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REVERSE CONFORMALLY INVARIANT SOBOLEV
INEQUALITIES ON THE SPHERE

RUPERT L. FRANK, TOBIAS KÖNIG, AND HANLI TANG

Abstract. We consider the optimization problem corresponding to the sharp con-

stant in a conformally invariant Sobolev inequality on the n-sphere involving an

operator of order 2s > n. In this case the Sobolev exponent is negative. Our results

extend existing ones to noninteger values of s and settle the question of validity of a

corresponding inequality in all dimensions n ≥ 2.

1. Introduction and main results

We are interested in sharp constants in conformally invariant Sobolev inequalities.

The classical version of this inequality concerns powers (−∆)s of the Laplacian in Rn

with a real parameter 0 < s < n
2

and it reads∥∥(−∆)s/2U
∥∥2

2
≥ Ss,n‖U‖2

2n
n−2s

for all U ∈ Ḣs(Rn) (1)

with

Ss,n = (4π)s
Γ(n+2s

2
)

Γ(n−2s
2

)

(
Γ(n

2
)

Γ(n)

)2s/n

=
Γ(n+2s

2
)

Γ(n−2s
2

)
|Sn|2s/n . (2)

This inequality was proved in an equivalent, dual form by Lieb in [38], where also the

cases of equality were characterized. Moreover, in that work a fundamental property

of (1), namely its conformal invariance, was discovered and exploited. This result

extends the earlier result in the local case s = 1 going back to [44, 45, 2, 47].

Since Rn (or rather Rn ∪ {∞}) and Sn are conformally equivalent, there is an

equivalent version of (1) on Sn. This form was found explicitly by Beckner in [5,

Eq. (19)], namely,∥∥∥A1/2
2s u

∥∥∥2

2
≥ Ss,n‖u‖2

2n
n−2s

for all u ∈ Hs(Sn) (3)
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with the same constant Ss,n as in (2) and with

A2s =
Γ(B + 1

2
+ s)

Γ(B + 1
2
− s)

and B =

√
−∆Sn + (n−1)2

4
. (4)

Note that the operators B and A2s act diagonally in any basis of spherical harmonics,

and on spherical harmonics of degree ` ∈ N0 = {0, 1, 2, . . .}, the operator B acts by

multiplication with `+ n−1
2

and, consequently, A2s acts by multiplication with

α2s,n(`) =
Γ(`+ n

2
+ s)

Γ(`+ n
2
− s)

. (5)

The operators A2s can be thought of as (−∆Sn)s perturbed by lower order terms. For

integer s, they are related to the GJMS operators in conformal geometry [30].

Note that as s ↗ n
2
, the integrability exponent 2n

n−2s
in (1) and (3) tends to +∞.

In [5] Beckner derived a conformally invariant endpoint inequality for s = n
2
, which

extends [36, 42, 43]; see also [10] for an equivalent, dual inequality. In passing, we

mention that in [4] Beckner also proved a conformally invariant endpoint inequality

for s = 0.

Our goal in this paper is to investigate the range

s >
n

2
.

Note that in this case the integrability exponent 2n
n−2s

in (3) is negative, and therefore

we will restrict ourselves to functions that are positive almost everywhere. It is be-

cause of this sign change that we call the inequalities in this paper ‘reverse’ Sobolev

inequalities.

The operators A2s are well-defined in the whole range s > 0, provided one sets

α2s,n(`) = 0 when the denominator in (5) has a pole. Note, however, that the operators

A2s are no longer positive definite and therefore we define

a2s[u] :=
∑
`∈N0

α2s,n(`)‖P`u‖2
2 for all u ∈ Hs(Sn) ,

where P` is the projection onto spherical harmonics of degree `. Note that when s ≤ n
2
,

then a2s[u] = ‖A1/2
2s u‖2

2 for all u ∈ Hs(Sn).

In the following we will study inequalities of the type

a2s[u] ≥ Ss,n
(∫

Sn
u−

2n
2s−ndω

)− 2s−n
n

for all 0 < u ∈ Hs(Sn) . (6)

We are interested in whether such an inequality holds with some finite constant Ss,n
(not necessarily positive) and, if so, what the optimal value of this constant is.

A first inequality of this type, corresponding to s = 1 in n = 1, is shown in [23] and

reads ∫ π

−π

(
(u′)2 − 1

4
u2

)
dθ ≥ −π2

(∫ π

−π
u−2 dθ

)−1

for all u ∈ H1(R/2πZ) .
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An independent proof of this inequality and a characterization of the cases of equality

appears in [1]. The case s = 2 in n = 3 is analyzed in [48]; see also [33]. The

paper [32] by Hang treats all cases s ∈ N ∩ (n
2
,∞) in general dimensions n ≥ 1 (here,

N = {1, 2, 3, . . .}); for the cases s = 1, 2 in n = 1, see also [41]. All these cases treated

so far correspond to integer s, when A2s is a differential operator.

In the above mentioned works it was established that inequality (6) is valid, with

the constant given by (2), when restricted to positive functions, provided that s = n+1
2

,
n+3

2
when n is odd and s = n

2
+ N0 when n is even. For odd n equality is achieved

exactly for the constant function, modulo conformal transformations, and for even

n exactly for positive linear combinations of spherical harmonics of degree ≤ s − n
2
.

Moreover, a rather surprising result in [32] is that for odd n and s ∈ n+5
2

+ N0, the

infimum

I2s,n := inf
0<u∈Hs(Sn)

(∫
Sn
u−

2n
2s−ndω

) 2s−n
n

a2s[u] (7)

is not achieved and, in fact, there is not even a local minimum. As far as we know,

this is one of the very few instances of conformally invariant functional inequalities on

Sn without minimizers.

While the fundamental works [23, 1, 48, 33, 32] answer many questions concerning

the family of inequalities (6), two natural ones remain open. (a) Do these results

extend to all real values of the parameter s > n
2

and, if so, where does the transition

between existence and nonexistence of a minimizer occur? (b) If there is no minimizer

for (7), what is the value of the infimum?

In this paper we completely answer question (a) and, in dimension n ≥ 2, also

question (b).

The following two theorems are our main results.

Theorem 1. Let n ≥ 1 and s ∈ (n
2
, n+4

2
)∪ (n

2
+N). Then for all 0 ≤ u ∈ Hs(Sn) with

u−
2n

2s−n ∈ L1(Sn),

a2s[u]

(∫
Sn
u−

2n
2s−n dω

) 2s−n
n

≥
Γ(n

2
+ s)

Γ(n
2
− s)

|Sn|
2s
n . (8)

For s ∈ (n
2
, n+4

2
) \ {n+2

2
}, equality is attained if and only if

u(ω) = c (1− ζ · ω)
2s−n

2

for some c > 0 and ζ ∈ Rn+1 with |ζ| < 1. For s ∈ n
2

+ N, equality is attained if and

only if u is in the linear span of spherical harmonics of degree ≤ s− n
2
.

Note that the constant on the right side of (8) coincides with Ss,n in (2). It is

negative for s ∈ (n
2
, n+2

2
), positive for s ∈ (n+2

2
, n+4

2
) and zero for s ∈ n

2
+ N.

