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BLOW-UP OF SOLUTIONS OF CRITICAL ELLIPTIC EQUATIONS
IN THREE DIMENSIONS

RUPERT L. FRANK, TOBIAS KONIG, AND HYNEK KOVARIK

ABsTRACT. We describe the asymptotic behavior of positive solutions u. of the equation —Au+
au = 3u5° in Q < R® with a homogeneous Dirichlet boundary condition. The function a is
assumed to be critical in the sense of Hebey and Vaugon and the functions u. are assumed to be
an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption
we derive the exact rate of the blow-up and the location of the concentration point, thereby
proving a conjecture of Brézis and Peletier (1989). Similar results are also obtained for solutions
of the equation —Awu + (a + eV)u = 3u° in Q.

1. INTRODUCTION AND MAIN RESULTS

We are interested in the behavior of solutions to certain semilinear elliptic equations that are
perturbations of the critical equation

~AU =3U° inR°.
It is well-known that all positive solutions to the latter equation are given by
AL/2
(14 X2y — o)1

U A(y) := (1.1)
with parameters x € R3 and A > 0. This equation arises as the Euler-Lagrange equation of the
optimization problem related to the Sobolev inequality

1/3
f V22> S U 26)
R3 R3

with sharp constant [32] 33] 2] [35]

The perturbed equations that we are interested in are posed in a bounded open set ¢ R3 and
involve a function a on  such that the operator —A + a with Dirichlet boundary conditions is
coercive. (Later, we will be more precise concerning regularity assumptions on € and a.) One of
the two families of equations also involves another, rather arbitrary function V on 2. The case
where a and V' are constants is also of interest.
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We consider solutions u = wu,, parametrized by € > 0, to the following two families of equa-

tions,
—Au+au=3u""° inQ,
u>0 in Q, (1.2)
u=0 on 052

and

—~Au+ (a+eV)u=3u®> inQ,
u>0 in Q, (1.3)
u=0 on 0€2.

While there are certain differences between the problems and , the methods used to
study them are similar, and we will treat both in this paper. We are interested in the behavior
of the solutions u. as ¢ — 0, and we assume that in this limit the solutions form a minimizing
sequence for the Sobolev inequality. More precisely, for we assume

\V4 2
lim SQ|“€1|/3 - S (1.4)
E—>
(1)
and for (|1.2)) we assume
\V4 2
lim SQ|—UE|2 =9 (1.5)

e—0 62
6— 6—¢
(Jae)

For example, when 2 = B is the unit ball, a = —72/4, and V = —1, then (.3)) has a solution if
and only if 0 < £ < %, see [8, Sec. 1.2]. Note that in this case 72 is the first eigenvalue of the
operator —A with Dirichlet boundary conditions on €.

Returning to the general situation, the existence of solutions to and satisfying
and can be proved via minimization under certain assumptions on a and V'; see, for instance,
[17] for . Moreover, it is not hard to prove, based on the characterization of optimizers in
Sobolev’s inequality, that these functions converge weakly to zero in Hg () and that ul converges
weakly in the sense of measures to a multiple of a delta function; see Proposition In this
sense, the functions u. blow up.

The problem of interest is to describe this blow-up behavior more precisely. This question was
advertised in an influential paper by Brézis and Peletier [9], who presented a detailed study of
the case where (Q is a ball and a and V are constants. For earlier results on with a = 0, see
[T, 10). Concerning the case of general open sets Q < R3, the Brézis—Peletier paper contains three
conjectures, the first two of which concern the blow-up behavior of solutions to the analogues
of and in dimensions N = 3 (N > 4 for (1.3)) with a = 0. These conjectures were
proved independently in seminal works of Han [20] and Rey [30, [31].

In this paper, under a natural nondegeneracy condition, we prove the third Brézis—Peletier
conjecture, which has remained open so far. It concerns the blow-up behavior of solutions of
for certain nonzero a in the three-dimensional case. We also prove the corresponding result
for . This latter result is not stated explicitly in [9], but it is contained there in spirit and
could have been formulated using the same heuristics. Indeed, it is the version with a # 0 of the
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second Brézis-Peletier conjecture, in the same way as, concerning (1.2)), the third conjecture is
the a # 0 version of the first one.

A characteristic feature of the three dimensional case is the notion of criticality for the function
a. To motivate this concept, let

V 2 2
S(a) := inf SQ(| 2 +a2)
ozzet}(@)  (§g 20)1/3

One of the findings of Brézis and Nirenberg [§] is that if a is small (for instance, in L*(£2)),
but possibly nonzero, then S(a) = S. This is in stark contrast to the case of dimensions N > 4
where the corresponding analogue of S(a) (with the exponent 6 replaced by 2N /(N —2)) is always
strictly below the corresponding Sobolev constant, whenever a is negative somewhere.

This phenomenon leads naturally to the following definition due to Hebey and Vaugon [23]. A
continuous function a on € is said to be critical in Q if S(a) = S and if for any continuous
function @ on Q with @ < a and @ # a one has S(@) < S(a). Throughout this paper we assume
that a is critical in €.

A key role in our analysis is played by the regular part of the Green’s function and its zero set.
To introduce these, we follow the sign and normalization convention of [3I]. Since the operator
—A + a in Q with Dirichlet boundary conditions is assumed to be coercive, it has a Green’s
function G, satisfying, for each fixed y € €2,

A, Gulw,y) + a(x) Gale,y) = 475, in Q L)
Gal-y) =0 on 0. :
The regular part H, of G, is defined by
1
Hy(z,y) := — Galz,y) . 1.7
(9) = [y = Galew) (1.7)

It is well-known that for each y € Q the function H,(+,y), which is originally defined in Q\{y},
extends to a continuous function in 2 and we abbreviate

(ba(y) = Ha(ya y) :

It was proved by Brézis [6] that inf,eq ¢q(y) < 0 implies S(a) < S. The reverse implication,
which was stated in [6] as an open problem, was proved by Druet [13]. Hence, as a consequence
of criticality we have

Inf $aly) = 0; (1.8)

see also [16] and [I7, Proposition 5.1| for alternative proofs. Note that ((1.8]) implies, in particular,
that each point x with ¢4(z) = 0 is a critical point of ¢,.

Let us summarize the setting in this paper.

Assumption 1.1. (a) © < R? is a bounded, open set with C? boundary
(b) a € COLQ) n C>7(R) for some o > 0

loc

(c) a is critical in §2
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(d) Any critical point of ¢, is nondegenerate, that is, for any z¢ € Q with V¢, (x) = 0, the
Hessian D%¢, () does not have a zero eigenvalue

Let us briefly comment on these items. Assumptions (a) and (b) are modest regularity assump-
tions, which can probably be further relaxed with more effort. Concerning assumption (d) we
first note that ¢, € C%(Q) by Lemma [{.1l We believe that assumption (d) is ‘generically’ true.
(For results in this spirit, but in the noncritical case a = 0, see [27].) The corresponding assump-
tion for a = 0 appears frequently in the literature, for instance, in [31, 12]. Assumption (d) holds,
in particular, if 2 a ball and « is a constant, as can be verified by explicit computation.

To leading order, the blow-up behavior of solutions of (|1.3) will be given by the projection of a
solution (L.I)) of the unperturbed whole space equation to H (). For parameters x € R?, A > 0
we introduce PU, , € H} () as the unique function satisfying

APU, \ = AU, in Q, PU,»=0 on Q. (1.9)
Moreover, let
Ty = span{PUx)\, OA\PUg », Op PUy )\ Oy PUy é’ngUz)\}

and let Té/\ be the orthogonal complement of T}, » in H} () with respect to the inner product
§o Vu-Vu. By I,  and H:JE-’A we denote the orthogonal projections in H{(Q) onto T} and T;:)\,
respectively.

Here are our main results. We begin with those pertaining to equation (1.2 and we first provide

an asymptotic expansion of u. with a remainder in H}(€2).

Theorem 1.2 (Asymptotic expansion of u.). Let (uz) be a family of solutions to (1.2) satisfying
(1.5). Then there are sequences (x:) < Q, (\:) < (0,0), (@) € R and (r:) T;)/\E such that

Ue = Q¢ <PUI5,)\5 - )\5_1/2 Hgt,)\i(Ha(xa ) - Ho(l'e, )) + Ts) (1'10)
and a point xg € Q with Vu(xg) = 0 such that, along a subsequence,
|[we — x| = o(1), (1.11)
. 32
il_I)I(l) EXe = - ¢alz0), (1.12)
4-e o if a(x0) # 0,

(1.13)

Q
|

g
=1+ -logA + ‘
) 207 Ln(z) A+ oMY if dalwo) =0,

-1 .
HVTa‘HQ — O()\E ) Zf ¢a(x0) i 07 (114)

~3/2, .
O?) if galwo) = 0.

Moreover, if ¢qo(x9) =0, then

lim M= —32a(xo). (1.15)

E—>
Our second main result concerns the pointwise blow-up behavior, both at the blow-up point and
away from it, and, in the special case of constant a, verifies the conjecture from [9] under the
natural nondegeneracy assumption (d).
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Theorem 1.3 (Brézis-Peletier conjecture). Let (u:) be a family of solutions to (1.2)) satisfying

3.
(a) The asymptotics close to the concentration point xy are given by

. . 32
lim € HUngo = lim € |u€(ac€)|2 = — ¢alz0).
e—0 e—0 ™

If ¢a(x0) =0, then

liH(l) e |uc|k = liH(l) € Juc(z2))t = —32a(xo) . (1.16)
e— e—

(b) The asymptotics away from the concentration point xo are given by
us(2) = A2 Gz, 20) + o(A1?)

for every fized x € Q\{xo}. The convergence is uniform for x away from xy.

Strictly speaking, the Brézis—Peletier conjecture in [9] is stated without the criticality assumption
(c) on a, but rather under the assumption ¢, > 0 on 2. (Note that [9] uses the opposite sign
convention for the regular part of the Green’s function. Also, their Green’s function is normalized
to be ﬁ times ours.) The remaining case, however, is much simpler and can be proved with
existing methods. Indeed, by Druet’s theorem [I3], the inequality ¢, = 0 on  is equivalent to
S(a) = S, and the assumption that a is critical is equivalent to min ¢, = 0. Thus, the case of
the Brézis—Peletier conjecture that is not covered by our Theorem is that where min ¢, > 0.
This case can be treated in the same way as the case a = 0 in [20, B0] (or as we treat the case
¢a(zg) > 0). Note that in this case the nondegeneracy assumption (d) is not needed. Whether
this assumption can be removed in the case where ¢,(xg) = 0 is an open problem.

We note that Theorems and and, in particular, the asymptotics (1.15) and (1.16)), hold
independently of whether a(zp) = 0 or not. We are grateful to H. Brézis (personal commu-
nication) for raising the question of whether a(zg) = 0 can happen and what the asymptotics
of Ae resp. |uc|w would be in this case, or whether one can show that ¢,(xz¢) = 0 implies
a(xg) < 0.

We also point out that the conjecture in [9] is formulated with assumption (1.4)) rather that (1.5]).
However, the latter assumption is typically used in the posterior literature dealing with problem
(1.2)), see e.g. |20, 19], and we follow this convention.

We now turn our attention to the results for the second family of equations, namely (1.3)).
Whenever we deal with that problem, we will slightly relax assumption (d) to (d’) and impose
the following additional assumptions (e) and (f), where we set

Ny :i={zeQ: ¢o(x) =0},
Assumption 1.4. (d’) Any point in N, is a nondegenerate critical point of ¢, that is, for
any zg € N, the Hessian D?¢,(z0) does not have a zero eigenvalue
(e) a<0in N,
(f) Ve % (Q)
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Again, assumption (f) is a modest regularity assumption, which can probably be further relaxed
with more effort. Assumption (e) is not severe, as we know from [I7, Corollary 2.2] that any
critical a satisfies a < 0 on N,. In particular, it is fulfilled if a is a negative constant.

Let
Qv (zx) = JQ V(y) Ga(m,y)Q, re. (1.17)

Again, we first provide an asymptotic expansion of u. with a remainder in H}(€2).

Theorem 1.5 (Asymptotic expansion of u.). Let (uz) be a family of solutions to (1.3) satisfying
(1.4). Then there are sequences (xc) < Q, (A:) < (0,90), (ae) € R and (r:) TJ- . such that

Ue = (PU%AE —ATVRILL \ (Ha(xe,) — Holae, ")) + rg) (1.18)

and a point xo € Ny with Qv (xg) < 0 such that, along a subsequence,
|z — 0| = o(e'?), (1.19)
dalze) = 0(€), (1.20)
lim ¢\, = dr2 120 1.21
2 A =T o (o)l (-2

4 do(zo) |Qv (wo)|

=1 1.22
e =1+ 3.3 a(zo)] e+ o(e), (1.22)
|Vrella = O(3?). (1.23)

If Qv(zo) =0, the right side of (1.21) is to be interpreted as oo.

The following result concerns the pointwise blow-up behavior.

Theorem 1.6. Let (uz) be a family of solutions to (1.3)) satisfying (1.4]).

(a) The asymptotics close to the concentration point xo are given by

|a(zo)| .
Qv (20)]
If Qv(zo) =0, the right side of (1.21) is to be interpreted as oo.

lim € |uc| = lim e |ug(z:)? = 4
e—0 e—0

(b) The asymptotics away from the concentration point xo are given by
ue(x) = A7 V2 Galw, 20) + o(AT1?)

for every fized x € O\{xo}. The convergence is uniform for x away from xg.

Theorems [[.2] and [L.5] state that to leading order the solution is given by a projected bubble
PU, .- One of the main points of these theorems, which enters crucially in the proof of
Theorems and is the identification of the localization length A1 of the projected bubble
as an explicit constant times & (for (1.2]) if ¢4(x0) # 0 and for if Qv (z0) < 0) or e'/2 (for
(1.2) if ¢po(z0) = 0 and a(xp) # 0).

The fact that the solutions are given to leading order by a projected bubble is a rather gen-
eral phenomenon, which is shared, for instance, also by the higher dimensional generalizations
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of (1.2) and (1.3). In contrast to the higher dimensional case, however, in order to compute
the asymptotics of the localization length A_!, we need to extract the leading order correc-
tion to the bubble. Remarkably, this correction is for both problems (1.2) and (1.3 given by

ATVt (Hq(ze,) — Ho(ze,")).

ZTe,Ae

Moreover, for both problems the concentration point xg is shown to satisfy V¢, (z9) = 0. Here,
however, we see an interesting difference between the two problems. Namely, for (1.3) we also
know that ¢4(r9) = 0, whereas we know from |12, Theorem 2(b)| that there are solutions of
(1.2) concentrating at any critical point of ¢,, not necessarily in N,. (These solutions also

satisfy (1.4)).)

An asymptotic expansion very similar to that in Theorem is proved in [I7] for energy-
minimizing solutions of ([1.3); see also [I§] for the simpler higher-dimensional case. There, we
did not assume the nondegeneracy of D%¢,(x¢), but we did assume that Qi < 0in N,. Moreover,
in the energy minimizing setting we showed that xg satisfies

Qv(wo)*/la(zo)l = sup  Quv(z)*/a(x)],

NG, Qv (x)<0

but this cannot be expected in the more general setting of the present paper.

