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CONSTANT Q-CURVATURE METRICS WITH A SINGULARITY

TOBIAS KÖNIG AND PAUL LAURAIN

Abstract. For dimensions n ≥ 3, we classify singular solutions to the generalized
Liouville equation (−∆)n/2u = enu on Rn \ {0} with the �nite integral condition∫
Rn enu < ∞ in terms of their behavior at 0 and ∞. These solutions correspond
to metrics of constant Q-curvature which are singular in the origin. Conversely,
we give an optimal existence result for radial solutions. This extends some recent
results on solutions with singularities of logarithmic type to allow for singularities
of arbitrary order. As a key tool to the existence result, we derive a new weighted
Moser�Trudinger inequality for radial functions.

1. Introduction

Let n ≥ 2. Our goal is to understand the structure of the set of solutions to the

equation

(−∆)n/2u = enu on Rn \ {0}, Λ :=

∫
Rn
enu dy <∞, (1.1)

which may present a singularity at the origin.

For a function u ∈ L1
loc

(Rn), the expression (−∆)n/2u is to be understood as the

tempered distribution satisfying

〈(−∆)n/2u, ϕ〉 =

∫
Rn
u(x)(−∆)n/2ϕ(x) dx (1.2)

for every ϕ ∈ C∞c (Rn). If n is odd, the hypothesis
∫
Rn

|u(x)|
1+|x|2n dx < ∞ needs to be

added, since (−∆)n/2ϕ is not compactly supported in these cases. We refer to [26] for

more details and basic regularity results. In fact, every solution to (1.1) belongs to

C∞(Rn \ {0}), by the proof of [26, Theorem 2.1].

For n = 2, equation (1.1) is the classical Liouville equation, whose solutions u cor-

respond to metrics of constant Gauss curvature on R2 \ {0}. In higher dimensions,

equation (1.1) plays a similar role in connection with the notion ofQ-curvature. Indeed

if one considers a smooth compact Riemannian surface (Σ, g) with Gauss curvatureKg,
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2 TOBIAS KÖNIG AND PAUL LAURAIN

then by a conformal change of metric gu = e2ug, the curvature changes as follows

−∆gu+Kg = Kgue
2u.

Here, ∆g = 1√
|g|
∂i(
√
|g|gij∂j) is the Beltrami Laplacian, which is a conformally invari-

ant operator in dimension 2 in the sense that ∆gu = e−2u∆g. Relying on this conformal

invariance property, Paneitz [41] (and then Graham, Jenne, Mason and Sparling [21])

proved that, on a given Riemannian manifold (Mn, g), with n ≥ 2, there exists a

unique di�erential1 operator Pn of order n such that

P n
g = (−∆g)

n
2 + lower order operator,

and

P n
gu = e−nuP n

g .

For ξ the Euclidean metric on Rn, we can check that P n
ξ = (−∆)n/2 on (Rn, ξ). Hence,

the notion of Gauss curvature is generalized by the one of Q-curvature, in the sense

that we have the following identity

P n
g (u) +Qg = enuQgu ,

where Qg, the Q-curvature, depends only on the curvature and its derivatives, for

instance for n = 4, we have

Qg = −1

6

(
∆gRg −R2

g + 3|Ricg|2
)
,

where Rg and Ricg are the scalar and the Ricci curvature. On the sphere Sn the

Paneitz operator has a simple expression in terms of the Laplacian and its eigenvalues,

see Section 3. For instance for n = 4, we have, for gc the standard metric of S4,

P 4
gc = −∆gc(−∆gc + 2),

see [9] for more geometrical details.

Hence, solutions to (1.1) correspond to metrics which are conformal to the Euclidean

metric on Rn \ {0} and have constant Q-curvature equal to one. When the behaviour

of u near 0 is u ∼ γ ln(|x|), the metric enuξ can be interpreted as a conical metric, see

[14], but if the u blow faster at the origin the nature of singularity is closer to that of

an essential singularity. This is to our knowlege an inexplored �eld from the geometric

point of view.

A fundamental property of equation (1.1), which we shall use several times in this pa-

per, is its conformal invariance. In particular, if u solves (1.1), then its inversion

ū(x) = u

(
x

|x|2

)
− 2 ln(|x|). (1.3)

is also a solution to (1.1), of same mass Λ as u.

1Pseudodi�erential when the dimension is odd.
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1.1. Overview of the problem. In the past decades, entire solutions to the equa-

tion

(−∆)n/2u = enu on Rn, Λ :=

∫
Rn
enu dy <∞, (1.4)

have been intensely studied for all values of n ∈ N∗.

A fundamental observation is that the family of 'bubble' functions

u(x) = ln

(
2((n− 1)!)1/nλ

1 + λ2|x− x0|2

)
, λ > 0, x0 ∈ Rn, (1.5)

solve (1.4), for any n ∈ N∗. These solutions all have the same mass

Λ ≡ (n− 1)!

∫
Rn

(
2

1 + |x|2

)n
dx = (n− 1)!|Sn| =: Λ1. (1.6)

By the classi�cation result of Chen and Lin [11], these are all solutions to (1.4) in the

classical case n = 2. If n = 1, the same is true, see [31] and references therein.

It has been put to our attention by Pierre-Damien Thizy that in fact the n = 2 case was

already essentially known by Liouville himself, the proof relies on the interpretation of

this problem in terms of holomorphic functions, see [8, Theorem 1] and [4, p. 27].

An important feature of equation (1.4), which was �rst noticed in the fundamental

paper [30] by Lin, is that this classi�cation results ceases to be true in higher dimen-

sions n ≥ 3. To explain this phenomenon in more detail, for a solution u to (1.4), we

introduce its 'normalized version'

v(x) :=
1

γn

∫
Rn

ln

(
|y|
|x− y|

)
enu(y) dy. (1.7)

Here the constant

γn :=
(n− 1)!

2
|Sn| = Λ1

2

is chosen such that (−∆)n/2 ln
(

1
|x|

)
= γnδ0 in the sense of distributions.

Theorem A ([30, 34, 28, 22]). Let n ≥ 3 and let u be a solution to (1.4). Then there

exists a polynomial p, bounded from above, of even degree at most n− 1, such that

u(x) = v(x) + p(x), x ∈ Rn,

where v is as in (1.7).

Moreover, as |x| → ∞,

v(x) = − Λ

γn
ln(|x|) + o(ln |x|) (1.8)

If u(x) = o(|x|2) as |x| → ∞, or if n = 3, 4 and Λ = Λ1, then u is necessarily of the

form (1.5).

Finally, if n = 3, 4, then necessarily Λ ≤ Λ1.
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Conversely, the following summary of existence results shows that the classi�cation

from Theorem 1.1 is essentially optimal.

In fact, it turns out that one can simultaneously prescribe the mass Λ and its asmyp-

totic polynomial p at in�nity, provided Λ ∈ (0,Λ1) and p ful�lls

p(x)→ −∞ as |x| → ∞, deg p ≤ n− 1. (1.9)

Theorem B ([10, 46, 27, 23, 35, 24]). Let n ≥ 3. Given any Λ ∈ (0,Λ1) and any

polynomial p satisfying (1.9), there exists a solution u to (1.4) such that

u(x) = p(x)− Λ

γn
ln(|x|) + o(ln |x|) as |x| → ∞.

Let n ≥ 5. Given any Λ ∈ (0,∞) and any radially symmetric polynomial p satisfying

(1.9), there exist numbers c1, c2 > 0 and a solution u to (1.4) such that

u(x) = p(x) + c1|x|2 − c2|x|4 −
Λ

γn
ln(|x|) + o(ln |x|) as |x| → ∞.

These �ndings are in remarkable contrast to the equation (−∆)ku = u
n+2k
n−2k , u > 0

on Rn, with n/2 > k ∈ N∗, which is a closely related conformally invariant of (1.1).

Indeed, for this equation the classi�cation results in [6, 30, 45] guarantee that every

solution has the standard bubble form corresponding to (1.5), for every n ≥ 2 and

k < n/2.

Compared to the case of entire solutions to (1.4), until recently singular solutions to

(1.1) have received much less attention, with the exception of n = 2.

If n = 2, it has been shown in [42] that for (1.1) a classi�cation result analogous to

the entire case holds. Indeed, every solution is of the form

w(z) = ln

(
2(α + 1)λ

1 + λ2|zα+1 − ζ|2

)
, λ > 0, ζ ∈ C, α > −1,

in complex notation, and where necessarily ζ = 0 if α /∈ N0.

Still when n = 2, we mention the papers [33, 7], where existence of solutions to a singu-

lar equation corresponding to (1.1) on general Riemannian surfaces has been derived

using re�ned variational arguments and improved Moser-Trudinger inequalities.

1.2. Main results. The main point of our results is to give a version of both the

classi�cation and existence results from Theorems A and B for the case of a general

point singularity, i.e. for equation (1.1) instead of (1.4).

Similar to before, for any solution u to (1.1), we de�ne

vu(x) := v(x) :=
1

γn

∫
Rn

ln

(
1 + |y|
|x− y|

)
enu(y) dy. (1.10)
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The following theorem classi�es all singular solutions to (1.1) in terms of their asymp-

totic behavior at 0 and in�nity.

Theorem 1.1. Let n ≥ 3 and let u be a solution to (1.1). Then there exist β ∈ R and

upper-bounded polynomials p and q, of degree at most n− 1, such that

u(x) = v(x) + p(x) + q

(
x

|x|2

)
+ β ln(|x|). (1.11)

Moreover

lim
|x|→∞

v(x)

ln(|x|)
= − Λ

γn
and lim

x→0

v(x)

ln(|x|)
= 0.

For solutions to a special case of equation (1.1), namely

(−∆)n/2u = enu − βγnδ0,

∫
Rn
enu <∞, (1.12)

Theorem 1.1 has been proved in [26]. However, even without appealing to the sophis-

ticated existence result in Theorem 1.2 below, it is easy to see that there are solutions

to (1.1) which do not satisfy (1.12). For instance, for u is as in Theorem B with

p(x) = −|x|2, the inversion ū de�ned in (1.3) solves (1.1) and has q(x) = −|x|2 in

(1.11). On the other hand, by [26] every solution to (1.12) behaves like β ln |x| near
zero and thus has necessarily q ≡ 0. For n = 4, by ODE arguments in the spirit of

[14], one can also easily construct solutions to (1.1) with both p and q non-zero, which

thus cannot ful�l (1.12) even after inversion.

Let us now discuss existence results for (1.1) more systematically. It is apparent from

the results stated above that a major challenge is to prescribe the mass Λ > 0 of the

solution, simultaneously with its asymptotic behavior, for Λ in the largest possible

range.

Our next theorem shows that in the singular setting of equation (1.1), this can be

done for every possible value of Λ, at least for radial functions.

