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Introduction

In recent years huge amounts of personal data has been collected on various networks as e.g. Facebook, Instagram, Twitter or LinkedIn. Ensuring the privacy of network users is one of the main research tasks. One possible model to formalise these issues was introduced by Liu and Terzi [START_REF] Liu | Towards identity anonymization on graphs[END_REF] who transferred the k-degree-anonymity concept from tabular data in databases [START_REF] Fung | Privacy-preserving data publishing: A survey of recent developments[END_REF] to graphs which are often used as a representation of networks. Following this study a graph is called k-degree-anonymous if for its each vertex there are at least k -1 other vertices with the same degree. The parameter k represents the number of vertices that are mixed together and thus the increasing value of k increases the level of anonymity. In [START_REF] Wu | A survey of privacypreservation of graphs and social networks[END_REF], Wu et al. presented a survey of different anonymization models and some of their weaknesses. Casas Roma et al. [START_REF] Casas-Roma | A survey of graph-modification techniques for privacy-preserving on networks[END_REF] proposed a survey of several graph-modification techniques for privacy-preserving on networks. In this paper we consider the k-degree-anonymous concept of Liu and Terzi [START_REF] Liu | Towards identity anonymization on graphs[END_REF].

The main study problem related to k-degree anonymous graphs is to find a minimum number of graph operations to transform an input graph to a k-degree anonymous graph.

Different graph operations of transforming a graph into a k-degree-anonymous one are considered in research papers where the operations maybe the following: delete vertex/edge, add vertex/edge, or add/delete edge (see more details later). One advantage in the approaches based on vertex/edge deletion/adding is that a solution always exists since in the worst case scenario one can consider the empty or the complete graph that is k-degree-anonymous for any k (at most the number of vertices of the graph). However, the basic graph parameters as the number of vertices and edges could be modified with such transformations.

Vertex/edge modification versions associated to k-degree-anonymity have been relatively well studied. Hartung et al. [START_REF] Hartung | Improved upper and lower bound heuristics for degree anonymization in social networks[END_REF][START_REF] Hartung | A refined complexity analysis of degree anonymization in graphs[END_REF] studied the edge adding modification as proposed by Liu and Terzi [START_REF] Liu | Towards identity anonymization on graphs[END_REF]. For this type of modification Chester et al. [START_REF] Chester | Complexity of social network anonymization[END_REF] established a polynomial time algorithm for bipartite graphs.

The variant of adding vertices instead of edges was studied by Chester et al. in [START_REF] Chester | Why waldo befriended the dummy? k-anonymization of social networks with pseudo-nodes[END_REF] where they presented an approximation algorithm with an additive error. Bredereck et al. [START_REF] Bredereck | The complexity of degree anonymization by vertex addition[END_REF] investigated the parameterized complexity of several variants of vertex adding which differ in the way the inserted vertices can be adjacent to existing vertices. Concerning the vertex deletion variant, Bazgan et al. [START_REF] Bazgan | Finding large degree-anonymous subgraphs is hard[END_REF] showed the NP-hardness even on very restricted graph classes such as trees, split graphs, or trivially perfect graphs. Moreover, in [START_REF] Bazgan | Finding large degree-anonymous subgraphs is hard[END_REF] the vertex and edge deletion variants are proved intractable from the approximability and parameterized complexity point of view.

Several papers study the basic properties of edge rotations, including some bounds for the minimum number of edge rotations between two graphs [START_REF] Chartrand | Rotation and jump distances between graphs[END_REF][START_REF] Chartrand | Edge rotations and distance between graphs[END_REF][START_REF] Ralph J Faudree | On the rotation distance of graphs[END_REF][START_REF] Goddard | Distances between graphs under edge operations[END_REF][START_REF] Elzbieta | Edge rotation and edge slide distance graphs[END_REF].

In this paper we consider the version of transforming a graph into a kdegree-anonymous one using edge rotations which don't modify the number of vertices/edges. It should be noticed that in such case a solution may not always exist, as we discuss in Section 3.

To the best of our knowledge the problem of transforming a graph to a kdegree anonymous graph using the edge rotations has not been fully explored. In some particular cases some research has been done in [START_REF] Salas | Graphic sequences, distances and k-degree anonymity[END_REF] where the authors study the edge rotation distance and various metric between the degree sequences to find a "closest" regular graph. In paper [START_REF] Casas-Roma | An algorithm for k-degree anonymity on large networks[END_REF] the authors proposed an heuristic to compute the edge rotation distance to a k-degree anonymous graph.

Our results. In this paper we study the various aspects of the Min Anonymous-Edge-Rotation problem. An input to the problem is an undirected graph G = (V, E) with n vertices and m edges and an integer k ≤ n. The goal is to find a shortest sequence of edge rotations that transforms G into a k-degree-anonymous graph, if such a sequence exists. We first show that when n 2 ≤ m ≤ n(n-3) 2 and k ≤ n 4 a solution always exists. Moreover for trees a solution exists if and only if 2m

n is an integer. We prove that Min Anonymous-Edge-Rotation is NP-hard even when k = n q and q ≥ 3 is a fixed positive integer. On the positive side we provide a polynomial-time 2-approximable algorithm under some constraints. Finally, we demonstrate that Min Anonymous-Edge-Rotation is solvable in polynomial time for trees when k = θ(n) and for any graph when k = n.

Our paper is organized as follows. Some preliminaries about edge rotations and our formal definitions are given in Section 2. The study of feasibility is initiated in Section 3. Section 4 presents the NP-hardness proof. In Section 5 we study properties of the specific k-degree anonymous degree sequences that are used in Section 6 to present a polynomial-time 2-approximation algorithm and in Section 7 to establish a polynomial time algorithm for trees. Moreover in Section 7 we consider the case k = n in general graphs. Some conclusions are given at the end of the paper.

Preliminaries

In this paper we assume that all graphs are undirected, without loops and multiple edges, and not necessary connected graphs.

Let G = (V, E) be a graph. For a vertex v ∈ V , let deg G (v) be the degree of v in G, and ∆ G be the maximum degree of G.

A vertex v with degree deg G (v) = |V | -1 is called a universal vertex. The neighborhood of v in G is denoted by N G (v) = {u ∈ V : uv ∈ E} and Inc G (v) is the set of all edges incident to v, Inc G (v) = {e ∈ E : v ∈ e}.
If the underlying graph G is clear from the context, we omit the subscript G.

