss of quality that will be
incurred if this solution is eliminated from the population. It
is given by Fitness(x) � 􏽐x′∈P\ x{ } − e− I(x′,x)/κ, where I is the
indicator function and κ> 0 a scaling factor set by the user.
Changing the values of κ may induce different dynamics for
IBEA.

From the point of view of the continued discovery of
Pareto optimal solutions, being able to drop even an optimal
solutionmakes sense if we wish to keep exploring and hitting
new and hopefully also optimal solutions or rediscovery of

previously found ones. However, just looking at common
performance metrics is difficult to notice this type of be-
havior, which makes a strong argument for more population
features and to look not only at the final approximation but
also at all the approximation sets that the algorithm pro-
duces while converging.

,is particular feature also tells us that some kind of
archiving should be prepared to avoid losing interesting
solutions that are discarded to make space in the population.

5. Conclusions

In this work, we studied the population dynamics of several
multi- and many-objective optimizers to understand better
the mechanisms that allow generating a high-resolution
approximation of the Pareto optimal set.

Particularly, we investigated population sizes relative to
the size of the Pareto optimal set and looked at different
selection mechanisms used by representative algorithms of
the main approaches to multi- and many-objective opti-
mization, that is, Pareto dominance-, extensions of Pareto
dominance-, decomposition-, and indicator-based MOEAs.
,e selected algorithms were NSGA-II, AεSεH, MOEA/D,
and IBEA with the hypervolume and ε indicators.

To track the dynamics, we used as features several
generational assessment indices that count the number of
solutions in the population that are Pareto optimal, sepa-
rating them between those that are new and those that have
already been seen. We also tracked the Pareto optimal so-
lutions dropped from the population. ,e feature that keeps
track of the newly discovered Pareto optimal solutions
allowed us to link population dynamics to algorithm per-
formance in terms of the accumulated number of Pareto
optimal solutions found by the algorithm, which gives a
direct measure of the resolution of the approximation.

Using these features, we derived some important con-
clusions. (i) Independently of the population size and a
number of objectives, the dynamics of the algorithms show
that MOEA/D will discover and rediscover more Pareto
optimal solutions than AεSεH and IBEA. (ii) Independently
of the population size and the number of objectives, the
dynamics of the algorithms show that MOEA/D will drop
more Pareto optimal solutions than AεSεH and IBEA, in this
order. (iii) How these characteristics of the algorithms
transform into performance depends on population size.
More precisely, it depends on the ratio between the pop-
ulation size |P| and the size of the Pareto optimal set |POS|,
that is, |P|/|POS|. For very small ratios of|P|/|POS|, the
resolution of the approximation α, that is, the accumulated
number of Pareto optimal solutions, found by MOEA/D is
larger thanAεSεH, IBEA, andNSGA-II, in that order, that is,
αMOEA/D > αAεSεH > αIBEA > αNSGA−II. However, for larger
ratios, the resolution of the approximation α found by
AεSεH improves and becomes larger than MOEA/D. From
our experiments, αAεSεH ∼ αMOEA/D for |P|/|POS| � 0.13 in 4
objectives and αAεSεH > αMOEA/D for a ratio(|P|/|POS|)> 0.3
independently of the number of objectives. NSGA-II re-
quires a ratio of (|P|/|POS|)> 0.6 to get a resolution of the
approximation better than MOEA/D. (iv) Replacing the
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indicator in IBEA, hypervolume or ε, does not substantially
change the dynamics nor its relative performance compared
to other algorithms.

,e analysis based on features indicates that there is
valuable information that can be obtained by looking at the
population and how its compositions change in each gen-
eration. Just looking at the final population and performance
metrics is not enough if we want to keep improving our
algorithms. Designers can look at the behavior of new se-
lection and variance operators through features and use
them to describe and characterize their dynamics. While
practitioners could include these metrics to feedback the
algorithm or even choose what operators should suit the
problem better.

In future works, we would like to explore these paths and
move towards real scenarios, where the search space is larger
and convergence becomes a challenge for the algorithm. For
this to happen, we require a new set of features that can be
computed without the need for the Pareto optimal set. We
also think that to further take advantage of the features’
analytical power, the next step is to use them to make
predictions on the algorithm’s behavior and performance
and take the appropriate decisions that can lead to a better
approximation.

Appendix

A. Test Problem Generator

Looking into the algorithms’ behavior postconvergence and
analyzing its ability to discover Pareto Optimal solutions
require a problem that can be easily tuned and versatile
enough to generate these situations.

MNK-landscapes [12] is a multiobjective extension of
Kauffman’s NK-landscapes [27] that can generate adjustable
instances of multi- and many-objective optimization
problems given some parameters. ,e number of objectives
can be controlled with M, N defines the number of bits of
the string that represents the decision variables, while K

controls the ruggedness of the landscape by determining the
epistatic interactions between the decision variables.

,e last parameter epistasis comes from biology where
this term refers to the expression of one gene being masked
by the genotypic effect of another one, due to the nonlinear
interdependence found in genes. In terms of a combinatorial
optimization problem, this translates to fitness functions and
the nonlinear interdependence between variables that can
make a single decision variable impact how other variables
contribute to the overall fitness.