Before describing the technical challenges that we overcome in our proofs, let us put our work
into perspective. In the past three decades there has been an enormous literature on blow-up
phenomena of solutions to semilinear equations with critical exponent, which is impossible to
summarize. We mention here only a few recent works from which, we hope, a more complete
bibliography can be reconstructed. In some sense, the situation in the present paper is the
simplest blow-up situation, as it concerns single bubble blow-up of positive solutions in the
interior. Much more refined blow-up scenarios have been studied, including, for instance, multi-
bubbling, sign-changing solutions or concentration on the boundary under Neumann boundary
conditions. For an introduction and references we refer to the books [14, 22]. In this paper we
are interested in the description of the behavior of a given family of solutions. For the converse
problem of constructing blow-up solutions in our setting, see [12] and also [28], and for a survey
of related results, see [29] and the references therein. Obstructions to the existence of solutions
in three dimensions were studied in [15]. The spectrum near zero of the linearization of solutions
was studied in [19, [IT]. There are also connections to the question of compactness of solutions,
see [0 24] and references therein.

What makes the critical case in three dimensions significantly harder than the higher-dimen-
sional analogues solved by Han [20] and Rey [30, BI] is a certain cancellation, which is related
to the fact that inf ¢, = 0. Thus, the term that in higher dimensions completely determines
the blow-up vanishes in our case. Our way around this impasse is to iteratively improve our
knowledge about the functions ue. The mechanism behind this iteration is a certain coercivity
inequality, due to Esposito [16], which we state in Lemma and a crucial feature of our proof
is to apply this inequality repeatedly, at different orders of precision. To arrive at the level of
precision stated in Theorems and two iterations are necessary (plus a zeroth one, hidden
in the proof of Proposition .

The first iteration, contained in Sections [2| and [5] is relatively standard and follows Rey’s ideas
in [3I] with some adaptions due to Esposito [16] to the critical case in three dimensions. The
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main outcome of this first iteration is the fact that concentration occurs in the interior and an
order-sharp remainder bound in H& on the remainder ag lu. — PU,_ ..

The second iteration, contained in Sections [3]and [6] is more specific to the problem at hand. Its
main outcome is the extraction of the subleading correction AT Hj57>\E(Ha(33e, ) — Ho(ze, -))-
Using the nondegeneracy of D?¢,(x) we will be able to show in the proof of Theorems and
that \. is proportional to e~! (for (T.2) if ¢a(z) # 0 and for (1.3) if Qv (zo) < 0) or e~1/2
(for if ¢a(xo) = 0 and a(zg) # 0).

The arguments described so far are, for the most part, carried out in H& norm. Once one has
completed the two iterations, we apply in Subsections and a Moser iteration argument in
order to show that the remainder a-lu. — PU,_ ), is negligible also in L norm. This will then
allow us to deduce Theorems and [L6l

As we mentioned before, Theorem is the generalization of the corresponding theorem in
[17] for energy-minimizing solutions. In that previous paper, we also used a similar iteration
technique. Within each iteration step, however, minimality played an important role in [17] and
we used the iterative knowledge to further expand the energy functional evaluated at a minimizer.
There is no analogue of this procedure in the current paper. Instead, as in most other works
in this area, starting with [9], Pohozaev identities now play an important role. These identities
were not used in [I7]. In fact, in [I7] we did not use equation at all and our results there
are valid as well for a certain class of ‘almost minimizers’.

There are five types of Pohozaev-type identities corresponding, in some sense, to the five linearly
independent functions in the kernel of the Hessian at an optimizer of the Sobolev inequality on R?
(resulting from its invariance under multiplication by constants, by dilations and by translations).
All five identities will be used to control the five parameters ag, A and z. in ((1.10]) and (1.18)),
which precisely correspond to the five asymptotic invariances. In fact, all five of these identities
are used in the first iteration and then again in the second iteration. (To be more precise, in the
first iteration in the proof of Theorem it is more economical to only use four identities, since
the information from the fifth identity is not particularly useful at this stage, due to the above
mentioned cancellation ¢, (xg) = 0.)

Thinking of the five Pohozaev-type identities as coming from the asymptotic invariances is useful,
but an oversimplification. Indeed, there are several possible choices for the multipliers in each
category, for instance, u, PU, ), 1, corresponding to multiplication by constants, y - Vu,
O\PUy \, Oxthyx corresponding to dilations and 0y;u, Vi PUy x, Vi PUg \ corresponding to
translations. (Here 1), ) is a modified bubble defined below in (3.1]).) The choice of the multiplier
is subtle and depends on the available knowledge at the moment of applying the identity and the
desired precision of the outcome. In any case, the upshot is that these identities can be brought
together in such a way that they give the final result of Theorems and concerning the
expansion in H}(2). As mentioned before, the desired pointwise bounds in Theorems and
then follow in a relatively straightforward way using a Moser iteration.

The structure of this paper is as follows. The first part of the paper, consisting of Sections
and [} is devoted to problem ([1.3]), while the second part, consisting of Sections @] and
is devoted to ([1.2)). The two parts are presented in a parallel manner, but the emphasis in the
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second part is on the necessary changes compared to the first part. The preliminary Sections
and [p] contain an initial expansion, the subsequent Sections [3] and [f] contain its refinement and,
finally, in Sections {] and |7] the main theorems presented in this introduction are proved. Some
technical results are deferred to two appendices.

2. ADDITIVE CASE: A FIRST EXPANSION
In this and the following section we will prepare for the proof of Theorems [I.5] and [1.6]

The main result from this section is the following preliminary asymptotic expansion of the family
of solutions (u.).

Proposition 2.1. Let (u.) be a family of solutions to (1.3|) satisfying (L.4).

Then, up to extraction of a subsequence, there are sequences (zz) < 2, (A\:) € (0,0), (az) € R
and (we) C TZ,J; A, such that
ue = a(PU,, x. + we), (2.1)

and a point xg € ) such that
|re —zo] = 0(1), a:=1+0(1), A — o0, |Vwz2= (’)(/\71/2). (2.2)

This proposition follows to a large extent by an adaptation of existing results in the literature.
We include the proof since we have not found the precise statement and since related arguments
will appear in the following section in a more complicated setting.

An initial qualitative expansion follows from works of Struwe [34] and Bahri-Coron [3]. In order
to obtain the statement of Proposition we then need to show two things, namely, the bound
on |[Vw| and the fact that zp € Q. The proof of the bound on |[Vw|| that we give is rather close
to that of Esposito [16]. The setting in [16] is slightly different (there, V' is equal to a negative
constant and, more importantly, the solutions are assumed to be energy minimizing), but this
part of the proof extends to our setting. On the other hand, the proof in [16] of the fact that
xgp € 2 relies on the energy minimizing property and does not work for us. Instead, we adapt
some ideas from Rey in [3I]. The proof in [31] is only carried out in dimensions > 4 and without
the background a, but, as we will see, it extends with some effort to our situation.

We subdivide the proof of Proposition into a sequence of subsections. The main result of
each subsection is stated as a proposition at the beginning and summarizes the content of the
corresponding subsection.

2.1. A qualitative initial expansion. As a first important step, we derive the following ex-
pansion, which is already of the form of that in Proposition [2.1] except that all remainder bounds
are nonquantitative and the limit point zg may a priori be on the boundary o).

Proposition 2.2. Let (u.) be a family of solutions to (1.3) satisfying (1.4).

Then, up to extraction of a subsequence, there are sequences (v:) < Q, (A:) < (0,0), (@) € R
and (w:) T;;’Ag such that [2.1)) holds and a point xo € Q such that

|ze — a0l = 0(1), ac=1+0(1), d.A:— 0, [[Vw2=o0(1), (2.3)
where we denote d. := d(zc, 092).
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Proof. We shall only prove that u. — 0 in H}(Q). Once this is shown, we can use standard
arguments, due to Lions [26], Struwe [34] and Bahri-Coron [3], to complete the proof of the
proposition; see, for instance, [31, Proof of Proposition 2|.

Step 1. We begin by showing that (u.) is bounded in H{ () and that |u.|¢ = 1. Integrating the
equation for u. against u., we obtain

L (|Vu5|2 + (a — 5V)u§> = SJ ul (2.4)

Q
and therefore

2/3 $o [Vue?*  §o(a+eV)u2
3 ul = 2% 3 T & .
(JQ ) <SQ ug) /3 (SQ u§> 1/3

On the right side, the first quotient converges by and the second quotient is bounded by
Holder’s inequality. Thus, (uc) is bounded in L%(2). By we obtain boundedness in H{ ().
By coercivity of —A + a in H}(Q) and Sobolev’s inequality, for all sufficiently small & > 0, the
left side in is bounded from below by a constant times |u.||2. This yields the lower bound
on |uclle = 1.

Step 2. According to Step 1, (u:) has a weak limit point in H}(2) and we denote by ug one
of those. Our goal is to show that ug = 0. Throughout this step, we restrict ourselves to
a subsequence of ¢’s along which u. — wug in H}(Q). By Rellich’s lemma, after passing to a
subsequence, we may also assume that u. — wug almost everywhere. Moreover, passing to a
further subsequence, we may also assume that |Vu.| has a limit. Then, by (L.4), |uc|s has a
limit as well and, by Step 1, none of these limits is zero.

We now argue as in the proof of [I7, Proposition 3.1] and note that, by weak convergence,
T =lim | |V(ue —ug)> exists and satisfies limf |Vu|? = J \Vuo|> + T
e—0 Jo e—0 Jo Q
and, by the Brézis—Lieb lemma [7],

M =1lim | (u: —up)® exists and satisfies limf ub = f ud + M.
e—0 QO e—0 Q 9]

13
s(f u8+M) =J|Vuo|2+7'.
Q Q

We bound the left side from above with the help of the elementary inequality

, 1/3 \ 13
U u8+M> <<J u8> M3
Q Q

and, by the Sobolev inequality for u. — ug, we bound the right side from below using

T > SMY3 .

13
Q Q

Thus, either ug = 0 or ug is an optimizer for the Sobolev inequality. Since ug has support in

Thus, (1.4) gives

Thus,

Q) < R3, the latter is impossible and we conclude that ug = 0, as claimed. g
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Convention. Throughout the rest of the paper, we assume that the sequence (u.) satisfies
the assumptions and conclusions from Proposition We will make no explicit mention of
subsequences. Moreover, we typically drop the index ¢ from u., ae, x-, A, de and we.

2.2. Coercivity. The following coercivity inequality from [16, Lemma 2.2] is a crucial tool for
us in subsequently refining the expansion of u.. It states, roughly speaking, that the subleading
error terms coming from the expansion of u. can be absorbed into the leading term, at least
under some orthogonality condition.

Lemma 2.3. There are constants Ty, < o0 and p > 0 such that for oll x € Q, all X > 0 with
dN\ =T, and all v e Ti/\,

J (|Vv|2 +av® —15 Ui/\02> > pf |Vol?. (2.5)
Q Q

The proof proceeds by compactness, using the inequality [31, (D.1)]
4
J (|W|2 —15 U;*Av?) > f Vo2 forall ve T, .
Q ’ 7 Jo ’
For details of the proof, we refer to [16].

In the following subsection, we use Lemma [2.3]to deduce a refined bound on |[Vw|s. We will use
it again in Section below to obtain improved bounds on the refined error term |Vr|2, with
re T;:A defined in (3.4)).

2.3. The bound on |[Vw|2. The goal of this subsection is to prove

Proposition 2.4. Ase — 0,
[Vwlls = OAY?) + O((Ad) ™). (2.6)

Using this bound, we will prove in Subsection that d~! = O(1) and therefore the bound in
Proposition becomes |Vw|s = O(A~'/2), as claimed in Proposition

Proof. The starting point is the equation satisfied by w. Since —APU, ) = —AU,\ = BU;Z’)\,
from (2.1) and (1.3]) we obtain

(A + a)w = =3U;  + 3a*(PU, » + w)° — (a + eV)PU, \ — eVw. (2.7)
Integrating this equation against w and using §, U3 \w = (1/3) §, VPU, » - Vw = 0, we get

f (|Vw|? + aw?) = 3a4J (PU + w)°w — J
Q Q

Q
We estimate the three terms on the right hand side separately.

(a4 eV)PUz \w — J eVuw?. (2.8)
Q

The second and third ones are easy: we have by Lemma

L(a + SV)PUx,Aw‘ < Jwle|Usaless A7V Vw]2.

U eVw?
0

Moreover,

< elwlf = o(|Vwl]3).
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The first term on the right side of (2.8 needs a bit more care. We write PUy\ = Uz ) — @z as
in Lemma and expand

f (PU A + w) w
Q
~ [ vtaws [ b+ 0 ([ (Uawnalul + VAP + ol + alul +0°) )

- 5[9 Ul + 0 ( fQ UL ponlw] + [Vl eanl? + |Vw|%) .

where we again used §, U;/\w = 0. By Lemmas and , we have |, 22 < (dX\)~! and

OOHU:D,)\

|, Uhseealol < lololieanlolUnnllys < [Vwla@n .

Putting all the estimates together, we deduce from ([2.8]) that
J (|Vw|? + aw? — 15 U*w?) = O((d\) ™| Vwlls + /\_1/2|\Vw\|2) + o|Vwlf3) .
Q

Due to the coercivity inequality from Lemma the left side is bounded from below by a
positive constant times |Vw|3. Thus, (2.6)) follows. O

2.4. Excluding boundary concentration. The goal of this subsection is to prove
Proposition 2.5. d ! = O(1).

By integrating the equation for v against Vu, one obtains the Pohozaev-type identity

[ G@reme= [ n(2) (2.9)

Inserting the decomposition u = a(PU + w), we get

J OPU, 2__J G OPUsp dw (0w 2
mn on B aQn on  on on

- J (V(a+ V) (PUsr +w)2. (2.10)
Q

Since a, V € C1(2), the volume integral is bounded by

S PUzl3 + [wl3 < 271+ (Ad) 72, (2.11)

J (V(a+ V) (PUpr +w)?
Q

where we used (2.6) and Lemmas and

The function dPU, x/dn on the boundary is discussed in Lemma . We now control the
function dw/dn on the boundary.

2
Lemma 2.6. §,, (%) = O\t + o(A71d72).
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Proof. The following proof is analogous to [31, Appendix C|. It relies on the inequality
‘ oz |

on
This inequality is well-known and contained in [3I, Appendix C]. A proof can be found, for
instance, in [21].

S 1227520 for all z € H*(Q) n H} (Q). (2.12)

L2(692)

We write equation (2.7) for w as —Aw = F with
F:=3a"(PUy\ +w)® —3U2 \ — (a+eV)(PUp )+ w). (2.13)

We fix a smooth 0 < x < 1 with x =0 on {|y| < 1/2} and x = 1 on {|y| > 1} and define the
cut-off function

() r=x<y;x>. (2.14)
Then (w € H*(Q) n H}(Q) and
—A(Cw) = ¢F = 2V¢ - Vo — (AQw
The function F' satisfies the simple pointwise bound
IF| S U5+ [w’ + Upp + |wl, (2.15)
which, when combined with inequality , vields

It remains to bound the norms on the right side. The term most difficult to estimate is [¢w® |3,
because 5-3/2 = 15/2 > 6, and we shall come back to it later. The other terms can all be
estimated using bounds on HUHL})(Q\Bd/2(I)) from Lemma , as well as the bound |w|e¢ <

A2 4 X 1d T from Proposition Indeed, we have
3% S AT = o(A7ld ),
HCUm,AH:s/Q ~ HU ; A= O(/\fldilﬁ
[Cwli3)e < Twlg < A7H+A72d72 = O d ™) +o(A1d7?),
IVEIVwll3 < Vw3 VEE < W +A72d72)d ™ = O ) + o(A1d™?)

S ICF = 2V¢ -V — (AQwl3
L2(89)

S CWE L+ [wl® + Usa + [l By + IIVENIV w135 + (A w]s

071

L2( ao)

and
(AQw]3 s < [wlFIACIE £ AT+ AT2d72)d ™ = 01! + o(A71d 7).

