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1 Introduction

This communication deals with the conditions of synchronization of coupled
nonlinear economic oscillators. We intend to show, building on recent ad-
vances of synchronization theory, that within nonlinear business cycle theory
with the same isolated structural equations, very rich dynamical patterns can
emerge. Extending the standard nonlinear flexible accelerator-multiplier fra-
mework of the business cycle to the case of coupled economies, we analyze
the role the coupling technology and the existence of delays in the emergence
of different scenario, ranging from complete to partial or transient synchro-
nization. Thus, the implementation of new advances on coupling and syn-
chronization analysis may substantially contribute to renewing the interest
in nonlinear economic dynamics.

An abundant empirical literature on the synchronization issue of economic
activities within and between sectors, international trade, financial markets
and business cycles is today available. A general agreement has emerged on
the existence of strong and robust positive relationships between trade, fi-
nancial linkages and synchronization (see e.g. Kim 2015, Hanus and Vachaa
2016). But scholars disagree as to whether there is or not a tendency to
decoupling in national business cycles before the crisis. Several studies also
find a significant convergence of fluctuations among the group of industrial
economies and the group of emerging economies with a concomitant de-
cline in the coupling between the two (Partial synchronization hypothesis).
In addition, regions with strong financial links appears to be more signifi-
cantly synchronized (Kose, Otrok and Prasad 2010, Karadimitopulou and
Leo-Lesdema 2013). Finally, another interesting new stylized fact refers to
the property of intermittency and wave-like fluctuations (Barnett and Dalkir,
2007, Crowley and Schultz 2012). The few theoretical exceptions consider a
given network topology with diffusive coupling and limit dynamic analysis
to the determination of the relevant range for the coupling coefficient achie-
ving full synchronization (Li 2009, Barré, Raybaut and Torre 2012, Raybaut
2012).

This contribution takes a different perspective. Our aim is mainly to inves-
tigate theoretically the synchronization issue of economic activities within
an endogenous business cycle framework. As regards economic analysis, it
is well established that business cycles generally display asymmetric oscil-
lations, where upturns or expansions differ from contractions in intensity
and duration. Thus, the potential value of relaxation oscillations to cap-
ture these features was recognized early, and the use of the Lienard-Van der
Pol or forced Van der Pol equations became standard in postwar nonlinear
multiplier-accelerator business cycle models. From this standpoint, our ap-
proach follows the tradition initiated by Richard Goodwin concerning the
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importance of nonlinearities and coupling within economic dynamics (Duan
2011, Abraham and Nivala 2012, Zambelli 2012).

Synchronization is an inherently collective dynamics phenomenon investiga-
ted within networks of coupled entities. The nature of the collective dyna-
mics depends on the properties of the isolated entities and the characteristics
of the coupling. The latter refer to the coupling function, its intensity and
range of the interaction network (local or global coupling) and its intensity
(coupling strength). The number of studies is currently growing in recent
years with recent discoveries of new and often surprising forms of collective
patterns of network synchronization not anticipated in previous studies (see
e.g. the special issue of Chaos ed. by Abrams, Pecora and Motter in 2016).
Kuramoto’s seminal model is still studied extensively, notably with different
networks of interaction, noise, delays, heterogeneity and frustration (see e.g.
Strogatz’s 2000, Dorfler and Bullo 2014 review articles).

But, different types of models are also analyzed in the recent theoretical
literature on coupling and synchronization dynamics. In particular various
classes of coupled dynamical systems like Van der Pol, forced Van der Pol-
Duffing or Röessler oscillators are largely investigated. These works connect
directly with the formal frameworks used in some classical nonlinear busi-
ness cycle models. There is also specific connections with some issues in the
modern economic literature on synchronization, like partial synchronization
or intermittency. Thus, it seems interesting to re-examine these approaches
in the light of these recent advances on coupling dynamics.

From this standpoint, this contribution is organized as follows. We first
shortly mention some recent advances in synchronization dynamics which
seem important for our issue. Second, we consider the isolated frameworks
for two main traditions in nonlinear business cycle modeling, one associated
to Kalecki-Kaldor and the other to Goodwin. Third, we introduce a cou-
pling and present some main provisional numerical findings for these two
approaches.

