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Introduction

Let n ≥ 2. Our goal is to understand the structure of the set of solutions to the equation

(-∆) n/2 u = e nu on R n \ {0}, Λ := R n e nu dy < ∞, (1.1) 
which may present a singularity at the origin.

For a function u ∈ L 1 loc (R n ), the expression (-∆) n/2 u is to be understood as the tempered distribution satisfying

(-∆) n/2 u, ϕ = R n u(x)(-∆) n/2 ϕ(x) dx (1.2) for every ϕ ∈ C ∞ c (R n ). If n is odd, the hypothesis R n |u(x)|
1+|x| 2n dx < ∞ needs to be added, since (-∆) n/2 ϕ is not compactly supported in these cases. We refer to [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF] for more details and basic regularity results. In fact, every solution to (1.1) belongs to C ∞ (R n \ {0}), by the proof of [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF]Theorem 2.1].

then by a conformal change of metric g u = e 2u g, the curvature changes as follows

-∆ g u + K g = K gu e 2u .
Here, ∆ g = 1 √ |g| ∂ i ( |g|g ij ∂ j ) is the Beltrami Laplacian, which is a conformally invariant operator in dimension 2 in the sense that ∆ gu = e -2u ∆ g . Relying on this conformal invariance property, Paneitz [START_REF] Paneitz | A quartic conformally covariant dierential operator for arbitrary pseudo-Riemannian manifolds[END_REF] (and then Graham, Jenne, Mason and Sparling [START_REF] Graham | Conformally invariant powers of the Laplacian, I:existence[END_REF]) proved that, on a given Riemannian manifold (M n , g), with n ≥ 2, there exists a unique dierential 1 operator P n of order n such that

P n g = (-∆ g ) n 2
+ lower order operator, and P n gu = e -nu P n g . For ξ the Euclidean metric on R n , we can check that P n ξ = (-∆) n/2 on (R n , ξ). Hence, the notion of Gauss curvature is generalized by the one of Q-curvature, in the sense that we have the following identity P n g (u) + Q g = e nu Q gu , where Q g , the Q-curvature, depends only on the curvature and its derivatives, for instance for n = 4, we have

Q g = - 1 6 ∆ g R g -R 2 g + 3|Ric g | 2 ,
where R g and Ric g are the scalar and the Ricci curvature. On the sphere S n the Paneitz operator has a simple expression in terms of the Laplacian and its eigenvalues, see Section 3. For instance for n = 4, we have, for g c the standard metric of S 4 , P 4 gc = -∆ gc (-∆ gc + 2), see [START_REF] Chang | Non-linear elliptic equations in conformal geometry[END_REF] for more geometrical details.

Hence, solutions to (1.1) correspond to metrics which are conformal to the Euclidean metric on R n \ {0} and have constant Q-curvature equal to one. When the behaviour of u near 0 is u ∼ γ ln(|x|), the metric e nu ξ can be interpreted as a conical metric, see [START_REF] Fang | Constant Q-curvature metrics on conic 4-manifolds[END_REF], but if the u blow faster at the origin the nature of singularity is closer to that of an essential singularity. This is to our knowlege an inexplored eld from the geometric point of view.

A fundamental property of equation (1.1), which we shall use several times in this paper, is its conformal invariance. In particular, if u solves (1.1), then its inversion ū(x) = u x |x| 2 -2 ln(|x|).

( 1.3) is also a solution to (1.1), of same mass Λ as u.

1 Pseudodierential when the dimension is odd.

1.1. Overview of the problem. In the past decades, entire solutions to the equation

(-∆) n/2 u = e nu on R n , Λ := R n e nu dy < ∞, (1.4) 
have been intensely studied for all values of n ∈ N * .

A fundamental observation is that the family of 'bubble' functions

u(x) = ln 2((n -1)!) 1/n λ 1 + λ 2 |x -x 0 | 2 , λ > 0, x 0 ∈ R n , (1.5) 
solve (1.4), for any n ∈ N * . These solutions all have the same mass

Λ ≡ (n -1)! R n 2 1 + |x| 2 n dx = (n -1)!|S n | =: Λ 1 .
(1.6)

By the classication result of Chen and Lin [START_REF] Chen | Classication of solutions of some nonlinear elliptic equations[END_REF], these are all solutions to (1.4) in the classical case n = 2. If n = 1, the same is true, see [START_REF] Da Lio | The nonlocal Liouville-type equation in R and conformal immersions of the disk with boundary singularities[END_REF] and references therein.

It has been put to our attention by Pierre-Damien Thizy that in fact the n = 2 case was already essentially known by Liouville himself, the proof relies on the interpretation of this problem in terms of holomorphic functions, see [START_REF] Chou | Asymptotic radial symmetry for solutions of ∆u + e u = 0 in a punctured disc[END_REF]Theorem 1] and [4, p. 27].

An important feature of equation (1.4), which was rst noticed in the fundamental paper [START_REF] Lin | A classication of solutions of a conformally invariant fourth order equation in R n[END_REF] by Lin, is that this classication results ceases to be true in higher dimensions n ≥ 3. To explain this phenomenon in more detail, for a solution u to (1.4), we introduce its 'normalized version' v(x) := 1 γ n R n ln |y| |x -y| e nu(y) dy.

(1.7)

Here the constant

γ n := (n -1)! 2 |S n | = Λ 1
2 is chosen such that (-∆) n/2 ln 1 |x| = γ n δ 0 in the sense of distributions.

Theorem A ( [START_REF] Lin | A classication of solutions of a conformally invariant fourth order equation in R n[END_REF][START_REF] Martinazzi | Classication of solutions to the higher order Liouville's equation on R 2m[END_REF][START_REF] Jin | Existence and asymptotics for solutions of a nonlocal Q-curvature equation in dimension three[END_REF][START_REF] Hyder | Structure of conformal metrics on Rn with constant Q-curvature[END_REF]). Let n ≥ 3 and let u be a solution to (1.4). Then there exists a polynomial p, bounded from above, of even degree at most n -1, such that

u(x) = v(x) + p(x), x ∈ R n ,
where v is as in (1.7).

Moreover, as |x| → ∞,

v(x) = - Λ γ n ln(|x|) + o(ln |x|) (1.8)
If u(x) = o(|x| 2 ) as |x| → ∞, or if n = 3, 4 and Λ = Λ 1 , then u is necessarily of the form (1.5).

Finally, if n = 3, 4, then necessarily Λ ≤ Λ 1 .

Conversely, the following summary of existence results shows that the classication from Theorem 1.1 is essentially optimal.

In fact, it turns out that one can simultaneously prescribe the mass Λ and its asmyptotic polynomial p at innity, provided Λ ∈ (0, Λ 1 ) and p fullls p(x) → -∞ as |x| → ∞, deg p ≤ n -1.

(1.9)

Theorem B ([10, 46, 27, 23, 35, 24]). Let n ≥ 3. Given any Λ ∈ (0, Λ 1 ) and any polynomial p satisfying (1.9), there exists a solution u to (1.4) such that

u(x) = p(x) - Λ γ n ln(|x|) + o(ln |x|)
as |x| → ∞.

Let n ≥ 5. Given any Λ ∈ (0, ∞) and any radially symmetric polynomial p satisfying (1.9), there exist numbers c 1 , c 2 > 0 and a solution u to (1.4) such that

u(x) = p(x) + c 1 |x| 2 -c 2 |x| 4 - Λ γ n ln(|x|) + o(ln |x|)
as |x| → ∞.

These ndings are in remarkable contrast to the equation

(-∆) k u = u n+2k n-2k , u > 0 on R n , with n/2 > k ∈ N * ,
which is a closely related conformally invariant of (1.1). Indeed, for this equation the classication results in [START_REF] Caarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF][START_REF] Lin | A classication of solutions of a conformally invariant fourth order equation in R n[END_REF][START_REF] Wei | Classication of solutions of higher order conformally invariant equations[END_REF] guarantee that every solution has the standard bubble form corresponding to (1.5), for every n ≥ 2 and k < n/2.

Compared to the case of entire solutions to (1.4), until recently singular solutions to (1.1) have received much less attention, with the exception of n = 2.

If n = 2, it has been shown in [START_REF] Prajapat | On a class of elliptic problems in R 2 : symmetry and uniqueness results[END_REF] that for (1.1) a classication result analogous to the entire case holds. Indeed, every solution is of the form

w(z) = ln 2(α + 1)λ 1 + λ 2 |z α+1 -ζ| 2 , λ > 0, ζ ∈ C, α > -1,
in complex notation, and where necessarily

ζ = 0 if α / ∈ N 0 .
Still when n = 2, we mention the papers [START_REF] Malchiodi | New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces[END_REF][START_REF] Carlotto | Weighted barycentric sets and singular Liouville equations on compact surfaces[END_REF], where existence of solutions to a singular equation corresponding to (1.1) on general Riemannian surfaces has been derived using rened variational arguments and improved Moser-Trudinger inequalities.

1.2. Main results. The main point of our results is to give a version of both the classication and existence results from Theorems A and B for the case of a general point singularity, i.e. for equation (1.1) instead of (1.4).

Similar to before, for any solution u to (1.1), we dene y) dy.

v u (x) := v(x) := 1 γ n R n ln 1 + |y| |x -y| e nu(
(1.10)

The following theorem classies all singular solutions to (1.1) in terms of their asymptotic behavior at 0 and innity.

Theorem 1.1. Let n ≥ 3 and let u be a solution to (1.1). Then there exist β ∈ R and upper-bounded polynomials p and q, of degree at most n -1, such that

u(x) = v(x) + p(x) + q x |x| 2 + β ln(|x|).
(1.11)

Moreover

lim |x|→∞ v(x) ln(|x|) = - Λ γ n and lim x→0 v(x) ln(|x|) = 0.
For solutions to a special case of equation (1.1), namely

(-∆) n/2 u = e nu -βγ n δ 0 , R n e nu < ∞, (1.12) 
Theorem 1.1 has been proved in [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF]. However, even without appealing to the sophisticated existence result in Theorem 1.2 below, it is easy to see that there are solutions to (1.1) which do not satisfy (1.12). For instance, for u is as in Theorem B with p(x) = -|x| 2 , the inversion ū dened in (1.3) solves (1.1) and has q(x) = -|x| 2 in (1.11). On the other hand, by [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF] every solution to (1.12) behaves like β ln |x| near zero and thus has necessarily q ≡ 0. For n = 4, by ODE arguments in the spirit of [START_REF] Fang | Constant Q-curvature metrics on conic 4-manifolds[END_REF], one can also easily construct solutions to (1.1) with both p and q non-zero, which thus cannot full (1.12) even after inversion.