Definition 1. Given a graph G = (V, E) of order n, the degree sequence S G of G is the non-increasing sequence of its vertex degrees,

S G = (deg(v 1 ), . . . , deg(v n )), where deg(v 1 ) ≥ deg(v 2 ) ≥ • • • ≥ deg(v n ). Definition 2. A sequence D of non-negative integers D = (d 1 , d 2 , . . . , d n ) is graphic if
there exists a graph G such that its degree sequence coincides with D.

As follows from Erdős-Gallai theorem (see e.g. [START_REF] Erdős | Gráfok eloírt fokú pontokkal (graphs with points of prescribed degrees, in Hungarian)[END_REF]) the necessary and sufficient conditions for a non-increasing sequence D = (d 1 , d 2 , . . . , d n ) to be graphic are:

n i=1 d i is even (1) i=1 d i ≤ ( -1) + n i= +1 min(d i , ) holds for any 1 ≤ ≤ n. (2) 
Furthermore, it is an easy exercise to prove that a sequence of integers D = (d 1 , d 2 , . . . , d n ) corresponds to a degree sequence of a tree on n vertices if and only if each d i ≥ 1 and

n i=1 d i = 2(n -1).
Let G(n, m) be the set of all graphs with n vertices and m edges.

Definition 3. Let G, G ∈ G(n, m).
We say that G can be obtained from G by an edge rotation (uv, uw) if V (G) = V (G ) and there exist three distinct vertices u, v and w in G such that uv ∈ E(G), uw / ∈ E(G), and E(G ) = (E(G) \ {uv}) ∪ {uw}, see Figure 1. 
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G such that deg G (v) = deg G (v) -1, deg G (w) = deg G (w)+1
, and the degree of the other vertices is not changed. Let define a (+1, -1)-degree modification of the degree sequence D = (d Note that a solution to the Min Anonymous-Edge-Rotation problem may not exist for all instances. For example, if G is a complete graph without an edge, K n \ {e}, n ≥ 6, then there is no solution for such graph G and k = 3. Therefore, we are only interested in studying of feasible instances (G, k) defined as an instance for which there exists a solution to Min Anonymous-Edge-Rotation. Our initial study of sufficient conditions for feasibility is presented in Section 3.

Obviously, since all graphs are 1-degree-anonymous, we are only interested in cases where k ≥ 2.

The decision version associated to Min Anonymous-Edge-Rotation is defined as follows for a feasible instance (G, k):

Anonymous-Edge-Rotation Input: (G, k, r) where G = (V, E) is an undirected graph, k ∈ {1, . . . , |V |}, and r be a positive integer. Question: Is there a sequence of + 1 graphs G 0 = G, G 1 , G 2 , . . . , G such that ≤ r, G i+1 can be obtained from G i by one edge rotation, and G is k-degree-anonymous?

We also consider the Min Anonymous-Edge-Rotation problem in restricted graph classes, e.g. trees. In that case we require that all graphs in the sequence G 0 , . . . , G must be from the same graph class. Note that the problem can also be studied without this requirement, but the results may be different.

The following theorem shows important properties about the edge rotations. The result was already proved in [START_REF] Chartrand | Edge rotations and distance between graphs[END_REF], but due to the simplicity of our approach, we present an another proof here.

Theorem 1. For any two graphs G, G ∈ G(n, m), we can transform G to G using a sequence of edge rotations.

Proof. Let E 1 = E(G) \ (E(G) ∩ E(G )) be the set of edges that are in G and not in G and E 2 = E(G ) \ (E(G) ∩ E(G )) be the set of edges that are in G and not in G. For all u, v and w such as uv ∈ E 1 and uw ∈ E 2 , we add one edge rotation (uv, uw). In all other cases, let uv ∈ E 1 and u v ∈ E 2 , where all vertices u, v, u , v are distinct. There are two case: 1) uu , uv , vu and vv ∈ E(G) or 2) at least one of these four edges is missing.

In the first case we can make the following two edge rotations to move uv from G to u v in G : (v v, v u ) and (vu, vv ) (see Figure 2). In the second case, if for example vv is missing, we can use the following two rotations (vu, vv ) and then (v v, v u ) (see Figure 3) and similarly if another edge is missing. 

Feasibility study

As it was discussed in Section 2, the Min Anonymous-Edge-Rotation problem does not have a solution for every input instance. It is not difficult to see that if a graph is 'almost' complete or 'almost' empty, then there are only restricted options on the number of different degree classes and therefore a solution may not exist.

First we present some sufficient conditions for an instance to be feasible showing that if a graph is not 'almost' complete or an empty graph, then a solution of the problem exists for all k ≤ n 4 , where n is the order of the graph. 

Theorem 2. Let G ∈ G(n, m) such that n 2 ≤ m ≤ n(n-3)
= 2m n . Type 1: k ≤ s ≤ n -k Let D 1 = (d 1 1 , d 1 2 , . . . , d 1 s , d 2 1 , d 2 2 , . . . , d 2 n-s
) be a sequence of positive integers where for all i,

1 ≤ i ≤ s, d 1 i = d + 1 and for all j, 1 ≤ j ≤ n -s, d 2 j = d
(see Figure 4). The sequence contains n elements and it is easy to see that

s i=1 (d + 1) + n-s j=1 d = 2m. s n -s d + 1 d Figure 4: The sequence D 1 Following the assumptions s ≥ k and n -s ≥ k, therefore D 1 is a k-anonymous sequence. Type 2 : s < k Let D 2 = (d 1 1 , d 1 2 , . . . , d 1 s+k , d 2 1 , d 2 2 , . . . , d 2 n-s-2k , d 3 1 , d 3 2 , . . . , d 3 
k ) be a sequence of positive integers where for all i, 5). The sequence contains n elements and

1 ≤ i ≤ s + k, d 1 i = d + 1; for all r, 1 ≤ r ≤ n -s -2k, d 2 r = d; for all j, 1 ≤ j ≤ k, d 3 j = d -1 (see Figure
s+k i=1 (d + 1) + k j=1 (d -1) + n-s-2k =1 d = 2m s + k n -s -2k k d + 1 d d -1 Figure 5: The sequence D 2 Since n ≥ 4k and s < k, n -s -2k ≥ k, D 2 is a k-anonymous sequence. Type 3: s > n -k Let D 3 = (d 1 1 , d 1 2 , . . . , d 1 k , d 2 1 , d 2 2 , . . . , d 2 s-2k , d 3 1 , d 3 2 , . . . , d 3 k+n-s
) be a sequence of positive integers where for all i, 6). The sequence has n elements and Now we show that all three sequences are graphic, therefore that the condition ( 2) is true for any . We split the proof into several subcases depending on the value of and the type of the sequence.

