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BLOW-UP OF SOLUTIONS OF CRITICAL ELLIPTIC EQUATIONS IN THREE DIMENSIONS

. Similar results are also obtained for solutions of the equation ¡∆u pa εV qu 3 u 5 in Ω.

Introduction and main results

We are interested in the behavior of solutions to certain semilinear elliptic equations that are perturbations of the critical equation

¡∆U 3 U 5 in R 3 .
It is well-known that all positive solutions to the latter equation are given by U x,λ pyq :

λ 1{2 p1 λ 2 |y ¡ x| 2 q 1{2
(1.1) with parameters x R 3 and λ ¡ 0. This equation arises as the EulerLagrange equation of the optimization problem related to the Sobolev inequality

» R 3 |∇z| 2 ¥ S ¢» R 3 z 6 1{3
with sharp constant [START_REF] Rodemich | The Sobolev inequality with best possible constant[END_REF][START_REF] Rosen | Minimum value for c in the Sobolev inequality }φ 3 } ¤ c}∇φ} 3[END_REF][START_REF] Th | Problèmes isoperimétriques et espaces de Sobolev[END_REF][START_REF] Talenti | Best constants in Sobolev inequality[END_REF] S : 3

¢ π 2 4{3 .
The perturbed equations that we are interested in are posed in a bounded open set Ω R 3 and involve a function a on Ω such that the operator ¡∆ a with Dirichlet boundary conditions is coercive. (Later, we will be more precise concerning regularity assumptions on Ω and a.) One of the two families of equations also involves another, rather arbitrary function V on Ω. The case where a and V are constants is also of interest.

We consider solutions u u ε , parametrized by ε ¡ 0, to the following two families of equations, ¡∆u pa εV qu 3 u 5 in Ω, u ¡ 0

in Ω, u 0 on fΩ.

(1.3)

While there are certain dierences between the problems (1.2) and (1.3), the methods used to study them are similar, and we will treat both in this paper. We are interested in the behavior of the solutions u ε as ε Ñ 0, and we assume that in this limit the solutions form a minimizing sequence for the Sobolev inequality. More precisely, for (1.3) we assume

lim εÑ0 ³ Ω |∇u ε | 2 ¡ ³ Ω u 6 ε © 1{3 S (1.4)
and for (1.2) we assume

lim εÑ0 ³ Ω |∇u ε | 2 ¡ ³ Ω u 6¡ε ε © 2 6¡ε S (1.5) 
For example, when Ω B is the unit ball, a ¡π 2 {4, and V ¡1, then (1.3) has a solution if and only if 0 ε 3π 2 4 , see [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]Sec. 1.2]. Note that in this case π 2 is the rst eigenvalue of the operator ¡∆ with Dirichlet boundary conditions on Ω.

Returning to the general situation, the existence of solutions to (1.2) and (1.3) satisfying (1.4) and (1.5) can be proved via minimization under certain assumptions on a and V ; see, for instance, [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF] for (1.3). Moreover, it is not hard to prove, based on the characterization of optimizers in Sobolev's inequality, that these functions converge weakly to zero in H 1 0 pΩq and that u 6 ε converges weakly in the sense of measures to a multiple of a delta function; see Proposition 2.2. In this sense, the functions u ε blow up.

The problem of interest is to describe this blow-up behavior more precisely. This question was advertised in an inuential paper by Brézis and Peletier [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF], who presented a detailed study of the case where Ω is a ball and a and V are constants. For earlier results on (1.2) with a 0, see [START_REF] Atkinson | Elliptic equations with nearly critical growth[END_REF][START_REF] Budd | Semilinear elliptic equations with near critical growth rates[END_REF]. Concerning the case of general open sets Ω R 3 , the BrézisPeletier paper contains three conjectures, the rst two of which concern the blow-up behavior of solutions to the analogues of (1.2) and (1.3) in dimensions N ¥ 3 (N ¥ 4 for (1.3)) with a 0. These conjectures were proved independently in seminal works of Han [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF] and Rey [START_REF] Rey | Proof of two conjectures of H. Brezis and L[END_REF][START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF].

In this paper, under a natural nondegeneracy condition, we prove the third BrézisPeletier conjecture, which has remained open so far. It concerns the blow-up behavior of solutions of (1.2) for certain nonzero a in the three-dimensional case. We also prove the corresponding result for (1.3). This latter result is not stated explicitly in [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF], but it is contained there in spirit and could have been formulated using the same heuristics. Indeed, it is the version with a % 0 of the second BrézisPeletier conjecture, in the same way as, concerning (1.2), the third conjecture is the a % 0 version of the rst one.

A characteristic feature of the three dimensional case is the notion of criticality for the function a. To motivate this concept, let Spaq : inf

0%zH 1 0 pΩq
³ Ω p|∇z| 2 az 2 q p ³ Ω z 6 q 1{3 . One of the ndings of Brézis and Nirenberg [START_REF] Brézis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] is that if a is small (for instance, in L V pΩq), but possibly nonzero, then Spaq S. This is in stark contrast to the case of dimensions N ¥ 4 where the corresponding analogue of Spaq (with the exponent 6 replaced by 2N {pN¡2q) is always strictly below the corresponding Sobolev constant, whenever a is negative somewhere. This phenomenon leads naturally to the following denition due to Hebey and Vaugon [START_REF] Hebey | From best constants to critical functions[END_REF]. A continuous function a on Ω is said to be critical in Ω if Spaq S and if for any continuous function ã on Ω with ã ¤ a and ã % a one has Spãq Spaq. Throughout this paper we assume that a is critical in Ω.

A key role in our analysis is played by the regular part of the Green's function and its zero set. To introduce these, we follow the sign and normalization convention of [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF]. Since the operator ¡∆ a in Ω with Dirichlet boundary conditions is assumed to be coercive, it has a Green's function G a satisfying, for each xed y Ω, 5 ¡∆ x G a px, yq apxq G a px, yq 4π δ y in Ω , G a p¤, yq 0 on fΩ .

(

The regular part H a of G a is dened by H a px, yq : 1 |x ¡ y| ¡ G a px, yq .

(1.7)

It is well-known that for each y Ω the function H a p¤, yq, which is originally dened in Ωztyu, extends to a continuous function in Ω and we abbreviate φ a pyq : H a py, yq . It was proved by Brézis [6] that inf yΩ φ a pyq 0 implies Spaq S. The reverse implication, which was stated in [START_REF] Brezis | Elliptic equations with limiting Sobolev exponentsthe impact of topology[END_REF] as an open problem, was proved by Druet [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF]. Hence, as a consequence of criticality we have inf yΩ φ a pyq 0 ;

(1.8) see also [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF] and [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF]Proposition 5.1] for alternative proofs. Note that (1.8) implies, in particular, that each point x with φ a pxq 0 is a critical point of φ a .

Let us summarize the setting in this paper. loc pΩq for some σ ¡ 0 (c) a is critical in Ω (d) Any critical point of φ a is nondegenerate, that is, for any x 0 Ω with ∇φ a pxq 0, the Hessian D 2 φ a px 0 q does not have a zero eigenvalue Let us briey comment on these items. Assumptions (a) and (b) are modest regularity assumptions, which can probably be further relaxed with more eort. Concerning assumption (d) we rst note that φ a C 2 pΩq by Lemma 4.1. We believe that assumption (d) is `generically' true.

(For results in this spirit, but in the noncritical case a 0, see [START_REF] Micheletti | Non degeneracy of critical points of the Robin function with respect to deformations of the domain[END_REF].) The corresponding assumption for a 0 appears frequently in the literature, for instance, in [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF][START_REF] Del Pino | The BrezisNirenberg problem near criticality in dimension 3[END_REF]. Assumption (d) holds, in particular, if Ω a ball and a is a constant, as can be veried by explicit computation.

To leading order, the blow-up behavior of solutions of (1.3) will be given by the projection of a solution (1.1) of the unperturbed whole space equation to H 1 0 pΩq. For parameters x R 3 , λ ¡ 0 we introduce P U x,λ H 1 0 pΩq as the unique function satisfying ∆P U x,λ ∆U x,λ in Ω, P U x,λ 0 on fΩ .

(1.9)

Moreover, let T x,λ : span 2 P U x,λ , f λ P U x,λ , f x 1 P U x,λ f x 2 P U x,λ f x 3 P U x,λ @ and let T u

x,λ be the orthogonal complement of T x,λ in H 1 0 pΩq with respect to the inner product ³ Ω ∇u ¤∇v. By Π x,λ and Π u

x,λ we denote the orthogonal projections in H 1 0 pΩq onto T x,λ and T u

x,λ , respectively.

Here are our main results. We begin with those pertaining to equation (1.2) and we rst provide an asymptotic expansion of u ε with a remainder in H 1 0 pΩq. Theorem 1.2 (Asymptotic expansion of u ε ). Let pu ε q be a family of solutions to (1.2) satisfying (1.5). Then there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R and pr ε q T u xε,λε such that

u ε α ε ¡ P U xε,λε ¡ λ ¡1{2 ε Π u
xε,λε pH a px ε , ¤q ¡ H 0 px ε , ¤qq r ε © (1.10) and a point x 0 Ω with ∇φ a px 0 q 0 such that, along a subsequence,

|x ε ¡ x 0 | op1q , (1.11) 
lim εÑ0 ε λ ε 32 π φ a px 0 q , (1.12)

α 4¡ε ε 1 ε 2 log λ ε 6 8 7 Opλ ¡1 ε q if φ a px 0 q $ 0 , 64 3π φ 0 px 0 q λ ¡1 ε opλ ¡1 ε q if φ a px 0 q 0 , (1.13) 
}∇r ε } 2 6 8

7

Opλ ¡1

ε q if φ a px 0 q $ 0 , Opλ ¡3{2 ε q if φ a px 0 q 0 .

(1. [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] Moreover, if φ a px 0 q 0, then lim εÑ0 ε λ 2 ε ¡32 apx 0 q .

(1.15)

Our second main result concerns the pointwise blow-up behavior, both at the blow-up point and away from it, and, in the special case of constant a, veries the conjecture from [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF] under the natural nondegeneracy assumption (d).

Theorem 1.3 (Brézis-Peletier conjecture). Let pu ε q be a family of solutions to (1.2) satisfying (1.5).

(a) The asymptotics close to the concentration point x 0 are given by

lim εÑ0 ε }u ε } 2 V lim εÑ0 ε |u ε px ε q| 2 32
π φ a px 0 q. If φ a px 0 q 0, then

lim εÑ0 ε }u ε } 4 V lim εÑ0 ε |u ε px ε q| 4 ¡32 apx 0 q . (1.16) (b)
The asymptotics away from the concentration point x 0 are given by u ε pxq λ ¡1{2 ε G a px, x 0 q opλ ¡1{2 ε q for every xed x Ωztx 0 u. The convergence is uniform for x away from x 0 .

Strictly speaking, the BrézisPeletier conjecture in [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF] is stated without the criticality assumption (c) on a, but rather under the assumption φ a ¥ 0 on Ω. (Note that [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF] uses the opposite sign convention for the regular part of the Green's function. Also, their Green's function is normalized to be 1 4π times ours.) The remaining case, however, is much simpler and can be proved with existing methods. Indeed, by Druet's theorem [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF], the inequality φ a ¥ 0 on Ω is equivalent to Spaq S, and the assumption that a is critical is equivalent to min φ a 0. Thus, the case of the BrézisPeletier conjecture that is not covered by our Theorem 1.3 is that where min φ a ¡ 0. This case can be treated in the same way as the case a 0 in [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF][START_REF] Rey | Proof of two conjectures of H. Brezis and L[END_REF] (or as we treat the case φ a px 0 q ¡ 0). Note that in this case the nondegeneracy assumption (d) is not needed. Whether this assumption can be removed in the case where φ a px 0 q 0 is an open problem.

We note that Theorems 1.2 and 1.3 and, in particular, the asymptotics (1.15) and (1.16), hold independently of whether apx 0 q 0 or not. We are grateful to H. Brézis (personal communication) for raising the question of whether apx 0 q 0 can happen and what the asymptotics of λ ε resp. }u ε } V would be in this case, or whether one can show that φ a px 0 q 0 implies apx 0 q 0.