In order to estimate the difficult term |¢w®||5 /5, we multiply the equation —Aw = F by 2 w| V2w

and integrate over {2 to obtain
| vy v < | p1c . (2.16)
Q Q

We now note that there are universal constants ¢ > 0 and C' < oo such that pointwise a.e.

V(¢ w]w) - Vw = o V(¢ w]Tw) P~ Clo PPV (¢ (2.17)
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Indeed, by repeated use of the product rule and chain rule for Sobolev functions, one finds

2 2
Vel ) Vu = 5 (§) 19 ) + (3 (3) -5 2) w19

3 (4)° 4
—(2 ;) -2—5-2> e () - ().

The claimed inequality (2.17)) follows by applying Schwarz’s inequality vy - vy = —¢|v1|? — |1)2|2
to the cross term on the right side with € > 0 small enough.

As a consequence of (2.17), we can bound the left side in (2.16]) from below by
| @) oz e [ v - © [ uPEeEE.
Q Q Q

Thus, by the Sobolev inequality for the function ¢4|w|"*w and (2.16)), we get

w12, = ( f |<1/4|w|1/4w|6)4/3 < ( j |v<<1/4|w|1/4w>|2)4
3/ Q Q
4 4
< ( [ |w|5/2|v<<1/4>|2) +< | |F|<1/2|w|3/2) . (2.18)
Q Q

For the first term on the right side, we have

4 7/3
(j |w|5/2|v<<1/4>|2) < )t (] |v<<1/4>|24/7) < (T4 A 10g 10)g
Q Q
=0\t + oMt ).

To control the second term on the right side of (2.18)), we use again the pointwise estimate (2.15]).
The contribution of the |w|® term to the second term on the right side of (2.18)) is

4 4
( J |w|5+2¢1/2) :( J <cl/2w5/2>w4) < gw? Bl = ofIcw? 3,),
Q Q

which can be absorbed into the left side of (2.18).

For the remaining terms, we have
(], |w|3/2U$,Acl/2) < Jwl¢u.
([ nac) < e,

4
( | |w|5/2<1/2) < ol = A5 1 (dn) 10
Q

all of which is O(A7'd™!) + o(A=!'d=2). This concludes the proof of the bound |\Cw5|\3/2 =
OAtd™1) + o(A"1d~2), and thus of Lemma [2.6} O

= (A7 + (@),

)

g = A2+ (dN) A2,

It is now easy to complete the proof of the main result of this section.
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Proof of Proposition[2.5. The identity (2.10), together with the bound (2.11) and Lemma

(a), yields
L2 aa))

for some C' > 0. By Lemmas (c) and the last term on the right side is bounded by
A 132 4 oA 1d2), so we get

Vo(z) = O(d3?) + o(d?).

On the other hand, according to [31, Equation (2.9)], we have |Vao(x)| = d 2. Hence d 2 =
O(d=3?) 4 o(d=?), which yields d=* = O(1), as claimed. O

0PU,

CAX 'V eo(z) = O + oA 12 + O (‘

6n 12(09) ‘ on

L2(692)

2.5. Proof of Proposition The existence of the expansion follows from Proposition
Proposition implies that d—' = O(1), which implies that zo € Q. Moreover, inserting the
bound d ! = O(1) into Proposition we obtain |Vwl[s = O(A"1/?), as claimed in Proposition
[2.1] This completes the proof of the proposition. O

3. ADDITIVE CASE: REFINING THE EXPANSION

Our goal in this section is to improve the decomposition given in Proposition As in [17], our
goal is to discover that a better approximation to u. is given by the function

Yo = PUpx = A% (Ha(z,+) — Ho(x,-)) . (3.1)
Let us set
G i=we + A ? (Ha(wz, ) — Ho(zz, ), (3.2)
so that
Us = e (Yzon. +Ge) -

As in [I7], we further decompose

Qe = Se + T¢ (3.3)
with s. € T;;_ \, and r. € T - given by
T = Hi&&q and se =1y x.q. (3.4)

We note that the notation r. is consistent with the one used in Theorem since, writing
we = g + )\;1/2 (Ha(:ve, ) — Ho(xe, )) and using w, € Txi A.» We have

se = A V2T, 5. (Ha(ze, ") — Ho(ze, ) - (3.5)

The following proposition summarizes the results of this section.

Proposition 3.1. Let (u.) be a family of solutions to (1.3|) satisfying (L.4).

Then, up to extraction of a subsequence, there are sequences (x:) < €2, (A:) < (0,00), (o) € R,
(se) € Ty a. and (r:) C TJ- . such that

Ue = aa(wms,)\s + S¢ + 7'5) (36)
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and a point xo € Q such that, in addition to Proposition (2.1
[Vrela = O@EAT), (3.7)

bal(ws) = alz)mAT! — i Qv (z2) + o(A1) + o(e),
Voa(ze) = O(e)  forany p <1,
A =00),

64 _ _
ol =1+ 3 do(z) AT+ O(eNTY).

The expansion of ¢,(x) will be of great importance also in the final step of the proof of Theorem
[1.5] Indeed, by using the bound on |V, (x)| we will show that in fact ¢.(z) = o(A™1) + o(e).
This allows us to determine lim._,ge\..

We prove Proposition in the following subsections. Again the strategy is to expand suitable
energy functionals.

3.1. Bounds on s. In this section we record bounds on the function s introduced in (3.4)), and
on the coefficients 3,7 and ¢; defined by the decomposition

3
s =Ty \q =i A BPUzx + O\ PUpy + A7 Y 6:0:, PU - (3.8)
i=1
Since PU, x, 0 PU, \ and 0., PU, », 1 = 1,2,3, are linearly independent for sufficiently small ¢,
the numbers /3, v and ¢;, i = 1,2,3, (depending on ¢, of course) are uniquely determined. The
choice of the different powers of A multiplying these coefficients is motivated by the following
proposition.

Proposition 3.2. The coefficients appearing in (3.8)) satisfy

By7,0; = O(1). (3.9)
Moreover, we have the bounds
[slo = O, [Vslz = O and  [s|a = OA™?), (3.10)
as well as
IVslL2@\By () = ON=%2). (3.11)

Proof. Because of (3.5, s. depends on u. only through the parameters A and z. Since these
parameters satisfy the same properties A — o0 and d~! = O(1) as in [I7], the results on s. there
are applicable. In particular, the bound (3.9)) follows from |17, Lemma 6.1].

The bounds stated in (3.10) follow readily from (3.8) and ({3.9)), together with the corresponding
bounds on the basis functions PU, x, 0\PU, \ and 0., PU, x, © = 1,2,3, which come from

HUI,)\ |oo S )\1/27 HVUI,)\|2 S 17 HU:L‘,)\H2 S )\_1/2a
and similar bounds on 0\U, ) and 0,,U, x, compare Lemma , as well as

| Ho(z, )2 + [VaHo(z, )|z + V2 Vy Ho(z,y) |2 S 1.
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It remains to prove (3.11)). Again by (3.8) and (3.9), it suffices to show that

A Y VPU, < A2,
(3.12)
(In fact, there is a better bound on Vo,, PU, x, but we do not need this.) Since the three bounds

in (3.12)) are all proved similarly, we only prove the second one.

2@ Bus@) + IVOPU Al L2008, 5()) + A IV PUn Al L2 (@B (2))

By integration by parts, we have

d(0\PU,
f IVO\PU, A |* = 15J U2 \0rUp 20\ PUy  + J M@PUM.
OB/ (z) N\Bg/2(z)

0By/2() aon
By the bounds from Lemmas and [A.2] the volume integral is estimated by

S - XA
R3 B(i/2 x

J U;{)\a)‘va)‘aAPU%A S J U;l,/\(a)\U:c7/\)2 + Ha)\@x,)\
Q\Bqj2(z) R3\Bg2(x)

<A,
Since
A2 (=5 + 302y — 2*)(y — x)
2 (14 N2y —x[2)52 7

we find |V U »| < A 3/2 on 0Bgj3(x). By the mean value formula for the harmonic function
O\ and the bound from Lemma

va)\Ux,)\(y) =

IVorxpe ()] = |0rponlloo S AT for all y € 0By (2).

This implies that |V(d\PU,)| < A~%2 on 0Bgsz(). Thus, the boundary integral is estimated
by

|o0)

|L”’*(Q\Bd/2(x)) + [ Or@a

0(OA\PU, »)
7,6/\PU:(;,)\ = HV(@)\PUQS,)\)HLT OB o (x (‘|5)\Ux7,\
LBd/2 w o (0B4j2(@))

<SA3,

since ‘|a)\Ux7)\‘|LME(Q\Bd/2($)) < A73/2 by Lemma . Collecting these estimates, we find that
IVONPUL A L2 (@\Byj(a)) S A=3/2 which is the second bound in (3.12). O

Later we will also need the leading order behavior of the zero mode coefficients § and ~ in

B3).
Proposition 3.3. Ase — 0,
16 8
B= g (ful) = do(@) + OO, 7= =28+ 00T, (3.13)

Proof. According to (3.5)), we have
J Vs-VPU, = xlﬂf V(Hu(x,-) — Ho(z,")) - VPU, , (3.14)
Q Q

f Vs - V&,\PUI,,\ = )\71/2 J V(Ha(x, ) — Ho(x, '))Va)\PUL,\. (3.15)
Q Q
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By (3.8), the left side of (3.14) is

3
,BA1J |VPU,|* + 'yf Vo\PUyy - VPUgp + A2 )] 5iJ Vo, PU, ) - VPU,
Q Q — Q

2

- 36)\_1% + O\,

where we used the facts that, by [31, Appendix B],

2
J IVPU, A2 = 3% + O, f VorPU, - VPU, » = O(A™2) (3.16)
Q Q
J V0., PUy - VPU, \ = O(\7Y). (3.17)
Q

On the other hand, the right side of (3.14) is

A2 L V(Ha(z,) — Ho(x,")) - VPU = 3\~ fQ<Ha<x, ) — Ho(z,)U2

= 47 (¢a(x) — do(x))A " + O(A7?)
by Lemma Comparing both sides yields the expansion of /3 stated in (3.13]).

Similarly, by (3.8, the left side of (3.15) is
3
% f VPU%)\ . V&APUM + ’YJ |V@APUL)\|2 + A3 2 5if V&xiPUm)\ . V&APUM
Q Q b Q

1572y

_ -3
where, besides (3.16), we used §;, Vo, PUy » - VOyPU, \ = O(A™%) by [31, Appendix B], and

1571'

(A79).

(The numerical value comes from an explicit evaluation of the integral in terms of beta functions,
which we omit.) On the other hand, the right side of (| - is

J IVOLPU, > = J IVozUza|* + O(X?) =
QO Q

WJ v(H, Holx, ")) - VosPUy.» = 15)\_1/2J (Ha(z,) — Ho(z, ) UL 0sUs s
Q
= —27(¢a(x) — Po(2)A " + O(A )
by Lemma Comparing both sides yields the expansion of « stated in (3.13)). O

3.2. The bound on ||Vr|2. The goal of this subsection is to prove

Proposition 3.4. Asec — 0,
[Vrla = O(ga(2)A™h) + OAT2) + O(eA™2). (3.18)
Using A(Hy(z,-) — Ho(z,)) = —aGq(x,-) and introducing the function g, » from (A.4), we see
that the equation (2.7) for w implies
(—A+a)yr = =307\ + 30 (Yor + 5 +7)° + afor + o) — as — V(g n+5+7) + As. (3.19)
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Integrating against r and using the orthogonality conditions SQ(AS)T‘ = — SQ Vs Vr =0 and
35q Ui’v)\r = §o VPU, - Vr = 0, we obtain

J (|V7‘|2 + ar2> = 3a* J (Yar+s +7)°r —f a(s— for—ga )T — J eV (g r+s+r)r. (3.20)
Q Q Q Q
The terms appearing in (3.20]) satisfy the following bounds.

Lemma 3.5. As ¢ — 0, the following holds.

() |30 S + 5+ 1)%r = 150% [ ULr2| 5 (A2 + X7 0u(@) + 712) 7l

(b) ‘SQ (a(s - f:p,)\ - gz,)\) + EV(@bx’)\ 4+ s+ T)) 7«‘ S ()\*3/2 4 5A71/2> ”THG

Proof. (a) We write ¢,y = Uy x — A™V2H,(,-) — f,x and bound pointwise
(Ypr +s+7)° = U;)\ + 5U§,,\(3 +r)+0O (U;)\ ()\*1/2|Ha(x, )|+ |fm,/\|) + Ua:c%)\ (7,2 I 32>

+ 0 (NP Hy(w, )P+ forlP + 1 + 15P°) (3.21)

When integrated against r, the first term vanishes by orthogonality. Let us bound the contribu-
tion coming from the second term, that is, from 5U§)\s. We write

s = AN1BU\ +70\Up + 3,

80 § consists of the zero mode contributions involving the §;, plus contributions from the difference
between PU, \ and U, ) in the terms involving 8 and v. By orthogonality, we have

HEEEDE

f UiAsr = J U;{Aér = O(|Ugr
Q Q

and, by Lemmas and as well as Proposition

3
6 + [Orpz | 6) + 273 Z 16,1102, PUs A6 < A™%2.

I3lls < (181 + 1) (X e
=1

This proves

J Ul ysr = OA"2|r|6) . (3.22)
Q

It remains to bound the remainder terms in (3.21)). We write H,(x,y) = ¢o(z) + O(|x — y|) and
bound

J UjimlHa(x, 65 < %(x)ﬁ/sf sz&/s +J UI241)\/5|x_y|6/5 < A ()85 4 A5
Hence
| vta (7 e 1) o) Il

< (A—l%(x) + A—2) 17l - (3.23)

6/5Hf:r,)\

< ()\’WHU;{,\Ha(% Wess + Uzl
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Finally, using Proposition [3.2]
[ 023 (2 + )l + [ (P AP + ol 4+ 10 + 1) I
Q Q

< (11 + sl + A2 4 1 o all% + I3 + 11 ) Irls 5 (I + A7) Irl.

(b) We have

L (a(s = fop = gup) +V(Wup +s+7)) 7

< (slloss + L allogs + lgelgs + elanlls + elrless) Irle-

By Proposition B.2] |s]¢/s < sz < A™¥2. By Lemma [A.2] [ fonles < [fenloc € A2 By

Lemma A4, g, x5 < A% By Lemmas A 1]and[5.3} [l S A~Y2. Finally, [r]gs < [r]e.
This proves the claimed bound. U

Proof of Proposition[3.4 We deduce from identity (3.20) together with Lemma that
f (IVr2 + ar = 1501 UL 1r%) £ (A Ga(@) + X752 4 X712 4 |Vr|3 + 2| Vrlo ) [Vr]l.
Q

Since a* — 1 and r € T, the coercivity inequality (2.5) implies that for all sufficiently small
e > 0 the left side is bounded from below by ¢|Vr|3 with a universal constant ¢ > 0. Thus,

IVrlla S AN da(@) + X732 + X2 4| Vr|2 + | Vrs.

For all sufficiently small € > 0, the last two terms on the right side can be absorbed into the left
side and we obtain the claimed inequality (3.18]). O

Proposition is a first step to prove the bound (3.7 in Proposition . In Section we will
show that ¢q(z) = O\t +¢) and A1 = O(e). Combining these bounds with Proposition

we will obtain (3.7]).