1 ≤ i ≤ k, d 1 i = d + 2; for all r, 1 ≤ r ≤ s -2k, d 2 r = d + 1; for all j, 1 ≤ j ≤ k + n -s, d 3 j = d (see Figure
k i=1 (d + 2) + k+n-s j=1 d + s-2k =1 (d + 1) = 2m. k s -2k k + n -s d + 2 d + 1 d
From our assumptions

n 2 ≤ m ≤ n(n-3) 2 , it follows 1 ≤ d ≤ n -3. Case A. = 1 Because d ≥ 1, (2) trivially holds. Case B. = 2, due to n ≥ 8, n j= +1 min(d j , ) ≥ 6d -2 i=1 d i ≤ (d + 2) = 2(d + 2) ≤ 2 + (6d -2) ≤ ( -1) + n j= +1 min(d j , ) Case C. 3 ≤ < d i=1 d i ≤ (d + 2) ≤ (n -1) = n -= 2 -+ n -2 = ( -1) + (n -) ≤ ( -1) + n j= +1 min(d j , ) Case D. 3 ≤ = d, Type 1 & 3: i=1 d i ≤ (d + 2) ≤ (n -1) = n -= 2 -+ n -2 = ( -1) + (n -) ≤ ( -1) + n j= +1 min(d j , )
Type 2, following our assumptions also = d ≤ n -3

i=1 d i ≤ (d+1) = ( +1) = ( -1)+2 ≤ ( -1)+3 -3 = ( -1)+3( -1) = ( -1) + ( + 3 -)( -1) ≤ ( -1) + (n -)( -1) ≤ ( -1) + n j= +1 min(d j , ) Case E. 3 ≤ = d + 1. Furthermore, = d + 1 ≤ n -2. Type 1 & 2, ≥ 4: i=1 d i ≤ (d + 1) = 2 = ( -1) + ≤ ( -1) + 2 -4 = ( -1) + 2( -2) = ( -1) + ( + 2 -)( -2) ≤ ( -1) + (n -)( -2) = ( -1) + (n -)(d -1) ≤ ( -1) + n j= +1 min(d j , ) Type 1 & 2, = 3: Due to n ≥ 8, n j= +1 min(d j , ) ≥ 5d -4 ≥ Therefore i=1 d i ≤ (d + 1) = 2 = ( -1) + ≤ ( -1) + n j= +1 min(d j , ) Type 3, 3 ≤ ≤ n -3 i=1 d i ≤ (d+2) = ( +1) = ( -1)+2 ≤ ( -1)+3 -3 = ( -1)+3( -1) = ( -1) + ( + 3 -)( -1) ≤ ( -1) + (n -)( -1) ≤ ( -1) + n j= +1 min(d j , ) Type 3, = n -2 i=1 d i = k(d+2)+(s-2k)(d+1)+(k+n-s-2)d = nd-2d+s ≤ d(n-2)+n-1 ≤ (n -3)(n -2) + n -1 ≤ ( -1) + 2d = ( -1) + n j= +1 min(d j , ). Case F. 3 ≤ = d + 2. Furthermore, = d + 2 ≤ n -1. Type 1 & 2: i=1 d i ≤ (d + 1) ≤ ( -1) ≤ ( -1) + n j= +1 min(d j , ) Type 3, = 3: Due to n ≥ 8, n j= +1 min(d j , ) ≥ 5 ≥ . Then i=1 d i ≤ (d + 2) = 2 = ( -1) + ≤ ( -1) + n j= +1 min(d j , ) Type 3, 4 ≤ ≤ n -2: i=1 d i ≤ (d + 2) = 2 = ( -1) + ≤ ( -1) + 2 -4 = ( -1) + 2( -2) = ( -1) + ( + 2 -)( -2) ≤ ( -1) + (n -)( -2) ≤ ( -1) + n j= +1 min(d j , )
Type 3, = n -1:

i=1 d i = k(d + 2) + (s -2k)(d + 1) + (k + n -s -1)d = s + nd -d ≤ n -1 + (n -1)(n -3) = (n -1)(n -2) = ( -1) ≤ ( -1) + n j= +1 min(d j , ). Case G. d + 2 < < n i=1 d i ≤ (d + 2) ≤ ( -1) ≤ ( -1) + n j= +1 min(d j , ) Case H. = n i=1 d i ≤ (d + 2) ≤ ( -1)
Therefore, we have proved that there exists a k-degree-anonymous graph G ∈ G(n, m) and the graph G can be transformed to G using a sequence of edge rotations due to Theorem 1. Now we extend the feasibility study to the case k = n for which we get necessary and sufficient conditions. Proof. Since k = n in Min Anonymous-Edge-Rotation, every vertex has to be in the same degree class, so if there is a solution, the resulting graph has to be regular. Moreover, a necessary and sufficient condition for a p-regular graph with n vertices to exist is that n ≥ p + 1 and np must be even [START_REF] Tomescu | Problems in combinatorics and graph theory[END_REF].

If 2m n is not an integer then obviously there is no regular graph in G(n, m) and therefore (G, n) is not a feasible instance.

If 2m n is an integer, since n × 2m n = 2m is even, n ≥ 2m n + 1 there is a 2m nregular graph in G(n, m) as it was mentioned before. By Theorem 1 we conclude that there exists a sequence of edge rotations that leads to a 2m n -regular graph starting from G.

Hardness of Min Anonymous-Edge-Rotation

In this section we show that the decision version of Min Anonymous-Edge-Rotation, the problem Anonymous-Edge-Rotation, is NP-hard. The proof is based on a reduction from the restricted version of a cover set problem, Exact Cover By 3-Sets, which is known to be NP-complete ( [START_REF] Garey | Computers and intractability[END_REF]).