Theorem 2. Let n ≥ 1 and s ∈ (n+4
2
,∞) \ (n

2
+ N). Then the infimum (7) is not

attained. If, in addition, n ≥ 2, then I2s,n = −∞.
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Theorem 1 for s ∈ n
2

+ N is almost immediate from the definition of a2s. In order

to prove the theorem for s ∈ (n
2
, n+4

2
) \ {n+2

2
} we follow closely the strategy of Hang

[32]. Namely, first we prove existence of a minimizer and then we apply a result of Li

[37] characterizing all solutions to the corresponding Euler–Lagrange equation. In the

proof of existence of minimizers one has to deal with the noncompact symmetry group

of conformal transformations. To rule out loss of compactness modulo symmetries, an

important role is played by the fact that a2s[u] ≥ 0 if u vanishes at a point (together

with its gradient if s ∈ (n+2
2
, n+4

2
)). Similar results already appeared in [23, 48, 33, 32],

where the authors dealt with local operators and could exploit integration by parts.

In Proposition 5 we prove the corresponding fact for general s ∈ (n
2
, n+4

2
). We also

proceed by going to Rn, but the proof for noninteger s is quite a bit more involved.

The first part of Theorem 2 follows again closely the strategy of Hang [32] and also

uses the result of Li [37]. The second part answers a question that was left open in

[32] even in the integer case. The idea is to find a function u ∈ Hs(Sn) such that

u−
2n

2s−n 6∈ L1(Sn) and a2s[u] < 0. Then using u + ε as trial functions for the infimum

(7) yields the assertion in Theorem 2. The function u that we choose vanishes to

sufficiently high order on the equator {ωn+1 = 1}. Showing that the quadratic form

is negative on this function, requires some rather explicit analysis involving spherical

harmonics. The seemingly simpler question of whether I2s,1 is finite or not for n = 1,

remains open.

Background and open problems. We end this introduction by putting our results

into perspective and by mentioning some open problems.

The work of Dou and Zhu [22] spiked a lot of interest in reversed Hardy–Littlewood–

Sobolev (HLS) inequalities. The conformally invariant case of these inequalities states

that for µ > 0 and nonnegative functions F,G on Rn,∫∫
Rn×Rn

F (x)|x− y|µG(y) dx dy ≥ Hµ,n‖F‖ 2n
2n+µ
‖G‖ 2n

2n+µ
. (9)

The optimal constant Hµ,n > 0 and all optimizing functions F,G were obtained in

[22]; see also [40, 16]. By conformal invariance, (9) has an equivalent version on Sn,

namely, ∫∫
Sn×Sn

f(ω)|ω − ω′|µg(ω′) dω dω′ ≥ Hµ,n‖f‖ 2n
2n+µ
‖g‖ 2n

2n+µ
. (10)

For open questions in a non-conformally invariant case motivated by aggregation-

diffusion equations, see [11, 12].

While the (usual) HLS inequality studied in [38] is equivalent to the Sobolev in-

equality (1), there seems to be no relation between (10) and the inequality (6). This is

despite the fact that the integral kernel |ω−ω′|µ appearing in (10) is a multiple of the

Green’s function of the operator A2s with µ = 2s− n; see the proof of Lemma 3. The

fundamental difference between the (usual) HLS inequality and the reverse one is that

the kernel is positive definite in the former case, but not in the latter. For inequalities
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(9) and (10) optimizers exist for all µ > 0 and one does not have an analogue of the

nonexistence phenomenon in our Theorem 2.

As we mentioned before, in our proof of Theorem 1 for s ∈ (n
2
, n+4

2
) \ {n+2

2
} we

apply a result of Li [37] and to do so, we use a relation between the Euler–Lagrange

equations corresponding to (10) and (6). Interestingly, the analogue of this relation

on Euclidean space may fail in the excluded case s = n+2
2

; for an example with n = 2

and s = 2, see [49].

Besides finding optimal constants and characterizing optimizers, a natural problem

is to characterize all positive solutions of the corresponding Euler–Lagrange equation.

For the Sobolev inequality (1) or, equivalently, for the corresponding HLS inequality,

this was accomplished in [18]; see also [37]. The latter paper also contains a character-

ization of solutions to the Euler–Lagrange equation corresponding to (9) and, in fact,

just as in [32] this will be a major ingredient in our proof of Theorem 1. For related

classification results, see [19, 35, 21, 26] and references therein. In connection with

this we emphasize that our Theorem 2 does not exclude that for s ∈ (5
2
,∞) \ (1

2
+ N)

in n = 1, the infimum in (7) is attained for u ∈ Hs(S) with u−
2

2s−1 ∈ L1(S) and

minu = 0. We find it unlikely that such u exist, but we cannot exclude their existence

via [37] since the Euler–Lagrange equation then only holds in S \ {u = 0}.

After the works of Brezis and Lieb [8] and Bianchi and Egnell [6] and, in particular,

in the last decade there has been an immense body of work concerning the quantitative

stability of Sobolev and isoperimetric inequalities; see, e.g., [29, 17, 9, 28, 24, 7, 25]

and references therein. It is natural to ask whether there are such stable versions

of Theorem 1. The computations with the linearization in the proof of Theorem 2

suggest that the answer is affirmative for s ∈ (n
2
, n+4

2
) \ {n+2

2
}, but the precise form of

such a purported inequality is unclear since the form a2s[u] is not positive semidefinite.

Finally, we would like to mention the relation between the problem studied in this

paper and conformal geometry. The sharp constant in the Sobolev inequality (1)

with s = 1 appears as a compactness threshold in the Yamabe problem on general

manifolds [2]. The latter concerns the scalar curvature. Similarly, the case s = 2

is related to the Q-curvature [34] and generalized Q curvatures were introduced in

[31] for 0 < s < n
2
; see also [14, 13, 15]. While (generalized) Q-curvature problems

were originally considered for s ≤ n
2
, they are also meaningful for s > n

2
and, in

fact, this was the original motivation for [48, 33]. Our Theorem 1 says that for

s ∈ (n
2
, n+4

2
) ∪ (n

2
+ N), within the conformal class of the standard metric gSn on

Sn and under the volume constraint volg(Sn) = |Sn|, the standard metric maximizes

the total generalized Q-curvature, defined by

Q2s,g = − 2

2s− n
u

2s+n
2s−nA2su if g = u−

4
2s−n gSn .

Our Theorem 1 plays the same role for the fractional order problems in [14, 13, 15] as

the results in [48, 33] do in the Q-curvature problem on three-dimensional manifolds.



6 RUPERT L. FRANK, TOBIAS KÖNIG, AND HANLI TANG

2. Preliminaries

2.1. Conformal invariance. In this subsection n ≥ 1 and s > n
2

are fixed. Let Φ be

a conformal transformation of Sn and, for a function u on Sn, set

uΦ(ω) = JΦ(ω)−
2s−n
2n u(Φ(ω)) .

Clearly, if u is nonnegative and measurable, then∫
Sn
u
− 2n

2s−n
Φ dω =

∫
Sn
u−

2n
2s−n dω .

Lemma 3. If u ∈ Hs(Sn), then uΦ ∈ Hs(Sn) and

a2s[uΦ] = a2s[u] .