Let us now discuss existence results for (1.1) more systematically. It is apparent from the results stated above that a major challenge is to prescribe the mass Λ > 0 of the solution, simultaneously with its asymptotic behavior, for Λ in the largest possible range.

Our next theorem shows that in the singular setting of equation (1.1), this can be done for every possible value of Λ, at least for radial functions.

Theorem 1.2. Let n ≥ 3, and let p be a radial polynomial satisfying (1.9). Suppose either that (a) q is another radial polynomial satisfying (1.9), β ∈ R and Λ > 0 or that

(b) q ≡ 0, β > -1 and Λ ∈ (0, Λ 1 (1 + β)).
If p is radial-decreasing, we may also take

Λ = Λ 1 (1 + β) in (b).
Then there exists a solution u to (1.1) satisfying

u(x) = q x |x| 2 + β ln(|x|) + o(ln(|x|)) as |x| → 0 and u(x) = p(x) + β - Λ γ n ln(|x|) + o(ln(|x|))
as |x| → ∞.

As in the case of entire solutions, this shows that the space of singular solutions to (1.1) becomes more complex as the order of derivative increases. Again, this is in stark contrast to [START_REF] Frank | Classication of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF] that all solutions to this equation are given by a two-parameter family of functions u a,T (x) = |x| (4-n)/2 v a (log |x| + T ), which presents no additional degrees of freedom compared to the basic case k = 1 analyzed by [START_REF] Caarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF][START_REF] Schoen | Variational theory for the total scalar curvature functional for Riemannian metrics and related topics[END_REF].

(-∆) k u = u n+2k n-2k , u > 0 on R n \ {0} for n/2 > k ∈ N * . Indeed, when k = 2 it is proved in
Part (b) of Theorem 1.2, with p(x) = -|x| 2 , is proved in [26, Theorem 1.2].
Our more general version answers, for the case of radial p, an open question mentioned in [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF]Section 1.1]. Since in this case the functions one obtains grow logarithmically at the origin, these are indeed also solutions to (1.12). Except for the treatment of the limit case Λ = Λ 1 (1 + β) in part (b), we use a dierent method of proof. Namely, the proof in [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF] proceeds via a xed point argument, while ours is based on a variational method, closer to the works [START_REF] Chang | A note on a class of higher order conformally covariant equations[END_REF] or [START_REF] Hyder | Existence of entire solutions to a fractional Liouville equation in R n[END_REF]. Our method allows to treat the case q ≡ 0 (which we did not succeed in via the xed point method of [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF]) and thus remove the upper bound on Λ. On the other hand, variants of this xed point argument also yield existence results for non-radial solutions to equation (1.12) [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF]Theorem 1.3], respectively to its generalization (-∆) n/2 u = e num l=1 β l γ n δ P l with several singularities in points P 1 , ..., P m [25, Theorem 1.2], which have no counterpart in our paper. A variational existence argument in the spirit of our paper covering the case of several singularities when n = 4 can however be found in [START_REF] Fang | Constant Q-curvature metrics on conic 4-manifolds[END_REF]. We also mention [START_REF] Maalaoui | Prescribing the Q-curvature on the sphere with conical singularities[END_REF], where existence results are derived by yet another dierent method.

The main tool in our approach to prove Theorem 1.2 is a weighted Moser-Trudinger inequality for radial functions on the sphere S n , which may be of independent interest and which we introduce now.

Let Q : S n → [0, ∞) be a nonnegative weight function on S n with the property that

Q(η) ≤ Cd(η, N ) β exp(-d(η, S) -σ ) (1.13)
for some σ, C > 0, β ∈ R. Here, we denote by d(η, ξ) the geodesic distance between two points η, ξ ∈ S n on the sphere. We use N = e n+1 and S = -e n+1 to denote the north and south pole of S n . Moreover, for s ∈ (0, n) we dene

K n,s = Γ( n-s 2 ) Γ( s 2 )2 s π n/2 . (1.14)
This constant is chosen such that the Green's function of (-∆) s/2 on R n is given by K n,s |x -y| -n+s .

We prove the following inequality.

Theorem 1.3. Let Q be as in (1.13). Then there is C > 0 such that

S n exp n + β |S n-1 | K -2 n, n 2 u 2 Q(η) ≤ C. (1.15)
uniformly for u ∈ C ∞ (S n ) radial with P 1/2 n u L 2 (S n ) ≤ 1 and S n u = 0. Moreover, the constant n+β

|S n-1 | K -2 n, n 2 is sharp in the sense that if it is replaced by γ > n+β |S n-1 | K -2 n, n 2 , then the constant C is no longer uniform in u.
Theorem 1.3 is in fact a special case of a more general inequality valid for any order of derivative strictly between 0 and n. Indeed, the operator P 1/2 n can be replaced by either P s with s ∈ (0, n) or by P 1/2 2s with s ∈ (0, n/2), where P s is the Paneitz operator on S n of order s; see (3.2) for its denition. To keep the introduction focused, we defer a full statement to Theorems 5.2 and 5.3 below.

We stress that if β > 0, the best constant in the above theorems is strictly larger than the constant n

|S n-1 | K -n n-s n
of the standard Moser-Trudinger inequality. In this case, the restriction to radial functions is thus truly essential. Indeed, the improved inequality must fail for a sequence of functions saturating the sharp constant in the unweighted inequality and concentrating in a point near which the weight Q is regular. Since such a point is dierent from the poles, such functions must of course necessarily be non-radial.

A simple variation of the arguments leading to Theorem 1.3 (respectively, Theorems 5.2 and 5.3) yields a proof of a corresponding weighted Moser-Trudinger inequality for radial functions on balls of R n . Theorem 1.4. Let s ∈ (0, n), β ∈ R and R > 0. Then there is

C = C(R) > 0 such that B R exp n + β |S n-1 | K -n n-s n,s |u| n n-s |x| β dx ≤ C (1.16) for every u ∈ C ∞ 0 (B R ) radial with (-∆) s/2 u L n s (B R ) ≤ 1.
This generalizes the fractional Moser-Trudinger inequality of Martinazzi [START_REF] Martinazzi | Fractional Adams-Moser-Trudinger type inequalities[END_REF] to the weighted (and radial) setting. For even dimensions n and s = n/2, Theorem 1.4, including the case β > 0, has been proved in the recent paper [START_REF] Macedo | A sharp Adams-type inequality for weighted Sobolev spaces[END_REF] by a somewhat dierent method going back to [START_REF] Tarsi | Adams' inequality and limiting Sobolev embeddings into Zygmund spaces[END_REF]. However, since this method does not pass through a fractional integral formulation (compare the discussion below and Theorem 5.1), it does not seem to extend easily to the general case of fractional derivatives of arbitrary order. Similar weighted inequalities on all of Euclidean space appear in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF][START_REF] Del Pino | The Euclidean Onofri inequality in higher dimensions[END_REF].

Let us discuss in some more detail our proof strategy on the example of Theorem 1.4. The general strategy, going back to Adams [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF], is to estimate u pointwise by the convolution v = G s * (-∆) s/2 u, where G s is the Green's function of (-∆) s/2 and prove a corresponding estimate on the exponential integral of that convolution; see Theorem 5.1 below.

When β < 0 in Theorem 1.4, the hypothesis of radial symmetry can be dropped by combining Martinazzi's Green's function estimate from [START_REF] Martinazzi | Fractional Adams-Moser-Trudinger type inequalities[END_REF] with the weighted fractional integral inequality of Lam and Lu [START_REF] Lam | Sharp singular Adams inequalities in high order Sobolev spaces[END_REF]Theorem 1.1]. Indeed, in this case the weight |x| β is radial-decreasing. The authors of [START_REF] Lam | Sharp singular Adams inequalities in high order Sobolev spaces[END_REF] can thus continue to follow Adams' proof, which consists in replacing v by its symmetric decreasing rearrangement v * and using a variant of O'Neil's lemma [START_REF] Neil | Convolution operators and L(p, q) spaces[END_REF] to get appropriate pointwise estimates on v * .

If β > 0, the weight |x| β is radial-increasing and thus the rearrangement argument breaks down. Somewhat counterintuitively, this remains a challenge even if one restricts a priori to radial functions. Indeed, the terms which arise from transforming to radial variables turn out to have a slightly dierent structure than the O'Neil's-type estimate mentioned above, which leads to error terms of a dierent nature; see Remark 6.4 below for more details. Overcoming the non-availability of the rearrangement argument just described in the case β > 0 is in fact one of the main achievements of our proof. We are able to deal with the new error terms through a new improvement of the well-known Adams-Garsia's lemma [2, Lemma 1] stated as Lemma 6.1 below.

In the setting on S n of Theorem 1.3 (respectively Theorems 5.2 and 5.3), we strongly believe that when -n < β < 0, a symmetrization argument can equally allow to drop the radial symmetry assumption. To our knowledge, this has only been carried out rigorously for the special case n = 4 and s = 2 in the recent paper [START_REF] Fang | Constant Q-curvature metrics on conic 4-manifolds[END_REF].

Classification results

In this section we prove Theorem 1.1. We split the proof into two propositions to be proved in the following two subsections.