3.3. Expanding a*. In this subsection, we will prove

Proposition 3.6. Asec — 0,
ot =1 4N 1+ O ()N T+ X2 +ex D), (3.24)
where (B is the zero-mode coefficient from (3.8)).

To prove (3.24), we expand the energy identity obtained by integrating the equation for u against
w. Writing u = a(15 x + ¢), this yields

| 19tea 0P+ | @+ eV)ar + 0 = 30t [ (an+0)"
which we write as
| (190ea? + @ evyuzs —satut,) 42 | (V0 Tur + 0+ Vgt ~ 9a'q02 )
=Ry (3.25)
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with

ROIZ—JQ(|VQ|2 (a+¢eV)q >+3a42(>J g/\qu.

The following lemma provides the expansions of the terms in (3.25]).

Lemma 3.7. As e — 0, the following holds.

a) |, (|wm|2 +(a+eV)g2, —3at g,A) = (1 - a®)32 4 O(ga(@)A~ + A2 + 2A71),
) §q (vq Vg + (a+ V) qihpn — 9a4qwi)\) = (1 - 3% BA~L 4 O(A2 + £2\71),
(c) Ro=0M\"2+e2271).
Proof. (a) In [I7, Theorem 2.1|, we have shown the expansions
J (IVeaP + (a 2V, ) = 37;2 + 0@~ + A2 4227,
3 [ 083 =37 + 0N +17),
which immediately imply the bound in (a).

(b) Since A(Hgy(z,+) — Ho(x,")) = —aGq(x,-), we have —Ayy, 5 = 3U§”)\ — A 124G, (x, ). Since
Pgr = AN 12G(x, ) — fax — gz With gz ) from (A.4), we can rewrite this as

- Ad’x,)\ + a¢z,A = 3Ux57)\ - a(fx,)\ + gz,)\) . (326)

Thus,
| (Ve Vo + @+ Vg = 90taus,)

= 3(1—3a") L qU3 \ — JQ q (9044(1/12,,\ — U2\ +alfop + gop) + €V1/1x,,\> :

By orthogonality and the computations in the proof of Proposition [3.3]

2
3J qU;Z’/\:f Vs-VPUI,\zgiﬁ)\_lJr(’)()\_?).
o Q ’ 4

Moreover,

JQ q (9044(1#27,\ - U;”,\) +a(for+ 9gzn) + 5V¢x,A>

< lalls (1930~
By Propositions [3.2] and we have

lals < | Vgl S A"+ ex 12, (3.27)
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by Lemma , I fenlo S A7/ and, by Lemma , lgzal6/s S A2 Moreover, writing ¢, x =
Ugx — N V2H, (2, ) — fz.x and using Lemmas and and (B.1), we get |1z a]6/5 < A2,
Also, bounding

V30— UZ] S 0ty (AR Hu )| + 1 foal) + AR Hue O + | funlP
we obtain from Lemmas and and from (B.1]),
Wi,,\ - U;?,,\| 6/5 < )‘71/2me,)\|4214/5 +AP g

Collecting all the terms, obtain the claimed bound.

(¢) Because of the second inequality in (3.27)), the first integral in the definition of Rg is O(A\ 72+
£2\71). The second integral is bounded, in absolute value, by a constant times

L ( ol + q6) < [|¢ha
This completes the proof. ]

slallE + al§ S A2 +e2A7",

Proof of Proposition 3.6l The claim follows from (3.25)) and Lemma O
3.4. Expanding ¢,(z). In this subsection we prove the following important expansion.

Proposition 3.8. Ase — 0,

ba(z) = malz) AL - i Qv (z) + oA™Y + o(e) (3.28)

Before proving it, let us note the following consequence.

Corollary 3.9. We have ¢q(z0) =0, Qv (zo) <0 and
A =0(e), (3.29)
as € — 0. Moreover, |[Vr|y = O(eA™"?) and o* = 1 + B po(z)AH + O(er™).

Proof. The fact that ¢,(z) = 0 follows immediately from (3.28)). Since ¢q(z) > 0 by criticality
and since a(xg) < 0 by assumption, we deduce from that Qv (o) < 0 and that

i Qv + o)

= 4n2|a(zo)| + o(1)

Reinserting this into we find ¢q(z) = O(e). Inserting this into Proposition [3.4] we obtain

the claimed bound on |Vr|2, and inserting it into and (3.13), we obtain the claimed

expansion of a?. O

= 0O(e).

The proof of (3.28) is based on the Pohozaev identity obtained by integrating the equation for
u against 0\, x. We write the resulting equality in the form

JQ (V%,,\ -Voxtza + (a+eV)hy 3O ) — 30441/12,A5A%,A>

= - f (Va- Vontbun + a0rtian — 15040t \0xt 0 ) + 300 f U AN+ R (3.30)
Q Q
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with

5
9 _
R=—¢ f Vaorihaa + 30 > ( )f RN
Q s \E/ Jo "

The involved terms can be expanded as follows.

Lemma 3.10. As e — 0, the following holds.
(a) JQ <v¢x,)\ . Va)ﬂ/]x,)\ + (a + &‘V)l/Jx?)ﬁ)ﬂ/Jx’)\ — 3a41/;§’:’)\5>\1/1x’>\>

o (w)A " — %Qv(x)e)\_Q + (1 - a"ng, (@A + (27%a(2) + 157°0,(2)?) A

+0o(A73) +o(ex?).

(b) L (Vq Vo +aqirihz \ — 150&4qw§,ﬁ,\¢x,>\>
=—(1- a4)27r (qﬁa(m) — (Z)O(:U)) A2+ O(gf)a(:c))\*:)’) + 0(5)\72) + o(/\*g) )

15
1

(d) R = O(¢a(x)A73) + 0(eAT2) + o(A73) .

2
(c) 30a’ f Pl AN = 1o BY AP+ O0u(@)A®) + 0(eh %) +0(A?).
Q

We emphagize that the proof of Lemma is independent of the expansion of o in (3.24). We
only use the fact that « =1 + o(1).

Proof of Lemma[3.10. (a) Because of (3.26)), the quantity of interest can be written as
J (V%A - Vorp\ + (@ 4+ V) p 2Oy \ — 30441#956,A5,\¢x7x>
Q

=3 L (U;?,,\ - o/%?m) Nz — L a(fer + 9o )0V + ¢ L Ve a0t x - (3.31)

We discuss the three integrals on the right side separately. As a general rule, terms involving f; x
will be negligible as a consequence of the bounds | fuxlew = O(A/2) and ||0) fer]ow = ONT/2)
in Lemma[A.2] This will not always be carried out in detail.

We have
| (U2 = atuls) s = (1= a) [ U20n0n+at [ (U= 08s) baa. (332)
Q Q Q

The first integral is, since 1, x = Uy \ — A_l/zHa(x, )= [z

1. .
f U \O2g ) = J U2 AUz x + 2>\5/2J Ul \Ha(z,) + O(A™Y). (3.33)
Q Q Q
Since {ps U;”)ﬁ)\Ux,)\ = (1/6)0x §gs Ug)\ =0, we have
5 5 (7 r? =t 4
U, a)\Ux)\ = J U, a)\Um)\ <A J ————| dr = O(XA" 7). 3.34
UQ A rog ax | (L +7r2)t A (3.34)
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Next, by Lemma
A2 f U \H ﬂ;sa( N2+ 00 ).

This completes our discussion of the first term on the right side of (3.32)). For the second term
we have similarly,

fﬂ (U35 = i) Orthun = L (U;A = (Uer = AP H (2,0 ) (U = A2 Ho (2,))

_ f JoUnr + A J H,(x,)?

(O L U2 \Ha(z,-)?0\Ug (3.35)

) _ _
( >(_1)k)‘ k/QJ Ui)\kHa(xv ')ka)\Ux,)\

Q

1 5Y, ik (k+3)/2J 5k k1 3
5 E (k:>( 1)°A QUQC’/\ Hy(z,-)" + oA 7).
Again, by Lemma

5
5)\_1/2J Up \Ha(z,)0\Uy x + QA_QJ UpaHa(z,")* — 10)\_1J U3 \Ha(z,)?0\Uy
Q@ @ @ (3.36)

—2% Bu(e) X2+ (2male) + 57 4u(2)?) A% + o(A7).

Finally, the two sums are bounded, in absolute value, by

f (U2 W32 Hy () + A2 Ho (2, ) P) 0aUs | + j (U3 W52\ Hy ()P + A~ [ Ha(z, ) )
(9] Q

< |oxUealle(|Us, A2 L NTI2Y UL ABAT2 + A7t = o(A72).

This completes our discussion of the second term on the right side of (3.32)) and therefore of the
first term on the right side of (3.31)).

For the second term on the right side of (3.31)) we get, using 1, x = Uy ) — AV2H, (2,0) — fz
1. _
| afon+ 0en)orens = | ageadslion + 539 | agaaHae) +o07)
Q Q Q
The second integral is negligible since, by Lemma [A.4]

1
A‘3/2f ageHa(z, -)‘ < A—?’/?f Gor S AT og X
Q Q

Since a is differentiable, we can expand the first integral as

L agz \O\Ug x = a(x) L GerO\Uz » + O (L |z — y|gz,)\|a)\Ux,)\|) .

We have

J Gz NOAUy ) = >\3J
0

gO,laAUO,l = )\3J 90715,\(]071 + O()\fg)
AQ—zx) R3
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and

J o\Uoy = 4 JOO : : L Rdr= 23—
— Ar z_ redr =2m7(3 — ).
s 90,10)\V0,1 0 r 1+ 72 2(1 + ,r.2)3/2

Using similar bounds one verifies that

J |37 - y|g:v,)\|a)\Ux,)\| 5 )\4J
Q A

This completes our discussion of the second term on the right side of (3.31)).
For the third term on the right side of (3.31)), we write 1, \ = AN 12G (2, ) — fz. A — gz ) and get

: 12]g0.102U01| S A4

Q—x

J Vpe \OAVz ) = J Vv ()\_1/2Ga(za ) — ga:,)\) 7N (A_1/2Ga(l“, ) = gac,A) +0(A?)
0 0
1
= —§>\_2QV(-’E) +0 (A_?’/Q L Go(2,-)gor + A2 JQ Ga(z,-)|0rgz 2| + L gmlf?xgx,ﬂ)
+ 0(/\2)

1. —
= =X 7Qu(@) + 0 (A7 1Ga(a. )2l
+o(A7%)

2+ A7Ga(, ) 2] 0rge A

)

|2 + |92 ll2 07 gz A

_ _% A2Qu(z) + 0o(A72).

In the last equality we used the bounds from Lemma and the fact that G, (z,-) € L?(£).
This completes our discussion of the third term on the right side of (3.31)) and concludes the
proof of (a).

(b) We note that (3.26)) yields
—A0\Yz ) + a0z ) = 15U§,,\5AUI7A —a (Oxfor + 0rga) -

Because of this equation, the quantity of interest can be written as

| (V- Vorien + agdrin ~ 150100t s0n )
Q

= 15J q <U§,)\5AUI,)\ - 0441/1;1,,\5A%,A) - J aq (Oxfor + Orga,)) - (3.37)
Q Q
We discuss the two integrals on the right side separately.

We have
| a(Uisorton — ot sontan) = (- o) [ aU2a000e
Q Q
rat | a(UOUi —vhdian) . 639)

The first integral is, by the orthogonality condition 0 = {, Vw - VO, PU, » = 15§, wUﬁ’)ﬁ,\Ux,)\,

J QU \ONUg \ = A_l/QJ (Ha(x,-) = Ho(,-)) Uy x0r\Us,»
0 Q

= 2 (6a(2) — Gu@) A2+ OO ). (3.39)
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For the second integral on the right side of (3.38) we have
f q (Uﬁ,@AUz,A - ?/ﬁ,ﬁx%,)\)
Q

= [0 (Thaerthon = s = X2 ) 0 (U = X2 ) o)
Q
= O(da()N™2) + 0(eXT2) + o(A73). (3.40)

Let us justify the claimed bound here for a typical term. We write H,(x,y) = ¢o(z) + O(Jz —y|)
and get

f qUi NP Hy (2, ) = )\3/2¢a(m)J qUs\+ O (/\3/2J qUit 5|z — y|> .
Q Q Q

Using the bound (3.27) on ¢ and Lemma we get

U QU;A
Q

The remainder term is better because of the additional factor of |z —y|. We gain a factor of A~*

< HQH6HUx,)\| Z214/5 < >\_3/2 + e,

since

< /\—3/2 )

4
Jlr = 4100]

24/5
Another typical term,

J QUg’,,\)\_mHa(l“a )O\Uz x
0

can be treated in the same way, since the bounds for d\U, \ are the same as for )FlUx,,\; see
Lemma[A.] The remaining terms are easier. This completes our discussion of the first term on

the right side of (3.37).
The second term on the right side of (3.37) is negligible. Indeed,

jQ aq (O for + 9rgo) = O(lals|rgon

lo/5) +0(A7%) = 0o(A %), (3.41)

where we used Lemma [A.4] and the same bound on ¢ as before. This completes our discussion
of the second term on the right side of (3.37)) and concludes the proof of (b).

(c) We use the form (3.8) of the zero modes s, as well as the bounds on ||[Vs|2 and |Vr|2 from
E.10) and (1), to find

L @ Y35 Onthap = L s2 Y3\ oAtz + O(¢a(2)A ™) + 0(A7?) + 0(eX™?)
= B2\ 2 L U\ O\Ugx + 28727 L Ugx (@\Uzp)? + 77 L U2 5 (02U p)?

+ O ()N + 0(A72) + o(eX7?). (3.42)
A direct calculation using (B.15)) gives

A2 L US, sUs = 0(A~), L U, (0Us ) = o(A~9)
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and
1, |z — y? o — yl*
Uz (O\U. 2=A2JU6 —)\3J +)\5J
JQ a:)\( A :v,/\) 4 0 z,\ o (1 + 22 |$ _y|2)4 O (1 + )2 |x _y|2)5
s © thdt © t0dt
= — 224 /\_QJ —_— 4)\_2J — A2
16 ) e T arep o)
e (A7?)
" 64 ?
Inserting this into (3.42) gives the claimed expansion (c).
The proof of (d) uses similar bounds as in the rest of the proof and is omitted. g

Proof of Proposition[3.8 Combining with Lemma yields
0 = — 471 (x)A72 — Qv (2)eA™2 + 4n%a(x)A 3 + AR

+ O(¢a()A73) + 0(A73) + o(eX™?) (3.43)

with
R = M1 = a7 (9u(e) + b0(2)) + 30764 (2) = 7.
We now make use of the expansion of a* — 1 and obtain
R = 168rdo(x) — ?ﬁw L O(a(z) + A +2).
Inserting the expansions of 8 and =, we find the cancellation
R=0(¢a(x) + X1+ ¢). (3.44)
In particular, R = O(1) and, inserting this into (3.43)), we obtain
ba(z) = O +¢).

In particular, for the error term in (3.43)), we have ¢, (z)A=3 = o(A~3) and, moreover, by ([3.44)),
R = O(A ! +¢). Inserting this bound into (3.43)), we obtain the claimed expansion ((3.28). O

3.5. Bounding V¢, (z). In this subsection we prove the bound on V¢, (z) in Proposition[3.1]

Proposition 3.11. For every p <1, ase — 0,
Va(@)| 5 . (3.45)

The proof of this proposition is a refined version of the proof of Proposition It is also based
on expanding the Pohozaev identity (2.9). Abbreviating, for v,z € H(Q),

ov 0z
Ifv,z] == . o + Jﬂ(Va)vz, (3.46)
and writing v = a(1; x + q), we can write identity as
0= Tl + 21bsneal + 1lal + € [ (V) +0)?, (3.47)

The following lemma extracts the leading contribution from the main term I, )].