We also point out that the conjecture in [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF] is formulated with assumption (1.4) rather that (1.5). However, the latter assumption is typically used in the posterior literature dealing with problem (1.2), see e.g. [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF][START_REF] Grossi | On an eigenvalue problem related to the critical exponent[END_REF], and we follow this convention.

We now turn our attention to the results for the second family of equations, namely (1.3). Whenever we deal with that problem, we will slightly relax assumption (d) to (d') and impose the following additional assumptions (e) and (f), where we set N a : 2

x Ω : φ a pxq 0 @ . Assumption 1.4. (d') Any point in N a is a nondegenerate critical point of φ a , that is, for any x 0 N a , the Hessian D 2 φ a px 0 q does not have a zero eigenvalue

(e) a 0 in N a (f) V C 0,1 pΩq
Again, assumption (f) is a modest regularity assumption, which can probably be further relaxed with more eort. Assumption (e) is not severe, as we know from [17, Corollary 2.2] that any critical a satises a ¤ 0 on N a . In particular, it is fullled if a is a negative constant.

Let

Q V pxq : » Ω V pyq G a px, yq 2 , x Ω .
(1.17)

Again, we rst provide an asymptotic expansion of u ε with a remainder in H 1 0 pΩq. Theorem 1.5 (Asymptotic expansion of u ε ). Let pu ε q be a family of solutions to (1.3) satisfying (1.4). Then there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R and pr ε q T u xε,λε such that

u ε α ε ¡ P U xε,λε ¡ λ ¡1{2 ε Π u xε,λε pH a px ε , ¤q ¡ H 0 px ε , ¤qq r ε © (1.18) and a point x 0 N a with Q V px 0 q ¤ 0 such that, along a subsequence, |x ε ¡ x 0 | opε 1{2 q , (1.19) φ a px ε q opεq , (1.20) 
lim εÑ0 ε λ ε 4π 2 |apx 0 q| |Q V px 0 q| , (1.21) 
α ε 1 4 3π 3 φ 0 px 0 q |Q V px 0 q| |apx 0 q| ε opεq , (1.22) 
}∇r ε } 2 Opε 3{2 q .

(1.23)

If Q V px 0 q 0, the right side of (1.21) is to be interpreted as V.

The following result concerns the pointwise blow-up behavior.

Theorem 1.6. Let pu ε q be a family of solutions to (1.3) satisfying (1.4).

(a) The asymptotics close to the concentration point x 0 are given by

lim εÑ0 ε }u ε } 2 V lim εÑ0 ε |u ε px ε q| 2 4π 2 |apx 0 q| |Q V px 0 q| . If Q V px 0 q 0,
the right side of (1.21) is to be interpreted as V.

(b) The asymptotics away from the concentration point x 0 are given by

u ε pxq λ ¡1{2 ε G a px, x 0 q opλ ¡1{2
ε q for every xed x Ωztx 0 u. The convergence is uniform for x away from x 0 . Theorems 1.2 and 1.5 state that to leading order the solution is given by a projected bubble P U xε,λε . One of the main points of these theorems, which enters crucially in the proof of Theorems 1.3 and 1.6, is the identication of the localization length λ ¡1 ε of the projected bubble as an explicit constant times ε (for (1.2) if φ a px 0 q $ 0 and for (1.3) if Q V px 0 q 0) or ε 1{2 (for (1.2) if φ a px 0 q 0 and apx 0 q $ 0).

The fact that the solutions are given to leading order by a projected bubble is a rather general phenomenon, which is shared, for instance, also by the higher dimensional generalizations of (1.2) and (1.3). In contrast to the higher dimensional case, however, in order to compute the asymptotics of the localization length λ ¡1 ε , we need to extract the leading order correction to the bubble. Remarkably, this correction is for both problems (1.2) and (1.3) given by λ ¡1{2 ε Π u xε,λε pH a px ε , ¤q ¡ H 0 px ε , ¤qq. Moreover, for both problems the concentration point x 0 is shown to satisfy ∇φ a px 0 q 0. Here, however, we see an interesting dierence between the two problems. Namely, for (1.3) we also know that φ a px 0 q 0, whereas we know from [START_REF] Del Pino | The BrezisNirenberg problem near criticality in dimension 3[END_REF]Theorem 2(b)] that there are solutions of (1.2) concentrating at any critical point of φ a , not necessarily in N a . (These solutions also satisfy (1.4).)

An asymptotic expansion very similar to that in Theorem 1.5 is proved in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF] for energyminimizing solutions of (1.3); see also [START_REF] Frank | Energy asymptotics in the BrezisNirenberg problem[END_REF] for the simpler higher-dimensional case. There, we did not assume the nondegeneracy of D 2 φ a px 0 q, but we did assume that Q V 0 in N a . Moreover, in the energy minimizing setting we showed that x 0 satises

Q V px 0 q 2 {|apx 0 q| sup xNa,Q V pxq 0 Q V pxq 2 {|apxq| ,
but this cannot be expected in the more general setting of the present paper.

Before describing the technical challenges that we overcome in our proofs, let us put our work into perspective. In the past three decades there has been an enormous literature on blow-up phenomena of solutions to semilinear equations with critical exponent, which is impossible to summarize. We mention here only a few recent works from which, we hope, a more complete bibliography can be reconstructed. In some sense, the situation in the present paper is the simplest blow-up situation, as it concerns single bubble blow-up of positive solutions in the interior. Much more rened blow-up scenarios have been studied, including, for instance, multibubbling, sign-changing solutions or concentration on the boundary under Neumann boundary conditions. For an introduction and references we refer to the books [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF][START_REF] Hebey | Compactness and stability for nonlinear elliptic equations[END_REF]. In this paper we are interested in the description of the behavior of a given family of solutions. For the converse problem of constructing blow-up solutions in our setting, see [START_REF] Del Pino | The BrezisNirenberg problem near criticality in dimension 3[END_REF] and also [START_REF] Musso | Multispike solutions for the Brezis-Nirenberg problem in dimension three[END_REF], and for a survey of related results, see [START_REF] Pistoia | The LjapunovSchmidt reduction for some critical problems[END_REF] and the references therein. Obstructions to the existence of solutions in three dimensions were studied in [START_REF] Druet | Stability of the Pohoºaev obstruction in dimension 3[END_REF]. The spectrum near zero of the linearization of solutions was studied in [START_REF] Grossi | On an eigenvalue problem related to the critical exponent[END_REF][START_REF] Choi | Qualitative properties of multi-bubble solutions for nonlinear elliptic equations involving critical exponents[END_REF]. There are also connections to the question of compactness of solutions, see [START_REF] Brendle | Blow-up phenomena for the Yamabe equation[END_REF][START_REF] Khuri | A compactness theorem for the Yamabe problem[END_REF] and references therein.

What makes the critical case in three dimensions signicantly harder than the higher-dimensional analogues solved by Han [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF] and Rey [START_REF] Rey | Proof of two conjectures of H. Brezis and L[END_REF][START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF] is a certain cancellation, which is related to the fact that inf φ a 0. Thus, the term that in higher dimensions completely determines the blow-up vanishes in our case. Our way around this impasse is to iteratively improve our knowledge about the functions u ε . The mechanism behind this iteration is a certain coercivity inequality, due to Esposito [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF], which we state in Lemma 2.3, and a crucial feature of our proof is to apply this inequality repeatedly, at dierent orders of precision. To arrive at the level of precision stated in Theorems 1.2 and 1.5 two iterations are necessary (plus a zeroth one, hidden in the proof of Proposition 2.2).

The rst iteration, contained in Sections 2 and 5, is relatively standard and follows Rey's ideas in [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF] with some adaptions due to Esposito [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF] to the critical case in three dimensions. The main outcome of this rst iteration is the fact that concentration occurs in the interior and an order-sharp remainder bound in H 1 0 on the remainder α ¡1

ε u ε ¡ P U xε,λε .
The second iteration, contained in Sections 3 and 6, is more specic to the problem at hand. Its main outcome is the extraction of the subleading correction λ ¡1{2 ε Π u xε,λε pH a px ε , ¤q ¡ H 0 px ε , ¤qq. Using the nondegeneracy of D 2 φ a px 0 q we will be able to show in the proof of Theorems 1.2 and 1.5 that λ ε is proportional to ε ¡1 (for (1.2) if φ a px 0 q $ 0 and for (1.3) if Q V px 0 q 0) or ε ¡1{2 (for (1.2) if φ a px 0 q 0 and apx 0 q $ 0).

The arguments described so far are, for the most part, carried out in H 1 0 norm. Once one has completed the two iterations, we apply in Subsections 4.3 and 7.2 a Moser iteration argument in order to show that the remainder α ¡1 ε u ε ¡ P U xε,λε is negligible also in L V norm. This will then allow us to deduce Theorems 1.3 and 1.6.

As we mentioned before, Theorem 1.5 is the generalization of the corresponding theorem in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF] for energy-minimizing solutions. In that previous paper, we also used a similar iteration technique. Within each iteration step, however, minimality played an important role in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF] and we used the iterative knowledge to further expand the energy functional evaluated at a minimizer. There is no analogue of this procedure in the current paper. Instead, as in most other works in this area, starting with [START_REF] Brézis | Asymptotics for elliptic equations involving critical growth[END_REF], Pohozaev identities now play an important role. These identities were not used in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF]. In fact, in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF] we did not use equation ( 1.3) at all and our results there are valid as well for a certain class of `almost minimizers'.

There are ve types of Pohozaev-type identities corresponding, in some sense, to the ve linearly independent functions in the kernel of the Hessian at an optimizer of the Sobolev inequality on R 3 (resulting from its invariance under multiplication by constants, by dilations and by translations). All ve identities will be used to control the ve parameters α ε , λ ε and x ε in (1.10) and (1.18), which precisely correspond to the ve asymptotic invariances. In fact, all ve of these identities are used in the rst iteration and then again in the second iteration. (To be more precise, in the rst iteration in the proof of Theorem 1.5 it is more economical to only use four identities, since the information from the fth identity is not particularly useful at this stage, due to the above mentioned cancellation φ a px 0 q 0.) Thinking of the ve Pohozaev-type identities as coming from the asymptotic invariances is useful, but an oversimplication. Indeed, there are several possible choices for the multipliers in each category, for instance, u, P U x,λ , ψ x,λ corresponding to multiplication by constants, y ¤ ∇u, f λ P U x,λ , f λ ψ x,λ corresponding to dilations and f x j u, ∇ x j P U x,λ , ∇ x j P U x,λ corresponding to translations. (Here ψ x,λ is a modied bubble dened below in (3.1).) The choice of the multiplier is subtle and depends on the available knowledge at the moment of applying the identity and the desired precision of the outcome. In any case, the upshot is that these identities can be brought together in such a way that they give the nal result of Theorems 1.2 and 1.5 concerning the expansion in H 1 0 pΩq. As mentioned before, the desired pointwise bounds in Theorems 1.3 and 1.6 then follow in a relatively straightforward way using a Moser iteration.

The structure of this paper is as follows. The rst part of the paper, consisting of Sections 2, 3 and 4, is devoted to problem (1.3), while the second part, consisting of Sections 5, 6 and 7, is devoted to (1.2). The two parts are presented in a parallel manner, but the emphasis in the second part is on the necessary changes compared to the rst part. The preliminary Sections 2 and 5 contain an initial expansion, the subsequent Sections 3 and 6 contain its renement and, nally, in Sections 4 and 7 the main theorems presented in this introduction are proved. Some technical results are deferred to two appendices.

Additive case: A first expansion

In this and the following section we will prepare for the proof of Theorems 1.5 and 1.6.

The main result from this section is the following preliminary asymptotic expansion of the family of solutions pu ε q. Proposition 2.1. Let pu ε q be a family of solutions to (1.3) satisfying (1.4). Then, up to extraction of a subsequence, there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R and pw ε q T u xε,λε such that

u ε α ε pPU xε,λε w ε q, (2.1)
and a point

x 0 Ω such that |x ε ¡ x 0 | op1q, α ε 1 op1q, λ ε Ñ V, }∇w ε } 2 Opλ ¡1{2 q. (2.2)
This proposition follows to a large extent by an adaptation of existing results in the literature.

We include the proof since we have not found the precise statement and since related arguments will appear in the following section in a more complicated setting.