2.1. The behavior of u -v. The following proposition is the main result of this subsection.

Proposition 2.1. Let u solve (1.1) and let v be dened by (1.10). Then

u(x) -v(x) = p(x) + q x |x| 2 + β ln(|x|)
for some polynomials p, q and some β ∈ R. Moreover, p and q are bounded from above with deg p,

deg q ≤ n -1. If n is even, then deg p, deg q ≤ n -2.
Lemma 2.2. The function v dened in (1.10) satises

(-∆) n/2 v = e nu on R n in the sense of distributions.
Proof. This proof is very standard and amounts just to reproving that 1 γn ln( 1|x-y| ) is the Green's function for (-∆) n/2 on R n . To emphasize its generality, we write

f := e nu ∈ L 1 (R n ). Let ϕ ∈ C ∞ 0 (R n ). Then by Fubini R n v(x)(-∆) n/2 ϕ(x) dx = 1 γ n R n f (y) R n ln 1 + |y| |x -y| (-∆) n/2 ϕ(x) dx dy.
Firstly, we observe that

R n ln(1 + |y|)(-∆) n/2 ϕ(x) dx = 0
Then we are left with showing that

1 γ n R n ln 1 |x -y| (-∆) n/2 ϕ(x) dx = ϕ(y).
Since ϕ is smooth, this can be done by spliting the integral into the part over B ε (y) and over its complement, integrate by parts and use that

(-∆) i 1 |x-y| is integrable on R n for i = 0, 1, ..., m -1.
Lemma 2.3. Let u solve (1.1) and let v be dened as in (1.10)

. Then v(x) ≥ 0 if |x| ≤ 1. Moreover, for all |x| ≥ 1 we have v(x) ≥ - Λ γ n ln(|x|). (2.1)
Proof. The proof of (2. and therefore

ln 1 + |y| |x -y| ≥ ln 1 |x| . Similarly, if |x| ≤ 1, we have |x -y| ≤ |x| + |y| ≤ 1 + |y| and therefore ln 1 + |y| |x -y| ≥ ln(1) = 0.
Inserting these estimates into (1.10), we obtain the conclusion.

We can now give the Proof of Proposition 2.1. We rst prove the proposition under the assumption that n ≥ 4 is even and then give the necessary modications in case n ≥ 3 is odd.

Step 1. Bôcher's Theorem.

By Lemma 2.2, we know that η :

= u -v satises (-∆) n/2 η = 0 on R n \ {0}. In particular, η is smooth on R n \ {0}.
Then the generalized Bôcher theorem in [START_REF] Futamura | A generalization of Bôcher's theorem for polyharmonic functions[END_REF] (applied on a sequence of balls B R (0) with radii R tending to ∞) implies that x) . This is integrable, so we can take s = 0. Since it is easily proved by induction that

η = p + α≤s+n-1 c α D α ln 1 |x| on R n \ {0}, where p ∈ C ∞ (R n ) satises (-∆) n/2 p = 0 on R n and s is some non-negative integer such that B 1 (0)\{0} η + (x)|x| s dx < ∞. Using Lemma 2.3 we can estimate, for |x| ≤ 1, η + (x) ≤ u + (x) ≤ e nu + (
D k ln 1 |x| = q k x |x| 2
for every |k| ≥ 1, where q k is a polynomial of degree at most |k|, we conclude that

u(x) = v(x) + p(x) + q x |x| 2 + β ln(|x|) (2.2) 
with (-∆) n/2 p = 0 on R n and deg q ≤ n -1.

Step 2. Inversion.

Again, for deniteness suppose rst that n is even. We shall show in this step that p must be a polynomial of degree at most n -1 as well. To do so, we make use of the conformal invariance of (1.1). More precisely, the Kelvin transform ū(x) :=

u x |x| 2 -2 ln(|x|)
is also a solution to (1.1) with same mass Λ and, by the above, can be written as

ū(x) = v ū(x) + p(x) + q x |x| 2 + β ln(|x|),
for some β ∈ R, with v ū given by (1.10). Moreover, a change of variables in the denition of v shows the relation

v ū(x) = v u x |x| 2 - Λ γ n ln(|x|). (2.3)
Putting these identities together, we nd

p(x) + q x |x| 2 + β - Λ γ n ln(|x|) = p x |x| 2 + q(x) -β ln(|x|) (2.4)
for all x = 0, where (-∆) n/2 p = 0 and deg q ≤ n -1. We claim that (2.4) implies q = p. Indeed, by (2.4) we have

lim sup |x|→∞ p(x) |x| n-1 = lim sup |x|→0 |x| n-1 p x |x| 2 = lim sup |x|→0 |x| n-1 q x |x| 2 < ∞ because deg q ≤ n -1. Thus p(x) ≤ 1 + |x| n-1 on R n
and the generalized Liouville theorem [START_REF] Martinazzi | Classication of solutions to the higher order Liouville's equation on R 2m[END_REF]Theorem 5] implies that p is a polynomial of degree deg p ≤ n -1. Once we know that both q and p must be polynomials, it is straightforward to deduce from (2.4) that in fact q = p.

(By exchanging the roles of u and ū, we may of course deduce as well that p = q.)

Step 3. Upper-boundedness and optimal degree. We nish the proof by showing that p and q are bounded from above. In particular, p and q must be of even degree and thus deg p, deg q ≤ n-2. Since q = p as in Step 2, it suces to prove that p is bounded from above.

If p is unbounded from above, inspired by lemma 11 in [START_REF] Martinazzi | Classication of solutions to the higher order Liouville's equation on R 2m[END_REF], then (see Theorem 3.1 in [Gorin] and [26, proof of Lemma 3.3]) there is s > 0 and a sequence

x k with |x k | → ∞ such that p(x k ) ≥ |x k | s . Since deg p ≤ n -1, we have |∇p(y)| |y| n-2
for all |y| large enough. Thus, using also Lemma 2.3, we have

u(x) ≥ p(x) + β - Λ γ n ln(|x|) -C |x k | s for all x in a ball B ρ k (x k ) of radius ρ k |x k | s n-2 . Therefore, for some c, d > 0 R n e nu dx ≥ Bρ k (x k ) e nu dx ≥ ρ n k e nc|x k | s ≥ d|x k | ns n-2 e nc|x k | s → ∞ as k → ∞.
This contradiction proves that p must be bounded from above.

Step 4. n odd. If n is odd, we use that (-∆) n+1 2 η = 0 in Step 1 instead. Using the Bôcher theorem as above, we nd that u satises (2.2), but with deg q ≤ n. The argument from Step 2 then gives deg p ≤ n. Repeating Step 3, p and q are bounded from above. In particular, they are of even degree, hence deg p, deg q ≤ n -1.

2.2.

The asymptotic behavior of v at ∞. The purpose of this subsection is to establish the leading-order behavior of v(x) as |x| → ∞. We recapitulate in what follows the strategy in [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF], which carries over to our case and yields a proof of Proposition 2.4. In Section 2.3 below we present an alternative approach, which in our opinion is simpler and more direct, but which does not work in the general case, except if n = 3, 4.

Recall that by Lemma 2.3, v(x) ≥ -Λ γn ln(|x|) for all |x| ≥ 1. The following lemma yields a rst step towards the desired reverse inequality. Lemma 2.5. For every ε > 0 there is R > 0 such that for all 

|x| ≥ R v(x) ≤ - Λ γ n + ε ln(|x|) + B(x,
e tv(y) dy ≤ C |x| ( Λ γn -ε)t .
Proof of Lemma 2.6. The proof is identical to [26, Proof of Lemma 3.5], with the only dierence that the term |y| nβ e nu(y) is replaced by e nu(y) . The proof works exactly the same because R n |y| nβ e nu(y) dy is assumed to be nite in the normalization of [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF], where in our normalization this assumption becomes Λ =

R n e nu(y) dy < ∞.

Lemma 2.6 is already enough to prove Proposition 2.4 in the case when the coecient β of ln(|x|) in Proposition 2.1 satises β < Λ γn .

Proof of Proposition 2.4 in the case β < Λ γn . In view of Lemmas 2.3 and 2.5, it remains to control the integral on the right side of (2.5). For this purpose, we claim that there is r > 1, R > 0 such that for all |x| ≥ R,

e nu L r (B(x,1)) ≤ C. (2.6)
Indeed, by Hölder's inequality this implies

B(x.1) ln 1 |x -y| e nu(y) dy ≤ B(x,1) ln 1 |x -y| r r-1 dy r-1 r e nu L r (B(x,1)) ≤ C.
(2.7) Hence

lim sup |x|→∞ v(x) ln(|x|) ≤ - Λ γ n + ε
and since ε > 0 was arbitrary, the proof is complete.

We now prove (2.6). Since p and q from Proposition 2.1 are upper-bounded, and by Lemma 2.6 applied with q = nr,

B(x,1)
e nru |x| nβr B(x,1)

e nrv |x| rn(β-Λ γn +ε) .

Since β < Λ γn by assumption, we can pick ε > 0 so small that β -Λ γn + ε < 0. Thus

B(x,1)
e nru → 0 as |x| → ∞. In particular (2.6) holds.

It remains to prove Proposition 2.4 in the case β ≥ Λ γn . The additional ingredient for this is the following Hölder-norm estimate.

Lemma 2.7. Let u solve (1.1) and let v be dened by (1.10). Suppose that β ≥ Λ γn , where β is as in Proposition 2.1. Then as |x| → ∞,

[v] C 0,(ln(|x|+1)) -1 (B(x,1)) = o(ln(|x| + 1)).
Proof. Again, the proof is identical to [26, proof of Lemma 3.6], up to replacing the term |y| nβ e nu(y) by e nu(y) . One proceeds by rst proving the Campanato-type estimate

sup ρ∈(0,4] 1 ρ n+ 1 ln(|x|) B(x,ρ) v(y) - 1 |B(x, ρ)| B(x,ρ) v(z) dz dy → 0, as |x| → ∞,
and then transforming this to the desired Hölder-type bound by a standard argument.

Let us point out that thanks to the classication result from Proposition 2.1 and upper-boundedness of the polynomial q the bound e nu(y) |x| nβ e nv(y) e np(y) , which is used in [26, 

e qp |x| n( Λ γn -β) ,
for every q ≥ 1, |x| ≥ 1 and ρ small enough (uniformly in x and ρ), still holds, by the same proof as given there.

We 

| → ∞ such that v(x k ) ≥ - Λ γ n + 3δ ln(|x k |).
By Lemma 2.7, for any y ∈ B(x k , 1), we have

v(y) = v(x k ) + o(ln(|x k |)) ≥ - Λ γ n + 2δ ln(|x k |). Thus B(x k ,1) e nv(y) dy ≥ |B 1 ||x k | -n( Λ γn -2δ) .
On the other hand, by Lemma 2.6 with ε = δ,

B(x k ,1) e nv(y) dy |x k | -n( Λ γn -δ) , a contradiction.
Proof of Theorem 1.1. Theorem 1.1 follows from Propositions 2.1 and 2.4.