2 Some selected advances in synchronization dy-

namics

Understanding the different and often surprising forms that may emerge
with coupled oscillators is still a major topic of current research (see e.g.
Kori, Kuramoto and al. 2014, Abrams and al. 2016, Schmidt 2015). Chi-
mera states are a good example of such puzzling patterns appearing in net-
works of identical oscillators with nonlocal coupling schemes. They exhibit
a hybrid structure combining the existence of domains of synchronized and
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de-synchronized elements (Panaggio and Abrams 2015). Different types of
such chimera or chimera-like states have been identified in recent studies
under nonlocal symmetric coupling or global coupling with limit cycles or
chaotic orbits (Bera, Majhi, Ghosh and Perc, 2017, Rakshit, Bera, Perc and
Ghosh 2017). The mechanisms behind the emergence of these patterns are
not totally clarified and differ for different coupling configurations. Earlier
studies indicated that the oscillators should be non locally coupled in or-
der to generate these patterns. The introduction of non local coupling or
hierarchical networks promotes the emergence of complex spatio-temporal
patterns (Ulonska, et al. 2016). The presence of delays (transmission delays
in interactions) has also drastic effects on the dynamics. But global cou-
pling can also break the symmetry of population into synchronous and non
synchronous parts. Accordingly chimera and chimera-like states have also
been observed in globally coupled systems. Indeed, multistability and delay-
induced multistability seems to play a crucial role with globally coupled
systems (Chandrasekar et al. 2014, Premalatha, Chandrasekar, Senthilvelan
and Lakshmanan 2015, Röhm, Lüdge and Schneider 2017). A combination
of attractive and repulsive feedbacks in coupling was also shown to break
the symmetry of globally coupled oscillators (Yeldesbay and Pikrosky 2014,
Mishra et al. 2015). The effects an external signal (forced system) are also
studied in order to understand whether synchronization can be improved by
means of this signal. Generally, it acts as a disturbance factor deterring syn-
chronization within a group of agents (Alderisio, Bardy and Bernardo 2016).

These features are intriguing since they emerge with identical oscillators
and different types of dynamical systems. In particular, they have been stu-
died systematically in networks of identical Van der Pol oscillators (Barron
2016). In a recent study, Ulonska and al. (2016) consider Van der Pol oscil-
lators coupled via networks of increasing hierarchical nature, showing that
hierarchical coupling and large network clustering promote the existence of
different types of chimera states. Chandrasekar and al. (2014), explore ana-
lytically the reason explaining the occurrence of chimera states in globally
coupled oscillators. Considering two different nonlinear dynamical systems,
coupled forced Van der Pol oscillators and coupled R0̈ossler systems, they
identify a mechanism of intensity induced chimera states. They find that
the effect of intensity is to cause multistability by increasing the number
of fixed points. This in turn increases the number of multistable attractors,
and their stability is determined by the strength of coupling. This causes
the coexistence of different collective states. Their findings show in particu-
lar that intensity induced chimera is generic to both periodic and chaotic
systems.

The introduction of delays on the state variables of neighbors in the network
is also considered(see e.g. Maia, Macau, Pereira and Yanchuk 2017). These
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delays correspond to transmission delays induced by limited communication,
transportation, or cognitive resources, or to lags between local decisions and
their execution related to inertia in reactions of the agents or to technology
and time to build. In business cycles theory, the role played by these delays
on the dynamics is well-established since the pioneering works of Kalecki
and Frisch and Holmes in the thirties (Szydøowski, Krawiec and Tobola
2001). These delays critically affect synchronization of the global system.
Even with diffusive coupling, the synchronized dynamics is no longer the
same as in the isolated case. Delays enrich the dynamics, especially in the
discrete case, where a system of homogeneous oscillators unstable when iso-
lated can be stabilized by coupling. In the case of Van der Pol oscillators
with a delay, it can be shown that slight modifications of the value of this
delay is critical for the existence of interesting forms of synchronization.

3 Two representative isolated frameworks in non-

linear business cycle theory

3.1 The Kalecki-Kaldor tradition

The well-known representatives approaches in nonlinear business cycle theory,
one associated to Kalecki-Kaldor and the other to Goodwin have been wi-
dely investigated in isolated framework since the 50’s.

Let mention the Japanese pioneering mathematical advances in non-linear
dynamics developed notably by Yasui, Morishima and Ichimura examined
in detail in Velupillai (2008). As we may recall that these contributions
were in the 1950s the first to investigate closely the question of the exis-
tence and uniqueness of a limit cycle in the business cycle models of Kaldor,
Hicks and Goodwin with Lienard or van der Pol equations and Levinson
and Smith (1942) criteria resorting to controversial ad hoc assumptions.
These findings were synthetised by Ichimura (1955) in his classical attempt
to develop a general non-linear macrodynamic theory of economic fluctua-
tions along Keynesian lines and becomes the prototype framework for the
development of endogenous business cycle theory in the Kalecki-Kaldor tra-
dition. Then, numerous reformulations within nonlinear dynamical system
theory followed this approach during the renewal of nonlinear business cycle
modeling. Let only mention, Chang and Smyth (1971), Gabisch and Lorenz
(1989), Galeotti and Gori (1989), Flaschel (2009), Szydlowski and Krawiec
(1998), Kaddar and Alaoui (2008). These studies prove the existence of one,
or at at least one, limit cycle referring to Levinson and Smith theorem,
Poincaré-Bendixon theorem or Hopf bifurcation (see Arena and Raybaut
1995, Raybaut, 2014).
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In this perspective, let us consider a simple synthetic framework with time
to build θ in the capital accumulation equation, K̇ = I(Yt−θ,K)− δK.