An initial qualitative expansion follows from works of Struwe [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF] and Bahri-Coron [START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the eect of the topology of the domain[END_REF]. In order to obtain the statement of Proposition 2.1, we then need to show two things, namely, the bound on }∇w} and the fact that x 0 Ω. The proof of the bound on }∇w} that we give is rather close to that of Esposito [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF]. The setting in [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF] is slightly dierent (there, V is equal to a negative constant and, more importantly, the solutions are assumed to be energy minimizing), but this part of the proof extends to our setting. On the other hand, the proof in [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF] of the fact that

x 0 Ω relies on the energy minimizing property and does not work for us. Instead, we adapt some ideas from Rey in [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF]. The proof in [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF] is only carried out in dimensions ¥ 4 and without the background a, but, as we will see, it extends with some eort to our situation.

We subdivide the proof of Proposition 2.1 into a sequence of subsections. The main result of each subsection is stated as a proposition at the beginning and summarizes the content of the corresponding subsection.

2.1. A qualitative initial expansion. As a rst important step, we derive the following expansion, which is already of the form of that in Proposition 2.1, except that all remainder bounds are nonquantitative and the limit point x 0 may a priori be on the boundary fΩ. Proposition 2.2. Let pu ε q be a family of solutions to (1.3) satisfying (1.4).

Then, up to extraction of a subsequence, there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R and pw ε q T u xε,λε such that (2.1) holds and a point

x 0 Ω such that |x ε ¡ x 0 | op1q, α ε 1 op1q, d ε λ ε Ñ V, }∇w ε } 2 op1q, (2.3) 
where we denote d ε : dpx ε , fΩq.

Proof. We shall only prove that u ε á 0 in H 1 0 pΩq. Once this is shown, we can use standard arguments, due to Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF], Struwe [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF] and BahriCoron [START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the eect of the topology of the domain[END_REF], to complete the proof of the proposition; see, for instance, [31, Proof of Proposition 2].

Step 1. We begin by showing that pu ε q is bounded in H 1 0 pΩq and that }u ε } 6 Á 1. Integrating the equation for u ε against u ε , we obtain

» Ω ¡ |∇u ε | 2 pa ¡ εV qu 2 ε © 3 » Ω u 6 ε (2.4)
and therefore

3 ¢» Ω u 6 ε 2{3 ³ Ω |∇u ε | 2 ¡ ³ Ω u 6 ε © 1{3 ³ Ω pa εV qu 2 ε ¡ ³ Ω u 6 ε © 1{3 .
On the right side, the rst quotient converges by (1.4) and the second quotient is bounded by Hölder's inequality. Thus, pu ε q is bounded in L 6 pΩq. By (1.4) we obtain boundedness in H 1 0 pΩq. By coercivity of ¡∆ a in H 1 0 pΩq and Sobolev's inequality, for all suciently small ε ¡ 0, the left side in (2.4) is bounded from below by a constant times }u ε } 2 6 . This yields the lower bound on }u ε } 6 Á 1.

Step 2. According to Step 1, pu ε q has a weak limit point in H 1 0 pΩq and we denote by u 0 one of those. Our goal is to show that u 0 0. Throughout this step, we restrict ourselves to a subsequence of ε's along which u ε á u 0 in H 1 0 pΩq. By Rellich's lemma, after passing to a subsequence, we may also assume that u ε Ñ u 0 almost everywhere. Moreover, passing to a further subsequence, we may also assume that }∇u ε } has a limit. Then, by (1.4), }u ε } 6 has a limit as well and, by Step 1, none of these limits is zero.

We now argue as in the proof of [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF]Proposition 3.1] and note that, by weak convergence,

T lim εÑ0 » Ω |∇pu ε ¡ u 0 q| 2 exists and satises lim εÑ0 » Ω |∇u ε | 2 » Ω |∇u 0 | 2 T
and, by the BrézisLieb lemma [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF],

M lim εÑ0 » Ω pu ε ¡ u 0 q 6 exists and satises lim εÑ0 » Ω u 6 ε » Ω u 6 0 M .
Thus, (1.4) gives

S ¢» Ω u 6 0 M 1{3 » Ω |∇u 0 | 2 T .
We bound the left side from above with the help of the elementary inequality

¢» Ω u 6 0 M 1{3 ¤ ¢» Ω u 6 0 1{3 M 1{3
and, by the Sobolev inequality for u ε ¡ u 0 , we bound the right side from below using T ¥ SM 1{3 .

Thus,

S ¢» Ω u 6 0 1{3 ¥ » Ω |∇u 0 | 2 .
Thus, either u 0 0 or u 0 is an optimizer for the Sobolev inequality. Since u 0 has support in Ω R 3 , the latter is impossible and we conclude that u 0 0, as claimed.

Convention. Throughout the rest of the paper, we assume that the sequence pu ε q satises the assumptions and conclusions from Proposition 2.2. We will make no explicit mention of subsequences. Moreover, we typically drop the index ε from u ε , α ε , x ε , λ ε , d ε and w ε .

2.2. Coercivity. The following coercivity inequality from [16, Lemma 2.2] is a crucial tool for us in subsequently rening the expansion of u ε . It states, roughly speaking, that the subleading error terms coming from the expansion of u ε can be absorbed into the leading term, at least under some orthogonality condition.

Lemma 2.3. There are constants T ¦ V and ρ ¡ 0 such that for all x Ω, all λ ¡ 0 with dλ ¥ T ¦ and all v T u

x,λ ,

» Ω ¡ |∇v| 2 av 2 ¡ 15 U 4 x,λ v 2 © ¥ ρ » Ω |∇v| 2 .
(2.5)

The proof proceeds by compactness, using the inequality [31, (D.1)]

» Ω ¡ |∇v| 2 ¡ 15 U 4 x,λ v 2 © ¥ 4 7 » Ω |∇v| 2 for all v T u x,λ .
For details of the proof, we refer to [START_REF] Esposito | On some conjectures proposed by Haim Brezis[END_REF].

In the following subsection, we use Lemma 2.3 to deduce a rened bound on }∇w} 2 . We will use it again in Section 3.2 below to obtain improved bounds on the rened error term }∇r} 2 , with r T u

x,λ dened in (3.4).

2.3. The bound on }∇w} 2 . The goal of this subsection is to prove Proposition 2.4. As ε Ñ 0, }∇w} 2 Opλ ¡1{2 q Oppλdq ¡1 q.

(2.6)

Using this bound, we will prove in Subsection 2.4 that d ¡1 Op1q and therefore the bound in Proposition 2.4 becomes }∇w} 2 Opλ ¡1{2 q, as claimed in Proposition 2.1.

Proof. The starting point is the equation satised by w. Since ¡∆PU x,λ ¡∆U x,λ 3U 5

x,λ , from (2.1) and (1.3) we obtain p¡∆ aqw ¡3U 5

x,λ 3α 4 pPU x,λ wq 5 ¡ pa εV qPU x,λ ¡ εV w.

(2.7) Integrating this equation against w and using

³ Ω U 5 x,λ w p1{3q ³ Ω ∇P U x,λ ¤ ∇w 0, we get » Ω p|∇w| 2 aw 2 q 3α 4 » Ω pPU x,λ wq 5 w ¡ » Ω pa εV qPU x,λ w ¡ » Ω εV w 2 .
(2.8)

We estimate the three terms on the right hand side separately.

The second and third ones are easy: we have by Lemma A.

1 § § § § » Ω pa εV qPU x,λ w § § § § À }w} 6 }U x,λ } 6{5 À λ ¡1{2 }∇w} 2 . Moreover, § § § § » Ω εV w 2 § § § § À ε}w} 2 6 op}∇w} 2 2 q .
The rst term on the right side of (2.8) needs a bit more care. We write P U x,λ U x,λ ¡ ϕ x,λ as in Lemma A.2 and expand

» Ω pPU x,λ wq 5 w » Ω U 5 x,λ w 5 » Ω U 4 x,λ w 2 O ¢» Ω ¡ U 4 x,λ ϕ x,λ |w| U 3 x,λ p|w| 3 |w|ϕ 2 x,λ q ϕ 5 x,λ |w| w 6 © 5 » Ω U 4 x,λ w 2 O ¢» Ω U 4 x,λ ϕ x,λ |w| }∇w} 2 }ϕ x,λ } 2 6 }∇w} 3 2 .
where we again used

³ Ω U 5
x,λ w 0. By Lemmas A.1 and A.2, we have }ϕ x,λ } 2 6 À pdλq ¡1 and

» Ω U 4 x,λ ϕ x,λ |w| À }w} 6 }ϕ x,λ } V }U x,λ } 4 24{5 À }∇w} 2 pdλq ¡1 .
Putting all the estimates together, we deduce from (2.8) that

» Ω p|∇w| 2 aw 2 ¡ 15α 4 U 4 w 2 q Oppdλq ¡1 }∇w} 2 λ ¡1{2 }∇w} 2 q op}∇w} 2 2 q .
Due to the coercivity inequality from Lemma 2.3, the left side is bounded from below by a positive constant times }∇w} 2 2 . Thus, (2.6) follows. (2.9)

Inserting the decomposition u αpP U wq, we get

» fΩ n ¢ fPU x,λ fn 2 ¡ » fΩ n £ 2 fPU x,λ fn fw fn ¢ fw fn 2 ¡ » Ω p∇pa εV qqpPU x,λ wq 2 . (2.10) Since a, V C 1 pΩq, the volume integral is bounded by § § § § » Ω p∇pa εV qqpPU x,λ wq 2 § § § § À }PU x,λ } 2 2 }w} 2 2 À λ ¡1 pλdq ¡2 , (2.11) 
where we used (2.6) and Lemmas A.1 and A.2.

The function fPU x,λ {fn on the boundary is discussed in Lemma A.3. We now control the function fw{fn on the boundary.

Lemma 2.6.

³ fΩ ¡ fw fn © 2 Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q.
Proof. The following proof is analogous to [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF]Appendix C]. It relies on the inequality fz fn

2 L 2 pfΩq À }∆z} 2 L 3{2 pΩq for all z H 2 pΩq H 1 0 pΩq . (2.12)
This inequality is well-known and contained in [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF]Appendix C]. A proof can be found, for instance, in [START_REF] Hang | An integral equation in conformal geometry[END_REF].

We write equation (2.7) for w as ¡∆w F with F : 3α 4 pPU x,λ wq 5 ¡ 3U 5

x,λ ¡ pa εV qpPU x,λ wq .

(2.13)

We x a smooth 0 ¤ χ ¤ 1 with χ 0 on t|y| ¤ 1{2u and χ 1 on t|y| ¥ 1u and dene the cut-o function

ζpyq : χ ¢ y ¡ x d . (2.14)
Then ζw H 2 pΩq H 1 0 pΩq and ¡∆pζwq ζF ¡ 2∇ζ ¤ ∇w ¡ p∆ζqw .

The function F satises the simple pointwise bound |F| À U 5

x,λ

|w| 5 U x,λ |w| , (2.15) 
which, when combined with inequality (2.12), yields fw fn

2 L 2 pfΩq fpζwq fn 2 L 2 pfΩq À }ζF ¡ 2∇ζ ¤ ∇w ¡ p∆ζqw} 2 3{2 À }ζpU 5 x,λ |w| 5 U x,λ |w|q} 2 3{2 }|∇ζ||∇w|} 2 3{2 }p∆ζqw} 2 3{2 .
It remains to bound the norms on the right side. The term most dicult to estimate is }ζw 5 } 3{2 , because 5 ¤ 3{2 15{2 ¡ 6, and we shall come back to it later. The other terms can all be estimated using bounds on }U} L p pΩzB d{2 pxqq from Lemma A.1, as well as the bound }w} 6 À λ ¡1{2 λ ¡1 d ¡1 from Proposition 2.4. Indeed, we have

}ζU 5 x,λ } 2 3{2 À }U x,λ } 10 L 15{2 pΩzB d{2 pxqq À λ ¡5 d ¡6 opλ ¡1 d ¡2 q, }ζU x,λ } 2 3{2 À }U x,λ } 2 L 3{2 pΩzB d q À λ ¡1 Opλ ¡1 d ¡1 q, }ζw} 2 3{2 À }w} 2 6 À λ ¡1 λ ¡2 d ¡2 Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q, }|∇ζ||∇w|} 2 3{2 À }∇w} 2 2 }∇ζ} 2 6 À pλ ¡1 λ ¡2 d ¡2 qd ¡1 Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q and }p∆ζqw} 2 3{2 À }w} 2 6 }∆ζ} 2 2 À pλ ¡1 λ ¡2 d ¡2 qd ¡1 Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q.
In order to estimate the dicult term }ζw 5 } 3{2 , we multiply the equation ¡∆w F by ζ 1{2 |w| 1{2 w and integrate over Ω to obtain

» Ω ∇pζ 1{2 |w| 1{2 wq ¤ ∇w ¤ » Ω |F| ζ 1{2 |w| 3{2 . (2.16)
We now note that there are universal constants c ¡ 0 and C V such that pointwise a.e.