Lemma 3.12. I[¢); )] = 47V (2) A~ + O(A"17H) for every p < 1.
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On the other hand, the next lemma allows to control the error terms involving q.
Lemma 3.13. HS—ZHLQ@Q) S e,
Before proving these two lemmas, let us use them to give the proof of Proposition [3.11} In that
proof, and later in this subsection, we will use the inequality

lal2 < ex™"2. (3.48)
This follows from the bound (3.10) on s and the bounds in Corollary on A~ and r. Note
that (3.48) is better than the bound (3.27)) in the L5 norm.

Proof of Proposition[3.11. We shall make use of the bounds

o0, )
il + 1222 2oy 5 A2, (3.49)

The first bound follows by writing ¢, x» = Uz x — AN 1V2H, (x,-) + fz.» and using the bounds in
Lemmas and and in (B:1)). For the second bound we write ¢, = PU, x—A"Y2(H,(z,-)—
Hy(z,-)) and use the bounds in Lemmas and

Combining the bounds (3.49)) with the corresponding bounds for ¢ from Lemma and (3.48)

we obtain

2+ ||

[hen,gl| Sex™ I[q] S &2a7L.

Moreover, by (3.48)) and (3.49),

€

f (VV)(on + )| S X
Q

In view of these bounds, Lemma and equation (3.47) imply |V¢u(z)| < e+ A #. Because
of (3.29), this implies (3.45). O

It remains to prove Lemmas and

Proof of Lemma[3.19 We integrate equation (3.26)) for 1,  against Vi), \ and obtain
1
= 3 00aa] =3 [ U300 [ alfun+ 0200V (3.50)
Q Q

For the first integral on the right side we write 1, \ = Uy x — >\_1/2Ha(x, -) + fz and integrate
by parts to obtain

1
3 f UV =3 f Uz (6 Usy = A~ Ha(z,) + m) n
Q o0

+ 15f U;{,\(VU@,\) ()\—1/2Ha(:6, ) = fx,,\> .
)
By Lemma see also Remark [B.4] we have

f Up A\(VUa ) Ha(z, ) = —f UpA(VaUpn)Ha(, ) = —%V%(iﬂ)/\—l/g + OV,
Q Q
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Finally, since U, ) < A 12 on 00 and by the bounds on U, y, fza and H,(z,-) from Lemmas

and and from (B.1]), we have

1
3J Ux5,/\ <6U1’,)\ - )\_I/QHa(m7 ) + fdﬁ)\) " + 15J U;}v)‘(va7)\)f$,)\ = O()\_Z) °
oQ @

This shows that the first term on the right side of (3.50)) gives the claimed contribution.
On the other hand, for the second term on the right side of (3.50]) we have

f a(fx,)\ + gm)\)v¢x,)\ = f a(fm,)\ + gz,)\)v(Ux,)\ - )\71/2Ha($’ ))
Q Q

1 1
- 2J (VCL) m27A - J (av.gx,)\ + g:c,)\va)fx)\ + 2J af;i)\ + f af;r,)\g;r,)\
Q Q N

00
= J agz \VUz \ + (9()\_3) )
Q

Here we used bounds from Lemmas and and from the proof of the latter. Finally, we
write a(y) = a(z) + O(Jx — y|) and using oddness of g, \VU, \ to obtain

L age \VUz\ = O (L |z — y|gx,A|VUz,A|> =0(\?).

This proves the claimed bound on the second term on the right side of (3.50)). g

Proof of Lemma[3.15 The proof is analogous to that of Lemma [2.6] By combining equation
for w with A(Hq(z,-) — Ho(z,+)) = —aGy(z, ), we obtain —Aq = F with

F = =302\ + 30 (s r + 0)° — aq + a(for + gan) — €V (thar +q) .
(We use the same notation as in the proof of Lemma for analogous, but different objects.)
We define the cut-off function ( as before, but now in our bounds we do not make the dependence

on d explicit, since we know already d~! = O(1) by Proposition . Then ¢q e H?(Q) n HE(Q)
and

—A(Cq) = ¢F —2V(- Vg — (AQ)q.
We claim that

CIF| < Clal® +eCUn + lg] + X 72 (3.51)
Indeed, on Q\Byp(z), we have U, \ < A2 and g, < A2, By Corollary , we have
A75/2 = O(eA"1/2). Moreover, we write Yer = Upy — N V2H, (2, ) + fz» and use the bounds

on fyx and Hy(z,-) from Lemma and (B.1)).
Combining (3.51)) with inequality (2.12), we obtain

o ‘M <A = |¢CF —2V(-Vq— (A
on on g ~ 12N = I ¢+ Vg = (Al

S 16a° 32 + €llCU

L2(0Q)

laj2 + lallsz + AT+ [1VCIIVal a2 + (A2 -

It remains to bound the norms on the right side. All terms, except for the first one, are easily
bounded. Indeed, by (3.48),

lalssz + 1(AQ)allzj2 S lal2 < eA™?
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and

1IV¢IValls2 S 1Vl 2@ By < 1VslL2@Baa@) + V72 S X172

where we used |Vs|r2\5,,@) < A=3/2 by Lemma [3.10] and | V|2 < eA~Y/2 by Corollary

(Notice that for the estimate on s it is crucial that the integral avoids Bgj(x).) Moreover, by

Lemma

HgUz,AH?)/Q S HUI,/\ S A2

| L3/2(0\Byja ()

To bound the remaining term \ICq5\|3/2 we argue as in Lemma above and get

1€6°]132 = U IC1/4|q|1/4q|6>2/3 < (J IV(Cl/A‘Itzll/“q)IQ>2
Q Q
2 2
< ( [ |q|5/2|v<<1/4>|2) +( | |F|<1/2|q|3/2)
Q Q

2
<+ ([ 1716 )

We use the pointwise estimate (3.5I) on (F, which is equally valid for (/2F. The term coming
from |g|° is bounded by

2 2
( | |q|5+3<1/2) _ ( | <4|q|5>1/2q4) < 1clyalallt = o(ICa]sy2),
Q Q

which can be absorbed into the left side. The contributions from the remaining terms in the
pointwise bound on ¢/ 2| F| can by easily controlled and we obtain

1€a° 32 < llallg + A2 + (AP S ex V2

Collecting all the estimates, we obtain the claimed bound. g

4. PROOF OF THEOREMS [L.5] AND [L.6]

4.1. The behavior of ¢, near 3. We are now in a position to complete the proof of Theorem
[1.5] Our main remaining goal is to prove

¢a(z) = 0(2). (4.1)

Once this is shown, we will be able to find a relation between A and . The proof of (4.1)) (and
only this proof) relies on the nondegeneracy of critical points of ¢,.

We already know that ¢4(z9) = 0 and that ¢4(y) = 0 for all y € Q, hence ¢ is a critical point
of ¢4. In this subsection we collect the necessary ingredients which exploit this fact.

Lemma 4.1. The function ¢, is of class C? on Q.

Since we were unable to find a proof for this fact in the literature, we provide one in Appendix

B.2

Thus, the following general lemma applies to @g.
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Lemma 4.2. Let u be C? near the origin and suppose that u(0) = 0, Vu(0) = 0 and that
Hessu(0) is invertible. Then, as x — 0,

u(z) = %Vu(x) - (Hess u(O))*1 Vu(z) + o(|z]?) . (4.2)

Suppose additionally that Hessu(0) = ¢ for some ¢ > 0 in the sense of quadratic forms, i.e. the
origin is o nondegenerate minimum of u. Then, as © — 0,

u(z) S |Vu(z). (4.3)

Proof. We abbreviate H(x) = Hessu(z) and make a Taylor expansion around x to get

0 =u(0) = u(x) — Vu(z) - = + %ZL’ - H(x)z + o(|z[?) (4.4)
and
0 = Vu(0) = Vu(z) — H(z)x + o(|z|*) . (4.5)

We infer from and the invertibility of H(0) that
= H(z)"'Vu(z) + o(|z]?) .
Inserting this into gives
0 = u(w) — %Vu(x) CH(2) V(e + o(j]?),
Since H(z)™' = H(0)~! + o(|z|), this yields (£.2).
To prove , if 0 is a nondegenerate minimum, then a Taylor expansion around 0 shows

u(a) = g HO)x +olla) > $Jaf? (4.6)

for small enough |z|. Thus, the o(|z|?) in (4.2)) can be absorbed in the left side, thus ({#.3). O

4.2. Proof of Theorem Equation (1.18) follows from Proposition [2.1] together with (3.2)),
(3.3) and (3.5). The facts that zg € N, and that Qv (x¢) < 0 follow from Corollary .

By Lemma [.1] and the assumption that x is a nondegenerate minimum of ¢,, we can apply
Lemma {.2| to the function u(x) := ¢q(x + x¢) to get

(@) £ |Vou(a)]®.
Therefore, by the bound on V¢ (z) in Proposition [3.1] with some fixed p € (1/2, 1), we get
ba(z) S [Voa(x)]? = ofe) . (4.7)

This proves ([1.20) and, by non-degeneracy of xg, also (1.19). Moreover, inserting (4.7) into the
expansion of ¢, (x) from Proposition we find

0 =a(z)rA ! - i Qv (x) + o(A 1) + o(e),

that is,
g laleo)| + 0(1)
Qv (z0)] + o(1)
with the understanding that this means eX — o0 if Qv (zo) = 0. This proves (L.21).
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The remaining claims in Theorem [L.5] follow from Proposition [3.1]

4.3. A bound on |w|x. In this subsection, we prove a crude bound on the L® norm of the
first-order remainder w appearing in the decomposition u = a(PU, \ + w), and also on some
of its LP norms which cannot be controlled through Sobolev, i.e. p > 6. This bound was not
needed in the proof of Theorem but will be in that of Theorem

Proposition 4.3. Ase — 0,
lwl, SAF  for all pe (6,00). (4.8)
Moreover, for every p > 0,

[wloo = o(A). (4.9)

Our proof follows |30, proof of (25)], which concerns the case N > 4 and a = 0. Since some of
the required modifications are rather complicated to state, we give details for the convenience of
the reader.
Proof. We begin by proving the first bound in the proposition, which we write as
1 1
HngtH) S AT for all r € (1,00).

To prove this, we define F' by -, multiply (2.7) with |w|"~!w and integrate by parts to obtain

4r r+1
SV 2=JF -l
e | R = | Pl

Thus, by Sobolev’s inequality applied to v = |w|r+1

flify 5 | 1PNl (4.10)

In order to estimate the right side of (4.10]), we make use of the bound

IF| < ot = U2 5 + Ugslw| + [w]® + U x@an + Usp + 0ar + 0] (4.11)

This is a refinement of (3.51)), which is obtained by writing PU, x = U, ) — ¢4 x and using Lemma
to bound gpi/\ < Q-

We estimate the resulting terms separately. Using Holder’s inequality, Lemma [A.1] Proposition
and the fact that for any 7, p,q > 0 with p~! 4+ ¢~ = 1 there is Cy > 0 such that for any
a,b > 0 one has ab < na? + C,b?, we obtain

4 5 |7 -1 < Al R T — oty
of =11 ) Usalel” <A wllzriay log' 3?3 AT wlizgr A2 1 = w3 1)A

7’+1

<7

4/5 1/5
+ —
L Upalw[™h < (L U;A|w|”) (L |w|’"+5) HwHQ(TH))\ 5D < nwlil gy + CuA ™

. 1ol < Bl ol < ol n -2

9
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U4 r UZ U __A—%—A%' T __A*ﬂggﬁ r
0 e W] Pz < lw 561y 1Tz Al sy = 1wl = w541

<l + Cn

[ vealul < ol

_1
|, eoalel < 3 luli y < bl

r+1
5 (r+1)° _ 2( -+1 7T7+1
L w1 < Uﬂ |w|5+r) <l A <l + O

By choosing 1 small enough (but independent of \), we can absorb the term n|w| ’”J;lﬂ), as well
as the term )\*QHngz;lH), into the left hand side of inequality (£.10)) to get
_r+3 _ _r+1 _
Jwlglly SA = +A AT S

This is the claimed bound.
We now turn to the bound of the L® norm of w. We write equation (2.7)) for w as

1

=4J%mww» (4.12)
T JQ

By Holder’s inequality and the fact that 0 < Go(x,y) < |z — y| 1, we have for every § € (0,2)
|lwleo < sup [Go(z,-)[3—sl|Fls=s < [[F]l5=s. (4.13)
e 2—9 PR

Hence it suffices to estimate |F|, with some g := 3=% > 3/2.

We use again the bound (4.11)). The L?-norms of the resulting terms are easy to estimate. Indeed,
since |a* — 1| < A™! by Proposition m we have by Lemma

Q

ot = 1]]U;
Next, by Lemma [A.T] and [A.2]

3_3
Uz a¢ely S ATV UG, =S A2

AU, 5 A2

Using additionally the bound on |Vw| from Proposition 2.1} we can estimate, for every ¢ < 3,
Uz + Qo + 0|l < U, + [ Vwle < AV2.

Finally, using the bound (4.8)),

U2 ywly < U Al $ X751 [w]sg < A*

and
[l = fwly € A 0.
Inserting these estimates into (4.13) yields
3
|w]eo S AT for every g€ (3/2,3).

As 6\, 0in ({.13)), we have ¢ \, 3/2 and hence 2 — % N 0. Thus (4.9) is proved. O
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4.4. Proof of Theorem By Proposition 2.1, we have u = a(PU, ) +w) with @ = 1+0(1).
Moreover, by Proposition |w]w = o(AY2). On the other hand, by Lemmawe have

[Pl = [Uzaloo + Ol pzaloo) = A7+ OAT12).
Putting these estimates together, we obtain
elluc]? = e(AY2 + 0o(AY%))? = eA(1 + o(1)) = 4 12 oy
Qv (20)]

by the relationship between € and A proved in Theorem Moreover, Uy () = A2 = | Uz ]l oo-
This finishes the proof of part (a) in Theorem

The proof of part (b) necessitates much fewer prerequisites. It only relies on the crude expansion
of u given in Proposition and the rough bounds on w from Proposition

By applying (—A + a)~!, we write (1.3)) as
3 €
ue) = o | Guleuw?® = 1 | Gulz)Vuty). (114)
™ JQ 4 Q

We fix a sequence § = d. = o(1) with A™! = 0(d.). This condition, together with the bounds
from Proposition [2.1] easily implies 2 SB(;(ac) u(y)® = A712 + o(A"1/2). Hence

3 3
Z Ga(z,y)u(y)5 = Z
T JBs(z) T JBs(x)

On the complement of Bs(x), using Proposition and Lemma we bound

f Galz,y)uly)®
O\Bs(z)

Choosing e.g. & = A~?/7 the last bound is o(A~1/2).
The second term on the right side of (4.14)) is easily bounded by

(G“(Z’xo) + 0(1))u(y)5 = )‘_1/2Ga(2,l’0) + 0()\—1/2).

< Gz, Ma(1Ual o syioy + w50 S A2677/2 4 X732,

€

L Galz, y)V(y)U(y)‘ S elGalz ) 2(1U2 + [wll2) S ex™'/?

by the bounds from Proposition [2.I] and from Lemma Collecting the above estimates, part
(b) of Theorem [1.6] follows.

5. SUBCRITICAL CASE: A FIRST EXPANSION

In the remaining part of the paper we will deal with the proof of Theorems and The
structure of our argument is very similar to that leading to Theorems and [1.6] Namely,
in the present section we derive a preliminary asymptotic expansion of u. and the involved
parameters, which is refined subsequently in Section [6] below. Because of the similarities to the
above argument, we will not always give full details.