Theorem 1.2. Let n ≥ 3, and let p be a radial polynomial satisfying (1.9). Suppose

either that

(a) q is another radial polynomial satisfying (1.9), β ∈ R and Λ > 0 or that

(b) q ≡ 0, β > −1 and Λ ∈ (0,Λ1(1 + β)).

If p is radial-decreasing, we may also take Λ = Λ1(1 + β) in (b).

Then there exists a solution u to (1.1) satisfying

u(x) = q

(
x

|x|2

)
+ β ln(|x|) + o(ln(|x|)) as |x| → 0
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and

u(x) = p(x) +

(
β − Λ

γn

)
ln(|x|) + o(ln(|x|)) as |x| → ∞.

As in the case of entire solutions, this shows that the space of singular solutions to

(1.1) becomes more complex as the order of derivative increases. Again, this is in stark

contrast to (−∆)ku = u
n+2k
n−2k , u > 0 on Rn \ {0} for n/2 > k ∈ N∗. Indeed, when k = 2

it is proved in [17] that all solutions to this equation are given by a two-parameter

family of functions ua,T (x) = |x|(4−n)/2va(log |x| + T ), which presents no additional

degrees of freedom compared to the basic case k = 1 analyzed by [6, 43].

Part (b) of Theorem 1.2, with p(x) = −|x|2, is proved in [26, Theorem 1.2]. Our

more general version answers, for the case of radial p, an open question mentioned in

[26, Section 1.1]. Since in this case the functions one obtains grow logarithmically at

the origin, these are indeed also solutions to (1.12). Except for the treatment of the

limit case Λ = Λ1(1 + β) in part (b), we use a di�erent method of proof. Namely, the

proof in [26] proceeds via a �xed point argument, while ours is based on a variational

method, closer to the works [10] or [23]. Our method allows to treat the case q 6≡ 0

(which we did not succeed in via the �xed point method of [26]) and thus remove

the upper bound on Λ. On the other hand, variants of this �xed point argument

also yield existence results for non-radial solutions to equation (1.12) [26, Theorem

1.3], respectively to its generalization (−∆)n/2u = enu −
∑m

l=1 βlγnδPl with several

singularities in points P1, ..., Pm [25, Theorem 1.2], which have no counterpart in our

paper. A variational existence argument in the spirit of our paper covering the case of

several singularities when n = 4 can however be found in [14]. We also mention [32],

where existence results are derived by yet another di�erent method.

The main tool in our approach to prove Theorem 1.2 is a weighted Moser-Trudinger

inequality for radial functions on the sphere Sn, which may be of independent interest

and which we introduce now.

Let Q : Sn → [0,∞) be a nonnegative weight function on Sn with the property

that

Q(η) ≤ Cd(η,N)β exp(−d(η, S)−σ) (1.13)

for some σ,C > 0, β ∈ R. Here, we denote by d(η, ξ) the geodesic distance between

two points η, ξ ∈ Sn on the sphere. We use N = en+1 and S = −en+1 to denote the

north and south pole of Sn.

Moreover, for s ∈ (0, n) we de�ne

Kn,s =
Γ(n−s

2
)

Γ( s
2
)2sπn/2

. (1.14)

This constant is chosen such that the Green's function of (−∆)s/2 on Rn is given by

Kn,s|x− y|−n+s.
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We prove the following inequality.

Theorem 1.3. Let Q be as in (1.13). Then there is C > 0 such that∫
Sn

exp

(
n+ β

|Sn−1|
K−2
n,n

2
u2

)
Q(η) ≤ C. (1.15)

uniformly for u ∈ C∞(Sn) radial with ‖P 1/2
n u‖L2(Sn) ≤ 1 and

∫
Sn u = 0. Moreover, the

constant n+β
|Sn−1|K

−2
n,n

2
is sharp in the sense that if it is replaced by γ > n+β

|Sn−1|K
−2
n,n

2
, then

the constant C is no longer uniform in u.

Theorem 1.3 is in fact a special case of a more general inequality valid for any order

of derivative strictly between 0 and n. Indeed, the operator P
1/2
n can be replaced by

either Ps with s ∈ (0, n) or by P
1/2
2s with s ∈ (0, n/2), where Ps is the Paneitz operator

on Sn of order s; see (3.2) for its de�nition. To keep the introduction focused, we defer

a full statement to Theorems 5.2 and 5.3 below.

We stress that if β > 0, the best constant in the above theorems is strictly larger than

the constant n
|Sn−1|K

− n
n−s

n of the standard Moser-Trudinger inequality. In this case, the

restriction to radial functions is thus truly essential. Indeed, the improved inequality

must fail for a sequence of functions saturating the sharp constant in the unweighted

inequality and concentrating in a point near which the weight Q is regular. Since

such a point is di�erent from the poles, such functions must of course necessarily be

non-radial.

A simple variation of the arguments leading to Theorem 1.3 (respectively, Theorems

5.2 and 5.3) yields a proof of a corresponding weighted Moser-Trudinger inequality for

radial functions on balls of Rn.

Theorem 1.4. Let s ∈ (0, n), β ∈ R and R > 0. Then there is C = C(R) > 0 such

that ∫
BR

exp

(
n+ β

|Sn−1|
K
− n
n−s

n,s |u|
n
n−s

)
|x|β dx ≤ C (1.16)

for every u ∈ C∞0 (BR) radial with ‖(−∆)s/2u‖
L
n
s (BR)

≤ 1.

This generalizes the fractional Moser-Trudinger inequality of Martinazzi [36] to the

weighted (and radial) setting. For even dimensions n and s = n/2, Theorem 1.4,

including the case β > 0, has been proved in the recent paper [40] by a somewhat

di�erent method going back to [44]. However, since this method does not pass through

a fractional integral formulation (compare the discussion below and Theorem 5.1), it

does not seem to extend easily to the general case of fractional derivatives of arbitrary

order. Similar weighted inequalities on all of Euclidean space appear in [13, 12].

Let us discuss in some more detail our proof strategy on the example of Theorem

1.4. The general strategy, going back to Adams [2], is to estimate u pointwise by the
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convolution v = Gs ∗ (−∆)s/2u, where Gs is the Green's function of (−∆)s/2 and prove

a corresponding estimate on the exponential integral of that convolution; see Theorem

5.1 below.

When β < 0 in Theorem 1.4, the hypothesis of radial symmetry can be dropped by

combining Martinazzi's Green's function estimate from [36] with the weighted frac-

tional integral inequality of Lam and Lu [29, Theorem 1.1]. Indeed, in this case

the weight |x|β is radial-decreasing. The authors of [29] can thus continue to follow

Adams' proof, which consists in replacing v by its symmetric decreasing rearrangement

v∗ and using a variant of O'Neil's lemma [39] to get appropriate pointwise estimates

on v∗.

If β > 0, the weight |x|β is radial-increasing and thus the rearrangement argument

breaks down. Somewhat counterintuitively, this remains a challenge even if one re-

stricts a priori to radial functions. Indeed, the terms which arise from transforming to

radial variables turn out to have a slightly di�erent structure than the O'Neil's-type

estimate mentioned above, which leads to error terms of a di�erent nature; see Remark

6.4 below for more details. Overcoming the non-availability of the rearrangement ar-

gument just described in the case β > 0 is in fact one of the main achievements of our

proof. We are able to deal with the new error terms through a new improvement of the

well-known Adams-Garsia's lemma [2, Lemma 1] stated as Lemma 6.1 below.

In the setting on Sn of Theorem 1.3 (respectively Theorems 5.2 and 5.3), we strongly

believe that when −n < β < 0, a symmetrization argument can equally allow to drop

the radial symmetry assumption. To our knowledge, this has only been carried out

rigorously for the special case n = 4 and s = 2 in the recent paper [14].

2. Classification results

In this section we prove Theorem 1.1. We split the proof into two propositions to be

proved in the following two subsections.

2.1. The behavior of u − v. The following proposition is the main result of this

subsection.

Proposition 2.1. Let u solve (1.1) and let v be de�ned by (1.10). Then

u(x)− v(x) = p(x) + q

(
x

|x|2

)
+ β ln(|x|)

for some polynomials p, q and some β ∈ R. Moreover, p and q are bounded from above

with deg p, deg q ≤ n− 1. If n is even, then deg p, deg q ≤ n− 2.

Lemma 2.2. The function v de�ned in (1.10) satis�es

(−∆)n/2v = enu on Rn
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in the sense of distributions.

Proof. This proof is very standard and amounts just to reproving that 1
γn

ln( 1
|x−y|)

is the Green's function for (−∆)n/2 on Rn. To emphasize its generality, we write

f := enu ∈ L1(Rn). Let ϕ ∈ C∞0 (Rn). Then by Fubini∫
Rn
v(x)(−∆)n/2ϕ(x) dx =

1

γn

∫
Rn
f(y)

(∫
Rn

ln

(
1 + |y|
|x− y|

)
(−∆)n/2ϕ(x) dx

)
dy.

Firstly, we observe that ∫
Rn

ln(1 + |y|)(−∆)n/2ϕ(x) dx = 0

Then we are left with showing that

1

γn

∫
Rn

ln

(
1

|x− y|

)
(−∆)n/2ϕ(x) dx = ϕ(y).

Since ϕ is smooth, this can be done by spliting the integral into the part over Bε(y)

and over its complement, integrate by parts and use that (−∆)i 1
|x−y| is integrable on

Rn for i = 0, 1, ...,m− 1. �

Lemma 2.3. Let u solve (1.1) and let v be de�ned as in (1.10). Then v(x) ≥ 0 if

|x| ≤ 1. Moreover, for all |x| ≥ 1 we have

v(x) ≥ − Λ

γn
ln(|x|). (2.1)

Proof. The proof of (2.1) is identical to [26, Lemma 3.1]: Let |x| ≥ 1, then

|x− y| ≤ |x|+ |y| ≤ |x|(1 + |y|)

and therefore

ln

(
1 + |y|
|x− y|

)
≥ ln

(
1

|x|

)
.

Similarly, if |x| ≤ 1, we have

|x− y| ≤ |x|+ |y| ≤ 1 + |y|

and therefore

ln

(
1 + |y|
|x− y|

)
≥ ln(1) = 0.

Inserting these estimates into (1.10), we obtain the conclusion. �

We can now give the
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Proof of Proposition 2.1. We �rst prove the proposition under the assumption that

n ≥ 4 is even and then give the necessary modi�cations in case n ≥ 3 is odd.

Step 1. Bôcher's Theorem. By Lemma 2.2, we know that η := u − v satis�es

(−∆)n/2η = 0 on Rn \ {0}. In particular, η is smooth on Rn \ {0}.