∇pζ 1{2 |w| 1{2 wq ¤ ∇w ¥ c|∇pζ 1{4 |w| 1{4 wq| 2 ¡ C|w| 5{2 |∇pζ 1{4 q| 2 .
(2.17) Indeed, by repeated use of the product rule and chain rule for Sobolev functions, one nds

∇pζ 1{2 |w| 1{2 wq ¤ ∇w 3 2 ¢ 4 5 2 |∇pζ 1{4 |w| 1{4 wq| 2 £ 3 2 ¢ 4 5 2 ¡ 4 5 ¤ 2 |w| 5{2 |∇pζ 1{4 q| 2 ¡ £ 3 2 ¢ 4 5 2 ¤ 2 ¡ 4 5 ¤ 2 |w| 1{4 w∇pζ 1{4 q ¤ ∇pζ 1{4 |w| 1{4 wq .
The claimed inequality (2.17) follows by applying Schwarz's inequality

v 1 ¤v 2 ¥ ¡ε|v 1 | 2 ¡ 1 4ε |v 2 | 2
to the cross term on the right side with ε ¡ 0 small enough.

As a consequence of (2.17), we can bound the left side in (2.16) from below by

» Ω ∇pζ 1{2 |w| 1{2 wq ¤ ∇w ¥ c » Ω |∇pζ 1{4 |w| 1{4 wq| 2 ¡ C » Ω |w| 5{2 |∇pζ 1{4 q| 2 .
Thus, by the Sobolev inequality for the function ζ 1{4 |w| 1{4 w and (2.16), we get

}ζw 5 } 2 3{2 ¢» Ω |ζ 1{4 |w| 1{4 w| 6 4{3 À ¢» Ω |∇pζ 1{4 |w| 1{4 wq| 2 4 À ¢» Ω |w| 5{2 |∇pζ 1{4 q| 2 4 ¢» Ω |F| ζ 1{2 |w| 3{2 4 . (2.18)
For the rst term on the right side, we have

¢» Ω |w| 5{2 |∇pζ 1{4 q| 2 4 ¤ }w} 10 6 ¢» Ω |∇pζ 1{4 q| 24{7 7{3 À pλ ¡5 λ ¡10 d ¡10 qd ¡1 Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q.
To control the second term on the right side of (2.18), we use again the pointwise estimate (2.15).

The contribution of the |w| 5 term to the second term on the right side of (2.18) is ¢»

Ω |w| 5 3 2 ζ 1{2 4 ¢» Ω pζ 1{2 w 5{2 qw 4 4 ¤ }ζw 5 } 2 3{2 }w} 16 6 op}ζw 5 } 2 3{2 q,
which can be absorbed into the left side of (2.18).

For the remaining terms, we have 10 6 λ ¡5 pdλq ¡10 , all of which is Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q. This concludes the proof of the bound }ζw 5 } 2 3{2 Opλ ¡1 d ¡1 q opλ ¡1 d ¡2 q, and thus of Lemma 2.6.

¢» Ω |w| 3{2 U 5 x,λ ζ 1{2 4 À }w} 6 6 }U x,λ } 20 L 20{3 pΩzB d{2 pxqq pλ ¡3 pdλq ¡6 qpλ ¡10 d ¡11 q, ¢» Ω |w| 3{2 U x,λ ζ 1{2 4 À }w} 6 6 }U x,λ } 4 L 4{3 pΩq pλ ¡3 pdλq ¡6 qλ ¡2 , ¢» Ω |w| 5{2 ζ 1{2 4 À }w}
It is now easy to complete the proof of the main result of this section.

Proof of Proposition 2.5. The identity (2.10), together with the bound (2.11) and Lemma A.3 (a), yields

Cλ ¡1 ∇φ 0 pxq Opλ ¡1 q opλ ¡1 d ¡2 q O £ fPU x,λ fn L 2 pfΩq fw fn L 2 pfΩq fw fn 2 L 2 pfΩq
for some C ¡ 0. By Lemmas A.3 (c) and 2.6 the last term on the right side is bounded by λ ¡1 d ¡3{2 opλ ¡1 d ¡2 q, so we get ∇φ 0 pxq Opd ¡3{2 q opd ¡2 q . On the other hand, according to [31, Equation (2.9)], we have |∇φ 0 pxq| Á d ¡2 . Hence d ¡2 Opd ¡3{2 q opd ¡2 q, which yields d ¡1 Op1q, as claimed.

2.5. Proof of Proposition 2.1. The existence of the expansion follows from Proposition 2.2. Proposition 2.5 implies that d ¡1 Op1q, which implies that x 0 Ω. Moreover, inserting the bound d ¡1 Op1q into Proposition 2.4, we obtain }∇w} 2 Opλ ¡1{2 q, as claimed in Proposition 2.1. This completes the proof of the proposition.

Additive case: Refining the expansion

Our goal in this section is to improve the decomposition given in Proposition 2.1. As in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF], our goal is to discover that a better approximation to u ε is given by the function

ψ x,λ : P U x,λ ¡ λ ¡1{2 H a px, ¤q ¡ H 0 px, ¤q ¨. (3.1)
Let us set

q ε : w ε λ ¡1{2 ε H a px ε , ¤q ¡ H 0 px ε , ¤q ¨, (3.2) so that u ε α ε ψ xε,λε q ε ¨.
As in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF], we further decompose

q ε s ε r ε (3.3)
with s ε T xε,λε and r ε T u xε,λε given by r ε : Π u xε,λε q and s ε : Π xε,λε q .

(3.4)

We note that the notation r ε is consistent with the one used in Theorem 1.5 since, writing

w ε q ε λ ¡1{2 ε H a px ε , ¤q ¡ H 0 px ε , ¤q ¨and using w ε T u
xε,λε , we have

s ε λ ¡1{2 ε Π xε,λε H a px ε , ¤q ¡ H 0 px ε , ¤q ¨.
(3.5)

The following proposition summarizes the results of this section.

Proposition 3.1. Let pu ε q be a family of solutions to (1.3) satisfying (1.4).

Then, up to extraction of a subsequence, there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R, ps ε q T xε,λε and pr ε q T u xε,λε such that

u ε α ε pψ xε,λε s ε r ε q (3.6)
and a point x 0 Ω such that, in addition to Proposition 2.1,

}∇r ε } 2 Opελ ¡1{2 ε q , (3.7) φ a px ε q apx ε qπλ ¡1 ε ¡ ε 4π Q V px ε q opλ ¡1 ε q opεq , ∇φ a px ε q Opε µ q for any µ 1 , λ ¡1 ε Opεq , α 4 ε 1 64 3π φ 0 px ε q λ ¡1 ε Opελ ¡1 ε q .
The expansion of φ a pxq will be of great importance also in the nal step of the proof of Theorem 1.5. Indeed, by using the bound on |∇φ a pxq| we will show that in fact φ a pxq opλ ¡1 q opεq. This allows us to determine lim εÑ0 ελ ε .

We prove Proposition 3.1 in the following subsections. Again the strategy is to expand suitable energy functionals.

3.1. Bounds on s. In this section we record bounds on the function s introduced in (3.4), and on the coecients β, γ and δ j dened by the decomposition

s Π x,λ q : λ ¡1 βP U x,λ γf λ P U x,λ λ ¡3 3 i1 δ i f x i P U x,λ . (3.8) 
Since P U x,λ , f λ P U x,λ and f x i P U x,λ , i 1, 2, 3, are linearly independent for suciently small ε, the numbers β, γ and δ i , i 1, 2, 3, (depending on ε, of course) are uniquely determined. The choice of the dierent powers of λ multiplying these coecients is motivated by the following proposition.

Proposition 3.2. The coecients appearing in (3.8) satisfy β, γ, δ i Op1q.

(3.9) Moreover, we have the bounds }s} V Opλ ¡1{2 q, }∇s} 2 Opλ ¡1 q and }s} 2 Opλ ¡3{2 q, (3.10) as well as }∇s} L 2 pΩzB d{2 pxqq Opλ ¡3{2 q. (3.11) Proof. Because of (3.5), s ε depends on u ε only through the parameters λ and x. Since these parameters satisfy the same properties λ Ñ V and d ¡1 Op1q as in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF], the results on s ε there are applicable. In particular, the bound (3.9) follows from [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF]Lemma 6.1].

The bounds stated in (3.10) follow readily from (3.8) and (3.9), together with the corresponding bounds on the basis functions P U x,λ , f λ P U x,λ and f

x i P U x,λ , i 1, 2, 3, which come from }U x,λ } V À λ 1{2 , }∇U x,λ } 2 À 1, }U x,λ } 2 À λ ¡1{2
, and similar bounds on f λ U x,λ and f x i U x,λ , compare Lemma A.1, as well as }H 0 px, ¤q} 2 }∇ x H 0 px, ¤q} 2 }∇ x ∇ y H 0 px, yq} 2 À 1.

It remains to prove (3.11). Again by (3.8) and (3.9), it suces to show that

λ ¡1 }∇PU x,λ } L 2 pΩzB d{2 pxqq }∇f λ P U x,λ } L 2 pΩzB d{2 pxqq λ ¡3 }∇f x i P U x,λ } L 2 pΩzB d{2 pxqq À λ ¡3{2 .
(3.12) (In fact, there is a better bound on ∇f x i P U x,λ , but we do not need this.) Since the three bounds in (3.12) are all proved similarly, we only prove the second one.

By integration by parts, we have

» ΩzB d{2 pxq |∇f λ P U x,λ | 2 15 » ΩzB d{2 pxq U 4 x,λ f λ U x,λ f λ P U x,λ » fB d{2 pxq fpf λ P U x,λ q fn f λ P U x,λ .
By the bounds from Lemmas A.1 and A.2, the volume integral is estimated by

» ΩzB d{2 pxq U 4 x,λ f λ U x,λ f λ P U x,λ ¤ » R 3 zB d{2 pxq U 4 x,λ pf λ U x,λ q 2 }f λ ϕ x,λ } V » R 3 zB d{2 pxq U 4 x,λ |f λ U x,λ | À λ ¡5 . Since ∇f λ U x,λ pyq λ 3{2 2 p¡5 3λ 2 |y ¡ x| 2 qpy ¡ xq p1 λ 2 |y ¡ x| 2 q 5{2 , we nd |∇f λ U x,λ | À λ ¡3{2 on
fB d{2 pxq. By the mean value formula for the harmonic function f λ ϕ x,λ and the bound from Lemma A.2, |∇f λ ϕ x,λ pyq| }f λ ϕ x,λ } V À λ ¡3{2 for all y fB d{2 pxq.

This implies that |∇pf λ P U x,λ q| À λ ¡3{2 on fB d{2 pxq. Thus, the boundary integral is estimated by » fB d{2 pxq fpf λ P U x,λ q fn f λ P U x,λ }∇pf λ P U x,λ q} L V pfB d{2 pxqq p}f λ U x,λ } L V pΩzB d{2 pxqq }f λ ϕ x,λ } V q À λ ¡3 , since }f λ U x,λ } L V pΩzB d{2 pxqq À λ ¡3{2 by Lemma A.1. Collecting these estimates, we nd that }∇f λ P U x,λ } L 2 pΩzB d{2 pxqq À λ ¡3{2 , which is the second bound in (3.12).

Later we will also need the leading order behavior of the zero mode coecients β and γ in (3.8).