The dynamics of global income Ẏ is governed by the discrepancy between
investment and saving, where the investment function is necessarily non li-
near. Assume that the investment function is additively separable and linear
in capital,I = I(Y )− βK and linear saving S = sY .

Then, after simple manipulations, the dynamical system in Y − K can be
written as a second order time-delay differential equation :

Ÿ + f(Y )Ẏ + g(Y ) = 0 (1)

with,

f(Y ) = β + δ + α(s− I ′Y ), g(Y ) = α(βIt−θ)− (β + δ)(I − sY )

Notice that without time to build (θ = 0) and with δ = 0, this equation can
be reduced to a classic Van der Pol equation as shown by Yasui (1953).

3.2 The nonlinear accelerator tradition : Goodwin’s approach

The second milestone in the development of nonlinear business cycle theory
is given by Goodwin’s attempts in the fifties. As well known, his nonlinear
accelerator models provide one of the very few examples of forced oscillators
in macrodynamics combining Keynesian and some rough Schumpeterian in-
sights (see Sordi 2003, Raybaut 2014).
By introducing lags in the multiplier process (ε) and time to build (θ) Good-
win (1951) obtains his Raleigh type sd order differential equation

εθÿ + (ǫ+ sθ)ẏ − Φ(ẏ) + sy = 0

where y stands for global income, s is the propensity to save and Φ(ẏ) is
Goodwin’s nonlinear investment function.

This equation can be easily transformed in a VdP equation. By differentia-
ting with respect to time and substituting x for ẏ, we obtain :

ẍ+ f(x)ẋ+ g(x) = 0 (2)
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where, f(x) = 1

εθ
[ε+ sθ −Φ′(x)] and g(x) = 1

εθ
sx. Assume that g(x) is odd

with respect to x. In addition, a unique limit cycle exists in isolation if f(x)
is even with f(0) < 0 and f ′′(0) > 0.

As suggested by Goodwin (1946), the addition of a forcing effect to relation
(2) (roughly) captures Schumpeter’s idea of clustering of innovations (Sordi
2003). We have

ẍ+ f(x)ẋ+ g(x)h(t) = 0

Where the forcing effect h(t) is a periodic function of time. Then the model
in isolation behaves like a forced VdP-Duffing equation. As long a the the
forcing is weak (small amplitude of h), the dynamics does change qualita-
tively (limit cycle). With strong forcing, irregular oscillations may emerge
(chaotic attractor).

4 Coupling and synchronization patterns

As in other complex phenomena, collective dynamics with coupled oscilla-
tors is based on the properties of isolated entities and their interactions.
As shown in the growing literature on this issue, synchronization depends
namely on, (i) the interaction network topology (local or global coupling),
(ii) the coupling function which captures interaction forms, (iii) the coupling
coefficient measuring the coupling strength. Consequently, we focus on the
role of these elements and on the existence of time delays in the emergence of
different configurations, ranging from complete to partial or transient syn-
chronization.

4.1 The coupling technology

Consider a network of n identical coupled oscillators defined by relation (1)
or (2) above and different network topologies defined respectively by their
given adjacency matrices A = {aij}.

We investigate global coupling where aij = 1 if i 6= j and 0 otherwise, and
other configurations with nonlocal coupling.
From this standpoint, let define the new variables, u = Y , v = Ẏ and
xi = (ui, vi)

T , i = 1, ...n. Then, the dynamics of each isolated oscillator is
governed by :

F (x) =

(

v

−vf(u)− g(u)

)
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The coupling range is defined by ci the number of neighbors of i and the
coupling strength by a parameter σ.

Coupling is diffusive and captured by the 2x2 real matrix H =

(

0 0
a b

)

This coupling function involves two components (or feedbacks) referring to
the variables u and v via the two parameters a and b (see Ulonska et al.
2016, Omelchenko et al. 2015).

Then, the n dynamical coupled equations for the 2-dimensional phase space
variables xi are :

ẋi = F (xi) +
σ
ci

∑

j AijH(xj − xi) with i = 1, ...n

In the simplified case of the Kaldor-Kalecki model with δ = 0, the isolated
map admits as in a VdP equation a unique stationary solution (0, 0).

In the general cases, other stationary solutions may coexist due to the non
linear investment function I in g. For the Goodwin’s model, interesting pat-
terns are induced by the forcing effect.

4.2 Chimera, clusters and other patterns : some examples

We give some examples of numerical findings obtained in a network of in-
termediary size n = 100. The investment function is specified by a sigmoid.
These examples focuss on chimera, clusters and the introduction of a delay
in the coupling.