For a small example, suppose a binary decision vector,
where all variables can be on or off, 0 or 1. Given a flip in one
variable, whereas this could represent a gain in the con-
tribution made by it, this change can also have a side effect of
decreasing the contribution made by other variables that
interact with it. In the context of solving an optimization
problem, these interactions, which are commonly unknown
beforehand, can impact the performance of the search for an
optimal solution. To get a better idea of how this occurs, in

Figure 7, there is a more detailed example of epistasis and
epistatic interaction.

Let f1,3(x3, z
(1,3)
1 , z

(1,3)
2 ) and f2,3(x3, z

(2,3)
1 , z

(2,3)
2 ) be the

fitness functions associated to bit x3 contributing to the first
objective function f1(·) and the second one f2(·), respec-
tively, based on different epistatic models for each objective.
z

(1,3)
1 , z

(1,3)
2 , z

(2,3)
1 , and z

(2,3)
2 are determined when the in-

stance is created, as well as the possible combinations and
effects it has on each fitness function, shown in the table
inside Figure 7. In f1,3, x3 epistatically interacts with its left
and right neighboring bits, x2 � z

(1,3)
1 and x4 � z

(1,3)
2 . While

for f2,3, x3 epistatically interacts with its second bit to the left
and with its third bit to the right, x1 � z

(2,3)
1 and x6 � z

(2,3)
2 .

In the example,N � 8 since there are eight decision variables
and K � 2 since each xi effect on the fitness function de-
pends on two other variables.

It can be seen from the table that if x2 and x4 keep their
values as well as x1 and x6, 0 is a good value for x3, making
its contribution to f1(·) be 0.67 and f2(·) be 0.48. If a bit flip
were to happen, then the contributions will reduce to 0.60
and 0.23, respectively.

In this brief example, the following situations are made
clear: deciding each variable value can depend only on the
variable (K � 0, no interactions) or be as hard as having to
consider all the other variables (K � N − 1). It means that
for K≥ 1 and without prior knowledge on the underlying
interactions, exploring the search space flipping one bit a
time is a hard task [28]. If knowledge is available or certain
conditions on the interaction of bits are given (i.e., only
neighbors, not random), some approaches exist for the
single-objective case [29, 30].

Once the objective number goes to M≥ 2, there will be a
set of interaction tables for each objective, which means that
the algorithm is searching for a compromise setting of the
variables that optimizes all of them. ,is in particular makes
a case to use algorithms that are able to preserve sections of
the solution (crossover operators in evolutionary algo-
rithms) and can flip several bits in one try [31]. Flipping only
one bit at a time could not be as efficient and made the
process longer.

x3
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Figure 7: Epistatic interactions example.
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Finally, it is also worth the mention that while not always
a straightforward task, learning the bit interactions to avoid
not improving bit flips is possible with some techniques [32].

B. Representative Multi- and Many-Objective
Evolutionary Algorithms

B.1. NSGA-II. ,e nondominated sorting genetic algorithm
II is an elitist (preserves the best solutions found so far)
multiobjective evolutionary algorithm that uses Pareto
dominance and density estimation, through crowding dis-
tance, to determine which solutions are retained and how
parents are determined for the next generation.

During each generation, from the current population Pt,
the equally sized Qt that contains the generated offspring is
created. After evaluating both sets according to the objec-
tives functions, they are joint to be classified in non-
dominated Fronts � Front1, Front2, . . . , Frontn􏼈 􏼉. Inside
each Front, a value called crowding distance is calculated
that allows estimating for a particular solution the density of
solutions surrounding it. To create the new population Pt+1,
solutions in each Fronti are merged into Pt+1 if this oper-
ation does not overfill it. When one of them does , that Fronti
is sorted according to its crowding distance, and only the
necessary number of solutions to complete the population
size are copied.

Fitness is determined by a tuple formed by the front
number that the solution belongs and its crowding distance.
Lower front numbers, which indicate a better rank, are
preferred, and in case of a tie, higher crowding distance is
preferred. ,is allows the retaining of solutions that cover a
zone in the objective space with a low density of solutions.
Selection of parents is done by a binary tournament between
randomly chosen individuals from the population using
rank and crowding distance information. In Figure 8, the
algorithm is presented in pseudocode. For a more detailed
explanation of the algorithm, in particular how the fast
nondominated sorting procedure is done, consult Deb et al.
[22].

B.2. AϵSϵH. ,e Adaptive ϵ-Selection ϵ-Hood genetic al-
gorithm is a many-objective optimization algorithm that
uses Pareto dominance relaxation in the form of ϵ-domi-
nance to determine which solutions are retained and how
parents are determined for the next generation. ,ere is not
an explicit method for fitness assignment in this algorithm.

Similar to NSGA-II, during each generation, the current
population Pt and the generated offsprings Qt are joined and
classified in Fronts according to standard nondomination. If
|Front1|< popSize, then the procedure continues normally
as in NSGA-II, where solutions are copied from the Fronts,
and if a Fronti were to cause an overfill, solutions are selected
randomly from this last front until Pt has the correct size.