Proof. We prove the lemma under the assumption s 6∈ n
2

+ N, which implies the

general result by a limiting argument. This assumption implies that α2s,n(`) 6= 0 for

all ` ∈ N0. Moreover, by Stirling’s formula, α2s,n(`) grows like `2s. Thus, A2s =

Γ(B + 1
2

+ s)/Γ(B + 1
2
− s) is invertible as an operator from H−s(Sn) to Hs(Sn). The

Funk–Hecke formula implies that if Y is a spherical harmonic of degree ` ∈ N0, then∫
Sn
|ω − ω′|2s−nY (ω′) dω′ =

22sπ
n
2 Γ(s)

Γ(n
2
− s)

1

α2s,n(`)
Y (ω) ;

see [5, Eq. 17] and also [27, Cor. 4.3]. Consequently, A−1
2s is an integral operator with

integral kernel

Γ(n
2
− s)

22sπ
n
2 Γ(s)

|ω − ω′|2s−n .

Using this formula, together with the fact that

JΦ(ω)
1
n |ω − ω′|2JΦ(ω′)

1
n = |Φ(ω)− Φ(ω′)|2 ,

we easily see that for any v ∈ H−s(Sn)

A−1
2s v

Φ = (A−1
2s v)Φ ,

where we set

vΦ(ω) := JΦ(ω)
2s+n
2n v(Φ(ω)) .

This is equivalent to

A2suΦ = (A2su)Φ .

Multiplying this formula by uΦ and integrating we obtain the claim. �
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2.2. Stereographic projection. In the previous subsection we considered the be-

havior of A2s under a conformal transformation of Sn. In this subsection we consider

its behavior under stereographic projection. Throughout this subsection we fix n ≥ 1

and s ∈ (0,∞) \ (n
2

+ N0).

We introduce the (inverse) stereographic projection S : Rn → Sn by

Sj(x) =
2xj

1 + |x|2
, j = 1, . . . , n , Sn+1(x) =

1− |x|2

1 + |x|2
.

Given a function u on Sn, we define two functions uS and uS on Rn by

uS(x) =

(
1 + |x|2

2

) 2s−n
2

u(S(x)) , uS(x) =

(
1 + |x|2

2

)− 2s+n
2

u(S(x)) . (11)

Note that, since (2/(1 + |x|2))n is the Jacobian of S, these formulas are similar to

those appearing in Lemma 3 and its proof.

Lemma 4. Let s = N + σ with N ∈ N0 and σ ∈ [0, 1). If n ≥ 2, then

(−∆)−σ (A2su)S = (−∆)NuS for all u ∈ C∞(Sn) , (12)

The same identity holds if n = 1 and σ ∈ [0, 1
2
). If n = 1 and σ ∈ (1

2
, 1), then

(− d2

dx2
)−σ+ 1

2H (A2su)S = d2N+1

dx2N+1uS for all u ∈ C∞(S) , (13)

where H is multiplication in Fourier space by iξ/|ξ|.

The proof will show that both sides of (12) and (13) are continuous functions and

that the identities hold pointwise.

We note that (12) and (13) are precise versions of the ‘heuristic formula’

(A2su)S = (−∆)suS , (14)

which is analogous to the formula in the proof of Lemma 3. When trying to directly

prove (14), we ran into technical problems concerning the convolution of two tempered

distributions. This can be circumvented by proving the less elegant formulas (12) and

(13), which are just as good for our purposes.

Proof. Step 1. As a preparation we prove the following assertion, still assuming s ∈
(0,∞) \ (n

2
+ N0). If n ≥ 2, then, for any measurable f on Rn such that |f(x)| .

〈x〉−2s−n,

(−∆)N
∫
Rn
|x− x′|2s−nf(x′) dx′ =

22sπ
n
2 Γ(s)

Γ(n
2
− s)

((−∆)−σf)(x) .

For n = 1 and σ ∈ [0, 1
2
), the same assertion is true, while for σ ∈ (1

2
, 1) one has

d2N+1

dx2N+1

∫
R
|x− x′|2s−1f(x′) dx′ =

22sπ
1
2 Γ(s)

Γ(1
2
− s)

(
(− d2

dx2
)−σ+ 1

2Hf
)

(x) .



8 RUPERT L. FRANK, TOBIAS KÖNIG, AND HANLI TANG

We prove this by induction on N . For N = 0 and, if n = 1, s < 1
2
, this is a standard

result; see, e.g., [39, Theorem 5.9 and Corollary 5.10]. For n = 1 and 1
2
< s < 1, using

dominated convergence one easily sees that x 7→
∫
R |x− x

′|2s−1f(x′) dx′ is C1 and

d

dx

∫
R
|x− x′|2s−1f(x′) dx′ = (2s− 1)

∫
R
|x− x′|2s−3(x− x′)f(x′) dx′ .

Note that the integral kernel on the right side is locally integrable. The claimed

identity then follows from the identity

(2s− 1)|x|2s−3x =
22sπ

1
2 Γ(s)

Γ(1
2
− s)

∫
R
|ξ|−2siξeiξx dξ ,

where the right side exists as an improper Riemann integral. This identity can either

be proved directly by moving the integration contour to the positive imaginary axis

and using identities for the Gamma function, or by analytic continuation from the

identity implicit in the above proof for 0 < s < 1
2
.

Now let us assume N ≥ 1. Using dominated convergence, one easily verifies that

x 7→
∫
Rn |x− x

′|2s−nf(x′) dx′ is C2 and that

∆

∫
Rn
|x− x′|2s−nf(x′) dx′ = 4(s− n

2
)(s− 1)

∫
Rn
|x− x′|2s−n−2f(x′) dx′ .

By induction, one concludes that, if either n ≥ 2 or if n = 1 and σ < 1
2
,

(−∆)N
∫
Rn
|x− x′|2s−nf(x′) dx′ = −4(s− n

2
)(s− 1)(−∆)N−1

∫
Rn
|x− x′|2s−n−2f(x′) dx′

= −4(s− n
2
)(s− 1)

22(s−1)π
n
2 Γ(s− 1)

Γ(n
2
− s+ 1)

((−∆)−σf)(x)

=
22sπ

n
2 Γ(s)

Γ(n
2
− s)

((−∆)−σf)(x) .

The proof for n = 1 and 1
2
< σ < 1 is similar. This proves the claimed formula.

Step 2. It remains to prove (12) and (13). Let u ∈ C∞(Sn). Then A2su ∈ C∞(Sn)

(indeed, for any σ > 0, u ∈ Hσ(Sn), so A2su ∈ Hσ−2s(Sn)) and, using the explicit

integral kernel of A−1
2s from the proof of Lemma 3,

u(ω) =
Γ(n

2
− s)

22sπ
n
2 Γ(s)

∫
Sn
|ω − ω′|2s−n(A2su)(ω′) dω′ .

Thus, using

1 + |x|2

2
|S(x)− S(x′)|2 1 + |x′|2

2
= |x− x′|2

and changing variables, we obtain

uS(x) =
Γ(n

2
− s)

22sπ
n
2 Γ(s)

∫
Rn
|x− x′|2s−n(A2su)S(x′) dx′ .
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Note that |(A2su)S(x)| ≤ ‖A2su‖∞(2/(1 + |x|2))(2s+n)/2, so, in particular, the integral

on the right side converges absolutely. Now the result from Step 1 is applicable and

we obtain (12) and (13). This concludes the proof of the proposition. �

2.3. Positivity under a vanishing condition. A crucial role in our proof of exis-

tence of a minimizer is played by the following

Proposition 5. Let n ≥ 1 and s ∈ (n
2
, n+4

2
). For all u ∈ Hs(Sn) with u(S) = 0 and,

if s > n+2
2

, ∇u(S) = 0, one has

a2s[u] ≥ 0 .