Example of Phase diagram Kalecki-Kaldor
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4.3 Coupling with delay in the Kalecki-Kaldor framework

Let now introduce a transmission delays in interactions τ in the coupling
function.
Our simulation results presented below are in line with recent findings on
VdP systems with nonlocal hierarchical coupling (e.g. Ulonska et al. 2016,
Omelchenko et al. 2015). They confirm that their impact in terms of syn-
chronization are very contrasted and strongly depend on the delay.

4.3.1 Synchronization patterns for different delays

We first give below tow examples of density plots for the ui with τ = 3 and
τ = 6. The x axis displays the nodes indexes i = 1, ...100 and the y axis the
axis snapshot. The last figure displays a synthetic density plot with τ∈ [1, 6].

For τ = 3, the complex patterns are stable or reinforced.

For τ = 6, full synchronization is obtained.
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Synthetic density plot for ui. The x axis displays the nodes i and the y axis the

delays τ∈ [1, 6]

Varying the delay may amplify or discard the complex patterns. For small de-
lays, chimera sates are improved, for large delays, complete synchronization
is obtained. The explanation of this phenomena proposed in Omelchenko et
al. (2015) is that delays interact with the intrinsic period of the cycle, giving
rise to some resonance effect when the delay is an integer of the intrinsic
period of the oscillators.

4.4 Chimera and clusters in Goodwin’s framework

We now consider the dynamics of globally n coupled oscillators of Goodwin’s
type. From this standpoint, we make the same substitution in the variables
u = x and v = ẋ and retain the coupling technology presented above. The
main difference consists in the introduction of a forcing term FSin[ωt] and
global coupling.

4.5 Example of Chimera

The rest of the paper illustrates the emergence of Chimera and clusters in
the Goodwin’s framework with coupling described above.

Density plot for the ui where the x axis displays the nodes index i and the y axis

a time snapshot σ = 1,b = 1,a = −0.05
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The x axis displays the nodes indexes and the y axis the levels of the ui

We now consider the emergence of different clusters in this framework when
a becomes negative enough. The left figures display a density plot for the
ui, where the x axis displays the nodes i and the y axis a time snapshot. On
the right figures, the x axis display the nodes i and the y axis the levels of
the ui.

4.6 Emergence of 2 clusters a = −0.1

The figure below displays the emergence of 2 clusters :

4.7 Emergence of 3 clusters a = −0.47

The figure below gives an example with 3 clusters :
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4.8 Emergence of 5 clusters a = −1.87

The figure below gives an example with 5 clusters :

The figures above exemplify the emergence of different clusters. The popu-
lation of oscillators splits into 2,3 or more coherent parts as the negative
parameter a decreases. Within each cluster synchronization is achieved. An
interplay between negative and positive feedbacks captured by parameters a
and b seems necessary to obtain unsynchronized patterns, chimera or clusters
in this framework with global coupling.

5 Concluding remarks

The implementation of complex tools on coupling and synchronization dyna-
mics may substantially contribute to the renewal of the nonlinear perspective
in dynamic economic theory, mainly characterized today by the use of linear
stochastic equilibrium models. To clarify these provisional findings, we have
to compute in each case some ”strength of spatiotemporal incoherence” indi-
cators between nodes developed recently. Some analytical investigations on
stability are also possible using existing results. Extensions to other models,
notably coupling dynamics in endogenous equilibrium business cycles and
growth frameworks are also in progress.

A complementary approach is to consider a growing network in which connec-
tions and nodes are either lost or added to the network. Different approaches
of networks under structural change have been developed. However, in these
studies structural changes in the network topology is generally considered
as an external event (Anzo and Barajas-Ramirez, 2014). From an econo-
mic point of view, structural change is intrinsic to the coupled dynamics of
industries, prices and input-output network dynamics of a given economy.
Structural dynamics necessitates to combine endogenous and exogenous me-
chanisms (see Arena and Porta 2012, Lorentz 2015). In this perspective, one
possibility is to consider a growing network subject to an overall constraint
of synchronization (Wang et al. 2015). Starting from a stable system of syn-
chronized oscillators, the aim is to understand the effect of the growth of the

12



network on stability or collapse of the global system. This line of research
focusses on different time scales involved in the dynamics. Two key time
scales will be considered, one associated with the transient synchronization
dynamics referring to short run economic fluctuations or business cycles and
the other associated with the evolution of the network, referring to long run
economic growth and structural change. Depending on a synchronization
threshold, the introduction of a new node can increase or decrease (remo-
ving the de-synchronized nodes) the size of the network. Consequently, the
size of the overall system cannot expand indefinitely and its growth rate is no
longer a monotonous function of time, which offers a promising framework
for modeling structural economic dynamics.
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