Then the generalized Bôcher theorem in [18] (applied on a sequence of balls BR(0)

with radii R tending to ∞) implies that

η = p+
∑

α≤s+n−1

cαD
α ln

(
1

|x|

)
on Rn \ {0},

where p ∈ C∞(Rn) satis�es (−∆)n/2p = 0 on Rn and s is some non-negative integer

such that ∫
B1(0)\{0}

η+(x)|x|s dx <∞.

Using Lemma 2.3 we can estimate, for |x| ≤ 1, η+(x) ≤ u+(x) ≤ enu
+(x). This

is integrable, so we can take s = 0. Since it is easily proved by induction that

Dk ln
(

1
|x|

)
= qk

(
x
|x|2

)
for every |k| ≥ 1, where qk is a polynomial of degree at most

|k|, we conclude that

u(x) = v(x) + p(x) + q

(
x

|x|2

)
+ β ln(|x|) (2.2)

with (−∆)n/2p = 0 on Rn and deg q ≤ n− 1.

Step 2. Inversion.

Again, for de�niteness suppose �rst that n is even. We shall show in this step that

p must be a polynomial of degree at most n − 1 as well. To do so, we make use

of the conformal invariance of (1.1). More precisely, the Kelvin transform ū(x) :=

u
(

x
|x|2

)
− 2 ln(|x|) is also a solution to (1.1) with same mass Λ and, by the above, can

be written as

ū(x) = vū(x) + p̃(x) + q̃

(
x

|x|2

)
+ β̃ ln(|x|),

for some β̃ ∈ R, with vū given by (1.10). Moreover, a change of variables in the

de�nition of v shows the relation

vū(x) = vu

(
x

|x|2

)
− Λ

γn
ln(|x|). (2.3)

Putting these identities together, we �nd

p̃(x) + q̃

(
x

|x|2

)
+

(
β̃ − Λ

γn

)
ln(|x|) = p

(
x

|x|2

)
+ q(x)− β ln(|x|) (2.4)
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for all x 6= 0, where (−∆)n/2p̃ = 0 and deg q̃ ≤ n − 1. We claim that (2.4) implies

q̃ = p. Indeed, by (2.4) we have

lim sup
|x|→∞

p(x)

|x|n−1
= lim sup

|x|→0

|x|n−1p

(
x

|x|2

)
= lim sup

|x|→0

|x|n−1q̃

(
x

|x|2

)
<∞

because deg q̃ ≤ n − 1. Thus p(x) ≤ 1 + |x|n−1 on Rn and the generalized Liouville

theorem [34, Theorem 5] implies that p is a polynomial of degree deg p ≤ n− 1. Once

we know that both q̃ and p must be polynomials, it is straightforward to deduce from

(2.4) that in fact q̃ = p.

(By exchanging the roles of u and ū, we may of course deduce as well that p̃ = q.)

Step 3. Upper-boundedness and optimal degree. We �nish the proof by showing that

p and q are bounded from above. In particular, p and q must be of even degree and

thus deg p, deg q ≤ n−2. Since q = p̃ as in Step 2, it su�ces to prove that p is bounded

from above.

If p is unbounded from above, inspired by lemma 11 in [34], then (see Theorem 3.1 in

[Gorin] and [26, proof of Lemma 3.3]) there is s > 0 and a sequence xk with |xk| → ∞
such that p(xk) ≥ |xk|s. Since deg p ≤ n− 1, we have |∇p(y)| . |y|n−2 for all |y| large
enough. Thus, using also Lemma 2.3, we have

u(x) ≥ p(x) +

(
β − Λ

γn

)
ln(|x|)− C & |xk|s

for all x in a ball Bρk(xk) of radius ρk & |xk|
s

n−2 . Therefore, for some c, d > 0∫
Rn
enudx ≥

∫
Bρk (xk)

enudx ≥ ρnke
nc|xk|s ≥ d|xk|

ns
n−2 enc|xk|

s →∞ as k →∞.

This contradiction proves that p must be bounded from above.

Step 4. n odd. If n is odd, we use that (−∆)
n+1

2 η = 0 in Step 1 instead. Using

the Bôcher theorem as above, we �nd that u satis�es (2.2), but with deg q ≤ n. The

argument from Step 2 then gives deg p ≤ n. Repeating Step 3, p and q are bounded

from above. In particular, they are of even degree, hence deg p, deg q ≤ n− 1. �

2.2. The asymptotic behavior of v at ∞. The purpose of this subsection is to

establish the leading-order behavior of v(x) as |x| → ∞.

Proposition 2.4. lim|x|→∞
vu(x)
ln(|x|) = − Λ

γn
.

We recapitulate in what follows the strategy in [26], which carries over to our case

and yields a proof of Proposition 2.4. In Section 2.3 below we present an alternative

approach, which in our opinion is simpler and more direct, but which does not work

in the general case, except if n = 3, 4.
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Recall that by Lemma 2.3, v(x) ≥ − Λ
γn

ln(|x|) for all |x| ≥ 1. The following lemma

yields a �rst step towards the desired reverse inequality.

Lemma 2.5. For every ε > 0 there is R > 0 such that for all |x| ≥ R

v(x) ≤
(
− Λ

γn
+ ε

)
ln(|x|) +

∫
B(x,1)

ln

(
1

|x− y|

)
enu(y) dy. (2.5)

Proof. See [30, proof of (2.11)]. There n = 4, but the proof is the same for general

dimension n ≥ 3, compare [34, Lemma 9] �

The following lemma corresponds to [26, Lemma 3.5]. (For simplicity, we only consider

a radius equal to one.)

Lemma 2.6. For every t ∈ [1,∞) and ε ∈ (0, Λ
γn

), there is C > 0 such that for all

x ∈ Rn, ∫
B(x,1)

etv(y) dy ≤ C

|x|(
Λ
γn
−ε)t

.

Proof of Lemma 2.6. The proof is identical to [26, Proof of Lemma 3.5], with the only

di�erence that the term |y|nβenu(y) is replaced by enu(y). The proof works exactly the

same because
∫
Rn |y|

nβenu(y) dy is assumed to be �nite in the normalization of [26],

where in our normalization this assumption becomes Λ =
∫
Rn e

nu(y) dy <∞. �

Lemma 2.6 is already enough to prove Proposition 2.4 in the case when the coe�cient

β of ln(|x|) in Proposition 2.1 satis�es β < Λ
γn
.

Proof of Proposition 2.4 in the case β < Λ
γn
. In view of Lemmas 2.3 and 2.5, it re-

mains to control the integral on the right side of (2.5). For this purpose, we claim

that there is r > 1, R > 0 such that for all |x| ≥ R,

‖enu‖Lr(B(x,1)) ≤ C. (2.6)

Indeed, by Hölder's inequality this implies∫
B(x.1)

ln

(
1

|x− y|

)
enu(y) dy ≤

(∫
B(x,1)

(
ln

(
1

|x− y|

)) r
r−1

dy

) r−1
r

‖enu‖Lr(B(x,1)) ≤ C.

(2.7)

Hence

lim sup
|x|→∞

v(x)

ln(|x|)
≤ − Λ

γn
+ ε

and since ε > 0 was arbitrary, the proof is complete.
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We now prove (2.6). Since p and q from Proposition 2.1 are upper-bounded, and by

Lemma 2.6 applied with q = nr,∫
B(x,1)

enru . |x|nβr
∫
B(x,1)

enrv . |x|rn(β− Λ
γn

+ε).

Since β < Λ
γn

by assumption, we can pick ε > 0 so small that β − Λ
γn

+ ε < 0. Thus∫
B(x,1)

enru → 0

as |x| → ∞. In particular (2.6) holds. �

It remains to prove Proposition 2.4 in the case β ≥ Λ
γn
. The additional ingredient for

this is the following Hölder-norm estimate.

Lemma 2.7. Let u solve (1.1) and let v be de�ned by (1.10). Suppose that β ≥ Λ
γn
,

where β is as in Proposition 2.1. Then as |x| → ∞,

[v]C0,(ln(|x|+1))−1
(B(x,1)) = o(ln(|x|+ 1)).

Proof. Again, the proof is identical to [26, proof of Lemma 3.6], up to replacing the

term |y|nβenu(y) by enu(y). One proceeds by �rst proving the Campanato-type estimate

sup
ρ∈(0,4]

1

ρn+ 1
ln(|x|)

∫
B(x,ρ)

∣∣∣∣v(y)− 1

|B(x, ρ)|

∫
B(x,ρ)

v(z) dz

∣∣∣∣ dy → 0, as |x| → ∞,

and then transforming this to the desired Hölder-type bound by a standard argument.

Let us point out that thanks to the classi�cation result from Proposition 2.1 and

upper-boundedness of the polynomial q the bound

enu(y) . |x|nβenv(y)enp(y),

which is used in [26, proof of Lemma 3.6] still holds. Also, the bound from [26, Lemma

3.3] ∫
B(x,ρ)

eqp . |x|n( Λ
γn
−β),

for every q ≥ 1, |x| ≥ 1 and ρ small enough (uniformly in x and ρ), still holds, by the

same proof as given there. �

We can now use Lemma 2.7 to give the proof of Proposition 2.4 in the remaining case

β ≥ Λ
γn
.

Proof of Proposition 2.4 if β ≥ Λ
γn
. By contradiction, in view of Lemma 2.3, assume

that there is δ > 0 and a sequence |xk| → ∞ such that

v(xk) ≥
(
− Λ

γn
+ 3δ

)
ln(|xk|).
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By Lemma 2.7, for any y ∈ B(xk, 1), we have

v(y) = v(xk) + o(ln(|xk|)) ≥
(
− Λ

γn
+ 2δ

)
ln(|xk|).

Thus ∫
B(xk,1)

env(y) dy ≥ |B1||xk|−n( Λ
γn
−2δ).

On the other hand, by Lemma 2.6 with ε = δ,∫
B(xk,1)

env(y) dy . |xk|−n( Λ
γn
−δ),

a contradiction. �

Proof of Theorem 1.1. Theorem 1.1 follows from Propositions 2.1 and 2.4. �

2.3. The asymptotic behavior of v at ∞: an alternative approach. Given the

relatively lengthy and involved proof of Proposition 2.4 in the previous subsection,

we think that it is interesting to mention here an alternative strategy to �nd the

asymptotic behavior of v at ∞. It exploits the conformal invariance of equation (1.1)

and relies on the following simple-looking property of polynomials on Rn.

Conjecture 2.8. Let q be a polynomial on Rn. If σ > −n is such that
∫
Rn\B1

|x|σeq(x) dx <

∞, then there is ε > 0 such that
∫
Rn\B1

|x|σ+εeq(x) dx <∞.

Admitting that Conjecture 2.8 is true, a straightforward proof of Proposition 2.4 goes

as follows.

Proof of Proposition 2.4 given Conjecture 2.8. By conformal invariance, ū = u(x/|x|2)−
2 ln(|x|), is again a solution to (1.1). In view of (2.3), it su�ces to prove that vū is

bounded near 0. After exchanging ū for u, this follows from the de�nition (1.10) of v,

if we can show. ∫
B1

ensu(x) dx <∞ (2.8)

for some s > 1.