Exact Cover By 3-Sets (X3C)

Input: A set X of elements with |X| = 3m and a collection C of 3-elements subsets of X where each element appears in exactly 3 sets. Question: Does C contain an exact cover for X, i.e. a subcollection C ⊆ C such that every element occurs in exactly one member set of C ? Remark 2. Note that |C| = 3m and we can suppose that m is even and larger than 6. If m is odd, we consider the instance I even defined as follows: X even = X ∪ {x | x ∈ X} and C even = C ∪ {c x y z | c xyz ∈ C}, and thus in the new instance I even the set has 6m elements and the collection has 6m 3-elements subsets.

We define a polynomial-time reduction and then prove the NP-hardness of Anonymous-Edge-Rotation.

Reduction. Let I = (X, C) be an instance of X3C with |X| = |C| = 3m and m even and q ≥ 3 a given constant. We describe the construction σ transforming an instance I into the graph G := σ(I) where G = (V, E) is defined as follows:

• For each element x ∈ X, we add a vertex v x to the set V elem ⊂ V and a vertex u x to the set V hub ⊂ V .

• For each 3-element set {x, y, z} of the collection C, we add 4 vertices c 1 xyz , c 2 xyz , c 3 xyz and c 4 xyz to the set V set ⊂ V .

• For each i ∈ {1, . . . , 5m} we add a vertex w i to the set V reg ⊂ V and for each j ∈ {1, . . . , 10m} we add a vertex t j to V single ⊂ V .

Let V -= V elem ∪V hub ∪V set ∪V reg ∪V single and |V -| = 3m+3m+12m+15m = 33m. If q = 3, then let V = V -. If q ≥ 4, then for each i, 4 ≤ i ≤ q, add a set of 11m vertices denoted

V i dummy . Let V dummy = V 4 dummy ∪ • • • ∪ V q dummy and define V = V -∪ V dummy . Obviously, |V | = 33m + (q -3)11m.
Now we define the set E of the edges in G.

• For all x, y ∈ X, such that x = y, we add the edge v x u y between the vertex v x ∈ V elem and u y ∈ V hub , to E X ⊂ E.

• For each 3-element set {x, y, z} of the collection C, ∀i ∈ {1, 2, 3, 4}, we add the edges c i xyz u x , c i xyz u y and c i xyz u z to the set E C ⊂ E.

• We add the set of edges E ⊂ E to the vertex set V elem such that (V elem , E ) is a 11-regular graph. Since the number of vertices in the set |V elem | = 3m is even (m is even) and 11 < 3m such a regular graph exists [START_REF] Tomescu | Problems in combinatorics and graph theory[END_REF]. Furthermore, such a graph can be constructed in polynomial time using Havel-Hakimi algorithm [START_REF] Hakimi | On realizability of a set of integers as degrees of the vertices of a linear graph[END_REF].

• We add the set of the edges E ⊂ E to the vertex set V reg such that (V reg , E ) is a (3m + 11)-regular graph. Since the number of vertices of V reg is even and 3m + 11 < 5m, similarly to the previous case such a regular graph exists and can be constructed in polynomial time.

Finally, let

E -= E X ∪ E C ∪ E ∪ E . If q = 3, then let E = E -. If q ≥ 4, then
the set E contains E -and for any i, such that 4 ≤ i ≤ q, we add the set of edges E i dummy ⊆ E to the vertex set V i dummy such that (V i dummy , E i dummy ) is a (9m + 12)-regular. Since the number of vertices of V i dummy is even (m is even) and 9m + 12 ≤ 11m, similarly to the previous case such a regular graph exists and can be constructed in polynomial time.

Obviously, the graph G = (V, E) has the following properties: (i) 10m vertices of degree 0 (the vertices of the set V single ), (ii) 12m vertices of degree 3 (the vertices of the set V set ), (iii) 8m vertices of degree 3m + 11 (the vertices of the set V reg and V hub ), (iv) 3m vertices of degree 3m + 10 (the vertices of the set V elem ), (v) (q -3)11m vertices of degree (9m + 12) (the vertices of the set V dummy ).

Example. Figure 7 represents the transformation σ for q = 3. Let I 1 be the following instance of X3C: m = 2, X = {1, 2, 3, 4, 5, 6}, and C = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {1, 5, 6}, {1, 2, 6}}. To simplify the figure, we only consider m = 2, but for the construction m must be at least 6 (due to an (3m + 11)-regular graph on the vertex set of V reg ). where n is the order of the graph G for an input instance (G, k, r) and q is a fixed number greater than or equal to 3.

v 1 v 2 v 3 v 4 v 5 v 6 u 1 u 2 u 3 u 4 u 5 u 6 c 1 123 c 1 234 c 1 345 c 1 456 c 1 156 c 1 126 c 2 xyz c 3 xyz c 4 xyz t j w i Non-edge V hub V set V elem V single V reg
Proof. Let C ⊆ C be an exact cover for X of size m. Now we define 3m rotations which are independent from each other : for every 3-element set {x, y, z} ∈ C , we replace the edge u x c 1 xyz by the edge u x v x , and similarly u y c 1 xyz by u y v y and u z c 1 xyz by u z v z . Since C is of size m, we define exactly 3m rotations. Let G be the graph obtained from G after applying all 3m rotations. Since C is an exact cover of size m: (i) there are m vertices of type c 1 xyz that lost all 3 neighbours and become of degree 0 in G , (ii) all 3m vertices of type v x are attached to a new neighbour, so they become of degree 3m + 11 in G .

Then G has 10m + m = 11m vertices of degree 0, 12m -m = 11m of degree 3 vertices, 8m + 3m = 11m of degree 3m + 11 vertices and it contains q -3 disconnected (9m + 12)-regular subgraphs of size 11m, hence we conclude that G is the 11m-anonymous graph.

Let I be a yes-instance of Anonymous-Edge-Rotation. Then there exists a sequence of 3m rotations such that the graph G = (V, E ) obtained after applying the rotations to G is a 11m-anonymous graph. Since |V | = 33m + (q -3)11m, there must be only q different degrees classes in G . Note that with one rotation, we can change the degree of two vertices, therefore the degree at most 6m vertices can be changed by 3m rotations. Since the graph G has more than 6m vertices of the degrees 3m + 11, 3, 0 and 9m + 12, all these degree classes must be in G . Furthermore, due to the number of vertices of G, these are the only degree classes in G . This means that in G the number of vertices of degree 3m + 11 must be increased by 3m, the number of vertices of degree 0 must be increased by m, the number of vertices of degree 3 must be decreased by m, there are no vertices of degrees 3m + 10 in G and the other degree classes keep the same amount of vertices.