Moreover, if s ∈ (n
2
, n+2

2
), then equality holds if and only if for some c ∈ R,

u(ω) = c (1 + ωn+1)
2s−n

2 for all ω ∈ Sn .

and if s ∈ [n+2
2
, n+4

2
), then equality holds if and only if for some c ∈ R, b ∈ Rn,

u(ω) = c (1 + ωn+1)
2s−n

2 + (1 + ωn+1)
2s−n−2

2 b · ω′ for all ω = (ω′, ωn+1) ∈ Sn .

Here S = (0, . . . , 0,−1) denotes the south pole.

Proof. If s = n+2
2

, then α2s,n(`) ≥ 0 for all ` ∈ N0 with equality if and only if ` ≤ 1.

This proves immediately the claimed inequality as well as the characterization of the

cases of equality. Thus, in the following we assume that s 6= n+2
2

.

First, let u ∈ C∞c (Sn \ {S}), so that uS ∈ C∞c (Rn). If n ≥ 2, or if n = 1 and

s ∈ [1, 3
2
) ∪ [2, 5

2
), we multiply (12) by (−∆)σuS and integrate to obtain∫

Rn
|ξ|2s|ûS |2 dξ =

∫
Rn

((−∆)σuS)((−∆)NuS) dx =

∫
Rn
uS(A2su)S dx =

∫
Sn
uA2su dω

= a2s[u] , (15)

where the Fourier transform is defined by

f̂(ξ) = (2π)−
n
2

∫
Rn
e−iξ·xf(x) dx .

For n = 1 and s ∈ (1
2
, 1) ∪ (3

2
, 2) we multiply (13) by (− d2

dx2
)σ−

1
2HuS and obtain the

same identity (15). Since the left side in (15) is nonnegative, we obtain the inequality

in the first part of the proposition for u ∈ C∞c (Sn \ {S}).
We abbreviate

Q :=

{
{u ∈ Hs(Sn) : u(S) = 0} if s ∈ (n

2
, n+2

2
) ,

{u ∈ Hs(Sn) : u(S) = 0, ∇u(S) = 0} if s ∈ (n+2
2
, n+4

2
) .

Our goal is to extend the identity (15) to u ∈ Q and use this extension to characterize

the cases of equality. It is well-known that the set C∞c (Sn \ {S}) is dense in Q with

respect to the norm in Hs(Sn). Moreover, a2s is continuous with respect to the norm

in Hs(Sn). This immediately implies that a2s[u] ≥ 0 for all u ∈ Q.

Let u ∈ Q and let (uj) ⊂ C∞c (Sn \ {0}) be a sequence that converges to u ∈ Q in

Hs(Sn). In particular, (uj) converges to u in L2(Sn) and, by a change of variables,
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((uj)S) converges to uS in L2(Rn, (2/(1 + |x|2))2s dx). In particular, ((uj)S) converges

to uS in the sense of tempered distributions, and therefore ((̂uj)S) converges to ûS
in the sense of tempered distributions. On the other hand, the fact that (uj) is a

Cauchy sequence in Hs(Sn), the identity (15) and the Hs-continuity of a2s imply

that ((̂uj)S) is a Cauchy sequence in L2(Rn, |ξ|2s dξ) and therefore convergent. A

standard argument (namely, interlacing two Cauchy sequences) shows that the limit is

independent of the approximating sequence. We deduce from this that the restriction

of the distribution ûS to Rn \ {0} coincides with a function and that this function

belongs to L2(Rn, |ξ|2s dξ). Moreover, identity (15) remains valid for u ∈ Q, provided

the integral on the left side is restricted to Rn\{0} and ûS on the left side is interpreted

as the restriction of the corresponding distribution to this set.

In particular, if a2s[u] = 0 for some u ∈ Q, then the distribution ûS vanishes on

Rn \ {0} and therefore, by a well-known theorem about distributions, ûS coincides

with a finite sum of derivatives of a Dirac delta distribution at the origin. Thus, uS is

a polynomial.

By Morrey’s inequality we have u ∈ Cs−n
2 (Sn) if s ∈ (n

2
, n+2

2
) and u ∈ C1,s−n+2

2 (Sn)

if s ∈ (n+2
2
, n+4

2
) and therefore in either case, the vanishing conditions imply that

|u(ω)| . |ω − S|s−
n
2 for all ω ∈ Sn ,

that is,

|uS(x)| .
(

1 + |x|2

2

)s−n
2

|S(x)− S|s−
n
2 =

(
1 + |x|2

) 1
2

(s−n
2

)
for all x ∈ Rn . (16)

If s < n+2
2

, then the right side grows sublinearly and therefore uS , being a polynomial,

is equal to a constant c. Now uS(x) = c is equivalent to u(ω) = c(1 + ωn+1)(2s−n)/2,

as claimed. If s ∈ (n+2
2
, n+4

2
), then the right side in (16) grows subquadratically and

therefore uS is affine linear, that is, uS(x) = c + b · x. This is equivalent to the form

given in the proposition. �

3. Proof of Theorem 1

In this section, we prove our first main theorem, whose nontrivial part says that

for s ∈ (n
2
, n+4

2
) \ {n+2

2
} the infimum I2s,n in (7) is achieved precisely by the constant

function and its images under the group of conformal transformations. Similarly as in

[32] we proceed in two steps, namely first showing that the infimum is achieved and

then characterizing the functions where the infimum is achieved.

3.1. Existence of a minimizer.

Proposition 6. Let n ≥ 1 and s ∈ (n
2
, n+4

2
) \ {n+2

2
}. Let (uj) ⊂ Hs(Sn) be a sequence

of nonnegative functions with u
− 2n

2s−n
j ∈ L1(Sn) and

lim
j→0

a2s[uj]

(∫
Sn
u
− 2n

2s−n
j dω

) 2s−n
n

= I2s,n .
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Then there is a sequence (Φj) of conformal transformations of Sn and a sequence

(cj) ⊂ R+ such that, after passing to a subsequence, the functions cj(uj)Φj converge

in Hs(Sn) to an everywhere positive function that minimizes I2s,n.

Proof. Step 1. After multiplying uj by a positive constant and after a rotation (which

can be implemented as a conformal transformation), we may assume that for all j,

max
Sn

uj = 1 and uj(S) = min
Sn

uj .

Here S = (0, . . . , 0,−1) denotes the south pole and later N = (0, . . . , 0, 1) will denote

the north pole

Let us show that (uj) is bounded in Hs(Sn). By the minimizing property, there is

a C ≥ 0 such that for all j,

a2s[uj]

(∫
Sn
u
− 2n

2s−n
j dω

) 2s−n
n

≤ C . (17)

Thus, by our normalization,

a2s[uj] ≤ C

(∫
Sn
u
− 2n

2s−n
j dω

)− 2s−n
n

≤ C|Sn|−
2s−n
n .