Proposition 3.3. As ε Ñ 0,

β 16 3π pφ a pxq ¡ φ 0 pxqq Opλ ¡1 q, γ ¡ 8 5 β Opλ ¡1 q. (3.13)
Proof. According to (3.5), we have

» Ω ∇s ¤ ∇P U x,λ λ ¡1{2 » Ω ∇pH a px, ¤q ¡ H 0 px, ¤qq ¤ ∇P U x,λ , (3.14) 
»

Ω ∇s ¤ ∇f λ P U x,λ λ ¡1{2 » Ω ∇pH a px, ¤q ¡ H 0 px, ¤qq∇f λ P U x,λ . (3.15) 
By (3.8), the left side of (3.14) is

βλ ¡1 » Ω |∇PU x,λ | 2 γ » Ω ∇f λ P U x,λ ¤ ∇P U x,λ λ ¡3 3 i1 δ i » Ω ∇f x i P U x,λ ¤ ∇P U x,λ 3βλ ¡1 π 2 4 Opλ ¡2 q,
where we used the facts that, by [31, Appendix B],

» Ω |∇PU x,λ | 2 3 π 2 4 Opλ ¡1 q, » Ω ∇f λ P U x,λ ¤ ∇P U x,λ Opλ ¡2 q (3.16) » Ω ∇f x i P U x,λ ¤ ∇P U x,λ Opλ ¡1 q.
(3.17)

On the other hand, the right side of (3.14) is

λ ¡1{2 » Ω ∇pH a px, ¤q ¡ H 0 px, ¤qq ¤ ∇P U 3λ ¡1{2 » Ω pH a px, ¤q ¡ H 0 px, ¤qqU 5 
x,λ 4πpφ a pxq ¡ φ 0 pxqqλ ¡1 Opλ ¡2 q by Lemma B.3. Comparing both sides yields the expansion of β stated in (3.13).

Similarly, by (3.8), the left side of (3.15) is

β λ 2 » Ω ∇P U x,λ ¤ ∇f λ P U x,λ γ » Ω |∇f λ P U x,λ | 2 λ ¡3 3 i1 δ i » Ω ∇f x i P U x,λ ¤ ∇f λ P U x,λ 15π 2 γ 64 λ 2
Opλ ¡3 q , where, besides (3.16), we used ³ Ω ∇f x i P U x,λ ¤ ∇f λ P U x,λ Opλ ¡2 q by [31, Appendix B], and

» Ω |∇f λ P U x,λ | 2 » Ω |∇f λ U x,λ | 2 Opλ ¡3 q 15π 2 64 λ ¡2 Opλ ¡3 q .
(The numerical value comes from an explicit evaluation of the integral in terms of beta functions, which we omit.) On the other hand, the right side of (3.15) is

λ ¡1{2 » Ω ∇pH a px, ¤q ¡ H 0 px, ¤qq ¤ ∇f λ P U x,λ 15λ ¡1{2 » Ω pH a px, ¤q ¡ H 0 px, ¤qqU 4 x,λ f λ U x,λ ¡2πpφ a pxq ¡ φ 0 pxqqλ ¡2 Opλ ¡3 q by Lemma B.3.
Comparing both sides yields the expansion of γ stated in (3.13).

3.2. The bound on }∇r} 2 . The goal of this subsection is to prove Proposition 3.4. As ε Ñ 0, }∇r} 2 Opφ a pxqλ ¡1 q Opλ ¡3{2 q Opελ ¡1{2 q.

(3.18)

Using ∆pH a px, ¤q ¡ H 0 px, ¤qq ¡aG a px, ¤q and introducing the function g x,λ from (A.4), we see that the equation (2.7) for w implies p¡∆ aqr ¡3U 5

x,λ 3α 4 pψ x,λ s rq 5 apf x,λ g x,λ q ¡ as ¡ εV pψ x,λ s rq ∆s . (3.19) Integrating against r and using the orthogonality conditions

³ Ω p∆sqr ¡ ³ Ω ∇s ¤ ∇r 0 and 3 ³ Ω U 5 x,λ r ³ Ω ∇P U x,λ ¤ ∇r 0, we obtain » Ω ¡ |∇r| 2 ar 2 © 3α 4 » Ω pψ x,λ s rq 5 r ¡ » Ω aps ¡f x,λ ¡g x,λ qr¡ » Ω εV pψ x,λ s rqr. (3.20)
The terms appearing in (3.20) satisfy the following bounds.

Lemma 3.5. As ε Ñ 0, the following holds.

(a

) § § §3α 4 ³ Ω pψ x,λ s rq 5 r ¡ 15α 4 ³ Ω U 4 x,λ r 2 § § § À ¡ λ ¡3{2 λ ¡1 φ a pxq }r} 2 6 © }r} 6 . (b) § § § ³ Ω aps ¡ f x,λ ¡ g x,λ q εV pψ x,λ s rq ¨r § § § À ¡ λ ¡3{2 ελ ¡1{2 © }r} 6 .
Proof. (a) We write ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q ¡ f x,λ and bound pointwise pψ x,λ s rq 5 U 5

x,λ

5U 4 x,λ ps rq O ¢ U 4 x,λ ¡ λ ¡1{2 |H a px, ¤q| |f x,λ | © U 3 x,λ ¡ r 2 s 2 © O ¡ λ ¡5{2 |H a px, ¤q| 5 |f x,λ | 5 |r| 5 |s| 5 © . (3.21)
When integrated against r, the rst term vanishes by orthogonality. Let us bound the contribution coming from the second term, that is, from 5U 4 x,λ s. We write s λ ¡1 βU x,λ γf λ U x,λ s , so s consists of the zero mode contributions involving the δ i , plus contributions from the dierence between P U x,λ and U x,λ in the terms involving β and γ. By orthogonality, we have

» Ω U 4 
x,λ sr

» Ω U 4 
x,λ sr Op}U x,λ } 4 6 }s} 6 }r} 6 q . and, by Lemmas A.1 and A.2, as well as Proposition 3.2,

}s} 6 ¤ |β| |γ| ¨¡λ ¡1 }ϕ x,λ } 6 }f λ ϕ x,λ } 6 © λ ¡3 3 i1 |δ i |}f x i P U x,λ } 6 À λ ¡3{2 . This proves » Ω U 4 
x,λ sr Opλ ¡3{2 }r} 6 q .

(3.22)

It remains to bound the remainder terms in (3.21). We write H a px, yq φ a pxq Op|x ¡ y|q and bound

» Ω U 24{5 x,λ |H a px, ¤q| 6{5 À φ a pxq 6{5 » Ω U 24{5 x,λ » Ω U 24{5 x,λ |x ¡ y| 6{5 À λ ¡3{5 φ a pxq 6{5 λ ¡9{5 . Hence § § § § » Ω U 4 x,λ ¡ λ ¡1{2 |H a px, ¤q| |f x,λ | © |r| § § § § ¤ ¡ λ ¡1{2 }U 4 x,λ H a px, ¤q} 6{5 }U 4 x,λ } 6{5 }f x,λ } V © }r} 6 À ¡ λ ¡1 φ a pxq λ ¡2 © }r} 6 .
(3.23)

Finally, using Proposition 3.2,

» Ω U 3 x,λ ¡ r 2 s 2 © |r| » Ω ¡ λ ¡5{2 |H a px, ¤q| 5 |f x,λ | 5 |r| 5 |s| 5 © |r| À ¡ }r} 2 6 }s} 2 6 λ ¡5{2 }f x,λ } 5 V }r} 5 6 }s} 5 6 © }r} 6 À ¡ }r} 2 6 λ ¡2 © }r} 6 . (b) We have § § § § » Ω aps ¡ f x,λ ¡ g x,λ q εV pψ x,λ s rq ¨r § § § § À ¡ }s} 6{5 }f x,λ } 6{5 }g x,λ } 6{5 ε}ψ x,λ } 6{5 ε}r} 6{5 © }r} 6 . By Proposition 3.2, }s} 6{5 À }s} 2 À λ ¡3{2 . By Lemma A.2, }f x,λ } 6{5 À }f x,λ } V À λ ¡5{2 . By Lemma A.4, }g x,λ } 6{5 À λ ¡2 . By Lemmas A.1 and A.2, }ψ x,λ } 6{5 À λ ¡1{2 . Finally, }r} 6{5 À }r} 6 .
This proves the claimed bound.

Proof of Proposition 3.4. We deduce from identity (3.20) together with Lemma 3.5 that

» Ω ¡ |∇r| 2 ar 2 ¡ 15α 4 U 4 x,λ r 2 © À ¡ λ ¡1 φ a pxq λ ¡3{2 ελ ¡1{2 }∇r} 2 2 ε}∇r} 2 © }∇r} 2 .
Since α 4 Ñ 1 and r T u

x,λ , the coercivity inequality (2.5) implies that for all suciently small ε ¡ 0 the left side is bounded from below by c}∇r} 2 2 with a universal constant c ¡ 0. Thus,

}∇r} 2 À λ ¡1 φ a pxq λ ¡3{2 ελ ¡1{2 }∇r} 2 2 ε}∇r} 2 .
For all suciently small ε ¡ 0, the last two terms on the right side can be absorbed into the left side and we obtain the claimed inequality (3.18). Proposition 3.4 is a rst step to prove the bound (3.7) in Proposition 3.1. In Section 3.4 we will show that φ a pxq Opλ ¡1 εq and λ ¡1 Opεq. Combining these bounds with Proposition 3.4 we will obtain (3.7).

3.3. Expanding α 4 . In this subsection, we will prove Proposition 3.6. As ε Ñ 0,

α 4 1 ¡ 4βλ ¡1 Opφ a pxqλ ¡1 λ ¡2 ελ ¡1 q, (3.24)
where β is the zero-mode coecient from (3.8).

To prove (3.24), we expand the energy identity obtained by integrating the equation for u against u. Writing u αpψ x,λ qq, this yields

» Ω |∇pψ x,λ qq| 2 » Ω pa εV qpψ x,λ qq 2 3α 4 » Ω pψ x,λ qq 6 ,
which we write as

» Ω ¡ |∇ψ x,λ | 2 pa εV qψ 2 x,λ ¡ 3α 4 ψ 6 x,λ © 2 » Ω ¡ ∇q ¤ ∇ψ x,λ pa εV qqψ x,λ ¡ 9α 4 qψ 5 x,λ © R 0 (3.25) with R 0 : ¡ » Ω ¡ |∇q| 2 pa εV qq 2 © 3α 4 6 ķ2 ¢ 6 k » Ω ψ 6¡k x,λ q k .
The following lemma provides the expansions of the terms in (3.25).

Lemma 3.7. As ε Ñ 0, the following holds.

(a)

³

Ω ¡ |∇ψ x,λ | 2 pa εV qψ 2 x,λ ¡ 3α 4 ψ 6 x,λ © p1 ¡ α 4 q 3π 2 4
Opφ a pxqλ ¡1 λ ¡2 ελ ¡1 q.

(b)

³ Ω ¡ ∇q ¤ ∇ψ x,λ pa εV qqψ x,λ ¡ 9α 4 qψ 5 x,λ © p1 ¡ 3α 4 q 3π 2 4 βλ ¡1 Opλ ¡2 ε 2 λ ¡1 q. (c) R 0 Opλ ¡2 ε 2 λ ¡1 q.
Proof. (a) In [17, Theorem 2.1], we have shown the expansions

» Ω ¡ |∇ψ x,λ | 2 pa εV qψ 2 x,λ © 3 π 2 4 Opφ a pxqλ ¡1 λ ¡2 ελ ¡1 q , 3 » Ω ψ 6 x,λ 3 π 2 4
Opφ a pxqλ ¡1 λ ¡2 q , which immediately imply the bound in (a).

(b) Since ∆pH a px, ¤q ¡ H 0 px, ¤qq ¡aG a px, ¤q, we have ¡∆ψ x,λ 3U 5

x,λ ¡ λ ¡1{2 aG a px, ¤q. Since ψ x,λ λ ¡1{2 G a px, ¤q ¡ f x,λ ¡ g x,λ with g x,λ from (A.4), we can rewrite this as ¡ ∆ψ x,λ aψ x,λ 3U 5

x,λ ¡ apf x,λ g x,λ q .

(3.26)

Thus, » Ω ¡ ∇q ¤ ∇ψ x,λ pa εV qqψ x,λ ¡ 9α 4 qψ 5 x,λ © 3p1 ¡ 3α 4 q » Ω qU 5 x,λ ¡ » Ω q ¡ 9α 4 pψ 5 x,λ ¡ U 5
x,λ q apf x,λ g x,λ q εV ψ x,λ

©

.