A single rotation can increase or decrease the degree of a vertex by 1 therefore using 3m rotations no vertex of degree 3m + 10 in G can have degree 0 in G and similarly, no vertex of degree 3 in G can have degree 3m+11 in G . Therefore the 3m new vertices of degree 3m + 11 in G must have degree 3m + 10 in G. This is only possible if the degree of each vertex v x from the set V elem is increased by 1. Similarly, the m new vertices of degree 0 in G must have degree 3 in G, let C G be the set of such vertices. Obviously, C G must be a subset of V set , in which the vertices have the form c xyz with x, y, z ∈ X, for any set {x, y, z} ∈ C, and ∈ {1, 2, 3, 4}. For the same reasons, vertices of degree greater than 9m + 12 cannot be degree less than 3m + 12.

To reach the requested degree configuration in G with exactly 3m edge rotations, in each rotation the degree of each vertex from V elem must be increased by 1 and the degree of each vertex from the set C G must be decrease by 1. To achieve that, for each vertex v x from V elem , the only possible rotation is to add the edge u x v x where u x ∈ V hub and remove the edge u x c xyz where c xyz ∈ C G . To fulfil the condition about the degree classes and the number of the rotations, the only way to achieve that is that C = {{x, y, z} | c xyz ∈ C G } is an exact cover of X.

Characterization of the "closest" k-anonymous degree sequence

In this section we suppose that (G, k) is a feasible instance. For any such instance we define a k-anonymous degree sequence S bound that can be computed in polynomial time if k = θ(n). We show that with the (+1, -1)-degree modifications (Remark 1) the graph G can be transformed into a k-degree-anonymous graph G with degree sequence S bound using at most double of edge rotations as in an optimal solution of Min Anonymous-Edge-Rotation for (G, k).

Note that in general a (+1, -1)-degree modification doesn't correspond to an edge rotation, but as we show later in Section 7.1, it is true for trees. Now in the following steps we show how to define the degree sequence S bound .

Step 1: Compute every available target sequence.

Let S = (s 1 , . . . , s n ) be a non-increasing sequence of non-negative integers, r ∈ {1, . . . , n}. Any partition of S into r contiguous subsequences (i.e. if S[a] and S[b] are in one part, then all S[i], a ≤ i ≤ b must be in the same part) is called a contiguous r-partition. The number of contiguous r-partitions of S is n-1 r-1 , therefore bounded by (n -1) r-1 . Then the number of contiguous partitions of S with at most r parts can be bounded by

r-1 i=0 (n -1) i ≤ 2n r-1 .
For each contiguous -partition p, 1 ≤ ≤ r, we use notation p = [p 1 , . . . , p ], where p i denotes the number of elements in part i, 1 ≤ i ≤ . Note that at this stage important is the number of elements in each part, not which elements from S are in it.

Let G be a graph of order n and k an integer, k ≥ 2. If G is a k-degreeanonymous graph, then the vertices of G can be partitioned into at most c = n k parts where the vertices in each part have the same degree. Let P be the set of all such contiguous partitions with at most c parts. As it follows from the initial discussion, the number of such partitions is bounded by 2n For each contiguous partition p with parts, 1 ≤ ≤ c, there are at most n possibilities for a degree on each position. The test whether the generated sequence is graphic and k-anonymous can be done in O(n) operations. Since |P | = O(n c-1 ), there are at most O(n c-1 × n × n) ≤ O(n 2c ) operations to compute all feasible degree sequences of every partition, where c = n k . Obviously, if c is a constant, such number of operations is polynomial.

Step 2: Find the best one. Now based on the previous analysis we can define the degree sequence S bound and prove some basic properties. for a graph, we can define a k-anonymous sequence S T bound for a tree. The only difference is that in the set Pp , every feasible solution must have d i ≥ 1, which would be a subset of Pp . Also for the testing, we don't need to check whether S is graphic, the condition i=1 p i d i = 2|E|, is enough for the degree sequence of a tree. Lemma 1. Let S be a n-sequence of non-negative integers and denote by S the sequence S sorted in non-increasing order. Let S s be another n-sequence of non-negative integers sorted in non-increasing order. Then

n i=1 |S s [i] -S [i]| ≤ n i=1 |S s [i] -S[i]| (3) 
Proof. If S is already in non-increasing order then ( 3 

A = n i=1 |S s [i] -S[i]| - n i=1 |S s [i] -S 1 [i]| = |S s [a] -S[a]| -|S s [a] -S 1 [a]| + |S s [b] -S[b]| -|S s [b] -S 1 [b]| = |S s [a] -S 1 [b]| -|S s [a] -S 1 [a]| + |S s [b] -S 1 [a]| -|S s [b] -S 1 [b]|
In order to follow easier six different cases, let

x 1 = S s [a], x 2 = S s [b], x 3 = S 1 [a], x 4 = S 1 [b], and thus A = |x 1 -x 4 | -|x 1 -x 3 | + |x 2 -x 3 | -|x 2 -x 4 |.
Following our assumptions x 1 ≥ x 2 and x 3 > x 4 . Now for all possible arrangements of x 1 , x 2 , x 3 , x 4 we discuss the value A:

• x 1 ≥ x 2 ≥ x 3 > x 4 : A = x 1 -x 4 -x 1 + x 3 + x 2 -x 3 -x 2 + x 4 = 0 • x 3 > x 4 ≥ x 1 ≥ x 2 : A = x 4 -x 1 -x 3 + x 1 + x 3 -x 2 -x 4 + x 2 = 0 • x 1 ≥ x 3 > x 4 ≥ x 2 : A = x 1 -x 4 -x 1 +x 3 +x 3 -x 2 -x 4 +x 2 = 2x 3 -2x 4 > 0 • x 3 ≥ x 1 ≥ x 2 ≥ x 4 : A = x 1 -x 4 -x 3 +x 1 +x 3 -x 2 -x 2 +x 4 = 2x 1 -2x 2 ≥ 0 • x 1 ≥ x 3 ≥ x 2 ≥ x 4 : A = x 1 -x 4 -x 1 +x 3 -x 2 -x 1 -x 2 +x 4 = 2x 3 -2x 2 ≥ 0 • x 3 ≥ x 1 ≥ x 4 ≥ x 2 : A = x 1 -x 4 -x 3 +x 1 +x 3 -x 2 -x 4 +x 2 = 2x 1 -2x 4 ≥ 0
We can conclude that in all cases A ≥ 0, therefore

n i=1 |S s [i] -S 1 [i]| ≤ n i=1 |S s [i] -S[i]|.
If the sequence S 1 is still not in non-increasing order, we can repeat the process of swapping for the next two unsorted elements on S 1 until we obtain the non-increasing sequence S . Each process can be repeated independently, therefore

n i=1 |S s [i] -S [i]| ≤ n i=1 |S s [i] -S[i]|.
Theorem 5. Let (G, k) be a feasible instance for the Min Anonymous-Edge-Rotation problem. Let OPT be an optimum solution that is a minimum set of rotations that transform G to a k-degree-anonymous graph G . Then

n i=1 |S G [i]- S bound [i]| ≤ 2|OP T |,
where the degree sequence S bound is defined in Definition 5.

Proof. Let S G be the degree sequence of G sorted in the same order as S G (i.e. for every

v ∈ V , if deg G (v) is in the position i in S G then deg G (v) is in the position i in S G )
. Let S G be the degree sequence S G sorted in non-increasing order. As in the definition of S bound we considered all the options, there must exist p ∈ P and S ∈ Pp such that S = S G , and

n i=1 |S G [i] -S bound [i]| ≤ n i=1 |S G [i] -S G [i]|.
Since the degree sequence S G is sorted in non-increasing order, then

n i=1 |S G [i] -S G [i]| ≤ n i=1 |S G [i] -S G [i]|
by Lemma 1. One rotation from the graph G j to G j+1 in the sequence of the graphs from G to G can only decrease the degree of a vertex by one and increase the degree of another one by one, hence 

n i=1 |S Gj [i] -S G [i]| ≤ n i=1 |S Gj+1 [i] - S G [i]| +

Approximation of Min Anonymous-Edge-Rotation

In this section we show that under some constraints on the number of edges and k, there exists a polynomial time 2-approximation algorithm for the Min Anonymous-Edge-Rotation problem for all feasible inputs (G, k). . It can be shown that

n i=1 (x i -A) 2 ≤ n i=1 (x i -A 0 ) 2 ≤ nR 2 4 , hence σ(S) ≤ R 2 .
The mean absolute derivation of S is defined as

MAD[S] = 1 n n i=1 |x i -A|.
It is well known (e.g. applying Jensen's inequality) that MAD[S] ≤ σ(S).

Based on the correlation mentioned in Remark 4, we calculate an upper bound on the values in the degree sequence S bound in the following lemma. Hence

n i=1 |S G [i] -D[i]| ≤ n i=1 max(|S G [i] -A + 2 |, |S G [i] -A -1 |) ≤ n i=1 |S G [i] -A| + n i=1 2 = nM AD[S G ] + 2n ≤ nσ[S G ] + 2n ≤ n ∆ 2 + 2n = n(∆ + 4) 2 
Let ∆ be the maximum value of S bound . If ∆ ≤ ∆, then the condition from Lemma holds. If ∆ > ∆, then the distance between the k first elements of S bound and the k first elements of S G is at least k(∆ -∆) since S bound is k-anonymous and sorted in non-increasing order. Because

n i=1 S bound [i] = n i=1 S G [i],
if the value of some elements is increased of a certain amount, the value of some others have to be decreased by the same amount, so

n i=1 |S G [i] - S bound [i]| ≥ 2k(∆ -∆). If ∆ > (1 + n 4k + n k∆ )∆ then n i=1 |S G [i] -S bound [i]| > 2k( n 4k + n k∆ )∆ = n(∆+4) 2 ≥ n i=1 |S G [i]-D[i]|,
which is not possible due to minimality of S bound .

In the following two lemmas we prove that if a graph has 'sufficiently' many edges than edge rotations with the specific properties exist in a graph. Lemma 3. Let G = (V, E) be a graph with |E| > ∆ 2 , let uv ∈ E. Then there exists an edge ab ∈ E such that both vertices a and b are different from u and v and at most one of the following edges {av, au, bv, bu} is in E.

Proof. For an edge xy ∈ E, let N x = N G (x) \ {y} and N y = N G (y) \ {x}. For a contradiction suppose there exists an edge uv ∈ E such that for every edge ab ∈ E \ (Inc(u) ∪ Inc(v)) at least two of the edges {av, au, bv, bu} are in E. Then at least one vertex from {a, b} is incident to both vertices u, v, hence belongs to N u ∩ N v , or both vertices {a, b} are in

(N u ∪ N v ) \ (N u ∩ N v ). Moreover, every vertex in N u ∪ N v has at most ∆ -1 neighbours in V \ {u, v}. Hence, |E \ (Inc(u) ∪ Inc(v))| ≤ (∆ -1) × (|N u ∩ N v | + |(N u ∪ N v ) \ (N u ∩ N v )| 2 ) = (∆ -1) × |N u ∩ N v | + |N u ∪ N v )| 2 = (∆ -1) × |N u | + |N v | 2 ≤ (∆ -1) 2 Then |E| ≤ |Inc(u) ∪ Inc(v)| + |E \ (Inc(u) ∪ Inc(v))| ≤ 1 + 2(∆ -1) + (∆ - 1) 2 = ∆ 2 . This is in contradiction with hypothesis |E| > ∆ 2 . Lemma 4. Let G = (V, E) be a graph and suppose |E| > ∆ 2 . Let v + , v -∈ V such that 1 ≤ d G (v -) ≤ ∆ and 0 ≤ d G (v + ) ≤ ∆ < |V | -1.
Then there exists a sequence of at most two edge rotations that transform G to G such that Proof. Case 1: Suppose there exists a vertex v ∈ V such that v ∈ N G (v -) and v / ∈ N G (v + ). Let G be the graph obtained from G removing the edge v -v and adding the edge vv + , hence using rotation (vv -, vv + ). Obviously,

d G (v + ) = d G (v + ) + 1, d G (v -) = d G (v -) -
d G (v + ) = d G (v + ) + 1, d G (v -) = d G (v -) - 1 
and G is obtained by using a single rotation. Case 2 : N (v -) ⊆ N (v + ). Let u ∈ N G (v -). Since |E| > ∆ 2 and uv + ∈ E, by using Lemma 3 then there exists an edge ab ∈ E such that at most one edge of the set {av + , au, bv + , bu} is in E. If au is in E, then the graph G obtained by two rotations (ab, av + ) and (uv -, ub) has the required properties. If av + is in E, then the graph G obtained by two rotations (ba, bv + ) and (uv -, ua) has the required properties. The remaining two cases if bu or bv + are from E are symmetrical to the above cases, it is enough to swap a and b.