On the other hand, by Stirling’s formula, α2s,n(`) grows like `2s. Since α2s,n(`) ≥ 0

for all ` ≥ 1 if s ∈ (n
2
, n+2

2
) and for all ` ≥ 2 if s ∈ (n+2

2
, n+4

2
) and since the remaining

finite rank terms are bounded in L2(Sn), we see that for all v ∈ Hs(Sn),

a2s[v] ≥ c‖v‖2
Hs(Sn) − C ′‖v‖2

L2(Sn) (18)

with c > 0 and C ′ <∞. Combining these inequalities we obtain

c‖uj‖2
Hs(Sn) ≤ C ′‖uj‖2

L2(Sn) + C|Sn|−
2s−n
n ≤ C ′|Sn|+ C|Sn|−

2s−n
n ,

which proves the claimed boundedness.

Thus, after passing to a subsequence, we may assume that (uj) converges weakly

in Hs(Sn) to some u. By Morrey’s inequality and the Arzelà–Ascoli lemma, (uj)

converges strongly to u in C(Sn). As a consequence, u ≥ 0 and

max
Sn

u = 1 and u(S) = min
Sn

u .

We note that a2s is lower semicontinuous with respect to weak convergence in Hs(Sn).

Indeed, this is clear for the positive part of the functional a2s and its negative part is

finite rank and therefore continuous. As a consequence of lower semicontinuity,

lim inf
j→∞

a2s[uj] ≥ a2s[u] .

Step 2. If we have u > 0 on Sn, then u−1
j → u−1 uniformly on Sn and consequently∫

Sn
u
− 2n

2s−n
j dω →

∫
Sn
u−

2n
2s−n dω .
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This, together with the lower semicontinuity of a2s implies that u is a minimizer.

Moreover, setting rj := uj − u and using weak convergence in Hs(Sn), we find

a2s[uj] = a2s[u] + a2s[rj] + o(1)

and therefore

a2s[uj]

(∫
Sn
u
− 2n

2s−n
j dω

) 2s−n
n

= a2s[u]

(∫
Sn
u−

2n
2s−ndω

) 2s−n
n

+ a2s[rj]

(∫
Sn
u−

2n
2s−ndω

) 2s−n
n

+ o(1) .

Since the left side converges to I2s,n and the first term on the right side is equal to

I2s,n, we find that a2s[rj]→ 0. By (18) and the strong convergence of rj in L2(Sn), we

infer that rj → 0 strongly in Hs(Sn), that is, uj → u in Hs(Sn), as claimed.

Step 3. Thus, in what follows we assume that minu = 0. Our goal will be to show

that after a conformal transformation and multiplication by a constant we can make

the uj converge to a positive limit, which will be a minimizer.

We observe that

a2s[u] ≤ 0 . (19)

In fact, for s ∈ (n
2
, n+2

2
) the infimum I2s,n is negative, as can be seen by taking a

constant trial function, and therefore a2s[uj] is negative for all sufficiently large j.

Thus, (19) follows by lower semicontinuity. On the other hand, for s ∈ (n+2
2
, n+4

2
) we

have by Morrey’s inequality u ∈ C1,s−n+2
2 (Sn). Since u(S) = minu = 0 and u ≥ 0 we

have ∇u(S) = 0 and consequently,

u(ω) ≤ Cu|ω − S|s−
n
2 for all ω ∈ Sn .

Thus, by Fatou’s lemma,

lim inf
j→∞

∫
Sn
u
− 2n

2s−n
j dω ≥

∫
Sn
u−

2n
2s−n dω ≥ C

− 2n
2s−n

u

∫
Sn
|ω − S|−n dω =∞ ,

that is,
∫
Sn u

− 2n
2s−n

j dω →∞. Inserting this into (17) we obtain lim supj→∞ a2s[uj] ≤ 0

and then (19) follows again by lower semicontinuity.

On the other hand, by the first part of Proposition 5, the fact that u(S) = 0 (and

∇u(S) = 0 if s > n+2
2

) implies that a2s[u] ≥ 0 and therefore, in view of (19), the

second part of Proposition 5 implies that

u(ω) = 2−
2s−n

2 (1 + ωn+1)
2s−n

2 for all ω ∈ Sn .

(Here we used the normalization maxu = 1 to determine the constant and, in case

s > n+2
2

we use positivity of u to deduce that b = 0.)

With a sequence (λj) ⊂ (0,∞) to be determined later, we now consider the confor-

mal transformation Φj of Sn given by Φj := SDλjS−1, where Dλj is dilation on Rn by

λj, that is (Dλj)(x) = λjx, and S is the (inverse) stereographic projection. We set

vj(ω) := JΦj(ω)−
2s−n
2n uj(Φj(ω))
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and

ũj :=
vj

max vj
.

By conformal invariance (Lemma 3) and homogeneity, (ũj) is a minimizing sequence

for I2s,n and it is normalized by max ũj = 1. We argue as before and, after passing to

a subsequence, we may assume that (ũj) converges weakly in Hs(Sn) and strongly in

C(Sn) to some ũ.

Note that ũ depends on the choice of the sequence (λj). We claim that, for an

appropriate choice of (λj) (where for each j, λj only depends on uj), we have ũ > 0.

Once this is shown, we obtain in the same way as before that ũ is a minimizer and

that the convergence is strong in Hs(Sn), so we are done.

We argue by contradiction and assume that there is a ξ ∈ Sn such that ũ(ξ) = 0.

Then, still arguing as before, but with a rotated version of Proposition 5,

ũ(ω) = 2−
2s−n

2 (1− ξ · ω)
2s−n

2 for all ω ∈ Sn . (20)

We now compute explicitly

JΦj(ω) =

(
2λj

1 + ωn+1 + λ2
j(1− ωn+1)

)n
and, using Φj(N) = N and Φj(S) = S, we obtain

vj(N) = λ
− 2s−n

2
j uj(N) and vj(S) = λ

2s−n
2

j uj(S) .

Thus, if we choose

λj :=

(
uj(N)

uj(S)

) 1
2s−n

,

then ũj(S) = ũj(N) and, in the limit, ũ(S) = ũ(N). By (20), this implies that

ξn+1 = 0 and ũ(N) = 2−
2s−n

2 > 0.

Since minuj = uj(S), we have for any ω ∈ Sn,

ũj(ω) ≥ uj(S)

max vj

(
1 + ωn+1 + λ2

j(1− ωn+1)

2λj

) 2s−n
2

= ũj(N)

(
λ−2
j (1 + ωn+1) + 1− ωn+1

2

) 2s−n
2

.

Since ũj(N) → ũ(N) = 2−
2s−n

2 and since λj → +∞ (because uj(S) → u(S) = 0 and

uj(N)→ u(N) = 1), we infer that in the limit

ũ(ω) ≥ 22s−n (1− ωn+1)
2s−n

2 .

In particular, ũ(ξ) ≥ 22s−n > 0, a contradiction. This completes the proof. �

A variation of part of the above argument allows us to show the following.
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Lemma 7. Let n ≥ 1 and s ∈ (n
2
, n+4

2
)\{n+2

2
}. Assume that u ∈ Hs(Sn) is nonnegative

with u−
2n

2s−n ∈ L1(Sn) and

a2s[u]

(∫
Sn
u−

2n
2s−n dω

) 2s−n
n

= I2s,n .