2.3.

The asymptotic behavior of v at ∞: an alternative approach. Given the relatively lengthy and involved proof of Proposition 2.4 in the previous subsection, we think that it is interesting to mention here an alternative strategy to nd the asymptotic behavior of v at ∞. It exploits the conformal invariance of equation (1.1) and relies on the following simple-looking property of polynomials on R n .

Conjecture 2.8. Let q be a polynomial on

R n . If σ > -n is such that R n \B 1 |x| σ e q(x) dx < ∞, then there is ε > 0 such that R n \B 1 |x| σ+ε e q(x) dx < ∞.
Admitting that Conjecture 2.8 is true, a straightforward proof of Proposition 2.4 goes as follows.

Proof of Proposition 2.4 given Conjecture 2.8. By conformal invariance, ū = u(x/|x| 2 )-2 ln(|x|), is again a solution to (1.1). In view of (2.3), it suces to prove that v ū is bounded near 0. After exchanging ū for u, this follows from the denition (1.10) of v, if we can show.

B 1 e nsu(x) dx < ∞ (2.8)
for some s > 1.

By the classication result from Proposition 2.1, we have e nsu = e nsv |x| nβs e ns(p(x)+q(x/|x| 2 )) .

(2.9)

Since p and q are bounded from above, the last factor is uniformly bounded on B 1 . Moreover, arguing as in [26, Proof of Theorem 2.1], for every t > 1 we have

B 1 e ntv(x) dx < ∞.
(2.10)

If β > -1,we thus have e nsu ∈ L 1 (B 1 ) by Hölder, for s > 1 small enough that βs > -1.

We may thus assume in what follows that β ≤ -1 and observe that v ≥ 0 on B 1 , because

ln 1 + |y| |x -y| ≥ 0 for every x ∈ B 1 , y ∈ R n .
By integrability of e nu , boundedness of p and Lemma 2.3 we thus have

∞ > R n e nu ≥ B 1 |x| nβ e nq x |x| 2 dx = R n \B 1 |x| -n(β+2) e nq(x) dx.
By Conjecture 2.8, there is ε > 0 such that

∞ > R n \B 1 |x| -n(β-ε+2) e nq(x) dx = B 1 |x| n(β-ε) e -nq( x |x| 2 ) dx.
Using this together with (2.10) and upper-boundedness of p and q, we easily infer from (2.9) and Hölder that e nsu ∈ L 1 (B 1 ) for every 1 < s < β-ε β . This completes the proof of (2.8), and thus of Proposition 2.4.

We are unfortunately not able to prove Conjecture 2.8 for general polynomials q. But we have the following partial result. Proposition 2.9. Suppose either that deg q ≤ 3, or that there is k ∈ [0, n] such that q(x) does not depend on z := (x k+1 , ..., x n ) and q(y) → -∞ as y := (x 1 , ..., x k ) → ∞.

(2.11) Then Conjecture 2.8 holds.

The choices k = 0 and k = n in (2.11) cover the cases of polynomials which are constant, respectively tend to -∞.

On the other hand, an example of a polynomial q which is not covered by the assumption of Proposition 2.9 is given by q

(x) = -x 2 1 x 2 2 -x 2 2 x 2 3 -...-x 2 n-1 x 2
n . This polynomial is bounded above and depends non-trivially on all variables, but it does not tend to -∞ as |x| → ∞ because it vanishes on every coordinate axis.

We point out that if n = 3, 4, then the asymptotic polynomial q of any solution u to (1.1) satises deg q ≤ 2 by Proposition 2.1. Therefore the alternative approach presented in this subsection yields a complete proof of Proposition 2.4 in dimensions n = 3, 4.

Proof of Proposition 2.9. We claim that under assumption (2.11), the integral

R n \B 1 |x| σ e q(x) dx is nite if and only if σ < -n + k.
(2.12)

Clearly, this implies Conjecture (2.8).

Let us rst prove the 'only if' part. Writing B k 1 for the unit ball of R k , we observe that

R k \ B k 1 × R n-k \ B n-k 1 ⊂ R n \ B 1 . Therefore niteness of the integral implies ∞ > R n \B 1 |x| σ e q(x) dx ≥ R k \B k 1 e q(y) R n-k \B n-k (|y| 2 + |z| 2 ) σ/2 dz dy Thus for a.e. y ∈ R k \ B k 1 , we must have R n-k \B n-k (|y| 2 + |z| 2 ) σ/2 dz < ∞.
which yields (2.12).

Conversely, suppose that (2.12) holds. Then

R n \B 1 |x| σ e q(x) dx = R k \B k 1 e q(y) R n-k (|y| 2 + |z| 2 ) σ/2) dz dy + B k 1 e q(y)   R n-k \B n-k √ 1-|y| 2 (|y| 2 + |z| 2 ) σ/2 dz   dy.
The rst summand equals

R k \B k 1 e q(y) |y| (n-k)+σ R n-k (1 + |z| 2 ) σ/2 dz dy < ∞,
since by (2.11), [20, Theorem 3.1] yields q(y) -|y| s + C for some s > 0 as |y| → ∞ on R k and since by (2.12),

R n-k (1 + |z| 2 ) σ/2 dz < ∞.
To bound the second summand, we need to control the dz-integral as |y| → 0. We compute, for |y| small enough,

R n-k \B n-k √ 1-|y| 2 (|y| 2 + |z| 2 ) σ/2 dz ≤ |y| n-k+σ R n-k \B √ 1-|y| 2 |y| 2 |z| σ/2 dz ≤ |S n-k-1 ||y| n-k+σ 2 |y| n-k+σ 1 
as |y| → 0. Hence the second summand is bounded as well, which completes the proof of the claimed equivalence.

Finally, assume that deg q ≤ 3. Arguing as in Step 3 of the proof of Proposition 2.1, we nd that if R n \B 1 |x| σ e nq(x) dx < ∞, then q must be upper-bounded, and hence have even degree. If deg q = 0, assumption (2.11) holds with k = 0. If deg q = 2, then q can be written, up to an orthogonal coordinate transformation, as

q(x) = - n i=1 a i (x i -x 0 ) 2 + c 0 ,
for some a i ≥ 0. Thus assumption (2.11) holds as well, with k being the number of non-zero coecients a i .

The setting on the sphere S n

To facilitate the variational argument leading to Theorem 1.2, we shall pass to an equivalent problem on the sphere S n = {x ∈ R n+1 : |x| = 1}. In this brief section, we introduce the necessary preliminaries for this.

Let us denote S : R n → S n ⊂ R n+1 the inverse stereographic projection, i.e.

S j (x) = 2x j 1 + |x| 2 , j = 1, . . . , n , S n+1 (x) = 1 -|x| 2 1 + |x| 2 .
We denote its Jacobian in a point x ∈ R n by J S (x) := (2/(1 + |x| 2 )) n and that of S -1 in a point η ∈ S n by J S -1 (η). Moreover, we call a function v on

S n radial if v(S(x))
is a radial function on R n .

We now introduce the dierential operators P 2s mentioned in the introduction. For this, recall that every u ∈ L 2 (S n ) can be uniquely written as

u = ∞ l=0 N l m=1 u lm Y lm for some u lm ∈ R. (3.1) 
Here Y lm are a xed L 2 (S n )-orthonormal basis of spherical harmonics, i.e. eigenfunctions of the Laplace-Beltrami operator (-∆) S n satisfying (-∆) S n Y lm = λ l Y lm , with λ l = l(l + n -1) being the l-th eigenvalue of multiplicity N l ∈ N. For s > 0, we introduce the 2s-th order Paneitz operator P 2s by dening

P 2s u := l,m Γ(l + n 2 + s) Γ(l + n 2 -s) u lm Y lm (3.2)
for every u ∈ L 2 (S n ) such that the right side converges in L 2 (S n ). Here and below, the sum is the same as in (3.1) and we interpret Γ(-n) -1 = 0 for n ∈ N 0 . A conventional alternative expression for P 2s in terms of (-∆) S n is

A 2s = Γ(B + 1 2 + s) Γ(B + 1 2 -s) , for B = -∆ S n + (n-1) 2 4 . (3.3) 
It is clear from (3.2) that for s ∈ (0, n/2], the operator P 2s is nonnegative. Thus we may dene its square root by

P 1/2 2s u := l,m Γ(l + n 2 + s) Γ(l + n 2 -s) 1/2 u lm Y lm (3.4)
for every u such that the right side converges in L 2 (S n ).

A crucial feature of P 2s is its conformal transformation property (see e.g. [19, eq. (4.11)])

(-∆) s (J n-2s 2n S u • S) = J S (x) n+2s 2n ((P 2s u) • S) (x) for every u ∈ C ∞ (S n ). (3.5)
In particular, for s = n/2, writing w = u • S, (3.5) implies

S n |P 1/2 n u| 2 = S n uP n u = R n w ((P n u) • S) J S = R n w(-∆) n/2 w. (3.6) 
We nish by dening the Sobolev space

H n/2 (S n ) := u ∈ L 2 (S n ) : u 2 H n/2 (S n ) := u 2 L 2 (S n ) + P 1/2 n u 2 L 2 (S n ) < ∞ (3.7)
which will play a role in the proof of Theorem 1.2. By (3.4) and Stirling's formula, the norm u

H n/2 (S n ) is equivalent to the standard H n/2 (S n ) norm ( l,m l n u 2 lm ) 1/2 . We denote by H n/2
rad (S n ) the subspace of H n/2 (S n ) consisting of radial functions.

Proof of Theorem 1.2

In this section, we prove Theorem 1.2 using a variational argument, which, similarly to earlier works like [START_REF] Chang | A note on a class of higher order conformally covariant equations[END_REF] and [START_REF] Hyder | Existence of entire solutions to a fractional Liouville equation in R n[END_REF], it is convenient to carry out on the n-dimensional sphere S n .

We divide the proof into several steps.