Obviously, such an edge ab can be found in O(|E| 2 ).

Theorem 6. The Min Anonymous-Edge-Rotation problem is polynomial time 2-approximable for all instances (G, k), k ≤ n 4 where k = θ(n) and G is the graph with n vertices and m edges, where max{ n 2 , (1

+ n 4k + n k∆ ) 2 ∆ 2 } ≤ m ≤ n(n-3) 2 
, and the constant c is defined as c = n k . Proof. Let (G = (V, E), k) be an instance of Min Anonymous-Edge-Rotation and S G be the degree sequence of G. Let the constant c be defined as c = n k . Due to our assumptions about the number of edges and k, all such instances are feasible as follows from Section 3. First we compute a k-anonymous degree sequence S bound following Definition 5 in O(n 2c ) steps. Due to the assumption k = θ(n) and consequently c being a constant, such number of steps is polynomial. Furthermore, the condition on the number of edges ensures that we can always apply Lemma 4 and find suitable edge rotations.

If there exist two vertices v

+ , v -∈ V such that 0 ≤ S G [v + ] < S bound [v + ] ≤ (1 + n 4k + n k∆ )∆ < |V | -1 and S G [v -] > S bound [v -] we apply Lemma 4 to transform G to a graph G 1 with at most two rotations such that d G1 (v + ) = d G (v + ) + 1 and d G1 (v -) = d G (v -) -1.
We'll be executing the above transformations while there are two vertices v + , v -∈ V with the required properties. In each such transformation we decrease the degree of one vertex by 1 and increase the degree of another one by 1 with at most two rotations. Hence we transform G to a final graph G with degree sequence S bound by at most Finally, since S bound is k-anonymous, G is a k-degree-anonymous graph.

Polynomial cases for Min Anonymous-Edge-Rotation

As follows from Section 4, the Min Anonymous-Edge-Rotation problem is NP-hard even for k = n q and q ≥ 3 is a fixed constant where n is the order of an input graph. In this section we show that the problem can be solved in polynomial time on trees when k = θ(n) or in case of any graph when k = n.

Trees

For a tree T = (V, E) rooted in a vertex r, for any v ∈ V , v = r, child(v) is a vertex that is a neighbor of v not on the path from r to v. Lemma 5. Let T = (V, E) be a tree and v -, v + vertices from V such that v -is not a leaf and v + is not a universal vertex. Then using one rotation we can transform T into a tree T such that d T (v -) = d T (v -) -1 and d T (v + ) = d T (v + ) + 1.

Proof. Let v + be the root of T . Since v -is not a leaf, there exists a vertex c ∈ child(v -). Since T is a tree, cv + / ∈ E. Therefore we can define the rotation (cv -, cv + ) (see Figure 8). Let T be the graph obtained after a such rotation. Since there is no edge between the subtree of c and other vertices, T is a tree. Obviously, the algorithm runs in polynomial time.

Conclusion

In this paper we initiate the study of the complexity of Min Anonymous-Edge-Rotation problem in which the task is to transform a given graph to a kdegree anonymous graph using a minimum number of edge rotations. As we were able to prove NP-hardness in case where the number of vertices k in each degree class is θ(n), further research could explore stronger hardness results or cases when k is a constant. Our next research step includes relaxation of the condition on the number of the edges in the presented 2-approximation algorithm as well as extension of the graph classes in which the Min Anonymous-Edge-Rotation problem can be solved in polynomial time. As the problem doesn't have a solution for all graphs and all possible values of k, our initial feasibility study covers a large part of instances. The extensions of the results are still possible, in the sense of necessary and sufficient conditions.
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 24 Then there exists a feasible solution for the Min Anonymous-Edge-Rotation problem, hence a k-degree-anonymous graph G ∈ G(n, m), for any k ≤ n 4 . Proof. Let m, n, k be fixed. Any graph G ∈ G(n, m) is a 1-degree-anonymous graph, hence we can suppose k ≥ 2. In the first part of the proof we describe a construction of a k-anonymous sequence D = (d 1 , d 2 , . . . , d n ) with property n i=1 d i = 2m for any m, n, k satisfying the restriction of the theorem. In the second part we show that the sequence D is graphic, hence that the sequence satisfies the conditions (1) and (2) from Section 2. As n i=1 d i = 2m is the condition for a constructed sequence, the property (1) trivially holds. Now we construct three distinct k-anonymous sequences Type 1, 2, 3 of integers based on the values of k and s ≡ 2m mod n. Denote by d the average degree of the graph G defined as d
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 3 Let G ∈ G(n, m) for some positive integers n and m. Then (G, n) is a feasible instance of Min Anonymous-Edge-Rotation if and only if 2m n is an integer.
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  c-1 . Now for each contiguous partition p = [p 1 , p 2 , . . . , p ] ∈ P , ∈ {1, . . . , c}, we compute all non-increasing sequences (d 1 , d 2 , . . . , d ) of integers d i such that 0 ≤ d i < |V |. Let Pp be the set of all feasible k-anonymous degree sequences for p, i.e. S = (d 1 , . . . , d 1 p1-times , d 2 , . . . , d 2 p2-times , . . . , d , . . . , d p -times ) = (d p1 1 , d p2 2 , . . . , d p ) ∈ Pp if and only if i=1 p i d i = 2|E|, S is graphic and k-anonymous.

Definition 5 .

 5 Let G be a graph with the degree sequence S G . Then define S bound for G as a degree sequence for which the sumn i=1 |S G [i] -S[i]| achievesthe minimum for all elements S ∈ Pp and p ∈ P .

Remark 3 .