By the classi�cation result from Proposition 2.1, we have

ensu = ensv|x|nβsens(p(x)+q(x/|x|2)). (2.9)

Since p and q are bounded from above, the last factor is uniformly bounded on B1.

Moreover, arguing as in [26, Proof of Theorem 2.1], for every t > 1 we have∫
B1

entv(x) dx <∞. (2.10)

If β > −1,we thus have ensu ∈ L1(B1) by Hölder, for s > 1 small enough that βs > −1.
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We may thus assume in what follows that β ≤ −1 and observe that v ≥ 0 on B1,

because

ln

(
1 + |y|
|x− y|

)
≥ 0 for every x ∈ B1, y ∈ Rn.

By integrability of enu, boundedness of p and Lemma 2.3 we thus have

∞ >

∫
Rn
enu ≥

∫
B1

|x|nβenq
(

x
|x|2

)
dx =

∫
Rn\B1

|x|−n(β+2)enq(x) dx.

By Conjecture 2.8, there is ε > 0 such that

∞ >

∫
Rn\B1

|x|−n(β−ε+2)enq(x) dx =

∫
B1

|x|n(β−ε)e
−nq( x

|x|2
)
dx.

Using this together with (2.10) and upper-boundedness of p and q, we easily infer from

(2.9) and Hölder that ensu ∈ L1(B1) for every 1 < s < β−ε
β
. This completes the proof

of (2.8), and thus of Proposition 2.4. �

We are unfortunately not able to prove Conjecture 2.8 for general polynomials q. But

we have the following partial result.

Proposition 2.9. Suppose either that deg q ≤ 3, or that{
there is k ∈ [0, n] such that q(x) does not depend on z := (xk+1, ..., xn)

and q(y)→ −∞ as y := (x1, ..., xk)→∞.
(2.11)

Then Conjecture 2.8 holds.

The choices k = 0 and k = n in (2.11) cover the cases of polynomials which are

constant, respectively tend to −∞.

On the other hand, an example of a polynomial q which is not covered by the assump-

tion of Proposition 2.9 is given by q(x) = −x2
1x

2
2−x2

2x
2
3− ...−x2

n−1x
2
n. This polynomial

is bounded above and depends non-trivially on all variables, but it does not tend to

−∞ as |x| → ∞ because it vanishes on every coordinate axis.

We point out that if n = 3, 4, then the asymptotic polynomial q of any solution u

to (1.1) satis�es deg q ≤ 2 by Proposition 2.1. Therefore the alternative approach

presented in this subsection yields a complete proof of Proposition 2.4 in dimensions

n = 3, 4.

Proof of Proposition 2.9. We claim that under assumption (2.11), the integral
∫
Rn\B1

|x|σeq(x) dx

is �nite if and only if

σ < −n+ k. (2.12)

Clearly, this implies Conjecture (2.8).
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Let us �rst prove the 'only if' part. Writing Bk
1 for the unit ball of Rk, we observe

that Rk \Bk
1 × Rn−k \Bn−k

1 ⊂ Rn \B1. Therefore �niteness of the integral implies

∞ >

∫
Rn\B1

|x|σeq(x) dx ≥
∫
Rk\Bk1

eq(y)

(∫
Rn−k\Bn−k

(|y|2 + |z|2)σ/2 dz

)
dy

Thus for a.e. y ∈ Rk \Bk
1 , we must have∫

Rn−k\Bn−k
(|y|2 + |z|2)σ/2 dz <∞.

which yields (2.12).

Conversely, suppose that (2.12) holds. Then∫
Rn\B1

|x|σeq(x) dx =

∫
Rk\Bk1

eq(y)

(∫
Rn−k

(|y|2 + |z|2)σ/2) dz

)
dy

+

∫
Bk1

eq(y)

∫
Rn−k\Bn−k√

1−|y|2

(|y|2 + |z|2)σ/2 dz

 dy.

The �rst summand equals∫
Rk\Bk1

eq(y)|y|(n−k)+σ

(∫
Rn−k

(1 + |z|2)σ/2 dz

)
dy <∞,

since by (2.11), [20, Theorem 3.1] yields q(y) . −|y|s + C for some s > 0 as |y| → ∞
on Rk and since by (2.12), ∫

Rn−k
(1 + |z|2)σ/2 dz <∞.

To bound the second summand, we need to control the dz-integral as |y| → 0. We

compute, for |y| small enough,∫
Rn−k\Bn−k√

1−|y|2

(|y|2 + |z|2)σ/2 dz

≤ |y|n−k+σ

∫
Rn−k\B√

1−|y|2
|y|2

|z|σ/2 dz

≤ |Sn−k−1||y|n−k+σ

(
2

|y|

)n−k+σ

. 1

as |y| → 0. Hence the second summand is bounded as well, which completes the proof

of the claimed equivalence.

Finally, assume that deg q ≤ 3. Arguing as in Step 3 of the proof of Proposition 2.1,

we �nd that if
∫
Rn\B1

|x|σenq(x) dx < ∞, then q must be upper-bounded, and hence
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have even degree. If deg q = 0, assumption (2.11) holds with k = 0. If deg q = 2, then

q can be written, up to an orthogonal coordinate transformation, as

q(x) = −
n∑
i=1

ai(xi − x0)2 + c0,

for some ai ≥ 0. Thus assumption (2.11) holds as well, with k being the number of

non-zero coe�cients ai. �

3. The setting on the sphere Sn

To facilitate the variational argument leading to Theorem 1.2, we shall pass to an

equivalent problem on the sphere Sn = {x ∈ Rn+1 : |x| = 1}. In this brief section, we

introduce the necessary preliminaries for this.

Let us denote S : Rn → Sn ⊂ Rn+1 the inverse stereographic projection, i.e.

Sj(x) =
2xj

1 + |x|2
, j = 1, . . . , n , Sn+1(x) =

1− |x|2

1 + |x|2
.

We denote its Jacobian in a point x ∈ Rn by JS(x) := (2/(1 + |x|2))n and that of S−1

in a point η ∈ Sn by JS−1(η). Moreover, we call a function v on Sn radial if v(S(x))

is a radial function on Rn.

We now introduce the di�erential operators P2s mentioned in the introduction. For

this, recall that every u ∈ L2(Sn) can be uniquely written as

u =
∞∑
l=0

Nl∑
m=1

ulmYlm for some ulm ∈ R. (3.1)

Here Ylm are a �xed L2(Sn)-orthonormal basis of spherical harmonics, i.e. eigenfunc-

tions of the Laplace-Beltrami operator (−∆)Sn satisfying (−∆)SnYlm = λlYlm, with

λl = l(l + n − 1) being the l-th eigenvalue of multiplicity Nl ∈ N. For s > 0, we

introduce the 2s-th order Paneitz operator P2s by de�ning

P2su :=
∑
l,m

Γ(l + n
2

+ s)

Γ(l + n
2
− s)

ulmYlm (3.2)

for every u ∈ L2(Sn) such that the right side converges in L2(Sn). Here and below, the

sum is the same as in (3.1) and we interpret Γ(−n)−1 = 0 for n ∈ N0. A conventional

alternative expression for P2s in terms of (−∆)Sn is

A2s =
Γ(B + 1

2
+ s)

Γ(B + 1
2
− s)

, for B =

√
−∆Sn + (n−1)2

4
. (3.3)
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It is clear from (3.2) that for s ∈ (0, n/2], the operator P2s is nonnegative. Thus we

may de�ne its square root by

P
1/2
2s u :=

∑
l,m

(
Γ(l + n

2
+ s)

Γ(l + n
2
− s)

)1/2

ulmYlm (3.4)

for every u such that the right side converges in L2(Sn).

A crucial feature of P2s is its conformal transformation property (see e.g. [19, eq.

(4.11)])

(−∆)s(J
n−2s

2n
S u ◦ S) = JS(x)

n+2s
2n ((P2su) ◦ S) (x) for every u ∈ C∞(Sn). (3.5)

In particular, for s = n/2, writing w = u ◦ S, (3.5) implies∫
Sn
|P 1/2
n u|2 =

∫
Sn
uPnu =

∫
Rn
w ((Pnu) ◦ S) JS =

∫
Rn
w(−∆)n/2w. (3.6)

We �nish by de�ning the Sobolev space

Hn/2(Sn) :=
{
u ∈ L2(Sn) : ‖u‖2

Hn/2(Sn) := ‖u‖2
L2(Sn) + ‖P 1/2

n u‖2
L2(Sn) <∞

}
(3.7)

which will play a role in the proof of Theorem 1.2. By (3.4) and Stirling's formula,

the norm ‖u‖Hn/2(Sn) is equivalent to the standard H
n/2(Sn) norm (

∑
l,m l

nu2
lm)1/2. We

denote by H
n/2
rad

(Sn) the subspace of Hn/2(Sn) consisting of radial functions.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 using a variational argument, which, similarly

to earlier works like [10] and [23], it is convenient to carry out on the n-dimensional

sphere Sn.

We divide the proof into several steps.

Proof of Theorem 1.2. Step 1. Reduction to a variational equation.

Let Λ > 0, β ∈ R and p, q (radial polynomials of degree at most n−1 tending to −∞)

be given as in the statement of Theorem 1.2.

Moreover, �x a function u0 ∈ C∞(Rn) such that u0(x) = − ln(|x|) for all |x| ≥ 1 and

denote ϕ0 := (−∆)−n/2u0.

Let

K(x) := |x|nβ exp

(
n

(
p(x) + q

(
x

|x|2

)
+

Λ

γn
u0

))
.

For w ∈ Hn/2(Rn), let cw ∈ R be the unique number such that∫
Rn
Ken(w+cw) = Λ, i.e. encw =

Λ∫
Rn Ke

nw
.
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Equipped with these notations, we claim that to prove Theorem 1.2, it su�ces to �nd

w ∈ Hn/2(Rn) with w(x) = o (ln(|x|)) as |x| → ∞ such that

(−∆)n/2w = Ken(w+cw) − Λ

γn
ϕ0. (4.1)

Indeed, then

u(x) := w(x) + p(x) + q

(
x

|x|2

)
+ β ln(|x|) +

Λ

γn
u0(x) + cw

ful�lls

(−∆)n/2u(x) = (−∆)n/2w(x) +
Λ

γn
ϕ0 = Ken(w+cw) = enu

as well as ∫
Rn
enu =

∫
Rn
Ken(w+cw) = Λ.

Step 2. Transforming to the sphere.