By orthogonality and the computations in the proof of Proposition 3.3,

3 » Ω qU 5 x,λ » Ω ∇s ¤ ∇P U x,λ 3π 2 4 βλ ¡1 Opλ ¡2 q . Moreover, § § § § » Ω q ¡ 9α 4 pψ 5 x,λ ¡ U 5 x,λ q apf x,λ g x,λ q εV ψ x,λ © § § § § À }q} 6 ¡ }ψ 5 x,λ ¡ U 5 x,λ } 6{5 }f x,λ } 6{5 }g x,λ } 6{5 ε}ψ x,λ } 6{5 © .
By Propositions 3.2 and 3.4, we have

}q} 6 À }∇q} 2 À λ ¡1 ελ ¡1{2 , (3.27) 
by Lemma A.2, }f x,λ } V À λ ¡5{2 and, by Lemma A.4, }g x,λ } 6{5 À λ ¡2 . Moreover, writing ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q ¡ f x,λ and using Lemmas A.1 and A.2 and (B.1), we get }ψ x,λ } 6{5 À λ ¡1{2 . Also, bounding § § §ψ

5 x,λ ¡ U 5 x,λ § § § À ψ 4 x,λ ¡ λ ¡1{2 |H a px, ¤q| |f x,λ | © λ ¡5{2 |H a px, ¤q| 5 |f x,λ | 5 ,
we obtain from Lemmas A.1 and A.2 and from (B.1),

}ψ 5 x,λ ¡ U 5 x,λ } 6{5 À λ ¡1{2 }ψ x,λ } 4 24{5 λ ¡5{2 À λ ¡1 .
Collecting all the terms, obtain the claimed bound.

(c) Because of the second inequality in (3.27), the rst integral in the denition of R 0 is Opλ ¡2

ε 2 λ ¡1 q.
The second integral is bounded, in absolute value, by a constant times

» Ω ¡ ψ 4 x,λ q 2 q 6 © ¤ }ψ x,λ } 4 6 }q} 2 6 }q} 6 6 À λ ¡2 ε 2 λ ¡1 .
This completes the proof.

Proof of Proposition 3.6. The claim follows from (3.25) and Lemma 3.7.

3.4. Expanding φ a pxq. In this subsection we prove the following important expansion. Proposition 3.8.

As ε Ñ 0, φ a pxq π apxq λ ¡1 ¡ ε 4π Q V pxq opλ ¡1 q opεq (3.28) 
Before proving it, let us note the following consequence.

Corollary 3.9. We have φ a px 0 q 0, Q V px 0 q ¤ 0 and λ ¡1 Opεq,

as ε Ñ 0. Moreover, }∇r} 2 Opελ ¡1{2 q and α 4 1 64 3π φ 0 pxqλ ¡1 Opελ ¡1 q. Proof. The fact that φ a px 0 q 0 follows immediately from (3.28). Since φ a pxq ¥ 0 by criticality and since apx 0 q 0 by assumption, we deduce from (3.28) that Q V px 0 q ¤ 0 and that λ ¡1 ¤ |Q V px 0 q| op1q 4π 2 |apx 0 q| op1q ε Opεq. Reinserting this into (3.28) we nd φ a pxq Opεq. Inserting this into Proposition 3.4, we obtain the claimed bound on }∇r} 2 , and inserting it into (3.24) and (3.13), we obtain the claimed expansion of α 4 .

The proof of (3.28) is based on the Pohozaev identity obtained by integrating the equation for u against f λ ψ x,λ . We write the resulting equality in the form

» Ω ¡ ∇ψ x,λ ¤ ∇f λ ψ x,λ pa εV qψ x,λ f λ ψ x,λ ¡ 3α 4 ψ 5 x,λ f λ ψ x,λ © ¡ » Ω ¡ ∇q ¤ ∇f λ ψ x,λ aqf λ ψ x,λ ¡ 15α 4 qψ 4 x,λ f λ ψ x,λ © 30α 4 » Ω q 2 ψ 3 x,λ f λ ψ x,λ R (3.30) with R ¡ε » Ω V qf λ ψ x,λ 3α 4 5 ķ3 ¢ 5 k » Ω ψ 5¡k
x,λ q k f λ ψ x,λ .

The involved terms can be expanded as follows.

Lemma 3.10. As ε Ñ 0, the following holds.

(a)

»

Ω ¡ ∇ψ x,λ ¤ ∇f λ ψ x,λ pa εV qψ x,λ f λ ψ x,λ ¡ 3α 4 ψ 5 x,λ f λ ψ x,λ © ¡2πφ a pxqλ ¡2 ¡ 1 2 Q V pxqελ ¡2 p1 ¡ α 4 q4πφ a pxqλ ¡2 ¡ 2π 2 apxq 15π 2 φ a pxq 2 © λ ¡3 opλ ¡3 q opελ ¡2 q . (b) » Ω ¡ ∇q ¤ ∇f λ ψ x,λ aqf λ ψ x,λ ¡ 15α 4 qψ 4 x,λ f λ ψ x,λ © ¡p1 ¡ α 4 q2π φ a pxq ¡ φ 0 pxq ¨λ¡2 Opφ a pxqλ ¡3 q opελ ¡2 q opλ ¡3 q . (c) 30α 4 » Ω q 2 ψ 3 x,λ f λ ψ x,λ 15π 2 16
βγ λ ¡3 Opφ a pxqλ ¡3 q opελ ¡2 q opλ ¡3 q .

(d) R Opφ a pxqλ ¡3 q opελ ¡2 q opλ ¡3 q .

We emphasize that the proof of Lemma 3.10 is independent of the expansion of α 4 in (3.24). We only use the fact that α 1 op1q.

Proof of Lemma 3.10. (a) Because of (3.26), the quantity of interest can be written as

» Ω ¡ ∇ψ x,λ ¤ ∇f λ ψ x,λ pa εV qψ x,λ f λ ψ x,λ ¡ 3α 4 ψ 5 x,λ f λ ψ x,λ © 3 » Ω ¡ U 5 x,λ ¡ α 4 ψ 5 x,λ © f λ ψ x,λ ¡ » Ω apf x,λ g x,λ qf λ ψ x,λ ε » Ω V ψ x,λ f λ ψ x,λ . (3.31) 
We discuss the three integrals on the right side separately. As a general rule, terms involving f x,λ will be negligible as a consequence of the bounds }f x,λ } V Opλ ¡5{2 q and }f λ f x,λ } V Opλ ¡7{2 q in Lemma A.2. This will not always be carried out in detail.

We have

» Ω ¡ U 5 x,λ ¡ α 4 ψ 5 x,λ © f λ ψ x,λ p1 ¡ α 4 q » Ω U 5 x,λ f λ ψ x,λ α 4 » Ω ¡ U 5 
x,λ ¡ ψ 5

x,λ

© f λ ψ x,λ . (3.32)
The rst integral is, since

ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q ¡ f x,λ , » Ω U 5 x,λ f λ ψ x,λ » Ω U 5 x,λ f λ U x,λ 1 2 λ ¡3{2 » Ω U 5 
x,λ H a px, ¤q Opλ ¡4 q .

(3.33)

Since ³ R 3 U 5 x,λ f λ U x,λ p1{6qf λ ³ R 3 U 6 x,λ 0, we have § § § § » Ω U 5 x,λ f λ U x,λ § § § § § § § § § » R 3 zΩ U 5 x,λ f λ U x,λ § § § § § À λ ¡1 » V dλ § § § § § r 2 ¡ r 4 p1 r 2 q 4 § § § § §
dr Opλ ¡4 q.

(3.34)

Next, by Lemma B.3,

1 2 λ ¡3{2 » Ω U 5 
x,λ H a px, ¤q 2π 3 φ a pxqλ ¡2 Opλ ¡3 q .

This completes our discussion of the rst term on the right side of (3.32). For the second term we have similarly,

» Ω ¡ U 5 
x,λ ¡ ψ 5

x,λ

© f λ ψ x,λ » Ω ¡ U 5 x,λ ¡ pU x,λ ¡ λ ¡1{2 H a px, ¤qq 5 © f λ pU x,λ ¡ λ ¡1{2 H a px, ¤qq opλ ¡3 q 5λ ¡1{2 » Ω U 4 x,λ H a px, ¤qf λ U x,λ 5 2 λ ¡2 » Ω U 4 x,λ H a px, ¤q 2 ¡ 10λ ¡1 » Ω U 3 x,λ H a px, ¤q 2 f λ U x,λ 5 ķ3 ¢ 5 k p¡1q k λ ¡k{2 » Ω U 5¡k x,λ H a px, ¤q k f λ U x,λ ¡ 1 2 5 ķ2 ¢ 5 k p¡1q k λ ¡pk 3q{2 » Ω U 5¡k
x,λ H a px, ¤q k 1 opλ ¡3 q .

(3.35)

Again, by Lemma B.3, 5λ ¡1{2 » Ω U 4 x,λ H a px, ¤qf λ U x,λ 5 2 λ ¡2 
»

Ω U 4 x,λ H a px, ¤q 2 ¡ 10λ ¡1 » Ω U 3 x,λ H a px, ¤q 2 f λ U x,λ ¡ 2π 3 φ a pxq λ ¡2 ¡ 2π apxq 5π 2 φ a pxq 2 © λ ¡3 opλ ¡3 q . (3.36) 
Finally, the two sums are bounded, in absolute value, by

» Ω pU 2 x,λ λ ¡3{2 |H a px, ¤q| 3 λ ¡5{2 |H a px, ¤q| 5 q|f λ U x,λ | » Ω pU 3 x,λ λ ¡5{2 |H a px, ¤q| 3 λ ¡4 |H a px, ¤q| 6 q À }f λ U x,λ } 6 p}U x,λ } 2 12{5 λ ¡3{2 λ ¡5{2 q }U x,λ } 3 3 λ ¡5{2 λ ¡4 opλ ¡3 q.
This completes our discussion of the second term on the right side of (3.32) and therefore of the rst term on the right side of (3.31).

For the second term on the right side of (3.31) we get, using

ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q ¡ f x,λ , » Ω apf x,λ g x,λ qf λ ψ x,λ » Ω ag x,λ f λ U x,λ 1 2 λ ¡3{2 » Ω ag x,λ H a px, ¤q opλ ¡3 q
The second integral is negligible since, by Lemma A.4

, § § § § 1 2 λ ¡3{2 » Ω ag x,λ H a px, ¤q § § § § À λ ¡3{2 » Ω g x,λ À λ ¡4 log λ .
Since a is dierentiable, we can expand the rst integral as

» Ω ag x,λ f λ U x,λ apxq » Ω g x,λ f λ U x,λ O ¢» Ω |x ¡ y|g x,λ |f λ U x,λ | . We have » Ω g x,λ f λ U x,λ λ ¡3 » λpΩ¡xq g 0,1 f λ U 0,1 λ ¡3 » R 3 g 0,1 f λ U 0,1 opλ ¡3 q and » R 3 g 0,1 f λ U 0,1 4π » V 0 ¢ 1 r ¡ 1 c 1 r 2 1 ¡ r 2 2p1 r 2 q 3{2 r 2 dr 2πp3 ¡ πq .
Using similar bounds one veries that

» Ω |x ¡ y|g x,λ |f λ U x,λ | À λ ¡4 » λpΩ¡xq |z|g 0,1 |f λ U 0,1 | À λ ¡4 .
This completes our discussion of the second term on the right side of (3.31).

For the third term on the right side of (3.31), we write ψ x,λ λ ¡1{2 G a px, ¤q ¡ f x,λ ¡ g x,λ and get

» Ω V ψ x,λ f λ ψ x,λ » Ω V ¡ λ ¡1{2 G a px, ¤q ¡ g x,λ © f λ ¡ λ ¡1{2 G a px, ¤q ¡ g x,λ © opλ 2 q ¡ 1 2 λ ¡2 Q V pxq O ¢ λ ¡3{2 » Ω G a px, ¤qg x,λ λ ¡1{2 » Ω G a px, ¤q|f λ g x,λ | » Ω g x,λ |f λ g x,λ | opλ 2 q ¡ 1 2 λ ¡2 Q V pxq O ¡ λ ¡3{2 }G a px, ¤q} 2 }g x,λ } 2 λ ¡1 }G a px, ¤q} 2 }f λ g x,λ } 2 }g x,λ } 2 }f λ g x,λ } 2 © opλ ¡2 q ¡ 1 2 λ ¡2 Q V pxq opλ ¡2 q.
In the last equality we used the bounds from Lemma A.4 and the fact that G a px, ¤q L 2 pΩq. This completes our discussion of the third term on the right side of (3.31) and concludes the proof of (a).