Then u is everywhere positive.

Proof. We argue by contradiction and assume that minu = 0. Then, by a rotated

version of Proposition 5, a2s[u] ≥ 0. Since a2s[1] < 0 for s ∈ (n
2
, n+2

2
), we immediately

obtain a contradiction in that case. On the other hand, if s ∈ (n+2
2
, n+4

2
), then similarly

as in the previous proof u(ω) . |ω − ξ|s−n2 for all ω ∈ Sn and some ξ ∈ Sn and

consequently u−
2n

2s−n 6∈ L1(Sn), which is again a contradiction. �

3.2. Proof of Theorem 1. First, let s ∈ n
2

+ N. Then α2s,n(`) ≥ 0 for all ` ∈ N0

with equality if and only if ` ≤ s− n
2
. This immediately proves the inequality and the

characterization of cases of equality.

In the remainder of this proof, let s ∈ (n
2
, n+4

2
) \ {n+2

2
}. Then, according to

Proposition 6, there is a minimizer u for the infimum I2s,n. Conversely, assume that

0 ≤ u ∈ Hs(Sn) with u−
2n

2s−n ∈ L1(Sn) realized equality in (8). Then by Lemma 7

u > 0 and using this, it is easy to derive the Euler–Lagrange equation

A2su = λu−
2s+n
2s−n , λ =

a2s[u]∫
Sn u

− 2n
2s−n dω

.

(The form of the Euler–Lagrange multiplier follows by integrating the equation against

u.) The equation holds a-priori in H−s(Sn), but since the right side is square-integrable

(in fact, Hölder continuous), a standard bootstrap argument yields that u ∈ C∞(Sn).

Applying the inverse A−1
2s to both sides as in the proof of Lemma 3, we find

u = λA−1
2s u

− 2s+n
2s−n = λ

Γ(n
2
− s)

22sπ
n
2 Γ(s)

∫
Sn
|ω − ω′|2s−nu(ω′)−

2s+n
2s−n dω′ .

Taking into account the sign of Γ(n
2
− s), we see that λ < 0 if s ∈ (n

2
, n+2

2
) and λ > 0

if s ∈ (n+2
2
, n+4

2
). Defining uS and uS as in (11) and arguing as in Step 2 of the proof

of Lemma 4, we obtain

uS(x) = λ
Γ(n

2
− s)

22sπ
n
2 Γ(s)

∫
Rn
|x− x′|2s−n(u−

2s+n
2s−n )S(x′) dx′

= λ
Γ(n

2
− s)

22sπ
n
2 Γ(s)

∫
Rn
|x− x′|2s−n(uS(x′))−

2s+n
2s−n dx′ .

Applying [37, Theorem 1.5] to a suitable multiple of uS (at this point we use the sign

of λ), we find that, for some a ∈ Rn, b, c > 0,

uS(x) = c

(
b2 + |x− a|2

2b

) 2s−n
2

.



REVERSE SOBOLEV INEQUALITIES — October 28, 2021 15

This means that, with ζ := (2η − b2(1 + ηn+1)en+1)/(2 + b2(1 + ηn+1)) and η := S(a),

u(ω) = c

(
1− ζ · ω√

1− |ζ|2

) 2s−n
2

,

which is of the form claimed in the theorem.

Conversely, if u is of the form in the theorem, then u = cJ
−(2s−n)/(2n)
Φ = c1Φ

for some conformal transformation Φ of Sn and some c > 0. (This follows, for in-

stance, by reversing the above computation, namely by showing that uS is a mul-

tiple of a translation and dilation of ((1 + |x|2)/2)(2s−n)/2.) Then
∫
u−2n/(2s−n) dω =

c−2n/(2s−n)
∫

1−2n/(2s−n) dω and, by Lemma 3, a2s[u] = c2a2s[1]. In particular, the value

of the left side of (8) is independent of ζ and c and since, according to what we showed

before, the left side is minimal for some ζ and c, it is in fact minimal for every ζ and

c. This concludes the proof of Theorem 1.

4. Proof of Theorem 2

In this section we prove our second main result, which says that for s ∈ (n+4
2
,+∞)\

(n
2

+N) there is no minimizer for the infimum I2s,n in (7) and that, at least for n ≥ 2,

one has I2s,n = −∞. These two assertions are proved in the following two subsections.

4.1. Local instability. We prove more than what is stated in Theorem 2, namely

that the quantity in (7) does not even have a local minimizer 0 < u ∈ Hs(Sn). Indeed,

if such a local minimizer would exist, we could repeat the argument in the proof of

Theorem 1 and would infer that this minimizer is necessarily of the form c1Φ for a

conformal transformation Φ of Sn and a constant c > 0. Since the minimization

problem is homogeneous and conformally invariant (Lemma 3), it therefore suffices to

show that the constant function 1 is not a local minimizer. We do this by showing

that the second variation is not positive semidefinite.

A simple computation shows that for every ϕ ∈ Hs(Sn), as t→ 0,

a[1 + tϕ]

(∫
Sn

(1 + tϕ)−
2n

2s−ndω

) 2s−n
n

= a[1]|Sn|
2s−n
n + t2|Sn|

2s−n
n H[ϕ] + o(t2)

with

H[ϕ] := a2s[ϕ] +
2s+ n

2s− n
a2s[1]

|Sn|

∫
Sn
ϕ2 dω +

4(s− n)

2s− n
a2s[1]

|Sn|2

(∫
Sn
ϕdω

)2

− 4
a2s[1, ϕ]

|Sn|

∫
Sn
ϕdω .

Here a2s[·, ·] is the natural bilinear form associated to a2s[·]. This can be rewritten as

H[ϕ] = a2s[ϕ] +
2s+ n

2s− n
α2s,n(0)

∫
Sn
ϕ2 dω − 4s

2s− n
α2s,n(0)

(∫
Sn
ϕdω

)2

.



16 RUPERT L. FRANK, TOBIAS KÖNIG, AND HANLI TANG

If 2k < s− n
2
< 2k+1 for some k ∈ N, we choose ϕ to be an L2-normalized spherical

harmonic of degree two and obtain

H[ϕ] = α2s,n(2)+
2s+ n

2s− n
α2s,n(0) =

Γ(2 + n
2

+ s)

Γ(2 + n
2
− s)

+
2s+ n

2s− n
Γ(n

2
+ s)

Γ(n
2
− s)

= 2s
Γ(1 + n

2
+ s)

Γ(2 + n
2
− s)

.

Since Γ(2 + n
2
− s) < 0, we have H[ϕ] < 0, which shows the instability of 1.

If 2k + 1 < s − n
2
< 2(k + 1) for some k ∈ N, we choose ϕ to be an L2-normalized

spherical harmonic of degree three and obtain

H[ϕ] = α2s,n(3) +
2s+ n

2s− n
α2s,n(0) =

Γ(3 + n
2

+ s)

Γ(3 + n
2
− s)

+
2s+ n

2s− n
Γ(n

2
+ s)

Γ(n
2
− s)

= 2s(n+ 3)
Γ(1 + n

2
+ s)

Γ(3 + n
2
− s)

.

Since Γ(3 + n
2
− s) < 0, we have H[ϕ] < 0, which shows again the instability of 1.