Set

Q := JS−1K ◦ S−1, ψ0 := JS−1ϕ0 ◦ S−1

so that
∫
Rn Ke

nw =
∫
Sn Qe

nu. By (3.5), equation (4.1) is then equivalent to

Pnu = − Λ

γn
ψ0 + Λ

Qenu∫
Sn Qe

nu
. (4.2)

Solutions to (4.2) are given by critical points of the functional

I[u] :=
1

2
‖P 1/2

n u‖2 +
Λ

γn

∫
Sn
ψ0u−

Λ

n
ln

(∫
Sn
Qenu

)
.

We will �nd such a critical point by solving the variational problem

inf
{
I[u] : u ∈ Hn/2

rad
(Sn)

}
. (4.3)

Notice that the in�mum is taken over radial functions only.

We claim that any minimizer u0 of (4.3) is a critical point of I[u], i.e. for any test

function φ ∈ Hn/2(Sn), it satis�es∫
Rn
P 1/2
n u0P

1/2
n φ+

Λ

γn

∫
Sn
ψ0φ−

Λ∫
Sn Qe

nu0

∫
Sn
Qenu0φ = 0. (4.4)

If φ is itself radial, this is clear because u0 is a minimizer over radial functions. The

validity of (4.4) for general φ ∈ Hn/2(Sn) follows since u0, ψ0 and q are radial and

because Pn preserves radial functions.

Step 3. Minimizing I[u].

As explained in the previous step, it remains to prove that a minimizer for the prob-

lem (4.3) exists. We shall give the proof using the direct method of the calculus of
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variations, making crucial use of the improved Moser-Trudinger inequality in the form

of Theorem 1.3.

Indeed, we claim that there is a constant C > 0 only depending on n, q and Λ such

that

I[u] ≥ 1

4
‖P 1/2

n u‖2
2 − C (4.5)

for all u ∈ Hn/2
rad

(Sn). To prove (4.5), �rst note that P
1/2
n c = 0 and

I[u+ c] = I[u], for any constant c ∈ R, (4.6)

as a consequence of the fact that
∫
Sn ψ0 =

∫
Rn ϕ0 = γn, see [23, Lemma 2.3]. Thus we

may assume
∫
Sn u = 0. For such u, the Poincaré-type inequality

‖u‖2
2 ≤ C‖P 1/2

n u‖2
2, (4.7)

holds as a consequence of the de�nition of P
1/2
n in (3.4). Thus we can bound the

subcritical term by

Λ

γn

∣∣∣∣∫
Sn
ψ0u

∣∣∣∣ ≤ C‖ψ0‖2‖P 1/2
n u‖2 ≤

1

4
‖P 1/2

n u‖2
2 + C‖ψ0‖2

2.

Next, we bound the critical term ln
(∫

Sn Qe
nu
)
as follows. For any γ > 0, nu ≤

n2

4γ
‖P 1/2

n u‖2
2 + γ u2

‖P 1/2
n u‖22

. Hence∫
Sn
Qenu ≤ exp

(
n2

4γ
‖P 1/2

n u‖2
2

)∫
Sn
Qe

γ u2

‖P1/2
n u‖22 .

Thus, by Theorem 1.3 with s = n/2, since Q(η) ≤ C exp−d(η, S)−σd(η,N)β for any

β > 0, we have for any γ > 0 that

Λ

n
ln

(∫
Sn
Qenu

)
≤ C +

nΛ

4γ
‖P 1/2

n u‖2
2.

Choosing γ > 0 so large that nΛ
4γ
< 1

4
and combining the above estimates, (4.5) follows.

We can now prove that (4.3) admits a minimizer. Let (uk)k∈N ⊂ H
n/2
rad

(Sn) be a

minimizing sequence for (4.3). By (4.6), we may again assume that
∫
Sn uk = 0 for

all k ∈ N. By (4.5), ‖P 1/2
n uk‖2 is uniformly bounded. By (4.7), so is ‖uk‖2, and

hence (uk) is uniformly bounded in H
n/2
rad

(Sn). Up to extracting a subsequence, we

may therefore assume un ⇀ u0 for some u0 ∈ Hn/2
rad

(Sn).

Then

‖u0‖Hn/2(Sn) ≤ lim inf
k→∞

‖uk‖Hn/2(Sn).

Moreover, since u 7→ u and u 7→ eu de�nes compact embeddings from Hn/2(Sn) into

L2(Sn) (for the latter property see [28, Proposition 7]),

‖u0‖2 = lim
k→∞
‖uk‖2,

∫
Sn
ψ0u0 = lim

k→∞

∫
Sn
ψ0uk
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and

ln

(∫
Sn
Qenu0

)
= lim

k→∞
ln

(∫
Sn
Qenuk

)
.

In view of the de�nition of ‖u‖Hn/2 in (3.7), this implies

‖P 1/2
n u0‖2 ≤ lim inf

k→∞
‖P 1/2

n uk‖2

and thus u0 is a minimizer for I0.

Step 4. Regularity

The argument that provides regularity is identical to [23]. Somewhat more precisely, by

using the regularity theory for Pn that can easily be deduced from its representation

on spherical harmonics [23, Lemmas 2.5 and 2.6] together with the fact that ψ0 ∈
C2n+1(Sn), one proves u0 ∈ C2n+1(Sn). Since u0 is continuous at the south pole,

the function w0 := u0 ◦ S has a limit at in�nity, in particular the condition w(x) =

o (ln(|x|)) as |x| → ∞ is satis�ed. Moreover, w0 ful�lls

(−∆)n/2w0 = Ken(w0+cw0 ) − Λ

γn
ϕ0.

Since ϕ0 ∈ C∞(Rn), bootstrapping gives w0 ∈ C∞(Rn). Thus we have found a solution

w = w0 as described in Step 1 and the proof is complete. �

Proof of Theorem 1.2(b). For Λ < Λ1(1 + β), the proof of part (b) is identical to

the proof of (a), except for the use of Theorem 1.3. Indeed, in this case we have

Q(η) ≤ Cdist(η,N)nβe−dist(η,S)−σ for some σ > 0 and some given β > −1. Theorem

1.3 thus yields
Λ

n
ln

(∫
Sn
Qenu

)
≤ C +

nΛ

4γ
‖P 1/2

n u‖2,

with

γ =
n+ β

|Sn−1|
K−2
n,n

2
.

Since Λ < (1 + β)Λ1, recalling the numerical values of Λ1 and Kn,n/2 given in (1.6)

and (1.14), a direct computation shows that

δ :=
1

2
− nΛ

4γ
> 0.

The rest of the proof for the subcritical case Λ < Λ1(1 + β) proceeds as above.

In the critical case Λ = Λ1(1 + β), our argument clearly breaks down. But we can

take a sequence of solutions uk having mass Λk ↗ Λ1(1 + β) and pass to the limit

k → ∞. Since q ≡ 0, we are in the setting of [26, Proof of Theorem 1.2], and we

can use their argument to conclude the existence of a solution u having the limit

mass Λ = Λ1(1 + β). Indeed, the argument in [26] is written for the special case

p(x) = −|x|2. But it su�ces to observe that the assertion of [26, Proposition A.2]

continues to hold for every p which is radial-decreasing. Namely, if u solves (1.1) and
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(1.11) with q ≡ 0 and p radial-decreasing, then the Pohozaev identity [26, Proposition

A.1] implies

Λ

γn
(Λ− 2γn) = 2βΛ + 2

∫
Rn
x · ∇p(x)K(x)enu(x).

Now if p is non-constant radial-decreasing, the last summand is strictly negative, which

after rearranging terms yields the strict inequality

Λ < Λ1(1 + β).

As in [26], this can be used to lead [26, eq. (28)] to a contradiction and then conclude.

�

5. Proof of Theorems 1.3 and 1.4

We now turn to prove the Moser-Trudinger inequalities from Theorems 1.3 and 1.4.

As brie�y explained in the introduction, following Adams' classical paper [2] we shall

derive them from a dual inequality on convolution-type operators which we introduce

now in detail.

Let s ∈ (0, n). For f ∈ Ln
s (Sn), we denote

Tf(η) :=

∫
Sn
k(η, ξ)f(ξ) dσ(ξ). (5.1)

Here we assume that the kernel k(η, ξ) satis�es

k(η, ξ) = d(η, ξ)−n+s (1 +O (d(η, ξ))α) . (5.2)

for some �xed constant α > 0. (We denote by O(d(η, ξ)α) a quantity h(η, ξ) with the

property that |h(η, ξ)|d(η, ξ)−α is bounded uniformly in η, ξ ∈ Sn with η 6= ξ.)

Moreover, we assume that k(η, ξ) only depends on the geodesic distance d(η, ξ). As a

consequence, by change of variables, Tf is radial (in the sense given in Section 3) if f

is.

We are going to prove the following weighted Moser-Trudinger-Adams inequality of

convolution type, valid for radial functions.

Theorem 5.1. Let Q be as in (1.13) and let T be given by (5.1), for some k satisfying

(5.2). Then there is C > 0 such that∫
Sn

exp

(
n+ β

|Sn−1|
|Tf |

n
n−s

)
Q(η) ≤ C

uniformly for f ∈ L
n
s
rad

(Sn) with ‖f‖
L
n
s (Sn)

≤ 1. Moreover, the constant n+β
|Sn−1| is sharp,

in the sense that if it is replaced by γ > n+β
|Sn−1| , then the constant C is no longer uniform

in f .
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As in Adams' paper [2], we may deduce from this the Moser-Trudinger-Adams in-

equality in its di�erential form, more precisely Theorem 1.4 and the following two

theorems. Recall that the constant Kn,s is given in (1.14) and that the operators Ps
and P

1/2
2s are de�ned in (3.2) and (3.4).

Theorem 5.2. Let s ∈ (0, n
2
] and let Q be as in (1.13). Then there is C > 0 such that∫

Sn
exp

(
n+ β

|Sn−1|
K
− n
n−s

n,s |u|
n
n−s

)
Q(η) ≤ C. (5.3)

uniformly for u ∈ C∞(Sn) radial with ‖P 1/2
2s u‖Ln/s(Sn) ≤ 1. If s = n/2, we assume

additionally
∫
Sn u = 0. Moreover, the constant n+β

|Sn−1|K
− n
n−s

n is sharp in the sense that

if it is replaced by γ > n+β
|Sn−1|K

− n
n−s

n,s , then the constant C is no longer uniform in u.

Clearly, Theorem 5.2 contains Theorem 1.3 as its special case s = n/2.

Theorem 5.3. Let s ∈ (0, n) and let Q be as in (1.13). Then there is C > 0 such

that ∫
Sn

exp

(
n+ β

|Sn−1|
K
− n
n−s

n,s |u|
n
n−s

)
Q(η) ≤ C. (5.4)

uniformly for u ∈ C∞(Sn) radial with ‖Psu‖Ln/s(Sn) ≤ 1. Moreover, the constant
n+β
|Sn−1|K

− n
n−s

n is sharp in the sense that if it is replaced by γ > n+β
|Sn−1|K

− n
n−s

n,s , then the

constant C is no longer uniform in u.