However, in the more common case of
|Front1|> popSize in many-objective optimization, ϵ-sam-
pling with ϵs as a parameter is done. ,is function applies
random sampling to select solutions from Front1, copying
them into Pt+1 and eliminating from Front1 all the

ϵ-dominated solutions by the chosen sample. If Pt+1 were to
be overfilled, solutions are randomly eliminated until it
reaches the correct size. Otherwise, if Pt+1 still is not
complete, the remaining solutions are randomly chosen
from the previously discarded ϵ-dominated ones.

For parent selection, first ϵ-hood creation creates a
cluster of solutions in objective space, which is done by
selecting randomly a solution from the population and
creating a neighborhood around it, composed by all the
ϵ-dominated solutions using ϵh. ,is process is done until all
solutions belong to a neighborhood. ,en the function
ϵ-mating visits each neighborhood in a round-robin fashion,
selecting randomly two parents from each one of them. ,is
assures that even solutions in low populated neighborhoods
have the same reproduction probability.

At each generation, the ϵs used during selection and the
ϵh used during the neighborhood creation are adapted taking
into account a step size Δ and the population size. In
particular, ϵh is adapted so the number of neighborhoods is
closer to the one specified by the user NRef

h . Pseudocode of
the algorithm can be found in Figure 9. For a more detailed
explanation of the algorithm, consult Aguirre et al. [23].

B.3. IBEA. ,e indicator-based evolutionary algorithm is a
many-objective optimization algorithm that relies on per-
formance indicators to determine which solutions remain in
the population.,e fitness for each individual represents the
loss of quality that will be incurred if these solutions were to
be eliminated from the population, calculated as
Fitness(x) � 􏽐x′∈P\ x{ } − e− I(x′,x)/κ, where x is an individual,
I the indicator function and κ> 0 a scaling factor set by the
user.

For each generation, the current population P and its
offspring Q are joint, and the fitness for each individual is

Figure 8: Pseudocode of NSGA-II.
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calculated. ,en solutions with the lowest fitness are
eliminated until the size of the population reaches the
correct size. When a solution is removed from the pop-
ulation, an update is done to reflect the new fitness without
the eliminated solution.

During the parent selection, a binary tournament-based
on fitness is done between randomly selected solutions from
the current population.

Note that IBEA transforms the original multiobjective
optimization problem into one, where the main goal is to
obtain an improvement in the overall performance of the
population according to the selected indicator.

In this work, the following two indicators are used in
conjunction with IBEA: the binary additive ϵ-indicator
(Iϵ+) and the binary hypervolume difference-indicator
(IHD).

Iϵ+ x′, x( 􏼁

IHD x, x′( 􏼁 �
H x′( 􏼁 − H(x), if x′ ⪰x orx⪰ x′,

H x + x′( 􏼁 − H(x), otherwise,

⎧⎨

⎩

(B.1)

where x⪰x′ indicates that x dominates x′ in a Pareto sense.
Iϵ+(x, x′) gives the minimum value by which a solution x

needs to be translated in the objective space so it can weekly
dominate x′. H(x) gives the multidimensional volume of
the objective space that is dominated by x. IHD(x, x′) gives
the hypervolume that x′ dominates, but not by x. ,e al-
gorithm in pseudocode is presented in Figure 10. Further

information about the algorithm or the performance indi-
cators used here can be found in the work done by Zitzler
and Künzli [24].

B.4. MOEA/D. ,e multiobjective evolutionary algorithm
based on decomposition, as the name suggests, decomposes
the problem into single-objective ones using scalarization
functions and optimizing them simultaneously. Subprob-
lems are optimized using the surrounding solutions that
belong to their neighborhood.

,e algorithm requires a set of weigh vectors
Λ← λ1, λ2, . . . , λN􏼈 􏼉 defined by the user; a scalarization
function, in this case, is considered the Tchebycheff function

Figure 9: Pseudocode of AϵSϵH.

Figure 10: Pseudocode of IBEA.
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and a NeighborhoodSize. First, a population of P of N in-
dividuals is created and evaluated, followed by assigning
each xi ∈ P to a particular weigh vector λi. Neighborhoods
are created by calculating the Euclidean distance between
any pair of weigh vectors and clustering the
NeighborhoodSize ones that are closer. ,e reference point
needed for the scalarization function is initialized, using a
problem-specific technique or setting the value for each
objective as the best one according to the current population.

During each generation, for each subproblem with a
weigh vector λi, a new individual xi

′ is created by applying
genetic operators to parents selected randomly inside the
neighborhood Neig(i). If the solution dominates some in the
neighborhood, a replacement is done; otherwise, it is dis-
carded.,e reference point is updated, as well as the external
population. ,is process is repeated until all the subprob-
lems have been visited and updated. ,e algorithm termi-
nates when its stopping condition is met.

An important note here is that the replacement is done
the moment a better solution is found, and it could replace
any of the ones in its neighborhoods. ,is means that since
neighborhoods overlap, the next subproblem is working
with the best solutions found so far.

,e pseudocode of the algorithm is shown in Figure 11.
More details of the algorithm and other possible scalari-
zation functions can be found in Zhang and Li [25].
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