4.2. Global instability. We now complete the proof of Theorem 2 by showing that

I2s,n = −∞ if n ≥ 2 and s ∈ (n+4
2
,∞) \ (n

2
+ N). (21)

We will give a separate proof for the following two subcases

2K < s− n

2
< 2K + 1 for some K ∈ N , (22)

2K + 1 < s− n

2
< 2K + 2 for some K ∈ N . (23)

Note that in the first case, we have α2s,n(2k) < 0 for all k = 0, . . . , K and α2s,n(`) > 0

for all other `. In the second case, we have α2s,n(2k + 1) < 0 for all k = 0, . . . , K and

α2s,n(`) > 0 for all other `.

For both cases, we will give a test function u ≥ 0 such that

−∞ < a2s[u] < 0 and

∫
Sn
u−

2n
2s−n dω = +∞ . (24)

This essentially proves (21), except that the function may not satisfy the strict in-

equality u > 0. But we can simply take u+ ε with a constant ε > 0 as a trial function

for the infimum and let ε→ 0+.

The case (22). Let K ∈ N be as in (22). We shall show that (24) holds for the function

u(ω) = ω2K
n+1.

The integral condition is simple. Using spherical coordinates with ωn+1 = cos θ,

θ ∈ [0, π], and changing variables t = cos θ ∈ [−1, 1] we obtain∫
Sn
u−

2n
2s−n dω = |Sn−1|

∫ π

0

| cos θ|−
4nK
2s−n sinn−1 θ dθ = |Sn−1|

∫ 1

−1

|t|−
4nK
2s−n (1− t2)

n−2
2 dt .

This integral is divergent if and only if 4nK
2s−n ≥ 1. In view of (22), this is the case if

and only if n ≥ 2.
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Next, we show that a2s[u] < 0. We claim that

u(ω) =
K∑
k=0

ckC
(n−1

2
)

2k (ωn+1) , (25)

where C
(α)
` are the Gegenbauer (or ultraspherical) polynomials and where ck ∈ R. It

is well known (see, for instance, [46, Thm. IV.2.14]) that the function C
(n−1

2
)

` (ωn+1) is

a spherical harmonic of degree `, namely a so-called zonal harmonic.

Note that we claim that in the spherical harmonic expansion (25) of u there are only

terms of even degree at most K. As noted above, the condition (22) then guarantees

that α2s,n(2k) < 0 for all k = 0, ..., K and thus

a2s[u] =
K∑
k=0

α2s,n(2k) c2
k‖Y2k‖2

L2(Sn) < 0 ,

as desired.

We recall two standard facts about the Gegenbauer polynomials. First, C
(α)
` is a

polynomial of exact degree ` and second, C
(α)
` has the same parity as `, see [20, Eq.

18.5.10]. That is, for every k,

C
(n−1

2
)

2k (t) = ak,kt
2k + ak,k−1t

2k−2 + . . .+ ak,0

with ak,k 6= 0. Thus, the desired expansion

t2K =
K∑
k=0

ck C
(n−1

2
)

2k (t) for all t ∈ [−1, 1] . (26)

can be equivalently rewritten, with respect to the basis {t2K , t2K−2, . . . , t2, 1} of even

polynomials on [−1, 1] of order at most 2K, as
aK,K 0 ... 0

aK,K−1 aK−1,K−1 ... 0

...

aK,0 aK−1,0 ... a0,0




cK
cK−1

...

c0

 =


1

0

...

0

 .

Since the matrix on the left side is of lower-triangular form with non-zero diagonal

entries, its determinant is non-zero. Hence there are (unique) numbers c0, ..., cK ∈ R
such that (26), and hence (25), holds. This completes the proof in the case (22).

The case (23). In this case, the above argument becomes a bit more involved because

we need to work with the more complicated test function

u(ω) := ω2K
n+1 − ω2K+1

n+1 ,

where K is as in (23). Indeed, since α2s,n(`) < 0 if and only if ` = 1, 3, ..., 2K + 1, the

test function needs to contain an ‘odd’ component like ω2K+1
n+1 to achieve a2s[u] < 0.

On the other hand, the ‘even’ term ω2K
n+1 is necessary to ensure u ≥ 0.
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Let us verify divergence of the integral. With the same change of variables as before

we obtain ∫
Sn
u−

2n
2s−n dω = |Sn−1|

∫ π

0

| cos θ|−
4nK
2s−n (1− cos θ)−

2n
2s−n sinn−1 θ dθ

= |Sn−1|
∫ 1

−1

|t|−
4nK
2s−n (1− t)−

2n
2s−n (1− t2)

n−2
2 dt .

The integral is divergent (at t = 0) if and only if 4nK
2s−n ≥ 1. In view of (23), this is the

case if and only if n ≥ 2.

Next, we show that a2s[u] < 0. By using the properties of Gegenbauer polynomials

as in the case (22), we find

t2K =
K∑
k=0

ckC
(n−1

2
)

2k (t) and t2K+1 =
K∑
k=0

dkC
(n−1

2
)

2k+1 (t) (27)

for suitable coefficients ck, dk ∈ R. (In fact, in this case we shall need to find ck and

dk explicitly, see (29) and Lemma 8 below.) Therefore

u(ω) =
K∑
k=0

(
ckC

(n−1
2

)

2k (ωn+1)− dkC
(n−1

2
)

2k+1 (ωn+1)
)
.

Since a2s is diagonal with respect to spherical harmonics, we thus obtain

a2s,n[u] =
K∑
k=0

(
α2s,n(2k)c2

k‖C
(n−1

2
)

2k (ωn+1)‖2
L2(Sn)+ α2s,n(2k + 1)d2

k‖C
(n−1

2
)

2k+1 (ωn+1)‖2
L2(Sn)

)
.

By (5), we have the relation α2s,n(2k+ 1) = −2s+n+4k
2s−n−4k

α2s,n(2k), where 2s+n+4k
2s−n−4k

> 0 for

all k = 0, ..., K, thanks to (23). Hence

a2s,n[u] =
K∑
k=0

α2s,n(2k)

(
c2
k‖C

(n−1
2

)

2k (ωn+1)‖2
L2(Sn) −

2s+ n+ 4k

2s− n− 4k
d2
k‖C

(n−1
2

)

2k+1 (ωn+1)‖2
L2(Sn)

)
.

(28)

In view of α2s,n(2k) > 0 for all k = 0, ..., K by (23), the desired inequality a2s[u] < 0

follows if we can show that the difference in brackets is strictly negative for every

k = 0, ..., K. To do so, we claim that the coefficients ck and dk are related by

dk = ck
(2K + 1)(4k + n+ 1)

(2K + 2k + n+ 1)(4k + n− 1)
(29)

and the L2-norms of the spherical harmonics by

‖C(n−1
2

)

2k+1 (ωn+1)‖2
L2(Sn) = ‖C(n−1

2
)

2k (ωn+1)‖2
L2(Sn)

(2k + n− 1)(4k + n− 1)

(2k + 1)(4k + n+ 1)
. (30)

We defer the details of these computations to Lemma 8 below.