The following proposition summarizes the results of this section.

Proposition 5.1. Let (uc) be a family of solutions to (L.2) satisfying . Then, up to the
extraction of a subsequence, there are sequences (x:) < Q, (A\e) € (0,0), () € R and (we) C
T;;As such that

ue = ae(PU,_ x. + we) (5.1)
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and a point xo €  such that

2. —x0| = 0(1), e =1+40(1), I — o, |[Vuls=0N"?), e=00"). (5.2)

5.1. A qualitative initial expansion. As a first step towards Proposition we observe
that the qualitative expansion from Proposition still holds true, that is, there are sequences
() € Q, (A\e) € (0,00), () € R and (w.) < T;&)\s such that holds and a point xo €
such that, along a subsequence,

|$s - $0| = 0(1)7 a: =1+ 0(1)7 d:\e — 0, vaz:‘”Q = 0(1)7
where, as before, d. := d(x., 02).

Indeed, as explained in the proof of Proposition it suffices to prove u. — 0 in H(Q) up to
a subsequence. To achieve this, we first integrate (1.2)) against u. to obtain

4—e
6—e \V4 - 2 2
k (JQ uSE) - ( SQ | = | -+ SQ o 2 -

Jo ) (foue™)’

By and Holder, the right side is bounded, hence |Juclls_- < 1. By again, |Vuel2 < 1.
On the other hand, the right side is = 1 by coercivity of —A 4+ a, which is a consequence of
criticality, and by Hoélder. This gives ||uc|l¢—e = 1, and hence ||Vuc|2 2 1 by Sobolev and Hélder.
This completes the analogue of Step 1 in the proof of Proposition

Let us now turn to Step 2 in that proof. We denote by ug a weak limit point of u. in HE (),
which exists by Step 1. Still by Step 1, we may assume that the quantities |uc|¢—e and |Vue|2
have non-zero limits. The only difference to Proposition is now that we modify the definition
of M to

M =1lim | (ue —up)%®
e—0 Jo

)

where the exponent is 6 — ¢ instead of 6. Thanks to the uniform bound |u.|¢_ < 1 by Step 1,
it can be easily checked that the proof of the Brézis-Lieb lemma (see e.g. [25]) still yields

3

lim | w@ ¢ =1lim | w5+ M=| u§+ M.
e—0 e} e—0 (o) (o)

Then the modified assumption (1.5 can be used to conclude

13
s(f u8+M) =J|Vu0|2+T.
Q Q

The rest of the proof is identical to Proposition

We again adopt the convention that in the remainder of the proof we only consider the above
subsequence and we will drop the subscript e.

In order to prove Proposition we will prove in the following subsections that zg € Q, [Vw|2 =
O\"Y?)and e = O(A71).
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5.2. The bound on |[Vw|2. The goal of this subsection is to prove

Proposition 5.2. Ase — 0,

|Vwls = O Y2 +0((Ad) 1) + O(e). (5.3)
Note that, in contrast to Proposition there appears an additional error O(g). We will prove in
an extra step (Proposition that ¢ = O((Ad)™1), so this extra term will disappear later.
The proof of Proposition [5.2]is somewhat lengthy and we precede it by an auxiliary result, which

is a simple consequence of the fact that o — 1.

Lemma 5.3. Ase — 0,
elog A = o(1).

A useful consequence of this lemma, is that
U<l in Q. (5.4)

T~

Indeed, this follows from the lemma together with the fact that U, \ 2 A2 40 Q.

Proof. We integrate equation (1.2]) against v and use the decomposition (5.1). This gives

J V(PU,» + w)[? + J a(PU, » +w)? = 30 f (PU, » + )0, (5.5)
Q Q Q

By orthogonality
2 2 o _ 37’
IV(PUy 4+ w)|" = | [VPUzA|" + | |[Vw|” = — +0o(1).
Q Q " 4
Moreover, using Lemmas and we find {, a(PU, \ + w)? = o(1). On the other hand,

J (PU, 5 +w)® ¢ = J U:S;\E + o(1).
Q Q

Hence equation (5.5) combined with the fact that a — 1 implies

72
J USye = — +0(1). (5.6)
Q ’ 4
Since )
J USE=x"3 A?’f 1+ N2z —yl2) *"2 = 12 WZ (1 + o(1)),
Q Q
we have A2 — 1 and hence the claim. O

The next result quantifies the difference between SQ Uij\g v and SQ U $5 yv=0forve Tml/\.

Lemma 5.4. For every v € T;A,

[ vseol = <ol 657)
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Proof. By orthogonality,
— _£ 2| p—qy|2 _£ 2| p—qy|2
JQ UE,AEU =A"2 JQ U;’,A = los VI+M eyl — \=3 JQ U;’,,\ <€€1°g VItAte—y2 1) v.

By Lemma [5.3]
eloga/1+ X2|z —y|? = o(1) (5.8)

uniformly in x and y. Hence

0 < eloBVIFNzuP 1 < cloga/1+ A2z —y|2 < eX|z —y), (5.9)

where we have used the inequality log v/1 + 2 < |t]. Since ||z — y] U;)\HG/S = O(A71), the result
follows from the Holder inequality. O

We are now in position to give the

Proof of Proposition[5.2. From equation for u we obtain the following equation for w,
— Aw + aw = =3U; , — aPU, x + 3a* *(PUy \ +w)° = (5.10)
Integrating this equation against w gives
JQ(|Vw|2 +aw?®) = — JQ aPU, yw + 3a* ¢ JQ w(PU, ) +w)° ¢ (5.11)
As before, the first term on the right hand side is controlled easily by Holder,

2wl $ AV Vuwls.

JGPUw,Aw‘ < HPUL)\
Q

In order to control the second term we use the fact that PU, ) = Uz — ¢g.n. Moreover, by

Taylor and (5.4)),

(PUpx +w)" " = (Upr — ar +w)° = U2+ (5—e)U, "w
+0O <U4,>\80z,/\ + U§’7/\w2 + |w]?~F + goi;f) ) (5.12)

T

Hence,
| L(pax,A +w)’ fw — (5 )t e fQ Upyw?| < | fﬂ Upxw|+0 ( fg Uﬁ,wx,xlwo

+ 0 (IVuld +[Vwllenld ).

We estimate the first term on the right side using Lemma [5.4] For the second term on the right
side we argue as in the proof of Proposition and obtain

| Uhseeatel = 0 ()t Vuly).
For the last term on the right side we use |, 1|2 = O((Ad)~1). Moreover, in view of (5.9)),
J Ulfw? < A2 J Ul w? + Ca)\f Uz — y|w?

< (1+0(1)) L Ut yw? + 0N 2 [Vul). (5.13)
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Altogether we obtain from (5.11)),
J (IVwf? + aw? — 156U w?) < (Ad) "+ A2 4+ 2)[Vals + o[ Vaol2)
Q

An application of the coercivity inequality of Lemma [2.3] now implies ((5.3]). O
5.3. The bound on e. The goal of this subsection is to prove

Proposition 5.5. Asec — 0,
e=0(\)™h). (5.14)

We note that the analogue of this proposition is not needed in Sectionwhen studying ([1.3)).
The proof of Proposition is based on the Pohozaev-type identity
f VPUL)\ . Va)\PUx’)\ + J CL(PU%)\ + w)a)\PUL)\ = a4€3f (PUm’)\ + w)5755)\PU$,)\ , (5.15)
Q Q

Q
which arises from integrating equation ({.4]) against 0y PU,  and inserting the following bounds.

Lemma 5.6. As ¢ — 0, we have
f VPU, - Vi\PU, » + J a(PUgx +w)o\PU, » = ON 2d" ' + A Y Vwl3) (5.16)
Q Q

and

1
3J (PU, » +w)° 0\PU, \ = —E(l +o(1) e+ 0N 2d7 + X7 Vw|3). (5.17)
Q

Before proving Lemma let us use it to deduce the main result of this subsection.

Proof of Proposition[5.5 Inserting (5.16) and (5.17) into (5.15)) and applying the bound (5.3) on
|Vw|| we obtain

(1+o0(1))e s (M) + |[Vu|3 < (Ad) "+,
Since € = o(1), (5.14) follows. -

In the proof of Lemma [5.6] we need the following auxiliary bound.
Lemma 5.7. For every v € Tzi)\,

\JQU;;SaAUIM\ < eA 1|Vl (5.18)

The proof of this lemma is analogous to that of Lemma [5.4] and is omitted.

Proof of Lemma[5.60 We begin with proving (5.16]). First, by [31) (B.5)],

f VPU, - Vo\PU, » = O(\"2d7).
Q
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Writing PU, \ = Uz x — ¢z, the second term in (5.16)) is bounded by

|2 + [lwl2) (| oAUz A2 + [0xpz A ]12)

[ P+ worPUL 5 (U
SA P4 ARV,
<A 4+ AT Vw3,

by Lemma and , followed by Young’s inequality.

Next, we prove (5.17). Using (5.12)) and (5.4) we bound pointwise
(PU,» +w)> C0\PU, \ = U3 F00Up\ + (5 — &)U E0\Uy pw

+ 0 ((Uhpen + U2au? + [ol" = 4 657 orU )
+0 ((UjA P+ 97 |6Wm|> . (5.19)
The integral over ) of the two remainder terms is bounded by a constant times

e Aol A1 10 Uz alls + (1T,

+ Uzl

Bl + ol + learld ) 103U lo

(5;76> [Oxpz.

510x¢za l6
SAT AT wl
where in the last inequality we used the bounds from Lemmas and

By Lemma [5.7] the integral over Q of the second term on the right side of (5.19)) is bounded by
a constant times eA ™1 |[Vw|s = o(eA™1).

o+ (Il + o

Finally, by an explicit calculation,

B ~_Ug )\3/2 |:c—y|2
US £0\U, =JU5E DA
L ot = | U R~ )

- [PETEE)  2T(Hrr)
— )\—1—7 2 2 . 2 2 O )\_4d_3
e [ rG-3 -3 | oY
3/2 . p(ﬁ)
- _ )\7177 2 )\74d73
¢ 2F(4—%)+O( )
2
- _% eATH(1 + o(1)) + ON4d™3), (5.20)
where, in the last step, we used Lemma, This completes the proof of (5.17)). O

5.4. Excluding boundary concentration. The goal of this subsection is to prove
Proposition 5.8. d~! = O(1).

The proof is very similar to that of Proposition and we will be brief. Integrating the first
equation in (1.2)) against Vu implies the Pohozaev-type identity

- [ae = [ n(5)" (5.21)



40 RUPERT L. FRANK, TOBIAS KONIG, AND HYNEK KOVARIK

The volume integral on the left side can be estimated as before, since by Propositions and
B.5] we have the same bound

IVw[3 <A™+ (Ad) ™2

as before. To bound the surface integral, we use the fact that

é’w) 2 —1,4-1 —1,3-2
— | =0\"d ) +o(ANd).
[ (5) =00 tansotr i)
This is the analogue of Lemma We only note that by (5.10) we have
Fi=—Aw = 3a""(PU,\ + w)" ¢ = 3U2 , — a(PU, \ + w) (5.22)

and that this function satisfies (2.15). Therefore, using the above bound on |[Vw|2 we can
proceed exactly in the same was as in the proof of Lemma [2.6]

Thus, as before, we obtain
CA 'Veo(z) = ONd32) + o(A1d7?)
and then from |Vao(x)| 2 d 2 we conclude that d 1 = O(1), as claimed.
5.5. Proof of Proposition The existence of the expansion is discussed in Subsection
Proposition implies that d=—' = O(1), which implies that zo € . Moreover, inserting the

bound d~! = O(1) into Propositions and we obtain ¢ = O(A~1) and |[Vuwl|s = O(A1/?),
as claimed in Proposition [5.I] This completes the proof of the proposition.

6. SUBCRITICAL CASE: REFINING THE EXPANSION

As in the additive case, we refine the analysis of the remainder term w, in Proposition [5.1} which
we write as w, = )\5_1/2(H0(x€, ) — Hy(ze, ) + Se + 7o with s and r. as in (3.4).

The following proposition summarizes the main results of this section.

Proposition 6.1. Let (u:) be a family of solutions to (L1.2) satisfying (L.5). Then, up to the
extraction of a subsequence, there are sequences (z:) < €2, (Ac) < (0,0), (ae) C R, (s52) © Ty 2,
and (r.) C T:‘;’)\s such that

Ue = as(%:s,xs + 8¢ + 1) (6.1)

and a point xo €  such that, in addition to Proposition|[5.1

[Vrela = O(e + A7 + gulae) A1) (6.2)

dalws) = malwe) A+ 5 ede (14 0(1)) +0(AT1), (6.3)

Véa(z) = O <5A;/2 FAH A+ da(a2) A;W) forany p <1, (6.4)
=14 glog Ae — 4PN + O(e + dalz )N 1) + oA Y). (6.5)

We will prove Proposition through a series of propositions in the following subsections.
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6.1. The bound on |Vr|s. The following proposition contains the bound on |Vr|z claimed in
Proposition [6.1]

Proposition 6.2. Ase — 0,

| V72 = O + X732 + () A71). (6.6)

Proof. Notice that
—Ar = =307, + 30" (o r + 5+ 1) + algon + for) —als +7) + As,
with g, » as in (A.4). Hence

A_l/Q
J (|V7‘|2 + arz) = 3044_8J (Yar +5+ r)’ e — J a(UIA -+ s5— fo) r. (6.7)
Q Q Q |z -yl
By Lemma [3.5(b)
‘ J;) a(gaz,)\ + fa:,)\ - 5) r ‘ < )\_3/2 HTHG :
Now,

J (Yur +s+71)° 51 = J Ug;\‘sr + (5 —¢) J U;L;fﬂ +(5— E)J Uﬁ;\srs
Q Q Q Q

~6-0) | US O e ) Ll 4 Taes (68)
Q k)
where similarly as in the proof Lemma [3.5| we find that
sl < A2 |rls + 7[5

Moreover, similarly as in (5.13]) we obtain

3087 (5 —¢) JQ U;l;\g r? < 15 fﬂ U;i/\r2 + o(||7]|3).
Next, we write
J Ui;\ETS =\ <f U;l,\TS +J U;L)\ (GEIOg VI eyl 1) rs) .

The prefactor A=/ on the right side tends to 1 by Lemma The first integral in the paren-
theses is bounded in (3.22)). For the second integral we proceed again as in (5.13) and obtain

J U;l)\ <eslog«/1+>\2ax—y|2 _ 1) rs
Q ’

$ 2 |Vl =yl Irlslsls X1l
where we used in the last inequality. Thus, recalling the bound on ¢ in ,
IR
Q
The fourth term on the right side of is bounded, in absolute value, by a constant times
| gts (VP L) ] S (3 0u0) + 372 s,
where we used .



42 RUPERT L. FRANK, TOBIAS KONIG, AND HYNEK KOVARIK

Using Lemma to control the first term on the right hand side of and putting all the
estimates into (6.7)) we finally get

Jﬂ (|V7‘|2 +ar? =15 U;{/\TQ) < (5 + )flgéa(x) + /\*3/2> [rle + o(Hng) )

This, in combination with the coercivity inequality of Lemma [2.3] implies the claim. 0
6.2. Expanding o*~¢. In this subsection, we prove the expansion of a*~¢ in Proposition .