 3 Similarly to a k-anonymous sequence S bound defined in Definition 5

  ) holds. If not then there exist positive integers a, b such that a < b and S[a] < S[b]. Let S 1 be the sequence defined swapping the values S[a], S[b], hence: S 1 [a] = S[b], S 1 [b] = S[a], and S 1 [i] = S[i] otherwise. We denote

2 .

 2 This means by one rotation the value n i=1 |S G [i] -S G [i] decreases by at most 2. After |OP T | rotations, the last graph G j+1 in the sequence is G , therefore n i=1 |S G [i] -S G [i]| ≤ 2|OP T | and the theorem follows.

Remark 4 . 2 ,

 42 Let S = (x 1 , x 2 , . . . , x n ) be a non-increasing sequence of n nonnegative integers. Denote by R = x 1 -x n , A 0 = x1+xn of S is defined as σ(S) = (xi-A) 2 n

Lemma 2 . 2 , k ≤ n 4 ,

 224 Let (G, k) be an instance of the Min Anonymous-Edge-Rotation problem where G is the graph with n vertices and m edges. Suppose that n 2 ≤ m ≤ n(n-3) and let the constant c be defined as c = n k , hence k = θ(n). Let S bound be the k-anonymous degree sequence associated with G defined following Definition 5. Then for every i, S bound [i] ≤ min{(1+ n 4k + n k∆ )∆, n -1}, 1 ≤ i ≤ n.Proof. Let S G be the degree sequence of G sorted in non-increasing order and D the k-anonymous degree sequence constructed following Theorem 2. Denote the unrounded average degree as A = n i=1 S G [i] n . Then using Remark 4, the standard deviation of S G , σ[S G ] ≤ ∆ 2 , and MAD[S G ] ≤ σ(S G ).

1

 1 and degrees of other vertices in G are not changed. These rotations can be found in O(|E| 2 ) steps.

  n i=1 |S G [i] -S bound [i]| rotations. By Lemma 5 we know that n i=1 |S G [i] -S bound [i]| ≤ 2|OP T |, hence we use at most 2 times the numbers of rotations of an optimal solution. In each transformation loop searching for the vertices v + and v -can be done in time O(n) and searching for an edge ab in time O(m 2 ) (Lemma 3). Due to the modifications in each transformation loop, there can be at most O(n 2 ) loops. Therefore the time complexity is bounded by O(n 2c +n 2 ×m 2 ×n). Since c ≥ 4, O(n 2c +m 2 ×n 3 ) ≤ O(n 2c ).

  Moreover d T (v -) = d T (v -) -1 and d T (v + ) = d T (v + ) + 1.
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 21 One degree class, k = nIn this part we show that Min Anonymous-Edge-Rotation is polynomialtime solvable for instances where k coincides with the number of vertices of the graph, that means all vertices must be in the same degree class.Input : A graph G = (V, E) Output: A sequence S of edge rotations if 2|E| |V | is an integer NO otherwise S = ∅ ; d = 2|E| |V | ; if if d is not integer then return NO ; else while ∃u, v ∈ V such that d G (u) < d and d G (v) > d do Let w ∈ N (v) \ N (u) ; E = E \ {vw}; E = E ∪ {uw}; S = S ∪ {(wv, wu)}; end end Algorithm Algorithm for k = |V |

  = G, G 1 , G 2 , . . . , G such that G i+1 can be obtained from G i by one edge rotation, and G is k-degree-anonymous.

	for any two indices i, j such that
	i, j ∈ {1, . . . , n}. Note that each edge rotation corresponds to a (+1, -1)-degree
	modification, but not opposite.
	Definition 4. A sequence of integers D = (d 1 , d 2 , . . . , d n ) is called k-anonymous
	where k ∈ {1, . . . , n}, if for each element d i from D there are at least k -1 other
	elements in D with the same value. A graph G is called k-degree-anonymous
	if its degree sequence is k-anonymous. The vertices of the same degree corre-
	spond to a degree class.
	In this paper we study the following anonymization problem:
	Min Anonymous-Edge-Rotation
	Input: (G, k) where G = (V, E) is an undirected graph and k a positive
	integer, k ∈ {1, . . . , |V |}.
	Output: If there is a solution, find a sequence of a minimum number + 1
	of graphs G 0

1 , . . . , d n ) in such a way that d i := d i + 1, d j := d j -1

 Lemma 6. Let G = (V, E) be a graph and u, v ∈ V . If N G (u) N G (v), then there is an edge rotation that leads to a graph G such that d G (u) = d G (u) -1 and d G (v) = d G (v) + 1.

Proof. Since N G (u) N G (v), there exists w ∈ V such that uw ∈ E and vw / ∈ E. Then we can do the following edge rotation (uw, vw) and get the graph G with E = (E \ {uw}) ∪ {vw}.

Lemma 7. Let (G, n) be an instance of Min Anonymous-Edge-Rotation where G ∈ G(n, m) for some positive integers m, n, and 2m

n is an integer. Then the optimum value of Min Anonymous-Edge-Rotation on (G, n) is

n . By Remark 5, there is an edge rotation that leads to a graph

rotations are necessary to have all the vertices of the same degree 2m n , therefore the optimum value of Min Anonymous-Edge-Rotation on the instance (G, n) is at least w∈V |d G (w)-2m/n| 2 . Now suppose that the optimum value is r strictly less than w∈V |d G (w)-2m/n| 2 . Each rotation increases the degree of a vertex by one and decreases the degree of another vertex by one too. Obviously, each vertex w has to be involved in at least |d G (w) -2m/n| edge rotations to reach the degree 2m n . Hence if there are r < w∈V |d G (w)-2m/n| 2 edge rotations then in any graph G obtained from G using r edge rotations there exists w ∈

n . Theorem 8. The Min Anonymous-Edge-Rotation problem is polynomialtime solvable for instances (G, k) when k = n, where n is the order of the graph G.

Proof. In case k = n, we are looking for a n-degree-anonymous graph with only one degree class, hence for a regular graph. Due to Theorem 3, we can easily decide whether (G, n) is a feasible instance of Min Anonymous-Edge-Rotation: if for G ∈ G(n, m) the fraction 2m n is not an integer, (G, n) is not a feasible input.

For a feasible input (G, n), the result is based on Algorithm 1 and its correctness follows from Lemmas 6 and 7.
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