Proof of Theorem 1.2. Step 1. Reduction to a variational equation.

Let Λ > 0, β ∈ R and p, q (radial polynomials of degree at most n -1 tending to -∞) be given as in the statement of Theorem 1.2.

Moreover, x a function

u 0 ∈ C ∞ (R n ) such that u 0 (x) = -ln(|x|) for all |x| ≥ 1 and denote ϕ 0 := (-∆) -n/2 u 0 . Let K(x) := |x| nβ exp n p(x) + q x |x| 2 + Λ γ n u 0 .
For w ∈ H n/2 (R n ), let c w ∈ R be the unique number such that

R n Ke n(w+cw) = Λ, i.e. e ncw = Λ R n Ke nw .
Equipped with these notations, we claim that to prove Theorem 1.2, it suces to nd

w ∈ H n/2 (R n ) with w(x) = o (ln(|x|)) as |x| → ∞ such that (-∆) n/2 w = Ke n(w+cw) - Λ γ n ϕ 0 . (4.1)
Indeed, then

u(x) := w(x) + p(x) + q x |x| 2 + β ln(|x|) + Λ γ n u 0 (x) + c w fullls (-∆) n/2 u(x) = (-∆) n/2 w(x) + Λ γ n ϕ 0 = Ke n(w+cw) = e nu
as well as

R n e nu = R n
Ke n(w+cw) = Λ.

Step 2. Transforming to the sphere.

Set Q := J S -1 K • S -1 , ψ 0 := J S -1 ϕ 0 • S -1
so that R n Ke nw = S n Qe nu . By (3.5), equation (4.1) is then equivalent to

P n u = - Λ γ n ψ 0 + Λ Qe nu S n Qe nu . (4.2) 
Solutions to (4.2) are given by critical points of the functional

I[u] := 1 2 P 1/2 n u 2 + Λ γ n S n ψ 0 u - Λ n ln S n
Qe nu .

We will nd such a critical point by solving the variational problem

inf I[u] : u ∈ H n/2 rad (S n ) . (4.3) 
Notice that the inmum is taken over radial functions only.

We claim that any minimizer u 0 of (4.3) is a critical point of I[u], i.e. for any test function φ ∈ H n/2 (S n ), it satises

R n P 1/2 n u 0 P 1/2 n φ + Λ γ n S n ψ 0 φ - Λ S n Qe nu 0 S n Qe nu 0 φ = 0. (4.4)
If φ is itself radial, this is clear because u 0 is a minimizer over radial functions. The validity of (4.4) for general φ ∈ H n/2 (S n ) follows since u 0 , ψ 0 and q are radial and because P n preserves radial functions.

Step

Minimizing I[u].

As explained in the previous step, it remains to prove that a minimizer for the problem (4.3) exists. We shall give the proof using the direct method of the calculus of variations, making crucial use of the improved Moser-Trudinger inequality in the form of Theorem 1.3.

Indeed, we claim that there is a constant C > 0 only depending on n, q and Λ such that

I[u] ≥ 1 4 P 1/2 n u 2 2 -C (4.5) for all u ∈ H n/2
rad (S n ). To prove (4.5), rst note that P 1/2 n c = 0 and

I[u + c] = I[u],
for any constant c ∈ R, (

as a consequence of the fact that 

S n ψ 0 = R n ϕ 0 = γ n ,
Λ γ n S n ψ 0 u ≤ C ψ 0 2 P 1/2 n u 2 ≤ 1 4 P 1/2 n u 2 2 + C ψ 0 2 2 .
Next, we bound the critical term ln S n Qe nu as follows. For any γ > 0, nu ≤

n 2 4γ P 1/2 n u 2 2 + γ u 2 P 1/2 n u 2 2
. Hence

S n Qe nu ≤ exp n 2 4γ P 1/2 n u 2 2 S n Qe γ u 2 P 1/2 n u 2 2 .
Thus, by Theorem 1.3 with s = n/2, since Q(η) ≤ C exp -d(η, S) -σ d(η, N ) β for any β > 0, we have for any γ > 0 that

Λ n ln S n Qe nu ≤ C + nΛ 4γ P 1/2 n u 2 2 .
Choosing γ > 0 so large that nΛ 4γ < 1 4 and combining the above estimates, (4.5) follows.

We can now prove that (4.3) admits a minimizer. Let

(u k ) k∈N ⊂ H n/2
rad (S n ) be a minimizing sequence for (4.3). By (4.6), we may again assume that S n u k = 0 for all k ∈ N. By (4.5), P 1/2 n u k 2 is uniformly bounded. By (4.7), so is u k 2 , and hence (u k ) is uniformly bounded in H n/2 rad (S n ). Up to extracting a subsequence, we may therefore assume u n u 0 for some

u 0 ∈ H n/2 rad (S n ). Then u 0 H n/2 (S n ) ≤ lim inf k→∞ u k H n/2 (S n ) .
Moreover, since u → u and u → e u denes compact embeddings from H n/2 (S n ) into L 2 (S n ) (for the latter property see [28, Proposition 7]),

u 0 2 = lim k→∞ u k 2 , S n ψ 0 u 0 = lim k→∞ S n ψ 0 u k and ln S n Qe nu 0 = lim k→∞ ln S n Qe nu k .
In view of the denition of u H n/2 in (3.7), this implies

P 1/2 n u 0 2 ≤ lim inf k→∞ P 1/2
n u k 2 and thus u 0 is a minimizer for I 0 .

Step 4. Regularity

The argument that provides regularity is identical to [START_REF] Hyder | Existence of entire solutions to a fractional Liouville equation in R n[END_REF]. Somewhat more precisely, by using the regularity theory for P n that can easily be deduced from its representation on spherical harmonics [23, Lemmas 2.5 and 2.6] together with the fact that ψ 0 ∈ C 2n+1 (S n ), one proves u 0 ∈ C 2n+1 (S n ). Since u 0 is continuous at the south pole, the function w 0 := u 0 • S has a limit at innity, in particular the condition w(x) = o (ln(|x|)) as |x| → ∞ is satised. Moreover, w 0 fullls

(-∆) n/2 w 0 = Ke n(w 0 +cw 0 ) - Λ γ n ϕ 0 . Since ϕ 0 ∈ C ∞ (R n ), bootstrapping gives w 0 ∈ C ∞ (R n ).
Thus we have found a solution w = w 0 as described in Step 1 and the proof is complete.

Proof of Theorem 1.2(b). For Λ < Λ 1 (1 + β), the proof of part (b) is identical to the proof of (a), except for the use of Theorem 1.3. Indeed, in this case we have Q(η) ≤ Cdist(η, N ) nβ e -dist(η,S) -σ for some σ > 0 and some given β > -1. Theorem 1.3 thus yields Λ n ln

S n Qe nu ≤ C + nΛ 4γ P 1/2 n u 2 , with γ = n + β |S n-1 | K -2 n, n 2 .
Since Λ < (1 + β)Λ 1 , recalling the numerical values of Λ 1 and K n,n/2 given in (1.6) and (1.14), a direct computation shows that

δ := 1 2 - nΛ 4γ > 0.
The rest of the proof for the subcritical case Λ < Λ 1 (1 + β) proceeds as above.

In the critical case Λ = Λ 1 (1 + β), our argument clearly breaks down. But we can take a sequence of solutions u k having mass Λ k Λ 1 (1 + β) and pass to the limit k → ∞. Since q ≡ 0, we are in the setting of [26, Proof of Theorem 1.2], and we can use their argument to conclude the existence of a solution u having the limit mass Λ = Λ 1 (1 + β). Indeed, the argument in [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF] is written for the special case p(x) = -|x| 2 . But it suces to observe that the assertion of [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF]Proposition A.2] continues to hold for every p which is radial-decreasing. Namely, if u solves (1.1) and

(1.11) with q ≡ 0 and p radial-decreasing, then the Pohozaev identity [26, 

Proposition A.1] implies Λ γ n (Λ -2γ n ) = 2βΛ + 2 R n x • ∇p(x)K(x)e nu(x) .
Now if p is non-constant radial-decreasing, the last summand is strictly negative, which after rearranging terms yields the strict inequality

Λ < Λ 1 (1 + β).
As in [START_REF] Hyder | Local and nonlocal singular Liouville equations in Euclidean spaces[END_REF], this can be used to lead [26, eq. ( 28)] to a contradiction and then conclude.

Proof of Theorems 1.3 and 1.4

We now turn to prove the Moser-Trudinger inequalities from Theorems 1.3 and 1.4. As briey explained in the introduction, following Adams' classical paper [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF] we shall derive them from a dual inequality on convolution-type operators which we introduce now in detail.

Let s ∈ (0, n). For f ∈ L n s (S n ), we denote T f (η) := S n k(η, ξ)f (ξ) dσ(ξ). (5.1) 
Here we assume that the kernel k(η, ξ) satises

k(η, ξ) = d(η, ξ) -n+s (1 + O (d(η, ξ)) α ) . (5.2)
for some xed constant α > 0. (We denote by O(d(η, ξ) α ) a quantity h(η, ξ) with the property that |h(η, ξ)|d(η, ξ) -α is bounded uniformly in η, ξ ∈ S n with η = ξ.)

Moreover, we assume that k(η, ξ) only depends on the geodesic distance d(η, ξ). As a consequence, by change of variables, T f is radial (in the sense given in Section 3) if f is.

We are going to prove the following weighted Moser-Trudinger-Adams inequality of convolution type, valid for radial functions.

Theorem 5.1. Let Q be as in (1.13) and let T be given by (5.1), for some k satisfying (5.2). Then there is C > 0 such that

S n exp n + β |S n-1 | |T f | n n-s Q(η) ≤ C uniformly for f ∈ L n s rad (S n ) with f L n s (S n ) ≤ 1. Moreover, the constant n+β |S n-1 | is sharp, in the sense that if it is replaced by γ > n+β |S n-1 | , then the constant C is no longer uniform in f .
As in Adams' paper [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF], we may deduce from this the Moser-Trudinger-Adams inequality in its dierential form, more precisely Theorem 1.4 and the following two theorems. Recall that the constant K n,s is given in (1.14) and that the operators P s and P 1/2 2s are dened in (3.2) and (3.4). Theorem 5.2. Let s ∈ (0, n 2 ] and let Q be as in (1.13). Then there is C > 0 such that

S n exp n + β |S n-1 | K -n n-s n,s |u| n n-s Q(η) ≤ C. (5.3) for u ∈ C ∞ (S n ) radial with P 1/2 2s u L n/s (S n ) ≤ 1. If s = n/2,

we assume additionally

S n u = 0. Moreover, the constant n+β

|S n-1 | K -n n-s n is sharp in the sense that if it is replaced by γ > n+β |S n-1 | K -n n-s n,s
, then the constant C is no longer uniform in u.