Proposition 6.3. Ase — 0,
atF =1+ glog A—4BA T+ O(e + da(x)A 1) +o(A ). (6.9)

Proof. As in the proof of Lemma we integrate equation (1.2)) against u. However, this time
we write u = a(t; » + ¢) and obtain

f V(e + ) + f Ao+ q)° = 34~ f (o + Q)
Q Q Q
which we write as

| (1900 + av2y = 30t )

0

3(6 —¢)

L2 f (Vq  Vior + aqiber —
Q 2

044_6Q|1/J:c,,\|4_61/1x,,\> = Ro (6.10)
with
Ro = —f (|V6]|2 + aq2> + 3a45f ((wx,)\ +q)° 7 — |0 = (6 — &) [thun
Q Q

We discuss separately the three terms that are involved in the identity (6.10]).

4761/}:1:,)\ Q> .

First, we claim that

| (1900l + a0y = 30"

3 ot

= (1—a*) T 5 “Felog A+ O(e + ga ()N 1+ 172 .

Indeed, this follows in the same way as in the proof of Lemma (a), together with the fact

that
2

T
L <|¢x,)\|6_6 - 2;) = —gelogk + O(e + da(z)N"T+ 1752 .

To prove the latter expansion, we write ¥, x = Uy \ — )Fl/gHa(:B, -) — fz ) and expand, recalling

6D,
2|07 — ¢2,,\ = U;S;\E - Ug?,,\
+0 (U2 (P + foal) + 3P + sl

Using the bounds from Lemma (B.1) and proceeding as in the proof of Lemma [B.3] we
obtain

[ (020 (N1 0 5 V) AP O + £l ) =O0n(A " 4P
Q
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On the other hand, by an explicit computation,

[ (s —us,) = [ (085 —v8) + 00 = 22 (1 e B G IOV
Q z,A L R3 zA - I'(3 - %) I'(3)
2
= —gclogA+ O(e+217?),
proving the claimed expansion of the first term on the left side of (6.10))
We turn now to the second term on the left side of (6.10) and claim that
36—¢) 4 _ ) 37 -

L (Vq Vibaa + aqihp\ — (2)a4 “qltoe ! E%,A) = (1 —3a’ 6) AT o0,

To show this, we proceed as in the proof of Lemma (b) and use the equation for 1, ) to write

3(6—¢) 4, e 6—¢ 4_.
[, (Vo T agan = 20Dttt wan) =3 (1- 0550t ) [ auz,

- L 0 (Vix - U2) - L “ (3(62_5)<I%,AI“%,A —U3) + alfon + gm,m) .

The first term on the right side was already computed in the proof of Lemma (b) and the
last term on the right side can be bounded in the same way as there, except that now, instead

of (3.27), we use the bound
Va2 <A1, (6.11)

which follows from the bounds on s and r in Propositions [3.2] and For the second term on
the right side we proceed as in the proof of Lemma [5.4] and obtain
‘ | a(vie- Ug,x)‘ SN [ JalUlafe =yl < X 0% — ol Lol < el 5 237

By Proposition , this is O(A72).

Finally, we bound Ry, the term on the right side of (6.10)). Because of (6.11)), the first integral in
the definition of Rg is O(A~2). The second integral is bounded, in absolute value, by a constant

times
_ _ 4— - _
| (et 1) < Joaal ™ Lol + ol = < 272,
Inserting all the bounds in (6.10]), we obtain the claimed bound. O

6.3. Expanding ¢,(z). In this subsection we prove the following important expansion.

Proposition 6.4. Asec — 0,

dal(z) = malz) AL + % eX (14 0(1)) + oA ). (6.12)

The proof of this proposition, which is the analogue of Proposition is a refined version of
the proof of Proposition We integrate equation (1.2)) for u against dx¢, \ and we write the



44 RUPERT L. FRANK, TOBIAS KONIG, AND HYNEK KOVARIK

resulting equality in the form

JQ (V%«,,\ - Vortzn + ap O\ ) — 304476|%,A|476%,A5,\%,,\)

=— JQ (Vq - VOo\Uz \ + aqixz x — 3(5 — 5)a475q|¢z,,\|47563¢$’,\>

+ 02Ot [ PaaP Yaadaon + R (6.13)
2 0 ’ 7 ’
with
R= 3a4€J (Ve r+9)° —|¥zn Oz
Q

5 [V A > %2 0q%) Ontz -

4781/132,)\ _(5_5) W)m,/\ |47€q_

Lemma 6.5. As ¢ — 0, the following holds.

(a) JQ (vwz,)\ : Vé’,\lbx,,\ + awz,AaA¢x,A - 30é47€|ﬁ¢)a:,/\|47€1/)x7,\a)\¢r7)\)

2

= =27 $a(x) A 2 (1 +0(1)) + % e (1 +0(1) +27%a(z)A 2 + o(A7?).

(b) JQ (Vq - Vortu\ + agorizy — 3(5 — )’ gy AP0 %’A)
= (1= a")2 (¢a(x) = d0(2) A% + O(eA"*log A + (1) A°) + 0(A ™).

2
(c) f Clbeal’  Vaadntion = 55 BYA + (A 4 9a(@) A7) + oA 7).
Q
(d) R = oA

The proof of Lemma is independent of the expansion of a*~¢ in Proposition We only
use the fact that a =1 + o(1).

Proof. (a) As in the proof of Lemma (a), see equation (3.31]), we have

L (V%,A - VOrthg ) + a1y \OAYp \ — 30/1_8|wx,>\|4_€wx,>\a>\¢x,>\>

= 3J (U:?,)\ - O‘4_E|¢}x,)\|4_6¢}x,)\) a)ﬂl}x,)\ - J (l(fgg)\ + gz)\)a,\i/)m’,\ .
Q Q
The second integral on the right side was shown in the proof of Lemma (a) to satisfy
f a(for + Gun)O0er = 27 (3 — ) a(z) A2 + o(A%).
Q

We write the first integral on the right side as

L (U;?,,\ - a475|1/}x,)\|4761/)x,)\> O\Yz\ = (1 - 04475) L U2 A0\

- 044Ef (Ug‘?;\a - U;:”,\) Oz — 0446J <|1/}:p,)\|4781/}$,)\ - U;Z’;f) NPz r.  (6.14)
Q Q
As shown in the proof of Lemma (a),

2

J UiAGA%,A = 7%(96))\_2 + (9()\_3) .
o 7 3
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Next, by Lemma
[ 055 B0 - [ (05 - U+ I3 | 055t 40,
For the first term, we use and the bounds from the proof of Lemma (a) to get
J;Qg;—ug)@mﬁz—z;u1u+oa»+ou4y
For the second term, we use the bound |U, § — 1]lw = O(clog A) and compute

A73/2

T

L (U;Z;E — UgA) H,(z, -)‘ < e 2log A L U \Ha(z,-) S eX?log A =o(eA™ ).

Concerning the last term on the right hand side of (6.14)), we will prove

JQ (W}:p,)\|475¢w,)\_U£;\£)6)\¢m,)\ = 2£ d)a(x))\72 (1 + 0(1)) —2m a(a:) /\734_0((25(1(1')2 )‘73) +0()‘73)'

3
(6.15)
This will complete our discussion of the right hand side of (6.14]) and hence the proof of (a).

The proof of (6.15) is similar to the corresponding argument in the proof of Lemma (a),
but we include some details. We bound pointwise

1
|wz,)\|47€wz,)\ - U:?;\E = _(5 - 8)/\7E Ui;\s Ha(xa ) + %(5 - 6)(4 - E)AflUgf Ha(x’ ')2
+ O(ARU2, | Ha(w, ) + N7 Ha(, ) + UL fanl + 1 foal?).

Using the bounds from Lemmas and [A.2] we easily find that the remainder term, when
integrated against |d\1,| is o(A73). Using expansion (B.5]) we obtain, by an explicit calculation
similar to (B.11)) and (B.13)),

JQ Uy Ha(w,)0xib = fQ U e AUanHa(@,7) + O 6,(2)?) + o(A~2)

2 3+e 2

:—(+0@>%@M;z+a@M%+0@*ﬂ%@ﬁ+de%

15 5

= 2T Gu@) A (14 0(1)) + 2 afw) A7F + OO 6y(@)?) + oA

where we used Lemma In the same way, we get
| 5 H oo = 002 ) + o017,
Q

This proves (6.15)).
(b) As in the proof of Lemma (b) we have

| (V- Vortsan + aatrien = 305 = )’ lual*~“a0rv:)

= 3J q <5U§,A5AU1,A - (5- 5)a47€|¢:p,)\|4758)\¢x,)\> - L aq (Oxfo ) + 0rgz,)) -
Q
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According to (3.41)), the second term on the right side is o(A~3). (Note that we now use the
bound (6.11)) instead of (3.27)).) We write the first integral as

| 4 (5ULa0n = (5= ) “Jial“0r0n) = (5 (1-a*)+ sa“) | ot
Q Q
+(5—¢e)a'? JQ q (U;l,)\aAUx,)\ - ¢§,,\5/\1/1a:,x> +(5—-e)a** JQ q ( A |%,A|4_E> Yz 2

According to (3.39)),

<5 (1 — a4*5) + 60445) L qUy xOUz

(5 (1 . aH) + so/*E) (—?g (6a(x) — do(x)) A2 + (’)()\3))

_ _%”(1 — 047 (fal) — do(2) A2 + O(eA"2) + 0o(A )

and according to (3.40)), using (6.11)) instead of (3.27)),

| 0 (Ut = 62 a20000) = Oula)A )+ 01)

Finally, for any fixed ¢ € (0,d(z)) and for any p > 1 we have, by Lemma [A.2]

[CAPNCALISY

On the other hand, taking ¢ sufficienctly small (but independent of €) we obtain Uy x < ¥y x <
Uy on Bs(z). The latter implies 1,5 = U, (1 + O(g)) on Bs(x), and therefore

11— ¢75 e (Bs(2)) = Olelog A).
Consequently, using (6.11)) and (6.16)),

UQ q (¢§,>\ - |¢z,>\|475) OV A

,M)

Lo (By(w)en) = O(A 2

(6.16)

7 9
< lals (<108 A [t adxtmalless + A7) S eA2log A+ 275

Collecting all the bounds, we arrive at the claimed expansion in (b).

(c) The relevant term with exponent 2 — ¢ replaced by 2 was computed in Lemma (c). The
same computation, but with Proposition [6.2] instead of Proposition [3.4] gives

2
j PUAONbor = 55 FYA 0N + du(@) A7) +0(A ).
Q

(The O(eA™?) term comes from bounding §, rs¢)? \ Atz )

We bound the difference similarly as at the end of the previous part (b), namely,

UQ 7 (|¢m,x|276%,,\ - ;92,\> OV A

< lal} (s1og A adntaliss + A7)

S edBlogh + A0 = o(A73) .

The proof of (d) uses similar bounds as in the rest of the proof and is omitted. O
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Proof of Proposition[6.4 Inserting the bounds from Lemma [6.5]into (6.13), we obtain

da(z) (14 0(1)) — 312 ed(1+0(1)) — ma(z)A ! - <1 - a475) dolx) + 15—; Byt =o(A"h).

Inserting the expansion of a~¢ from Proposition this becomes
$a(z) (1 +0(1)) — ;—2 eX(140(1)) — ma(x)A™t — 48 o(z) AL + 135—; By ATt =o(27).
Using the expansions of 5 and =, this can be simplified to
a(x) (14 0(1)) — :% e (1+0(1)) = ra(z)A™" = oA™Y,

which is the assertion. O
6.4. Bounding V¢,. In this subsection we prove the bound on V¢, (z) in Proposition[6.1]

Proposition 6.6. For every up <1, as € — 0,
Vo ()| S eNV? 4 ATH 4 () ATV2. (6.17)

Note that together with (5.2)) it follows from Propositionthat xg is a critical point of ¢,.

The proof of Proposition is a refined version of the proof of Proposition and is again
based on the Pohozaev identity (5.21). The latter reads, in the notation of (3.46)),

0= I[ths] +21[thz . q] +I[q] . (6.18)

To control the boundary integrals involving ¢ in this identity, we need the following lemma, which
is the analogue of Lemma [3.13]

Lemma 6.7. ||| 1200) S € + A2 + ¢a(2) AL

Before proving this lemma, let us use it to complete the proof of Proposition [6.6] In that proof,
and later in this subsection, we will use the inequality

lala S €+ A7 + ga(z) A7, (6.19)
This follows from the bound (3.10)) on s and the bound in Proposition on r.

Proof of Proposition[6.6. It follows from Lemma[6.7] and the bounds (6.19) and (3.49)) that
[T al] S X724 X724 0a(2) A2, |1l £ 6%+ A7 + ga(2) A2
The claim thus follows from Lemma and (6.18). O

Proof of Lemma[6.7. Note that —Ag = F with
Fi= =307y + 30" (Yo + 0)° 7 —aq + alfor + g2) -
With the cut-off function ¢ defined as in the proof of Lemma [2.6] we have
—A(Cq) = CF = 2V(- Vg - (AQ)q.
Arguing as in we deduce that
CIF| < Clal®™= + lal + A2 (6.20)
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Now we follow the line of arguments in the proof of Lemma The only difference is that
instead of ([3.48]) we have the bound

lale S e+ A% + ga(z) AT, (6.21)
which follows from and Proposition . Using this estimate we find
1A 32 < e+ A2 4o (z) AL
In combination with , this proves the claim. ([l

7. PROOF OF THEOREMS [1.2] AND [I.3

7.1. Proof of Theorem Equation follows from Proposition , together with ,
and (3.5)). Proposition gives also |x. — zg| = o(1). Moreover, the bound on A in (5.2)
together with gives V(o) = 0, and gives |Vra = O(e + X732 4 ¢ (x)A™1). By the
bound on A in (5.2)), this proves the claimed bound on |V |z if ¢a(z0) # 0. In case ¢4 (xo) = 0 we
will see below that ¢4(z) = o(A™!) and e = O(A?), so we again obtain the claimed bound.

Next, equation (6.3]) shows that
32
lim eA = — @q(x0), (7.1)
e—0 s

which is (1.12]).

Equation (1.13)) follows from (6.5). In case ¢4(xo) # 0 this is immediate, and in case ¢4(xg) =0
we use, in addition, the expansion of § from Proposition and the fact that ¢ = o(A™!) by

)

Finally, let us assume ¢,(xg) = 0 and prove (1.15). We apply Lemma to the function
u(z) 1= ¢o(r+20) and get ¢q(z) < |V (z)|?. From (6.4), together with the fact that e = o(A™!)

by (7.1), we then get
Pa(w) = oA, (7.2)
Inserting this into (6.3)), we obtain

ra(z) A"+ 312 eX(1+0(1)) =o(A 1),

which is (L.15)). This completes the proof of Theorem [1.2]

7.2. A bound on |w|,. To complete the proof of Theorem [1.3it remains to establish a suitable
bound on |wl|e, as well as on |wl|, for p > 6. This is provided by the following modification of

Proposition [4.3]

Proposition 7.1. Ase — 0,
Jwlp < A for every pe€ (6,00). (7.3)

Moreover, for every p > 0,
[wloo = o(A*). (7.4)
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Proof. To prove the bound (7.3, let » > 1 and F given by (5.22). As in the proof of Proposition
[1.3] we obtain the same bound (4.10), where similarly to ([£.11]), F satisfies

F| S UPSE b = 1]+ UZ5E = UB,] + Uy (Jwl + @an) + 0] + 0on + Upp + 0] . (7.5)

Using the bounds ¢ < A~! from Proposition and |a*=¢ — 1] < elog A by Proposition we
can estimate, for every r > 1,

J(Q%WM%—U+K§x4§f)WV
Q ’ ? I

smw&+0@agﬂggm*f—u+uﬁA—a$ﬂww)

S Jwlrsn)e log AUz 2rsa S 0l (inElog AN

< mlwliih sy + Cyllog A ATE <l + Cya

Hence the right side of { - ) fulfills the same estimate as in the proof of Proposition and
we conclude (7.3)) as there.