Indeed, Theorems 5.2 and 5.3 follow from Theorem 5.1 by expressing u using the

Green's function of the operators P
1/2
2s and Ps respectively. It only remains to check

that the resulting convolution integral satis�es (5.1) and (5.2), with f = P
1/2
2s u and

f = Psu, respectively.

5.1. Estimates on the Green's function and proof of Theorem 1.3. In this

subsection, we prove the following expansion of the Green's functions of P
1/2
2s and Ps,

which allows us to deduce Theorem 1.3, 5.2 and 5.3 from Theorem 5.1. We recall that

the operators Ps and P
1/2
2s have been de�ned in (3.2) and (3.4) respectively.

Lemma 5.4. Let 0 < s ≤ n
2
. There exists a function Gs : Sn × Sn → R with the

following properties.

(1) For every u ∈ C∞(Sn) (with
∫
Sn u = 0 if s = n

2
), one has

u(η) =

∫
Sn
Gs(η, ξ)P

1/2
2s u(ξ) dσ(ξ),

(2) For every f ∈ C∞(Sn), the function u(η) :=
∫
Sn Gs(η, ξ)f(ξ) satis�es u ∈

C∞(Sn) (and
∫
Sn u = 0 if s = n

2
) and P

1/2
2s u = f .
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(3) Gs(η, ξ) only depends on d(η, ξ). Near the diagonal, one has the expansion

Gs(η, ξ) = Kn,sd(η, ξ)−n+s (1 +O (d(η, ξ))α) , (5.5)

for some α > 0.

Moreover, the same statements hold (without the condition that
∫
u = 0) if P

1/2
2s is

replaced by Ps, and s ∈ (0, n).

For Ps for s ∈ (0, n), Lemma 5.4 follows directly from the fact that the Green's function

of Ps is explicitly given by

Gs(η, ξ) = Kn,s|η − ξ|−n+s, (5.6)

see e.g. [5].

For P
1/2
2s and s ∈ (0, n/2], the argument is a generalization of the case s = n

2
, see the

proof of [38, Proposition 2.2].

Proof. Let us assume that s < n
2
, the proof is readily the same if s = n

2
by adding the

mean value. Let w ∈ C∞(Sn), we have

w(η) =

∫
Sn
G(η, ξ)(P2sw)(ξ) dσ(ξ),

where G is the Green function of P2s. By self-adjointness of P2s we have

w(η) =

∫
Sn

(P
1
2

2sG)(η, ξ)(P
1
2

2sw)(ξ) dσ(ξ).

Thus Gs = P
1
2

2sG is the function we are looking for. Let us check the estimate along

the diagonal. By classical result on pseudo-di�erential operators, see [1], the principal

symbols satisfy σ(P
1
2

2s) = σ(P2s)
1
2 , hence P

1
2

2s = (−∆Sn)s/2 + lower order operator. By

using (5.6) (respectively G(η, ξ) = Kn,s ln
(

1
d(η,ξ)

)
+ O(1) for s = n/2), we easily

deduce the desired estimate. �

Proof of Theorem 5.2 and Theorem 5.3. We only prove Theorem 5.2, since the proof

of Theorem 5.3 is identical after replacing P
1/2
2s by Ps. Under the assumptions of

Theorem 5.2, by Lemma 5.4 we may write

u(η) =

∫
Sn
Gs(η, ξ)f(ξ) dξ =: Tf(η), (5.7)

where f := P
1/2
2s u and Gs(η, ξ) is the Green's function associated with P

1/2
2s .

Still by Lemma 5.4, the kernel k(η, ξ) = Gs(η, ξ) satis�es (5.2). Moreover, ‖f‖Ln/s(Sn) =

‖P 1/2
2s u‖Ln/s(Sn) ≤ 1 by assumption. Hence∫

Sn
exp

(
n+ β

|Sn−1|
|u|

n
n−s

)
Q(η) dσ(η) =

∫
Sn

exp

(
n+ β

|Sn−1|
|Tf |

n
n−s

)
Q(η) dσ(η) ≤ C
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by Theorem 5.1.

The sharpness of the constant is again a direct consequence of the sharpness statement

in Theorem 5.1. Indeed, let γ > n+β
|Sn−1| .Then by Theorem 5.1 there exist fk radial with

‖fk‖Ln/s(Sn) ≤ 1 such that ∫
Sn

exp
(
γ|uk|

n
n−s

)
Q(η) dη →∞

as k →∞, where we wrote uk := Tfk with Tfk de�ned as in (5.7). Since uk are radial

and ‖P 1/2
2s uk‖Ln/s(Sn) = ‖fk‖Ln/s(Sn) ≤ 1, this completes the proof. �

6. Proof of Theorem 5.1

6.1. An improved Adams' lemma. The core of the proof of Theorem 5.1 is the

following one-dimensional calculus lemma stated as Lemma 6.1 below. To state it, for

p > 1 we denote by p′ = p
p−1

the Hölder conjugate exponent of p.

Lemma 6.1. Let 1 < p <∞, and let a : R× [0,∞)→ [0,∞) be a function such that

a(w, t) ≤

{
1 + g(w, t) for w ∈ [0, t],

h(w, t) for w ∈ R \ [0, t],

for some non-negative functions g(w, t) and h(w, t) with the property that∫ t

0

g(w, t) + g(w, t)p
′
dw +

∫
R\[0,t]

h(w, t)p
′
dw ≤ b <∞, (6.1)

uniformly in t ∈ [0,∞).

For φ : R→ (0,∞) satisfying
∫
R φ(w)p dw ≤ 1, let

F (t) :=

(∫
R
a(w, t)φ(w) dw

)p′
− t.

Then for every α̃ > 0 there is C > 0 not depending on φ such that∫ ∞
0

e−α̃F (t) dt ≤ C.

In its basic form, i.e. with g(w, t) ≡ h(w, t) ≡ 0, this lemma goes back to Moser

[37]. The inclusion of the term h(w, t), which is of fundamental importance, is due to

Adams [2, Lemma 1]. Adams' version has since been extended in various directions,

among others, in [15, 3, 16]. Our new observation is that the error term g(w, t) below

may depend on t as long as g(·, t) satis�es suitable integral bounds on the interval

[0, t], uniformly in t > 0. A typical example of an error term satisfying (6.1) below,

and in fact the one we shall use in the simplest case of the proof of Theorem 5.1, would

be

g(w, t) = Ce−w + Cew−t,
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Indeed, [15, 16] are able deal with a term of type e−w, which arises essentially from the

error term in (5.2). The second type ew−t only arises in our case, as a consequence of

the lack of a rearrangement argument, as explained in the introduction. Notice that

this term cannot be estimated (for w ∈ [0, t], uniformly in t > 0) by any integrable

function of w alone. However, as we check in the following, the proof of Adams'

lemma allows to include such a term as well. We believe that this observation can be

useful in a wider context to prove Moser�Trudinger-type inequalities in settings where

rearrangement is not available, notably in the presence of weights.

Our proof follows Adams' paper [2, proof of Lemma 1]. The adaptations we make are

close to [15, proof of Lemma 3.2]. Because of these similarities, we only give a sketch

of the proof of Lemma 6.1. The reader may consult [2, 15] for more details.

Proof. For λ ∈ R we set Eλ := {t ≥ 0 : F (t) ≤ λ} and denote by |Eλ| its Lebesgue
measure. Since ∫ ∞

0

e−α̃F (t) dt = α̃

∫
R
|Eλ|e−α̃λ dλ,

the lemma clearly follows if we can prove the following two assertions.

(a) There is c > 0 such that F (t) ≥ −c for all t ≥ 0. Moreover, if t ∈ Eλ, then
there are constants d,A,B such that

(t+ d)1/p

(∫
R\[0,t]

φ(w)p dw

)1/p

≤ A|λ|1/p +B. (6.2)

(b) There are constants C,D such that for every λ ≥ −c,

|Eλ| ≤ C|λ|+D.

Proof of (a). Let t ∈ Eλ. Then by the de�nition of Eλ, the bound on a(w, t) and

Hölder's inequality,

t− λ ≤
(∫

R
a(w, t)φ(w) dw

)p′

≤

(
(1− L(t)p)1/p

(∫ t

0

(1 + g(w, t))p
′
dw

)1/p′

+ L(t)

(∫
R\[0,t]

h(w, t)p
′
dw

)1/p′
)p′

,

where we abbreviated

L(t) :=

(∫
R\[0,t]

φ(w)p dw

)1/p

.

The assumptions on g imply that∫ t

0

(1 + g(w, t))p
′
ds ≤ t+ d,
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where d is a constant only depending on b. We thus obtain

t− λ ≤
(

(1− L(t)p)1/p(t+ d)1/p′ + bL(t)
)p′

.

This is the same estimate as [2, eq. (15)]. Now both assertions of (a) follow by arguing

as in [2].

Proof of (b). Suppose that t1, t2 ∈ Eλ are such that λ < t1 < t2. We shall show that

t2 − t1 ≤ C|λ| for all λ large enough, which clearly implies (b). Indeed, similarly to

the above

(t2 − λ)1/p′ ≤
(∫ t1

0

(1 + g(w, t2))p
′
dw

)1/p′ (∫ t1

0

φ(w)p dw

)1/p

+

(∫ t2

t1

(1 + g(w, t2))p
′
dw

)1/p′

L(t2) +

(∫ t2

t1

h(w, t)p
′
dw

)1/2

L(t2).

By the assumptions on g(w, t) we can estimate∫ t1

0

(1 + g(w, t2))p
′
dw = t1 + d

∫ t2

0

g(w, t) dw + d

∫ t2

0

g(w, t)p
′
dw ≤ t1 + d

and, analogously,(∫ t2

t1

(1 + g(w, t2))p
′
dw

)1/p′

≤ (t2 − t1 + d)1/p′ ≤ (t2 − t1)1/p′ + d1/p′ .

Combining everything and abbreviating δ := (t2 − t1)1/p′ , we obtain

t2 − λ ≤
(

(t1 + d)1/p′ + (δ + b)L(t1)
)p′

Again, this is the same estimate that occurs in [2]. Using the inequality (6.2) from (a)

permits to conclude as in [2]. �

6.2. Transforming to Rn. As a �rst step in the proof of Theorem 5.1, we recast the

setting on Rn using stereographic projection.