(b) We note that (3.26) yields

¡∆f λ ψ x,λ af λ ψ x,λ 15U 4 x,λ f λ U x,λ ¡ a f λ f x,λ f λ g x,λ
¨.

Because of this equation, the quantity of interest can be written as

» Ω ¡ ∇q ¤ ∇f λ ψ x,λ aqf λ ψ x,λ ¡ 15α 4 qψ 4 x,λ f λ ψ x,λ © 15 » Ω q ¡ U 4 x,λ f λ U x,λ ¡ α 4 ψ 4 x,λ f λ ψ x,λ © ¡ » Ω aq f λ f x,λ f λ g x,λ ¨.
(3.37)

We discuss the two integrals on the right side separately.

We have

» Ω q ¡ U 4 x,λ f λ U x,λ ¡ α 4 ψ 4 x,λ f λ ψ x,λ © p1 ¡ α 4 q » Ω qU 4 x,λ f λ U x,λ α 4 » Ω q ¡ U 4 x,λ f λ U x,λ ¡ ψ 4 x,λ f λ ψ x,λ © . (3.38)
The rst integral is, by the orthogonality condition 0

³ Ω ∇w ¤ ∇f λ P U x,λ 15 ³ Ω wU 4 x,λ f λ U x,λ , » Ω qU 4 x,λ f λ U x,λ λ ¡1{2 » Ω H a px, ¤q ¡ H 0 px, ¤q ¨U 4 x,λ f λ U x,λ ¡ 2 15 π φ a pxq ¡ φ 0 pxq ¨λ¡2 Opλ ¡3 q. (3.39)
For the second integral on the right side of (3.38) we have

» Ω q ¡ U 4 x,λ f λ U x,λ ¡ ψ 4 x,λ f λ ψ x,λ © » Ω q ¢ U 4 x,λ f λ U x,λ ¡ pU x,λ ¡ λ ¡1{2 H a px, ¤qq 4 f λ ¡ U x,λ ¡ λ ¡1{2 H a px, ¤q ©
opλ ¡3 q Opφ a pxqλ ¡3 q opελ ¡2 q opλ ¡3 q .

(3.40)

Let us justify the claimed bound here for a typical term. We write H a px, yq φ a pxq Op|x ¡y|q and get

» Ω qU 4 x,λ λ ¡3{2 H a px, ¤q λ ¡3{2 φ a pxq » Ω qU 4 x,λ O ¢ λ ¡3{2 » Ω qU 4 x,λ |x ¡ y| .
Using the bound (3.27) on q and Lemma A.

1 we get § § § § » Ω qU 4 x,λ § § § § ¤ }q} 6 }U x,λ } 4 24{5 À λ ¡3{2 ελ ¡1
. The remainder term is better because of the additional factor of |x ¡ y|. We gain a factor of λ ¡1

since |x ¡ ¤| 1{4 U x,λ 4 24{5 À λ ¡3{2 . Another typical term, » Ω qU 3
x,λ λ ¡1{2 H a px, ¤qf λ U x,λ , can be treated in the same way, since the bounds for f λ U x,λ are the same as for λ ¡1 U x,λ ; see Lemma A.1. The remaining terms are easier. This completes our discussion of the rst term on the right side of (3.37).

The second term on the right side of (3.37) is negligible. Indeed, » Ω aq f λ f x,λ f λ g x,λ ¨ Op}q} 6 }f λ g x,λ } 6{5 q opλ ¡3 q opλ ¡3 q , (3.41) where we used Lemma A.4 and the same bound on q as before. This completes our discussion of the second term on the right side of (3.37) and concludes the proof of (b).

(c) We use the form (3.8) of the zero modes s, as well as the bounds on }∇s} 2 and }∇r} 2 from (3.10) and (3.18), to nd

» Ω q 2 ψ 3 x,λ f λ ψ x,λ » Ω s 2 ψ 3 x,λ f λ ψ x,λ Opφ a pxqλ ¡3 q opλ ¡3 q opελ ¡2 q β 2 λ ¡2 » Ω U 5 x,λ f λ U x,λ 2βγ λ ¡1 » Ω U 4 x,λ pf λ U x,λ q 2 γ 2 » Ω U 3
x,λ pf λ U x,λ q 3 Opφ a pxqλ ¡3 q opλ ¡3 q opελ ¡2 q .

(3.42) A direct calculation using (B.15) gives

λ ¡2 » Ω U 5 x,λ f λ U x,λ opλ ¡3 q, » Ω U 3 x,λ pf λ U x,λ q 3 opλ ¡3 q and » Ω U 4 x,λ pf λ U x,λ q 2 1 4 λ ¡2 » Ω U 6 x,λ ¡ λ 3 » Ω |x ¡ y| 2 p1 λ 2 |x ¡ y| 2 q 4 λ 5 » Ω |x ¡ y| 4 p1 λ 2 |x ¡ y| 2 q 5 π 2 16 λ ¡2 ¡ 4πλ ¡2 » V 0 t 4 dt p1 t 2 q 4 4πλ ¡2 » V 0 t 6 dt p1 t 2 q 5 opλ ¡2 q π 2 64 λ ¡2 opλ ¡2 q.
Inserting this into (3.42) gives the claimed expansion (c).

The proof of (d) uses similar bounds as in the rest of the proof and is omitted.

Proof of Proposition 3.8. Combining (3.30) with Lemma 3.10 yields

0 ¡4πφ a pxqλ ¡2 ¡ Q V pxqελ ¡2 4π 2 apxqλ ¡3 λ ¡3 R Opφ a pxqλ ¡3 q opλ ¡3 q opελ ¡2 q (3.43) with R λp1 ¡ α 4 q4π φ a pxq φ 0 pxq ¨ 30π 2 φ a pxq 2 ¡ 15 8 βγπ 2 .
We now make use of the expansion (3.24) of α 4 ¡ 1 and obtain R 16βπφ 0 pxq ¡ 15 8 βγπ 2 Opφ a pxq λ ¡1 εq .

Inserting the expansions (3.13) of β and γ, we nd the cancellation R Opφ a pxq λ ¡1 εq .

(3.44)

In particular, R Op1q and, inserting this into (3.43), we obtain φ a pxq Opλ ¡1 εq. In particular, for the error term in (3.43), we have φ a pxqλ ¡3 opλ ¡3 q and, moreover, by (3.44), R Opλ ¡1 εq. Inserting this bound into (3.43), we obtain the claimed expansion (3.28).

3.5. Bounding ∇φ a pxq. In this subsection we prove the bound on ∇φ a pxq in Proposition 3.1. Proposition 3.11. For every µ 1, as ε Ñ 0, |∇φ a pxq| À ε µ .

( (3.47)

The following lemma extracts the leading contribution from the main term Irψ x,λ s. Lemma 3.12. Irψ x,λ s 4π∇φ a pxqλ ¡1 Opλ ¡1¡µ q for every µ 1.

On the other hand, the next lemma allows to control the error terms involving q.

Lemma 3.13. } fq fn } L 2 pfΩq À ελ ¡1{2 .

Before proving these two lemmas, let us use them to give the proof of Proposition 3.11. In that proof, and later in this subsection, we will use the inequality 

}q} 2 À ελ ¡1{2 . ( 3 
ε § § § § » Ω p∇V qpψ x,λ qq 2 § § § § À ελ ¡1 .
In view of these bounds, Lemma 3.12 and equation (3.47) imply |∇φ a pxq| À ε λ ¡µ . Because of (3.29), this implies (3.45).

It remains to prove Lemmas 3.12 and 3.13.

Proof of Lemma 3.12. We integrate equation (3.26) for ψ x,λ against ∇ψ x,λ and obtain

¡ 1 2 Irψ x,λ s 3 » Ω U 5 
x,λ ∇ψ x,λ ¡ » Ω apf x,λ g x,λ q∇ψ x,λ .

(3.50)

For the rst integral on the right side we write ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q f x,λ and integrate by parts to obtain

3 » Ω U 5 
x,λ ∇ψ x,λ 3

» fΩ U 5 x,λ ¢ 1 6 U x,λ ¡ λ ¡1{2 H a px, ¤q f x,λ n 15 » Ω U 4 x,λ p∇U x,λ q ¡ λ ¡1{2 H a px, ¤q ¡ f x,λ © .
By Lemma B.3, see also Remark B.4, we have

» Ω U 4 
x,λ p∇U x,λ qH a px, ¤q ¡

» Ω U 4 
x,λ p∇ x U x,λ qH a px, ¤q ¡ 2π 15 ∇φ a pxqλ ¡1{2 Opλ ¡1{2¡µ q .

Finally, since U x,λ À λ ¡1{2 on fΩ and by the bounds on U x,λ , f x,λ and H a px, ¤q from Lemmas A.1 and A.2 and from (B.1), we have

3 » fΩ U 5 x,λ ¢ 1 6 U x,λ ¡ λ ¡1{2 H a px, ¤q f x,λ n 15 » Ω U 4 
x,λ p∇U x,λ qf x,λ Opλ ¡2 q .

This shows that the rst term on the right side of (3.50) gives the claimed contribution.

On the other hand, for the second term on the right side of (3.50) we have

» Ω apf x,λ g x,λ q∇ψ x,λ » Ω apf x,λ g x,λ q∇pU x,λ ¡ λ ¡1{2 H a px, ¤qq ¡ 1 2 » Ω p∇aqf 2 x,λ ¡ » Ω pa∇g x,λ g x,λ ∇aqf x,λ 1 2 » fΩ af 2 x,λ » fΩ af x,λ g x,λ » Ω ag x,λ ∇U x,λ Opλ ¡3 q .
Here we used bounds from Lemmas A.2 and A.4 and from the proof of the latter. Finally, we write apyq apxq Op|x ¡ y|q and using oddness of g x,λ ∇U x,λ to obtain

» Ω ag x,λ ∇U x,λ O ¢» Ω |x ¡ y|g x,λ |∇U x,λ | Opλ ¡2 q .
This proves the claimed bound on the second term on the right side of (3.50).

Proof of Lemma 3.13. The proof is analogous to that of Lemma 2.6. By combining equation (2.7) for w with ∆pH a px, ¤q ¡ H 0 px, ¤qq ¡aG a px, ¤q, we obtain ¡∆q F with F : ¡3U 5

x,λ 3α 4 pψ x,λ qq 5 ¡ aq apf x,λ g x,λ q ¡ εV pψ x,λ qq .

(We use the same notation as in the proof of Lemma 2.6 for analogous, but dierent objects.)

We dene the cut-o function ζ as before, but now in our bounds we do not make the dependence on d explicit, since we know already d ¡1 

}ζU x,λ } 3{2 À }U x,λ } L 3{2 pΩzB d{2 pxqq À λ ¡1{2 .
To bound the remaining term }ζq 5 } 3{2 we argue as in Lemma 2.6 above and get

}ζq 5 } 3{2 ¢» Ω |ζ 1{4 |q| 1{4 q| 6 2{3 À ¢» Ω |∇pζ 1{4 |q| 1{4 qq| 2 2 À ¢» Ω |q| 5{2 |∇pζ 1{4 q| 2 2 ¢» Ω |F| ζ 1{2 |q| 3{2 2 À }q} 5 6 ¢» Ω |F| ζ 1{2 |q| 3{2 2 .
We use the pointwise estimate (3.51) on ζF , which is equally valid for ζ 1{2 F . The term coming from |q| 5 is bounded by

¢» Ω |q| 5 3 2 ζ 1{2 2 ¢» Ω pζ|q| 5 q 1{2 q 4 2 ¤ }ζq 5 } 3{2 }q} 8 6 op}ζq 5 } 3{2 q,
which can be absorbed into the left side. The contributions from the remaining terms in the pointwise bound on ζ 1{2 |F| can by easily controlled and we obtain }ζq 5 } 3{2 À }q} 5 6 λ ¡5 pελ ¡1{2 q 5 À ελ ¡1{2 .