Clearly, Theorem 5.2 contains Theorem 1.3 as its special case s = n/2.

Theorem 5.3. Let s ∈ (0, n) and let Q be as in (1.13). Then there is C > 0 such that

S n exp n + β |S n-1 | K -n n-s n,s |u| n n-s Q(η) ≤ C.
(5.4)

uniformly for u ∈ C ∞ (S n ) radial with P s u L n/s (S n ) ≤ 1. Moreover, the constant n+β |S n-1 | K -n n-s n is sharp in the sense that if it is replaced by γ > n+β |S n-1 | K -n n-s n,s
, then the constant C is no longer uniform in u.

Indeed, Theorems 5.2 and 5.3 follow from Theorem 5.1 by expressing u using the Green's function of the operators P (1) For every u ∈ C ∞ (S n ) (with

S n u = 0 if s = n 2 ), one has u(η) = S n G s (η, ξ)P 1/2 2s u(ξ) dσ(ξ), (2) For every f ∈ C ∞ (S n ), the function u(η) := S n G s (η, ξ)f (ξ) satises u ∈ C ∞ (S n ) (and S n u = 0 if s = n 2 ) and P 1/2 2s u = f .
(3) G s (η, ξ) only depends on d(η, ξ). Near the diagonal, one has the expansion

G s (η, ξ) = K n,s d(η, ξ) -n+s (1 + O (d(η, ξ)) α ) , (5.5) 
for some α > 0.

Moreover, the same statements hold (without the condition that u = 0) if P 1/2 2s is replaced by P s , and s ∈ (0, n).

For P s for s ∈ (0, n), Lemma 5.4 follows directly from the fact that the Green's function of P s is explicitly given by

G s (η, ξ) = K n,s |η -ξ| -n+s , (5.6) 
see e.g. [START_REF] Beckner | Sharp Sobolev Inequalities on the Sphere and the MoserTrudinger Inequality[END_REF].

For P Proof. Let us assume that s < n 2 , the proof is readily the same if s = n 2 by adding the mean value. Let w ∈ C ∞ (S n ), we have

w(η) = S n G(η, ξ)(P 2s w)(ξ) dσ(ξ),
where G is the Green function of P 2s . By self-adjointness of P 2s we have

w(η) = S n (P 1 2 2s G)(η, ξ)(P 1 2
2s w)(ξ) dσ(ξ).

Thus G s = P 1 2
2s G is the function we are looking for. Let us check the estimate along the diagonal. By classical result on pseudo-dierential operators, see [START_REF] Alinhac | Pseudo-dierential operators and the Nash-Moser theorem[END_REF], the principal symbols satisfy σ(P

1 2 2s ) = σ(P 2s ) 1 2 , hence P 1 2 2s = (-∆ S n ) s/2 +
lower order operator. By using (5.6) (respectively G(η, ξ) = K n,s ln

1 d(η,ξ)
+ O(1) for s = n/2), we easily deduce the desired estimate.

Proof of Theorem 5.2 and Theorem 5.3. We only prove Theorem 5.2, since the proof of Theorem 5.3 is identical after replacing P 1/2 2s by P s . Under the assumptions of Theorem 5.2, by Lemma 5.4 we may write

u(η) = S n G s (η, ξ)f (ξ) dξ =: T f (η), (5.7) 
where f := P 

(η, ξ) = G s (η, ξ) satises (5.2). Moreover, f L n/s (S n ) = P 1/2 2s u L n/s (S n ) ≤ 1 by assumption. Hence S n exp n + β |S n-1 | |u| n n-s Q(η) dσ(η) = S n exp n + β |S n-1 | |T f | n n-s Q(η) dσ(η) ≤ C by Theorem 5.1.
The sharpness of the constant is again a direct consequence of the sharpness statement in Theorem 5.1. Indeed, let γ > n+β |S n-1 | .Then by Theorem 5.1 there exist f k radial with

f k L n/s (S n ) ≤ 1 such that S n exp γ|u k | n n-s Q(η) dη → ∞
as k → ∞, where we wrote u k := T f k with T f k dened as in (5.7). Since u k are radial and P

1/2 2s u k L n/s (S n ) = f k L n/s (S n ) ≤ 1, this completes the proof.
6. Proof of Theorem 5.1 6.1. An improved Adams' lemma. The core of the proof of Theorem 5.1 is the following one-dimensional calculus lemma stated as Lemma 6.1 below. To state it, for p > 1 we denote by p = p p-1 the Hölder conjugate exponent of p.

Lemma 6.1. Let 1 < p < ∞, and let a :

R × [0, ∞) → [0, ∞) be a function such that a(w, t) ≤ 1 + g(w, t) for w ∈ [0, t],
h(w, t)

for w ∈ R \ [0, t],
for some non-negative functions g(w, t) and h(w, t) with the property that t 0 g(w, t) + g(w, t) p dw +

R\[0,t] h(w, t) p dw ≤ b < ∞, (6.1) 
uniformly in t ∈ [0, ∞).

For φ : R → (0, ∞) satisfying R φ(w) p dw ≤ 1, let

F (t) := R a(w, t)φ(w) dw p -t.
Then for every α > 0 there is C > 0 not depending on φ such that

∞ 0 e -αF (t) dt ≤ C.
In its basic form, i.e. with g(w, t) ≡ h(w, t) ≡ 0, this lemma goes back to Moser [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF]. The inclusion of the term h(w, t), which is of fundamental importance, is due to Adams [2, Lemma 1]. Adams' version has since been extended in various directions, among others, in [START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF][START_REF] Alvino | Moser-type inequalities in Lorentz spaces[END_REF][START_REF] Fontana | Adams inequalities on measure spaces[END_REF]. Our new observation is that the error term g(w, t) below may depend on t as long as g(•, t) satises suitable integral bounds on the interval [0, t], uniformly in t > 0. A typical example of an error term satisfying (6.1) below, and in fact the one we shall use in the simplest case of the proof of Theorem 5.1, would be g(w, t) = Ce -w + Ce w-t , Indeed, [START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF][START_REF] Fontana | Adams inequalities on measure spaces[END_REF] are able deal with a term of type e -w , which arises essentially from the error term in (5.2). The second type e w-t only arises in our case, as a consequence of the lack of a rearrangement argument, as explained in the introduction. Notice that this term cannot be estimated (for w ∈ [0, t], uniformly in t > 0) by any integrable function of w alone. However, as we check in the following, the proof of Adams' lemma allows to include such a term as well. We believe that this observation can be useful in a wider context to prove MoserTrudinger-type inequalities in settings where rearrangement is not available, notably in the presence of weights.

Our proof follows Adams' paper [2, proof of Lemma 1]. The adaptations we make are close to [15, proof of Lemma 3.2]. Because of these similarities, we only give a sketch of the proof of Lemma 6.1. The reader may consult [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF][START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF] for more details.

Proof. For λ ∈ R we set E λ := {t ≥ 0 : F (t) ≤ λ} and denote by

|E λ | its Lebesgue measure. Since ∞ 0 e -αF (t) dt = α R |E λ |e -αλ dλ,
the lemma clearly follows if we can prove the following two assertions.

(a) There is c > 0 such that F (t) ≥ -c for all t ≥ 0. Moreover, if t ∈ E λ , then there are constants d, A, B such that

(t + d) 1/p R\[0,t] φ(w) p dw 1/p ≤ A|λ| 1/p + B. (6.2) 
(b) There are constants C, D such that for every λ ≥ -c,

|E λ | ≤ C|λ| + D.
Proof of (a). Let t ∈ E λ . Then by the denition of E λ , the bound on a(w, t) and Hölder's inequality, This is the same estimate as [2, eq. ( 15)]. Now both assertions of (a) follow by arguing as in [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF].

t -λ ≤ R a(w, t)φ(w) dw p ≤ (1 -L(t) p )
Proof of (b). Suppose that t 1 , t 2 ∈ E λ are such that λ < t 1 < t 2 . We shall show that t 2 -t 1 ≤ C|λ| for all λ large enough, which clearly implies (b). Indeed, similarly to the above 

(t 2 -λ)
t 2 t 1 (1 + g(w, t 2 )) p dw 1/p ≤ (t 2 -t 1 + d) 1/p ≤ (t 2 -t 1 ) 1/p + d 1/p .
Combining everything and abbreviating δ := (t 2 -t 1 ) 1/p , we obtain

t 2 -λ ≤ (t 1 + d) 1/p + (δ + b)L(t 1 )
p Again, this is the same estimate that occurs in [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF]. Using the inequality (6.2) from (a) permits to conclude as in [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF].

6.2. Transforming to R n . As a rst step in the proof of Theorem 5.1, we recast the setting on R n using stereographic projection.

We rst observe d S n (η, ξ) = |η -ξ|(1 + O(|η -ξ| α )) for suitable α > 0 (Here |η -ξ| denotes the distance in R n+1 .) Together with (5.2), up to taking a smaller α > 0, it is easy to deduce from this that T f dened by (5.1) satises

T f (η) ≤ S n |η -ξ| -n+s (1 + C|η -ξ| α ) f (ξ) dσ(ξ). (6.3) Now dene f (x) := f (S(x))J S (x) s n , so that f L n s (R n ) = f L n s (S n ) .
Since the distance transforms as |S(x) -S(y)| = J S (x) 1/2n |x -y|J S (y) 1/2n , by change of variables we obtain from (6.3) that

T f (x) := T f (S(x)) ≤ R n |S(x) -S(y)| -n+s (1 + C|S(x) -S(y)| α ) f (y)J S (y) n-s n dy = R n |x -y| -n+s 1 + |x| 2 1 + |y| 2 n-s 2 1 + C|x -y| α (1 + |x| 2 )(1 + |y| 2 ) -α 2 f (y) dy.
By the same change of variables in the integral appearing in Theorem 5.1, we see that it suces to prove

R n exp n + β |S n-1 | | T f | n n-s K(x) dx ≤ C (6.4) uniformly in f ∈ L n s rad (R n ) with f n s ≤ 1. Here K(x) := Q(S(x))J S (x) satises K(x) ≤ C|x| β exp(-|x| σ ) (6.5)
for some C, σ > 0, β ∈ R.