We now turn to the bound (7.4). From (5.10)) we deduce that

1
w(@) = 4 | Gole.n)Fo), (7)
T Ja
As in Proposition we need to estimate |F||, for some ¢ > 3/2 using (7.5). We bound
U310t — 1]y £ (elog A+ A D)|UsalZ, S A% 7 log A
for every ¢ > 3/2. Similarly,
Mﬁf—@ﬂq~d%wwwm<A2ﬂ%A

for every g > 3/2. The other terms resulting from are identical to those already estimated
3
in Proposition H As there, we thus obtain |F|, < /\275 log \. Letting ¢ \, 3/2 yields (7.4).

7.3. Proof of Theorem At this point, the proof of Theorem [I.3]is almost identical to the
proof of Theorem [I.6] We provide some details nevertheless.

By the bound |w[e = o(\/?) from Proposition and Proposition we have |uc|o =
A2 4 o(AY/2). Thus part (a) of Theorem follows from (1.12) and (1.15)), respectively.

To prove part (b), we rewrite equation (1.3) as

— 3 5—¢
u:) = 1 | Gulzpun.
Fix again § = d. = o(1) with A= = 0(d.), so that = SB(; o u(y)® = 1+ o(1). Then
3 3
0 Ga Z,y)uly > =
AT s (a) BV = 4 By ()
On the other hand, by Lemmas [7.1 and [A.1]

[SIL)

(Gal2,20) + 0o(1))u(y)® = A2 3 Galz,70) +o(A 2 2).

| Galz,y)u(y)*°| < |Galz, )2(|Us, +wlfo) S AT 4 A2,

Q\B;s(z)
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Choosing § = A~¢ with ¢ > 0 small enough and observing that A=%/2 = 1 4+ o(1) by Lemma
the proof of part (b) of Theorem is complete.

APPENDIX A. SOME USEFUL BOUNDS

In this section, we collect some bounds which will be of frequent use in our estimates.

Lemma A.1. Letx € Q and let 1 < g < 0. As A — o0, we have

A2, 1<q<3,
[Ur o) € 4 A7 (log A)s g =3, (A1)
)\%7%, q > 3.
Moreover, we have 0,,Uy \(y) = >\5/2% with
A2 1<q<3/2,
105 Unal o) € 4 A1 (log )3, g =372,
A2 4, q>3/2.

_ 1-\2|z—y|? .
(md a)\Ux,A(y) = %)\ I/QW ’LUZth

[oxUlq < A7HUl  forany 1< q< 0.

Moreover, for any p = py with p\ — o0,

A2, 1<q<3,
U La\B () < >\*11/2 3(1<q)g N3, q=3,
ATzpoa, q>3,
and
A2 1<q<3,
102U Lagos,(2)) S 3 A3 (log N3, q=3,
{/\gpzq, q >3,
and

ATV2 (log \)S, g =3/2,
)\_%p a q>3/2.

102, Ull a8, (z)) <

{Alﬂ, 1<q<3/2,

Proof. Taking R > 0 such that Q ¢ Br(z), we have

AR 7’2 AR )\_q/Q’ 1< q< 37
o 7 o (1+ 7“2)‘1/2 1 a
Az 73, q> 3.

This proves ({A.1). The remaining bounds follow by analogous explicit computations, which we
omit. g
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Lemma A.2. We have
Upr = PUpx + X2 Ho(2,) + fonr,

with
[fealoo S A2 N0 fonlo S A28, 2, farloo S A2
The function pq \ 1= )\—1/2H0(% ) + fa satisfies 0 < gz \ < Uy as well as
leaalle < )‘_1/2‘1_1/27 lpz ] < A"V2q7t

Moreover,

Y P N e Y P et
and

|00 alle S AT, [0np a0 S AT

51

Proof. Everything, except for the L® bounds on ¢z x, 0,z and dxpz z, is taken from [31]
Prop. 1]. Since these functions are harmonic, the remaining bounds follow from the maximum

principle.

Lemma A.3. We have

2
(a) §,qmn (aPaUnZ’A) = OX"'Vao(x) + o(A~1d™2) for some constant C > 0,

) §oqu-n (T2e2) = or1a2),

© 1, (5P5Lz,)\>2 — OO\-1d2).

0

For the proof of Lemma we refer to [31, Eq.(2.7)], [31, Eq.(2.10)], and |31, Eq.(B.25)]

respectively.
We define the function
)\71/2
GaN(y) = H — Uz (y),
Lemma A.4. As A — oo,
g2 alp S A2 arngaalp s A2

hold if 1 < p < 3. Moreover, Vg, » € LP(R3) for all 1 < p < 3/2.

(A4)

Proof. We have g, »(y) = AY2go1(M(z — y)) with go1(z) = |2|7" — (1 + |2]?) 72, As |2| — oo,

g01() = A7 (1= (L4 [272)72) 5 |21
Hence go1 € LP(R?) for all 1 < p < 3, which yields gz ], < )\1/2*3/7’Hgo71|\Lp(R3).

Next, by direct calculation,

z

z
v S . — P as 0.
90,1(2) |Z|3 (1 + |Z|2)3/2 |Z| |Z| -

Hence Vgo 1 € LP(R?) for all 1 < p < 3/2 and so is Vg, » = A2(Vgo1) (M — ).
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Finally, we observe

NIe A () = X gux + APz — 1) - (Vgo) Az — 9)).
By the above, we have z - Vgo1 € LP(R?) for all 1 < p < 3 and thus

_1_3
p—i—)\ 2 PHZ'VQ()J

p <A gl

0xgz Al | Lr(®3)
forall 1 <p< 3. O

APPENDIX B. PROPERTIES OF THE FUNCTIONS H,(z,y)

In this appendix, we prove some properties of H,(z,y) needed in the proofs of the main results.
Since these properties hold independently of the criticality of a, we state them for a generic
function b which satisfies the same regularity conditions as a, namely,

beC(Q) NCEI(Q)  forsome 0<o<1.

(In fact, in Subsection we only use be C(Q) n Cﬁ)g(Q) for some 0 < o < 1.) In addition, we
assume that —A + b is coercive in Q with Dirichlet boundary conditions. Note that the choice
b = 0 is allowed.

B.1. Estimates on H(x,-). We start by recalling the bound
|Hy(z, o < d(z)™' VzeQ, (B.1)
see [17, Eq. (2.6)]. We next prove a similar bound for the derivatives of Hy(z, -).

Lemma B.1. Let x,y € Q with x # y. Then V,Hy(z,y) and VyHy(z,y) exist and satisfy

sup |vab(x7y)| < Ca (B2)
yeQ\{z}

sup |VyHp(z,y)| <C (B.3)
yeQ\{x}

with C' uniform for x in compact subsets of 2.

Proof. Step 1.  We first prove the bounds for the special case b = 0, which we shall need as
an ingredient for the general proof. Since Ho(z,-) is harmonic, we have A,V,Hy(x,y) = 0.
Moreover, we have the bound V,Go(z,y) < |z — y|~2 uniformly for z,y € 2 [36, Theorem 2.3].
This implies that for  in a compact subset of Q and for y € 02,

VyHo(z,y)| = [Vy(lz —y[) = V,Go(z,y)| < C.
We now conclude by the maximum principle.

The proof for the bound on V,Hy(x,y) is analogous, but simpler, because V,Go(z,y) = 0 for
y € 082,

Step 2. For general b, we first prove the bounds for both z and y lying in a compact subset of
Q. By [I7, proof of Lemma 2.5] we have

b(z
Hy(a.5) = dofa@) + Wo(y) — 2y —
with Uy |c1ugy < C for every 0 < p < 1 and every compact subset K of Q, and with C

uniform for z in compact subsets. This shows that |V,Hy(x,y)| < C uniformly for z,y in
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compact subsets of 2. By symmetry of Hy, this also implies |V, Hy(z,y)| < C uniformly for z,y
in compact subsets of ).

Step 3. We complete the proof of the lemma by treating the case when = remains in a compact
subset, but y is close to the boundary. In particular, we may assume for what follows

e —yl ' S L. (B.4)

By the resolvent formula, we write
Hie.9) = Ho(w9) + 1 | Gof 220Gz 9) =

By Step 1, the derivatives of Hy(x,y) are uniformly bounded.

We thus only need to consider the integral term. Its 0,,-derivative equals

J axi<|1>b< )Gylz,y)d f 00 Ho (2, 2)b(2)Gy (2, y) 2
Q

x — z|
1 1 1
S| s detls—3t1s1
o lr— 2z [z -y |z =yl
where we again used the fact that (| @ B.2) holds for b = 0, together with (B.4]). This completes the

proof of (B.2).

The proof of (B.3)) can be completed analogously. It suffices to write the resolvent formula as
Hie.9) = Ho(o.9) + 1= | Gallr. )Gz ) d=

in order to ensure that the J,,-derivative falls on Go and we can use for b= 0. O

We now prove an expansion of Hy(x,y) on the diagonal which improves upon [I7, Lemma
2.5].

Lemma B.2. Let 0 < p < 1. If y — x, then uniformly for x in compact subsets of 1,

Hyfa,) = 64(2) + 5Vu() (5 =)~ "Dy —al £ Oy — o). (B)
Proof. In [17, Lemma 2.5|, it is proved that
Waly) = Hifa9) — 6u(@) + "y —af (B.6)
is in CIOC (Q) (as a function of y) for any pu < 1. Thus, by expanding ¥,(y) in near y = x,
Hy(a,) = 64(2) + V() - (= 2) — "Dy —af £ Oy —a ). (B

This gives (B.5)) provided we can show that for each fixed x € Q,

VW (a) = SV (B.5)
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Indeed, by using (B.7) twice with the roles of z and y exchanged, subtracting and recalling
Hy(z,y) = Hy(y, ), we get

30(9) — n(a) = (T () + V) — ) + DD ey 0oy

= (VOy(y) + VTa(2))(y — 2) + Olz —y['™) | (B.9)

because b € C*(2). We now argue that ¥, — ¥, in C} (), which implies VU, (y) — V¥, (z).

loc

Together with this, (B.8) follows from (B.9).

To justify the convergence of ¥, we argue similarly as in [I7, Lemma 2.5]. We note that —A, ¥, =
Fy(z) with

Fu@:=“ﬁj29)—wwﬂu%@.

We claim that F, — F in LI (Q) for any p < co. Indeed, the first term in the definition of F),

loc

converges pointwise to F, in Q\{z} and is locally bounded, independently of y, since b € Co’l(Q).

loc

Thus, by dominated convergence it converges in L (€2) for any p < co. Convergence in L ()

of the second term in the definition of Fj, follows from the bound on the gradient of Hy in Lemma
. This proves the claim.

By elliptic regularity, the convergence F, — F in L} () implies the convergence ¥, — ¥, in

Cl’l_g/p(Q). This completes the proof. O

loc

Lemma B.3. For any x € Q) we have, as A\ — o0,

L Uy \Hy(x,-) = 4%¢b(m)k’l/2 —~ %ﬂb(a:)x?’/2 +o(A3/2), (B.10)
L Ui \or\UpaHy(z, ) = —%mb(x)xw + %Wb(:c))\’g’ﬂ +o(A7?), (B.11)
JQ Ug 78o, Us\Hy(, ) = %wb(x)xm +o(A7?), (B.12)
JQ Ug \Hy(z,)? = wdp(x)’AH +o(A ), (B.13)
L U3 \O\Ug zHy(,-)* = —Tgﬁb(:c)Q)\Q +o(\ 2. (B.14)

The implied constants can be chosen uniformly for x in compact subsets of §2.

Proof. Equalities (B.10) and (B.13) are proved in [I7, Lemmas 2.5 and 2.6]. To prove (B.11)), we

write

Upr . —yf?
O\Upy = =22 — \3/2 ] (B.15)

2) A+ N2z — g2y
and therefore, using (B.10)),

2 2
J Hy(x,y) Uy \ 0Uqn = §7T</>b(33))\_3/2 - §7Tb(95))\_5/2
0

_ /\7/2J H, |z —y|? 4 0()\_5/2).
o (N =)
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With the help of (B.5)) and the bound |D we get

|z — y|? B t4 dt t5 dt 6
L Hb(1 + A2 [z — y[2)72 = dmy()A7° 1+2)72 T)A” (1+2)72 +o(A7)
16

:gﬂgbb(:z:)/\ —ﬁwb( )N %+ o(A79).

Combining the last two equations gives (B.11]).
For the proof of (B.14]) use again (B.15]), but now we use (B.13]) instead of (B.10). The constant

comes from

J"O t*dt 37
o (1+12)3 16"

We omit the details.

For the proof of we use the explicit formula for 0,,U,  in Lemma We split the
integral into By(x) and Q\Bg(x). In the first one, we used the bound and the expansion
(B.5). By oddness, the contribution coming from ¢q(x) cancels, as does the contribution from
D ki k() (yr — x1). For the remaining term we use

4 A gt 4
Up \(9)02,Un n(y) (i — ) = )\_I/QJ = A2 00T,
o P a o =) = S | = 52 (x5

As similar computation shows that the contribution from the error |z — y|'™# on By(z) is
O(A~2=1), Finally, the bounds from Lemma, show that the contribution from OQ\By(x) is
O(X5/2). This completes the proof. O

Remark B.4. The proof just given shows that (B.12) holds with the error bound O(A~Y/2=#) for
any 0 < p < 1 instead of o(A~/?).

B.2. C? differentiability of ¢,. In this subsection, we prove Lemma The argument is
independent of criticality of a and we give the proof for a general function b € C%1(Q) n Clig (Q)
for some 0 < ¢ < 1. The following argument is similar to [I7, Lemma 2.5|, where a first-order
differentiability result is proved, and to |12, Lemma A.1], where it is shown that ¢, € C*(Q) for
constant b.

Let
1
U(z,y) = Hy(z,y) + 7 (0(2) o)) [r —yl,  (z,y) e Qx Q. (B.16)
Then ¢y(z) = ¥(z, ), so it suffices to show that ¥ e C2(Q x Q).
Using —Ay|z —y| = —2|z — y|~! and —A,Hy(z,y) = b(y)Gp(z,y), we have

-8, () = b Hifay) - 57T Sy

Since b € C27(Q) and since H, is Lipschitz by Lemma , the right side is in Cﬁ)g(Q) as a

loc

function of y. By elliptic regularity, ¥(z,y) is in 6’2 . (©2) as a function of y. Since W(x,y) is

symmetric in  and y, we infer that U(z,y) is in c?

o (Q) as a function of z.
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It remains to justify the existence of mixed derivatives dy,0,,¥(z,y). For this, we carry out a
similar elliptic regularity argument for the function 0., ¥(z,y). We have

(b(x) —b(y) — Vb(y) - (x —y)) .

1 xi—y
2|z —yl?
Since b € Cll’l(Q), and since 0, Hp is bounded by Lemma , the right side is in L;° (£2) as a

oc

function of y. By elliptic regularity, 6., ¥(z,y) € C1#(2) for every u < 1, as a function of y.

In particular, the mixed derivative d,0,,¥(z,y) is in Cloo’é‘

(Q) as a function of y. By symmetry,
the same argument shows that the mixed derivative d,,0,,¥(x,y) is in CIOO’(’f (©) as a function of
x.

The proof of Lemma 1] is therefore complete.
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