Inserting (29) and (30) into (28), the inequality we need to verify reduces to

1− 2s+ n+ 4k

2s− n− 4k
· (2K + 1)2(2k + n− 1)(4k + n+ 1)

(2K + 2k + n+ 1)2(2k + 1)(4k + n− 1)
< 0. (31)
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Since 2s − n < 4K + 4 by (23), and since t 7→ t+2n+4k
t−4k

is strictly decreasing, we can

estimate
2s+ n+ 4k

2s− n− 4k
>

4K + 4 + 2n+ 4k

4K + 4− 4k
=

2K + 2 + n+ 2k

2K + 2− 2k
.

Hence to show (31), it suffices to prove

2K + 2 + n+ 2k

2K + 2− 2k

(2K + 1)2(2k + n− 1)(4k + n+ 1)

(2K + 2k + n+ 1)2(2k + 1)(4k + n− 1)
≥ 1 (32)

for all integers n ≥ 2, K ≥ 1 and 0 ≤ k ≤ K.

The rest of the proof will be devoted to establishing (32) by considering several

cases separately.

Let us first assume that k ≤ K − 1. We write the left side of (32) as

(4k + n+ 1)(2K + 2 + n+ 2k)

(2K + 2k + n+ 1)2
· 2k + n− 1

4k + n− 1
· (2K + 1)2

(2K + 2− 2k)(2k + 1)
,

and notice that the first factor is a decreasing function of n ≥ 2 (see Lemma 9 below;

here is where the assumption k ≤ K − 1 enters) and the second factor is a decreasing

function of n ≥ 2. Thus, if k ≤ K − 1, it suffices to prove (32) for n = 2, which we

write as

F (K, k)

G(K, k)
:=

4k + 3

4k + 1
· 2K + 1

2K + 2k + 3
· 2K + 1

2K − 2k + 2
· 2K + 2k + 4

2K + 2k + 3
≥ 1. (33)

If k = 0, then for all K ≥ 1

F (K, 0)

G(K, 0)
= 3 · (2K + 1)2

(2K + 3)2
· K + 2

K + 1
≥ 3 · 32

52
· 1 > 1 ,

so we may assume k ≥ 1 in the following. To solve this case, we resort to explicit

calculation. We compute

1

2
F (K, k) = (16k+12)K3 +(16k2 +60k+36)K2 +(16k2 +48k+27)K+(4k+3)(k+2)

and

1

2
G(K, k) = (16k + 4)K3 + (16k2 + 68k + 16)K2 + (−16k3 + 28k2 + 92k + 21)K

− (k − 1)(2k + 3)2(4k + 1).

Hence for every k ≥ 1, dropping the positive constant term and using k ≤ K − 1, we

get

1

4K
(F (K, k)−G(K, k)) ≥ 4K2 + (10− 4k)K + (8k3 − 6k2 − 22k + 3)

≥ 8k3 − 6k2 − 12k + 13 =: P (k) .

We have P (k) ≥ 0 for all 1 ≤ k ≤ K − 1 because P ′(k) = 24k2 − 12k − 12 ≥ 0 for

k ≥ 1 and P (1) = 3 > 0. This finishes the proof of (33), and hence of (32), in the

case k ≤ K − 1.
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Let us finally give the proof of (32) when k = K. If K ≥ 2, we estimate the left

side of (32) by

2K + 1

2
· 2K + n− 1

4K + n− 1
· 4K + n+ 2

4K + n+ 1
≥ 2K + 1

2
· 1

2
≥ 5

4
> 1. (34)

If K = 1 and n ≥ 3, since 2K+n−1
4K+n−1

is increasing in n, the left side of (34) can be

estimated by
3

2
· 2 + n− 1

4 + n− 1
· 4 + n+ 2

4 + n+ 1
>

3

2
· 4

6
= 1.

Finally, if K = 1 and n = 2, by a direct calculation the left side of (34) equals 36
35
> 1.

The proof of Theorem 2 is now complete. �

We finally prove the two lemmas that we referred to in the proof.

Lemma 8. The coefficients ck and dk in (27) are given by

ck =
2−2K(2k + n−1

2
)Γ(2K + 1)Γ(n−1

2
)

Γ(K + k + n+1
2

)Γ(K − k + 1)
,

dk =
2−2K−1(2k + n+1

2
)Γ(2K + 2)Γ(n−1

2
)

Γ(K + k + n+3
2

)Γ(K − k + 1)
.

Moreover, ∫ 1

−1

|C(n−1
2

)

` (t)|2(1− t2)
n−2
2 dt =

π 22−n Γ(n− 1 + `)

`! (`+ n−1
2

) Γ(n−1
2

)2
. (35)

In particular, identities (29) and (30) hold.

Proof. Formula (35) is the special case α = n−1
2

of the following general formula [20,

Table 18.3.1] ∫ 1

−1

|C(α)
` (t)|2(1− t2)α−

1
2 dt =

π21−2αΓ(2α + `)

`!(`+ α)Γ(α)2
.

Observing that by change of variables t = ωn+1,

‖C(n−1
2

)

` (ωn)‖2
L2(Sn) = |Sn−1|

∫ 1

−1

|C(n−1
2

)

` (t)|2(1− t2)
n−2
2 dt,

identity (30) follows readily from (35) by a direct computation.

To obtain the expression for ck, recall that, at fixed α, the Gegenbauer polynomials

C
(α)
` are pairwise orthogonal on the space L2

(
(−1, 1), (1− t2)α−

1
2 dt
)

, see e.g. [20,

Table 18.3.1]. Integrating t2K =
∑K

l=0 clC
(n−1

2
)

2l (t) against C
(n−1

2
)

2k (t)(1− t2)
n−2
2 , we thus

find ∫ 1

−1

t2KC
(n−1

2
)

2k (t)(1− t2)
n−2
2 dt = ck

∫ 1

−1

|C(n−1
2

)

` (t)|2(1− t2)
n−2
2 dt.

The integral on the right side is given in (35) and the integral on the left side is [20,

Eq. 18.17.37]∫ 1

−1

t2KC
(n−1

2
)

2k (t)(1− t2)
n−2
2 dt =

π22−n−2KΓ(2k + n− 1)Γ(2K + 1)

(2k)!Γ(n−1
2

)Γ(K + k + n+1
2

)Γ(K − k + 1)
.
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The expression for dk follows analogously, using again (35) and [20, Eq. 18.17.37].

Finally, a direct computation gives identity (29). �

Lemma 9. Suppose that 0 ≤ k ≤ K − 1. Then n 7→ (4k+n+1)(2K+2+n+2k)
(2K+2k+n+1)2

is increasing

in n ≥ 2.

Proof. More generally, let f(n) := (a+n)(b+n)
(c+n)2

with a, b, c ≥ −1, a ≤ c ≤ b. We claim

that if

c− a ≥ b− c, (36)

then f(n) is increasing in n ≥ 2, unless when a = b = c. Applying this claim with

a = 4k+ 1, b = 2K + 2k+ 2 and c = 2K + 2k+ 1, condition (36) becomes k ≤ K − 1
2

and the lemma follows.

To prove the claim, write

f(n) =

(
1− c− a

c+ n

)(
1 +

b− c
c+ n

)
= 1 +

a+ b− 2c

c+ n
− (c− a)(b− c)

(c+ n)2
.

The last summand is nonpositive by assumption, hence nondecreasing in n. The second

summand is nondecreasing in n if a+ b− 2c ≤ 0, which is just (36). If a = b = c does

not hold, then one of the summands is increasing. �
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