6.3.

Reducing to a local inequality. In this and the following sections, we will work exclusively in the setting of R n . For ease of notation, we will drop the tilde and write henceforth, in view of the estimate in the previous section,

T f (x) = R n |x -y| -n+s 1 + |x| 2 1 + |y| 2 n-s 2 f (y) dy + C R n |x -y| -n+s+α (1 + |x| 2 ) n-s-α 2 (1 + |y| 2 ) n-s+α 2 f (y) dy. (6.6) 
We may and will always assume without explicit mention that f ≥ 0 and that α > 0 is so small that n -s -α > 0.

In this step we will use the exponential decay at innity of the weight K to control the integral in (6.4) in the region R n \ B 1 . Indeed, this is a simple consequence of the following pointwise bound. Lemma 6.2. Let T f be dened by (6.6) for some f ∈ L n s rad (R n ). Then there is C > 0 not depending on f such that

T f (x) ≤ C(1 + ln(|x|))
for all |x| ≥ 1.

Using this growth bound and (6.5), we nd that

R n \B 1 exp n + β |S n-1 | |T f | n n-s K(x) dx ≤ C R n \B 1 exp C(1 -|x| σ/2 dx ≤ C
uniformly in f . Hence in what follows, we will only need to prove the local inequality

B 1 exp n + β |S n-1 | |T f | n n-s K(x) dx ≤ C.
Proof of Lemma 6.2. Let us prove that the rst summand of T f (x) in (6.6) satised the claimed bound. In radial variables r = |x| and ρ = |y|, it reads

∞ 0 S n-1 |re 1 -ρω| -n+s dσ(ω) 1 + r 2 1 + ρ 2 n-s 2 f (ρ)ρ n-1 dρ = |S n-1 |r -n+s r 0 g n-s ρ r 1 + r 2 1 + ρ 2 n-s 2 f (ρ)ρ n-1 dρ + |S n-1 | ∞ r g n-s r ρ 1 + r 2 1 + ρ 2 n-s 2 f (ρ)ρ s-1 dρ,
where g n-s is as in Lemma 6.3 below. First suppose that s > 1, then by Lemma 6.3, g n-s is bounded on [0, 1]. Thus, using that

∞ 0 f (ρ) n s ρ n-1 dρ 1
, by Hölder we get that the rst summand of T f (x) is bounded by a constant times

0 ρ n-1 (1 + ρ 2 ) n/2 dρ n-s n + (1 + r 2 ) n-s 2 ∞ r ρ -1 (1 + ρ 2 ) n/2 dρ n-s n . Since r 0 ρ n-1 (1 + ρ 2 ) n/2 dρ ≤ C(1 + ln(r)) and ∞ r ρ -1 (1 + ρ 2 ) n/2 dρ ≤ Cr -n
for every r ≥ 1, we obtain the conclusion.

If s < 1, then by Lemma 6.3, g n-s (R) ≤ C(1 -R) s-1 . Inserting this bound and arguing as before, by Hölder the rst summand of T f (x) is bounded by a constant times

r 0 1 - ρ r (s-1) n n-s ρ n-1 (1 + ρ 2 ) n/2 dρ n-s n +(1+r 2 ) n-s 2 ∞ r 1 - r ρ (s-1) n n-s ρ -1 (1 + ρ 2 ) n/2 dρ n-s n . r 0 1 - ρ r (s-1) n n-s ρ n-1 (1 + ρ 2 ) n/2 dρ ≤ C + r 1 1 - ρ r (s-1) n n-s ρ -1 dρ = C + 1 1/r (1 -τ ) (s-1) n n-s τ -1 dτ ≤ C(1 + ln(r)),
where we changed variables τ = ρ r and noticed that (s -

1) n n-s > -1 because n ≥ 2. Similarly, ∞ r 1 - r ρ (s-1) n n-s ρ -1 (1 + ρ 2 ) n/2 dρ ≤ C ∞ r 1 - r ρ (s-1) n n-s ρ -n-1 dρ = Cr -n 1 0 (1 -τ ) (s-1) n n-s τ n-1 dτ ≤ Cr -n
Then identifying {R} × R n-1 with R n-1 × {0} and writing d = 1 -R, we clearly have

g(R) ≤ {x∈R n-1 :|x|≤1} |de n -x| -α dx + C = d n-1-α {x∈R n-1 :|x|≤1/d} |e n -x| -α dx + C ≤ d n-1-α {x∈R n-1 :1≤|x|≤1/d} |x| -α dx + C As d → 0, up to a constant, the last integral is bounded by 1 if α < n -1, by ln(1/d) if α = n -1 and by d α-n+1 if α > n -1.
This yields the claimed bound in each case.

To prove the claimed monotonicity behavior, we observe that the function g α (R) is the mean value of the function f (y) := |e 1 -y| -α over a sphere around the origin of radius R. Now for r = |x| = 0,

∆(|x| -α ) = d 2 dr 2 + n -1 r d dr r -α = α(α + 2 -n)r -α-2 .
Hence, in the open ball of radius 1, f is

• subharmonic if α ∈ (n -2, n), • harmonic if α = n -2 and • superharmonic if α ∈ (0, n -2).
Thus the monotonicity of g α follows from the mean-value theorem for harmonic functions, respectively the mean-value inequalities for sub-and superharmonic functions.

Remark 6.4. The calculations in this section help to further elucidate the discussion following the statement of Lemma 6.1 about the new type of error term arising in our setting. We claim that the estimate obtained from of the O'Neil's-type inequality used by Adams in [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF] does not extend to functions which are radial, but not necessarily decreasing. Indeed, said estimate [2, bottom of p.390] would read, in our notation and for f ∈ L n s rad (B 1 ), say,

T f (r) ≤ |S n-1 | n s r -n+s r 0 f (ρ)ρ n-1 dρ + 1 r f (ρ)ρ s-1 dρ . (6.8)
On the other hand, even when we drop the terms 1+r 2 1+ρ 2 due to the conformal factors J S (i.e. when we work with the simpler convolution kernel |x -y| -n+s in a setting which does not come from S n ), the calculations in the proof of Lemma 6.2 yield, for every f ∈ L n s rad (B 1 ), the identity

T f (r) = |S n-1 | r -n+s r 0 g n-s ρ r f (ρ)ρ n-1 dρ + 1 r g n-s r ρ f (ρ)ρ s-1 dρ .
In the case when s < 2, Lemma 6.3 states that g n-s (R) > g n-s (0) for every R ∈ (0, 1). So if f ≡ 0 on B r 0 , for some r 0 ∈ (0, 1), it is plain that (6.8) is violated for every r ≤ r 0 .

6.4. Proof of Theorem 5.1. In this section, we give the main argument in the proof of Theorem 5.1. Recall that by what we have shown in Sections 6.2 and 6.3, it only remains to prove

B 1 exp n + β |S n-1 | |T f | n n-s |x| β dx ≤ C, (6.9) 
uniformly for all

f ∈ L n s rad (R n ) with f L n s (R n ) ≤ 1.
Here, T f is given by (6.6). Our strategy is to reduce the proof of (6.9) to the one-dimensional bound from Lemma 6.1. To achieve this, we pass to radial logarithmic coordinates. Writing |x| = e -t , the inequality in (6.9) transforms to

∞ 0 exp   (n + β)   1 |S n-1 | n-s n (T f )(e -t ) n n-s -t     dt ≤ C. (6.10) Now, dene φ(w) := |S n-1 | s n f (e -w )e -sw , so that R |φ(w)| n s dw = R n |f (x)| n s dx ≤ 1.
Similarly to the calculations in Lemma 6.2, writing |x| = e -t and |y| = e -w , from (6.6) we obtain 1

|S n-1 | n-s n (T f )(e -t ) = u(t) + v(t) (6.11) with u(t) := t -∞ g n-s (e w-t ) 1 + e -2t 1 + e -2w n-s 2 φ(w) dw+ ∞ t g n-s (e t-w )e (n-s)(t-w) 1 + e -2t 1 + e -2w n-s 2 φ(w) dw and v(t) := C t -∞ g n-s-α (e w-t ) (1 + e -2t ) n-s-α 2 (1 + e -2w ) n-s+α 2 φ(w) dw + C ∞ t g n-s-α (e t-w )e (n-s-α)(t-w) e -αw (1 + e -2t ) n-s-α 2 (1 + e -2w ) n-s+α 2 
φ(w) dw.

We claim that for every t ≥ 0 1

|S n-1 | n-s n (T f )(e -t ) = R a(w, t)φ(w) dw, (6.12) 
where a(w, t) satises the assumptions of Lemma 6.1. Now an application of that lemma (with α = n + β and p = n s ) concludes the proof of (6.10), and hence of Theorem 5.1.

It thus remains to prove (6.12). Let us give the bounds for u(t) in detail. For clarity we rst treat the simplest case where s > 1, so that g n-s ≤ C on all of [0, 1] by Lemma 6.3. For w ∈ (-∞, 0], we then have

g n-s (e w-t ) 1 + e -2t 1 + e -2w n-s 2 
≤ Ce (n-s)w .

For w ∈ (0, t], we simply estimate 1+e -2t 1+e -2w ≤ 1. Moreover, for R = e w-t we estimate

g n,s (R) = g n,s (0) + R 0 g n,s (r) dr ≤ 1 + CR if R is near zero and g(R) ≤ C ≤ CR if R is away from zero. Altogether, this yields g n-s (e w-t ) 1 + e -2t 1 + e -2w n-s 2 ≤ g n-s (0) + Ce w-t = 1 + Ce w-t .
Finally, for w ∈ (t, ∞), we estimate g n-s (e t-w ) ≤ C and

e (n-s)(t-w) 1 + e -2t 1 + e -2w n-s 2 = e 2t + 1 e 2w + 1 n-s 2 ≤ e 2(t-w) + e -2w n-s 2 ≤ Ce (n-s)(t-w) .
All these bounds clearly satisfy the conditions (6.1) of Lemma 6.1.