We �rst observe dSn(η, ξ) = |η − ξ|(1 + O(|η − ξ|α)) for suitable α > 0 (Here |η − ξ|
denotes the distance in Rn+1.) Together with (5.2), up to taking a smaller α > 0, it is

easy to deduce from this that Tf de�ned by (5.1) satis�es

Tf(η) ≤
∫
Sn
|η − ξ|−n+s (1 + C|η − ξ|α) f(ξ) dσ(ξ). (6.3)

Now de�ne

f̃(x) := f(S(x))JS(x)
s
n ,

so that ‖f̃‖
L
n
s (Rn)

= ‖f‖
L
n
s (Sn)

. Since the distance transforms as

|S(x)− S(y)| = JS(x)1/2n|x− y|JS(y)1/2n,
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by change of variables we obtain from (6.3) that

T̃ f̃(x) := Tf(S(x)) ≤
∫
Rn
|S(x)− S(y)|−n+s (1 + C|S(x)− S(y)|α) f̃(y)JS(y)

n−s
n dy

=

∫
Rn
|x− y|−n+s

(
1 + |x|2

1 + |y|2

)n−s
2 (

1 + C|x− y|α
(
(1 + |x|2)(1 + |y|2)

)−α
2

)
f̃(y) dy.

By the same change of variables in the integral appearing in Theorem 5.1, we see that

it su�ces to prove ∫
Rn

exp

(
n+ β

|Sn−1|
|T̃ f̃ |

n
n−s

)
K(x) dx ≤ C (6.4)

uniformly in f̃ ∈ L
n
s
rad

(Rn) with ‖f̃‖n
s
≤ 1. Here K(x) := Q(S(x))JS(x) satis�es

K(x) ≤ C|x|β exp(−|x|σ) (6.5)

for some C, σ > 0, β ∈ R.

6.3. Reducing to a local inequality. In this and the following sections, we will

work exclusively in the setting of Rn. For ease of notation, we will drop the tilde and

write henceforth, in view of the estimate in the previous section,

Tf(x) =

∫
Rn
|x− y|−n+s

(
1 + |x|2

1 + |y|2

)n−s
2

f(y) dy

+ C

∫
Rn
|x− y|−n+s+α (1 + |x|2)

n−s−α
2

(1 + |y|2)
n−s+α

2

f(y) dy.

(6.6)

We may and will always assume without explicit mention that f ≥ 0 and that α > 0

is so small that n− s− α > 0.

In this step we will use the exponential decay at in�nity of the weight K to control

the integral in (6.4) in the region Rn \B1. Indeed, this is a simple consequence of the

following pointwise bound.

Lemma 6.2. Let Tf be de�ned by (6.6) for some f ∈ L
n
s
rad

(Rn). Then there is C > 0

not depending on f such that

Tf(x) ≤ C(1 + ln(|x|)) for all |x| ≥ 1.

Using this growth bound and (6.5), we �nd that∫
Rn\B1

exp

(
n+ β

|Sn−1|
|Tf |

n
n−s

)
K(x) dx ≤ C

∫
Rn\B1

exp
(
C(1− |x|σ/2

)
dx ≤ C

uniformly in f . Hence in what follows, we will only need to prove the local inequal-

ity ∫
B1

exp

(
n+ β

|Sn−1|
|Tf |

n
n−s

)
K(x) dx ≤ C.
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Proof of Lemma 6.2. Let us prove that the �rst summand of Tf(x) in (6.6) satis�ed

the claimed bound. In radial variables r = |x| and ρ = |y|, it reads∫ ∞
0

(∫
Sn−1

|re1 − ρω|−n+s dσ(ω)

)(
1 + r2

1 + ρ2

)n−s
2

f(ρ)ρn−1 dρ

= |Sn−1|r−n+s

∫ r

0

gn−s

(ρ
r

)(1 + r2

1 + ρ2

)n−s
2

f(ρ)ρn−1 dρ

+ |Sn−1|
∫ ∞
r

gn−s

(
r

ρ

)(
1 + r2

1 + ρ2

)n−s
2

f(ρ)ρs−1 dρ,

where gn−s is as in Lemma 6.3 below. First suppose that s > 1, then by Lemma 6.3,

gn−s is bounded on [0, 1]. Thus, using that
∫∞

0
f(ρ)

n
s ρn−1 dρ . 1, by Hölder we get

that the �rst summand of Tf(x) is bounded by a constant times(∫ r

0

ρn−1

(1 + ρ2)n/2
dρ

)n−s
n

+ (1 + r2)
n−s

2

(∫ ∞
r

ρ−1

(1 + ρ2)n/2
dρ

)n−s
n

.

Since ∫ r

0

ρn−1

(1 + ρ2)n/2
dρ ≤ C(1 + ln(r))

and ∫ ∞
r

ρ−1

(1 + ρ2)n/2
dρ ≤ Cr−n

for every r ≥ 1, we obtain the conclusion.

If s < 1, then by Lemma 6.3, gn−s(R) ≤ C(1 − R)s−1. Inserting this bound and

arguing as before, by Hölder the �rst summand of Tf(x) is bounded by a constant

times(∫ r

0

(
1− ρ

r

)(s−1) n
n−s ρn−1

(1 + ρ2)n/2
dρ

)n−s
n

+(1+r2)
n−s

2

(∫ ∞
r

(
1− r

ρ

)(s−1) n
n−s ρ−1

(1 + ρ2)n/2
dρ

)n−s
n

.

∫ r

0

(
1− ρ

r

)(s−1) n
n−s ρn−1

(1 + ρ2)n/2
dρ ≤ C +

∫ r

1

(
1− ρ

r

)(s−1) n
n−s

ρ−1 dρ

= C +

∫ 1

1/r

(1− τ)(s−1) n
n−s τ−1 dτ ≤ C(1 + ln(r)),

where we changed variables τ = ρ
r
and noticed that (s − 1) n

n−s > −1 because n ≥ 2.

Similarly,∫ ∞
r

(
1− r

ρ

)(s−1) n
n−s ρ−1

(1 + ρ2)n/2
dρ ≤ C

∫ ∞
r

(
1− r

ρ

)(s−1) n
n−s

ρ−n−1 dρ

= Cr−n
∫ 1

0

(1− τ)(s−1) n
n−s τn−1 dτ ≤ Cr−n
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by changing variables τ = r
ρ
. Altogether, this shows that the �rst summand of Tf(x)

is bounded by C(1 + ln(|x|)).

The second summand of Tf(x) in (6.6) can be treated by the same argument, after

simply estimating (1 + |y|2)−α ≤ 1 and replacing s by s+ α. �

Lemma 6.3. For n ≥ 2, let 0 < α < n and de�ne

gα(R) :=
1

|Sn−1|

∫
Sn−1

|e1 −Rω|−α dσ(ω). (6.7)

Then for R ∈ [0, 1), the function gα(R) satis�es

gα(R) .


1 if α ∈ (0, n− 1),

1 + ln
(

1
1−R

)
if α = n− 1,

(1−R)−α+n−1 if α ∈ (n− 1, n).

Moreover, on [0, 1), gα(R) is

• increasing if α ∈ (n− 2, n),

• constant if α = n− 2 and

• decreasing if α ∈ (0, n− 2).

In particular, if α ∈ (0, n− 2], then supR∈[0,1] gα(R) = gα(0) = 1.

Proof. Let us �rst prove the claimed bounds on gα. Clearly, gα(R) is bounded away

from R = 1 for every α ∈ (0, n). Considering the following picture,

×0

{R} × Rn−1

x

e1×
×

×
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Then identifying {R}×Rn−1 with Rn−1×{0} and writing d = 1−R, we clearly have

g(R) ≤
∫
{x∈Rn−1 :|x|≤1}

|den − x|−α dx+ C

= dn−1−α
∫
{x∈Rn−1 :|x|≤1/d}

|en − x|−α dx+ C

≤ dn−1−α
∫
{x∈Rn−1 :1≤|x|≤1/d}

|x|−α dx+ C

As d→ 0, up to a constant, the last integral is bounded by 1 if α < n− 1, by ln(1/d)

if α = n− 1 and by dα−n+1 if α > n− 1. This yields the claimed bound in each case.

To prove the claimed monotonicity behavior, we observe that the function gα(R) is

the mean value of the function f(y) := |e1 − y|−α over a sphere around the origin of

radius R. Now for r = |x| 6= 0,

∆(|x|−α) =

(
d2

dr2
+
n− 1

r

d

dr

)
r−α = α(α + 2− n)r−α−2.

Hence, in the open ball of radius 1, f is

• subharmonic if α ∈ (n− 2, n),

• harmonic if α = n− 2 and

• superharmonic if α ∈ (0, n− 2).

Thus the monotonicity of gα follows from the mean-value theorem for harmonic func-

tions, respectively the mean-value inequalities for sub- and superharmonic functions.

�

Remark 6.4. The calculations in this section help to further elucidate the discussion

following the statement of Lemma 6.1 about the new type of error term arising in

our setting. We claim that the estimate obtained from of the O'Neil's-type inequality

used by Adams in [2] does not extend to functions which are radial, but not necessarily

decreasing. Indeed, said estimate [2, bottom of p.390] would read, in our notation and

for f ∈ L
n
s
rad

(B1), say,

Tf(r) ≤ |Sn−1|
(
n

s
r−n+s

∫ r

0

f(ρ)ρn−1 dρ+

∫ 1

r

f(ρ)ρs−1 dρ

)
. (6.8)

On the other hand, even when we drop the terms 1+r2

1+ρ2 due to the conformal factors JS
(i.e. when we work with the simpler convolution kernel |x− y|−n+s in a setting which

does not come from Sn), the calculations in the proof of Lemma 6.2 yield, for every

f ∈ L
n
s
rad

(B1), the identity

Tf(r) = |Sn−1|
(
r−n+s

∫ r

0

gn−s

(ρ
r

)
f(ρ)ρn−1 dρ+

∫ 1

r

gn−s

(
r

ρ

)
f(ρ)ρs−1 dρ

)
.
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In the case when s < 2, Lemma 6.3 states that gn−s(R) > gn−s(0) for every R ∈ (0, 1).

So if f ≡ 0 on Br0 , for some r0 ∈ (0, 1), it is plain that (6.8) is violated for every

r ≤ r0.

6.4. Proof of Theorem 5.1. In this section, we give the main argument in the proof

of Theorem 5.1. Recall that by what we have shown in Sections 6.2 and 6.3, it only

remains to prove ∫
B1

exp

(
n+ β

|Sn−1|
|Tf |

n
n−s

)
|x|β dx ≤ C, (6.9)

uniformly for all f ∈ L
n
s
rad

(Rn) with ‖f‖
L
n
s (Rn)

≤ 1. Here, Tf is given by (6.6).

Our strategy is to reduce the proof of (6.9) to the one-dimensional bound from Lemma

6.1. To achieve this, we pass to radial logarithmic coordinates. Writing |x| = e−t, the

inequality in (6.9) transforms to∫ ∞
0

exp

(n+ β)

∣∣∣∣∣ 1

|Sn−1|n−sn
(Tf)(e−t)

∣∣∣∣∣
n
n−s

− t

 dt ≤ C. (6.10)

Now, de�ne

φ(w) := |Sn−1|
s
nf(e−w)e−sw,

so that ∫
R
|φ(w)|

n
s dw =

∫
Rn
|f(x)|

n
s dx ≤ 1.