If s ≤ 1, we need to be slightly more careful due to the unboundedness of g n-s near 1. We give the argument for s < 1, the adaptation to s = 1 is straightforward. For w ∈ (-∞, -ln(2)], we have e w-t ≤ 1 2 , so that g n-s (e w-t ) is uniformly bounded and we can repeat the above estimate. For w ∈ (-ln(2), 0] however, we have the modied bound g n-s (e w-t )

1 + e -2t (1 -e w-t ) (s-1) n n-s ≤ C, as a consequence of the inequality (s -1) n n-s > -1. Similar arguments justify the validity (6.1) when w ∈ (0, t] and when w ∈ (t, ∞).

The term v(t) can be treated by the same argument with s replaced by s -α, after estimating (1 + e -2w ) -α ≤ 1 and e -αw (1 + e -2w ) -α ≤ 1 for w ∈ R.

This proves (6.12). Hence the proof of Theorem 5.1, up to the sharpness assertion proved in Section 6.5 below, is complete. Remark 6.5. In the above argument, we only used the bounds on g n-s given by Lemma 6.3, but not its monotonicity behavior. In fact, using the latter, our proof simplies in the case s ≥ 2. Indeed, in these cases g(R) is bounded and nonincreasing on R ∈ [0, 1] by Lemma 6.3. This means that we can replace the estimate g(e s-t ) ≤ 1 + Ce s-t from above by the simpler g(e s-t ) ≤ g(0) = 1. The point is that thanks to the absence of a t-dependent term like e s-t in the error function g(w, t) from Lemma 6.1, we can use directly Fontana's version of Adams' lemma instead of our improved one; see also the discussion before Lemma 6.1. It is hence only for small orders of derivative s < 2 that the new extension of Adams' lemma given in Lemma 6.1 is truly decisive. Compare also Remark 6.4. 6.5. Sharpness of the constant. We now complete the proof of Theorem 5.1 by proving the assertion on sharpness of the constant. By (5.2) and after projecting to R n as in Section 6.2, let us thus suppose that γ > 0 is such that

sup 0≤f ∈L n s rad (R n ), f n s ≤1 R n exp γT f (η) n n-s |x| β exp(-|x| σ ) dx ≤ C < ∞, (6.13) 
where T f satises We now make a suitable choice of f . For given r ∈ (0, R), dene Hence, T f r,R (x) ≥ (1 -3ε) for all x ∈ B r .

T f (x) ≥ R n |x -y| -n+s 1 + |x| 2 1 + |y| 2
We conclude that, for R = R(ε) and every r < r 0 (ε, R), the function f := (1-3ε) -1 f r,R is an admissible function satisfying T f ≥ 1 on B r , and hence (6.16). Evaluating Since ε > 0 was arbitrary, this completes the proof of (6.15). n-s n for every x ∈ B 1 . Thus the left side of (6.17) with u = u R is unbounded as R → ∞.

1 )

 1 is identical to [26, Lemma 3.1]: Let |x| ≥ 1, then |x -y| ≤ |x| + |y| ≤ |x|(1 + |y|)

Proposition 2 . 4 .

 24 lim |x|→∞ vu(x) ln(|x|) = -Λ γn .

1 / 2 2s

 12 and P s respectively. It only remains to check that the resulting convolution integral satises (5.1) and (5.2), with f = P 1/2 2s u and f = P s u, respectively. 5.1. Estimates on the Green's function and proof of Theorem 1.3. In this subsection, we prove the following expansion of the Green's functions of P 1/2 2s and P s , which allows us to deduce Theorem 1.3, 5.2 and 5.3 from Theorem 5.1. We recall that the operators P s and P 1/2 2s have been dened in (3.2) and (3.4) respectively. Lemma 5.4. Let 0 < s ≤ n 2 . There exists a function G s : S n × S n → R with the following properties.

1 / 2 2s

 12 u and G s (η, ξ) is the Green's function associated with P 1/2 2s . Still by Lemma 5.4, the kernel k

2 ( 1 + |y| 2 ) 2 f

 2122 y| -n+s+α (1 + |x| 2 )n-s-α (y) dy for some α > 0.We shall show that necessarilyγ ≤ n + β |S n-1 | (6.15)by following the argument of [2, proof of Theorem 2], where we replace the Riesz potential of f by T f . Let 0 < r < R and let f ∈ L n s (B R ) be any function such that T f ≥ 1 on B r . Testing (6.13) with f / f n s gives C ≥ exp γ f

- 1 B

 1 f r,R (x) := |S n-1 | -1 ln R r -1 |x| -s for x ∈ B R \ B r , 0 otherwise .Let ε > 0 be given. In view of the expression of T f in(6.14), by choosing R = R(ε) > 0 small enough we may assume thatT f r,R (x) ≥ (1 -ε) B R |x -y| -n+s f r,R (y) dy -C B R |x -y| -n+s+α f r,R (y) dy ≥ (1 -2ε)|S n-1 | -1 ln R r R \Br |x -y| -n+s |y| -s dyAt xed ε > 0 and R = R(ε) > 0, it follows from the argument in [2, p.392] (after rescaling by R) that there is r 0 (ε, R) > 0 such that for every r < r 0 (ε, R), one hasB R \Br |x -y| -n+s |y| -s dy ≥ (1 -ε)|S n-1 | ln R r .

  |S n-1 | -n-s s (ln(R/r)) -n-s s ,and letting r → 0, inequality (6.16) becomesγ ≤ (1 -3ε) -n n-s n + β |S n-1 | .

6. 6 .

 6 Proof of Theorem 1.4. The proof of Theorem 1.4 follows the same strategy as that of Theorem 5.1, Theorem 5.2 and Theorem 5.3. Since moreover it is simpler due to the presence of fewer error terms, we shall be brief. By[START_REF] Martinazzi | Fractional Adams-Moser-Trudinger type inequalities[END_REF] Propositions 7 and 8], we have the estimate|u(x)| ≤ K n,s B R |x -y| -n+s f (y) dy =: K n,s (I n-s * f )(x),where f := (-∆) s/2 u| B R . (Notice that unless s is an even integer, (-∆) s/2 u is in general not supported in B R .) Now we are in the situation of Section 6.4, only that T f is replaced by the simpler I n-s * f . Settingφ(s) = |S n-1 | s n f (Re -w )(Re -w ) s ,and changing variables |x| = Re -t , |y| = Re -w , as above we nd1 |S n-1 | n-s n (I n-s * f )(Re -t ) = t 0 g n-s (e w-t )φ(w) dw+ ∞ t g n-s (e t-w )e (n-s)(t-w) φ(w) dw,which satises the assumptions of Lemma 6.1 by the same estimates as in the proof of Theorem 5.dt ≤ C(R).This completes the proof of Theorem 1.4.Remark 6.6. It might be tempting to think that analogously to Theorem 1.3, a 'global' version of inequality(1.16) might hold on all of R n in the presence of an exponentially decaying weight at innity, i.e. thatR n exp γ|u| n n-s |x| β exp(-|x| σ ) dx ≤ C (6.17)uniformly in u radial with (-∆) s/2 u L n/s (R n ) ≤ 1. However, this is wrong for any choice of γ, σ > 0 and β ∈ R. A counterexample is given by the family u R (x) :=(-∆) -s/2 f R (x) = K n,s R n |x -y| -n+s f R (y) dy, for the L n s (R n )-normalized functions f R (y) = (|S n-1 | ln(R)) -s n 1 B R \B 1 (y)|y| -s . Indeed, since |x -y| ≤ 2|y| whenever |x| ≤ 1 ≤ |y|, we have u R (x) (ln(R))

  can now use Lemma 2.7 to give the proof of Proposition 2.4 in the remaining case β ≥ Λ γn .

	Proof of Proposition 2.4 if β ≥ Λ γn . By contradiction, in view of Lemma 2.3, assume
	that there is δ > 0 and a sequence |x k

  where d is a constant only depending on b. We thus obtaint -λ ≤ (1 -L(t) p ) 1/p (t + d) 1/p + bL(t)

	t		1/p	1/p	p
	1/p	(1 + g(w, t)) p dw	+ L(t)	h(w, t) p dw	,
	0			R\[0,t]	
	where we abbreviated				
			1/p		
		L(t) :=	φ(w) p dw	.	
		R\[0,t]			
	The assumptions on g imply that			
		t			
		(1 + g(w, t))		
		0			

p ds ≤ t + d, p .

  1/p ≤

	t 1		1/p	t 1	1/p
	(1 + g(w, t 2 )) p dw		φ(w) p dw
	0			0	
	t 2		1/p	t 2	1/2
	+	(1 + g(w, t 2 )) p dw	L(t 2 ) +	h(w, t) p dw	L(t 2 ).
	t 1			t 1	
	By the assumptions on g(w, t) we can estimate		
	t 1	t 2		t 2	
	(1 + g(w, t 2 )) p dw = t 1 + d	g(w, t) dw + d	g(w, t) p dw ≤ t 1 + d
	0	0		0	
	and, analogously,				

by changing variables τ = r ρ . Altogether, this shows that the rst summand of T f (x) is bounded by C(1 + ln(|x|)).

The second summand of T f (x) in (6.6) can be treated by the same argument, after simply estimating (1 + |y| 2 ) -α ≤ 1 and replacing s by s + α. Lemma 6.3. For n ≥ 2, let 0 < α < n and dene

Then for R ∈ [0, 1), the function g α (R) satises

Moreover, on [0, 1), g α (R) is

In particular, if α ∈ (0, n -2], then sup R∈[0,1] g α (R) = g α (0) = 1.

Proof. Let us rst prove the claimed bounds on g α . Clearly, g α (R) is bounded away from R = 1 for every α ∈ (0, n). Considering the following picture, × 0

x e 1 × × ×