Similarly to the calculations in Lemma 6.2, writing |x| = e−t and |y| = e−w, from (6.6)

we obtain
1

|Sn−1|n−sn
(Tf)(e−t) = u(t) + v(t) (6.11)

with

u(t) :=

∫ t

−∞
gn−s(e

w−t)

(
1 + e−2t

1 + e−2w

)n−s
2

φ(w) dw+

∫ ∞
t

gn−s(e
t−w)e(n−s)(t−w)

(
1 + e−2t

1 + e−2w

)n−s
2

φ(w) dw

and

v(t) := C

∫ t

−∞
gn−s−α(ew−t)

(1 + e−2t)
n−s−α

2

(1 + e−2w)
n−s+α

2

φ(w) dw

+ C

∫ ∞
t

gn−s−α(et−w)e(n−s−α)(t−w)e−αw
(1 + e−2t)

n−s−α
2

(1 + e−2w)
n−s+α

2

φ(w) dw.

We claim that for every t ≥ 0

1

|Sn−1|n−sn
(Tf)(e−t) =

∫
R
a(w, t)φ(w) dw, (6.12)
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where a(w, t) satis�es the assumptions of Lemma 6.1. Now an application of that

lemma (with α̃ = n + β and p = n
s
) concludes the proof of (6.10), and hence of

Theorem 5.1.

It thus remains to prove (6.12). Let us give the bounds for u(t) in detail. For clarity

we �rst treat the simplest case where s > 1, so that gn−s ≤ C on all of [0, 1] by Lemma

6.3. For w ∈ (−∞, 0], we then have

gn−s(e
w−t)

(
1 + e−2t

1 + e−2w

)n−s
2

≤ Ce(n−s)w.

For w ∈ (0, t], we simply estimate 1+e−2t

1+e−2w ≤ 1. Moreover, for R = ew−t we estimate

gn,s(R) = gn,s(0) +
∫ R

0
g′n,s(r) dr ≤ 1 + CR if R is near zero and g(R) ≤ C ≤ CR if R

is away from zero. Altogether, this yields

gn−s(e
w−t)

(
1 + e−2t

1 + e−2w

)n−s
2

≤ gn−s(0) + Cew−t = 1 + Cew−t.

Finally, for w ∈ (t,∞), we estimate gn−s(e
t−w) ≤ C and

e(n−s)(t−w)

(
1 + e−2t

1 + e−2w

)n−s
2

=

(
e2t + 1

e2w + 1

)n−s
2

≤
(
e2(t−w) + e−2w

)n−s
2 ≤ Ce(n−s)(t−w).

All these bounds clearly satisfy the conditions (6.1) of Lemma 6.1.

If s ≤ 1, we need to be slightly more careful due to the unboundedness of gn−s near

1. We give the argument for s < 1, the adaptation to s = 1 is straightforward. For

w ∈ (−∞,− ln(2)], we have ew−t ≤ 1
2
, so that gn−s(e

w−t) is uniformly bounded and

we can repeat the above estimate. For w ∈ (− ln(2), 0] however, we have the modi�ed

bound

gn−s(e
w−t)

(
1 + e−2t

1 + e−2w

)n−s
2

≤ (1− ew−t)s−1

by Lemma 6.3. But this error term still satis�es (6.1) because∫ 0

− ln(2)

(1− ew−t)(s−1) n
n−s ≤ C,

as a consequence of the inequality (s − 1) n
n−s > −1. Similar arguments justify the

validity (6.1) when w ∈ (0, t] and when w ∈ (t,∞).

The term v(t) can be treated by the same argument with s replaced by s − α, after
estimating (1 + e−2w)−α ≤ 1 and e−αw(1 + e−2w)−α ≤ 1 for w ∈ R.

This proves (6.12). Hence the proof of Theorem 5.1, up to the sharpness assertion

proved in Section 6.5 below, is complete. �

Remark 6.5. In the above argument, we only used the bounds on gn−s given by Lemma

6.3, but not its monotonicity behavior. In fact, using the latter, our proof simpli�es in
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the case s ≥ 2. Indeed, in these cases g(R) is bounded and nonincreasing on R ∈ [0, 1]

by Lemma 6.3. This means that we can replace the estimate g(es−t) ≤ 1 +Ces−t from

above by the simpler g(es−t) ≤ g(0) = 1. The point is that thanks to the absence of

a t-dependent term like es−t in the error function g(w, t) from Lemma 6.1, we can use

directly Fontana's version of Adams' lemma instead of our improved one; see also the

discussion before Lemma 6.1. It is hence only for small orders of derivative s < 2 that

the new extension of Adams' lemma given in Lemma 6.1 is truly decisive. Compare

also Remark 6.4.

6.5. Sharpness of the constant. We now complete the proof of Theorem 5.1 by

proving the assertion on sharpness of the constant. By (5.2) and after projecting to

Rn as in Section 6.2, let us thus suppose that γ > 0 is such that

sup
0≤f∈L

n
s
rad

(Rn), ‖f‖n
s
≤1

∫
Rn

exp
(
γTf(η)

n
n−s

)
|x|β exp(−|x|σ) dx ≤ C <∞, (6.13)

where Tf satis�es

Tf(x) ≥
∫
Rn
|x− y|−n+s

(
1 + |x|2

1 + |y|2

)n−s
2

f(y) dy (6.14)

− C
∫
Rn
|x− y|−n+s+α (1 + |x|2)

n−s−α
2

(1 + |y|2)
n−s+α

2

f(y) dy

for some α > 0.

We shall show that necessarily

γ ≤ n+ β

|Sn−1|
(6.15)

by following the argument of [2, proof of Theorem 2], where we replace the Riesz

potential of f by Tf . Let 0 < r < R and let f ∈ Ln
s (BR) be any function such that

Tf ≥ 1 on Br. Testing (6.13) with f/‖f‖n
s
gives

C ≥ exp
(
γ‖f‖−

n
n−s

n
s

)∫
Br

|x|β = exp
(
γ‖f‖−

n
n−s

n
s

)
|Sn−1| r

n+β

n+ β
,

that is,

γ ≤
(

ln(C) + (β + n) ln

(
R

r

))
‖f‖

n
n−s
n
s

(6.16)

We now make a suitable choice of f . For given r ∈ (0, R), de�ne

fr,R(x) :=

{
|Sn−1|−1

(
ln
(
R
r

))−1 |x|−s for x ∈ BR \Br,

0 otherwise .
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Let ε > 0 be given. In view of the expression of Tf in (6.14), by choosing R = R(ε) > 0

small enough we may assume that

Tfr,R(x) ≥ (1− ε)
∫
BR

|x− y|−n+sfr,R(y) dy − C
∫
BR

|x− y|−n+s+αfr,R(y) dy

≥ (1− 2ε)|Sn−1|−1

(
ln

(
R

r

))−1 ∫
BR\Br

|x− y|−n+s|y|−s dy

At �xed ε > 0 and R = R(ε) > 0, it follows from the argument in [2, p.392] (after

rescaling by R) that there is r0(ε, R) > 0 such that for every r < r0(ε, R), one has∫
BR\Br

|x− y|−n+s|y|−s dy ≥ (1− ε)|Sn−1| ln
(
R

r

)
.

Hence,

Tfr,R(x) ≥ (1− 3ε) for all x ∈ Br.

We conclude that, for R = R(ε) and every r < r0(ε, R), the function f := (1−3ε)−1fr,R
is an admissible function satisfying Tf ≥ 1 on Br, and hence (6.16). Evaluating∫

BR

f
n
s
r = |Sn−1|−

n−s
s (ln(R/r))−

n−s
s ,

and letting r → 0, inequality (6.16) becomes

γ ≤ (1− 3ε)−
n
n−s

n+ β

|Sn−1|
.

Since ε > 0 was arbitrary, this completes the proof of (6.15). �

6.6. Proof of Theorem 1.4. The proof of Theorem 1.4 follows the same strategy as

that of Theorem 5.1, Theorem 5.2 and Theorem 5.3. Since moreover it is simpler due

to the presence of fewer error terms, we shall be brief. By [36, Propositions 7 and 8],

we have the estimate

|u(x)| ≤ Kn,s

∫
BR

|x− y|−n+sf(y) dy =: Kn,s(In−s ∗ f)(x),

where f := (−∆)s/2u|BR . (Notice that unless s is an even integer, (−∆)s/2u is in

general not supported in BR.) Now we are in the situation of Section 6.4, only that

Tf is replaced by the simpler In−s ∗ f . Setting

φ(s) = |Sn−1|
s
nf(Re−w)(Re−w)s,

and changing variables |x| = Re−t, |y| = Re−w, as above we �nd

1

|Sn−1|n−sn
(In−s∗f)(Re−t) =

∫ t

0

gn−s(e
w−t)φ(w) dw+

∫ ∞
t

gn−s(e
t−w)e(n−s)(t−w)φ(w) dw,
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which satis�es the assumptions of Lemma 6.1 by the same estimates as in the proof

of Theorem 5.1. Hence∫
BR

exp

(
n+ β

|Sn−1|
K
− n
n−s

n,s |u|
n
n−s

)
|x|β dx ≤

∫
BR

exp

(
n+ β

|Sn−1|
|In−s ∗ f(x)|

n
n−s

)
|x|β dx

= Rn+β|Sn−1|
∫ ∞

0

exp

(n+ β)

∣∣∣∣∣ 1

|Sn−1|n−sn
(In−s ∗ f)(Re−t)

∣∣∣∣∣
n
n−s

− t

 dt ≤ C(R).

This completes the proof of Theorem 1.4.

Remark 6.6. It might be tempting to think that analogously to Theorem 1.3, a 'global'

version of inequality (1.16) might hold on all of Rn in the presence of an exponentially

decaying weight at in�nity, i.e. that∫
Rn

exp
(
γ|u|

n
n−s

)
|x|β exp(−|x|σ) dx ≤ C (6.17)

uniformly in u radial with ‖(−∆)s/2u‖Ln/s(Rn) ≤ 1. However, this is wrong for any

choice of γ, σ > 0 and β ∈ R. A counterexample is given by the family uR(x) :=

(−∆)−s/2fR(x) = Kn,s

∫
Rn |x − y|−n+sfR(y) dy, for the L

n
s (Rn)-normalized functions

fR(y) = (|Sn−1| ln(R))−
s
n1BR\B1(y)|y|−s. Indeed, since |x − y| ≤ 2|y| whenever |x| ≤

1 ≤ |y|, we have uR(x) & (ln(R))
n−s
n for every x ∈ B1. Thus the left side of (6.17)

with u = uR is unbounded as R→∞.
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