Collecting all the estimates, we obtain the claimed bound.

4. Proof of Theorems 1.5 and 1.6

4.1. The behavior of φ a near x 0 . We are now in a position to complete the proof of Theorem 1.5. Our main remaining goal is to prove φ a pxq opεq.

(4.1)
Once this is shown, we will be able to nd a relation between λ and ε. The proof of (4.1) (and only this proof) relies on the nondegeneracy of critical points of φ a .

We already know that φ a px 0 q 0 and that φ a pyq ¥ 0 for all y Ω, hence x 0 is a critical point of φ a . In this subsection we collect the necessary ingredients which exploit this fact.

Lemma 4.1. The function φ a is of class C 2 on Ω.

Since we were unable to nd a proof for this fact in the literature, we provide one in Appendix B.2.

Thus, the following general lemma applies to φ a .

Lemma 4.2. Let u be C 2 near the origin and suppose that up0q 0, ∇up0q 0 and that Hess up0q is invertible. Then, as x Ñ 0, upxq 1 2 ∇upxq ¤ Hess up0q ¨¡1 ∇upxq op|x| 2 q .

(4.2)

Suppose additionally that Hess up0q ¥ c for some c ¡ 0 in the sense of quadratic forms, i.e. the origin is a nondegenerate minimum of u. Then, as x Ñ 0, upxq À |∇upxq| 2 .

(4.3)

Proof. We abbreviate Hpxq Hess upxq and make a Taylor expansion around x to get 0 up0q upxq ¡ ∇upxq ¤ x 1 2

x ¤ Hpxqx op|x| 2 q (4.4) and 0 ∇up0q ∇upxq ¡ Hpxqx op|x| 2 q .

(4.5)

We infer from (4.5) and the invertibility of Hp0q that

x Hpxq ¡1 ∇upxq op|x| 2 q .

Inserting this into (4.4) gives

0 upxq ¡ 1 2
∇upxq ¤ Hpxq ¡1 ∇upxq op|x| 2 q , Since Hpxq ¡1 Hp0q ¡1 op|x|q, this yields (4.2).

To prove (4.3), if 0 is a nondegenerate minimum, then a Taylor expansion around 0 shows

upxq 1 2 x ¤ Hp0qx op|x| 2 q ¥ c 4 |x| 2 (4.6)
for small enough |x|. Thus, the op|x| 2 q in (4.2) can be absorbed in the left side, thus (4.3). ). The facts that x 0 N a and that Q V px 0 q ¤ 0 follow from Corollary 3.9.

By Lemma 4.1 and the assumption that x 0 is a nondegenerate minimum of φ a , we can apply Lemma 4.2 to the function upxq : φ a px x 0 q to get φ a pxq À |∇φ a pxq| 2 . Therefore, by the bound on ∇φ a pxq in Proposition 3.1 with some xed µ p1{2, 1q, we get φ a pxq À |∇φ a pxq| 2 opεq .

(4.7)

This proves (1.20) and, by non-degeneracy of x 0 , also (1.19). Moreover, inserting (4.7) into the expansion of φ a pxq from Proposition 3.1, we nd

0 apxqπλ ¡1 ¡ ε 4π Q V pxq opλ ¡1 q opεq,
that is, ελ 4π 2 |apx 0 q| op1q |Q V px 0 q| op1q with the understanding that this means ελ Ñ V if Q V px 0 q 0. This proves (1.21).

The remaining claims in Theorem 1.5 follow from Proposition 3.1.

4.3.

A bound on }w} V . In this subsection, we prove a crude bound on the L V norm of the rst-order remainder w appearing in the decomposition u αpP U x,λ wq, and also on some of its L p norms which cannot be controlled through Sobolev, i.e. p ¡ 6. This bound was not needed in the proof of Theorem 1.5, but will be in that of Theorem 1.6. Moreover, for every µ ¡ 0, }w} V opλ µ q .

(4.9)

Our proof follows [30, proof of ( 25)], which concerns the case N ¥ 4 and a 0. Since some of the required modications are rather complicated to state, we give details for the convenience of the reader.

Proof. We begin by proving the rst bound in the proposition, which we write as }w} r 1 3pr 1q À λ ¡1 for all r p1, Vq . To prove this, we dene F by (2.13), multiply (2.7) with |w| r¡1 w and integrate by parts to obtain In order to estimate the right side of (4.10), we make use of the bound

4r pr 1q 2 » Ω |∇|w| r 1 2 | 2 » Ω F |w| r¡1 w.
|F| À |α 4 ¡ 1|U 5 x,λ U 4 x,λ |w| |w| 5 U 4 x,λ ϕ x,λ U x,λ ϕ x,λ |w| . (4.11)
This is a renement of (3.51), which is obtained by writing P U x,λ U x,λ ¡ϕ x,λ and using Lemma A.2 to bound ϕ 5

x,λ À ϕ x,λ .

We estimate the resulting terms separately. Using Hölder's inequality, Lemma A.1, Proposition 3.6 and the fact that for any η, p, q ¡ 0 with p ¡1 q ¡1 1 there is

C η ¡ 0 such that for any a, b ¡ 0 one has ab ¤ ηa p C η b q , we obtain |α 4 ¡ 1| » Ω U 5 x,λ |w| r ¤ λ ¡1 }w} r 3pr 1q }U} 5 5¤ 3r 3 2r 3 À λ ¡1 }w} r 3pr 1q λ 1 2 ¤ r¡1 r 1 }w} r 3pr 1q λ ¡ r 3 2pr 1q ¤ η}w} r 1 3pr 1q C η λ ¡ r 3 2 ; » Ω U 4 x,λ |w| r 1 ¤ ¢» Ω U 5 x,λ |w| r 4{5 ¢» Ω |w| r 5 1{5 ¤ }w} r 1 5 3pr 1q λ ¡ 4 5pr 1q ¤ η}w} r 1 3pr 1q C η λ ¡1 ; » Ω |w| 5 r ¤ }w} r 1 3pr 1q }w} 4 6 À }w} r 1 3pr 1q λ ¡2 ; » Ω U 4 x,λ |w| r ϕ x,λ ¤ λ ¡1{2 }w} r 3pr 1q }U x,λ } 4 4¤ 3r 3 2r 3 λ ¡ 1 2 ¡ 1 r 1 }w} r 3pr 1q λ ¡ r 3 2pr 1q }w} r 3pr 1q ¤ η}w} r 1 3pr 1q C η λ ¡ r 3 2 ; » Ω U x,λ |w| r ¤ }w} r 3pr 1q }U x,λ }3r 3 2r 3 À }w} r 3pr 1q λ ¡ 1 2 ¤ η}w} r 1 3pr 1q C η λ ¡ r 1 2 ; » Ω ϕ x,λ |w| r À λ ¡ 1 2 }w} r 3pr 1q ¤ η}w} r 1 3pr 1q C η λ ¡ r 1 2 ; » Ω |w| r 1 À ¢» Ω |w| 5 r r 1 r 5 À }w} pr 1q 2 r 5 3pr 1q λ ¡ 2pr 1q r 5 ¤ η}w} r 1 3pr 1q C η λ ¡ r 1 2 .
By choosing η small enough (but independent of λ), we can absorb the term η}w} r 1 3pr 1q , as well as the term λ ¡2 }w} r 1 3pr 1q , into the left hand side of inequality (4.10) to get

}w} r 1 3pr 1q À λ ¡ r 3 2 λ ¡1 λ ¡ r 1 2 À λ ¡1 .
This is the claimed bound.

We now turn to the bound of the L V norm of w. We write equation (2.7) for w as Hence it suces to estimate }F} q with some q : 3¡δ 2¡δ ¡ 3{2.

wpxq 1 4π » Ω G 0 px, yqF pyq.
We use again the bound (4.11). The L q -norms of the resulting terms are easy to estimate. Indeed, since |α 4 ¡ 1| À λ ¡1 by Proposition 3.6, we have by Lemma A.1 |α 4 ¡ 1|}U 5

x,λ } q À λ ¡1 }U} 5 5q À λ

3 2 ¡ 3 q .
Next, by Lemma A.1 and A.2,

}U 4 x,λ ϕ x,λ } q À λ ¡1{2 }U x,λ } 4 4q À λ 3 2 ¡ 3 q .
Using additionally the bound on }∇w} from Proposition 2.1, we can estimate, for every q 3, }U x,λ ϕ x,λ |w|} q ¤ }U x,λ } q }ϕ x,λ } V }∇w} 6 À λ ¡1{2 .

Finally, using the bound (4.8), }U 4

x,λ w} q ¤ }U x,λ } 4 5q }w} 5q À λ 2¡ 12 5q }w} 5q À λ 2¡ 3 q and }w 5 } q }w} 5 5q À λ ¡ 3 q . Inserting these estimates into (4.13) yields }w} V À λ 2¡ 3 q for every q p3{2, 3q. As δ × 0 in (4.13), we have q × 3{2 and hence 2 ¡ 3 q × 0. Thus (4.9) is proved.

4.4. Proof of Theorem 1.6. By Proposition 2.1, we have u αpP U x,λ wq with α 1 op1q. Moreover, by Proposition 4.3, }w} V opλ 1{2 q. On the other hand, by Lemma A.2 we have }PU x,λ } V }U x,λ } V Op}ϕ x,λ } V q λ 1{2 Opλ ¡1{2 q.

Putting these estimates together, we obtain We x a sequence δ δ ε op1q with λ ¡1 opδ ε q. This condition, together with the bounds from Proposition 2.1 easily implies 3 4π ³ B δ pxq upyq 5 λ ¡1{2 opλ ¡1{2 q. Hence 3 4π

ε}u ε } 2 V εpλ 1{2 opλ 1{2 qq 2 ελp1 op1qq 4π 2 |apx 0 q| |Q V px 0 q|
» B δ pxq G a pz, yqupyq 5 3 4π » B δ pxq
pG a pz, x 0 q op1qqupyq 5 λ ¡1{2 G a pz, x 0 q opλ ¡1{2 q.

On the complement of B δ pxq, using Proposition 4.3 and Lemma A.

1 we bound § § § § § » ΩzB δ pxq G a pz, yqupyq 5 § § § § § À }G a pz, ¤q} 2 p}U x,λ } 5 L 10 pΩzB δ pxqq }w} 5 10 q À λ ¡5{2 δ ¡7{2 λ ¡3{2
. Choosing e.g. δ λ ¡2{7 , the last bound is opλ ¡1{2 q.

The second term on the right side of (4.14) is easily bounded by

ε § § § § » Ω G a pz, yqV pyqupyq § § § § À ε}G a pz, ¤q} 2 p}U} 2 }w} 2 q À ελ ¡1{2
by the bounds from Proposition 2.1 and from Lemma A.1. Collecting the above estimates, part (b) of Theorem 1.6 follows.

Subcritical case: A first expansion

In the remaining part of the paper we will deal with the proof of Theorems 1.2 and 1.3. The structure of our argument is very similar to that leading to Theorems 1.5 and 1.6. Namely, in the present section we derive a preliminary asymptotic expansion of u ε and the involved parameters, which is rened subsequently in Section 6 below. Because of the similarities to the above argument, we will not always give full details.

The following proposition summarizes the results of this section.

Proposition 5.1. Let pu ε q be a family of solutions to (1.2) satisfying (1.5). Then, up to the extraction of a subsequence, there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R and pw ε q T u xε,λε such that

u ε α ε pPU xε,λε w ε q (5.1)
and a point

x 0 Ω such that |x ε ¡ x 0 | op1q, α ε 1 op1q, λ ε Ñ V, }∇w ε } 2 Opλ ¡1{2 ε q, ε Opλ ¡1 ε q. (5.2)
5.1. A qualitative initial expansion. As a rst step towards Proposition 5.1, we observe that the qualitative expansion from Proposition 2.2 still holds true, that is, there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R and pw ε q T u xε,λε such that (5.1) holds and a point x 0 Ω such that, along a subsequence,

|x ε ¡ x 0 | op1q, α ε 1 op1q, d ε λ ε Ñ V, }∇w ε } 2 op1q,
where, as before, d ε : dpx ε , fΩq. Indeed, as explained in the proof of Proposition 2.2, it suces to prove u ε á 0 in H 1 0 pΩq up to a subsequence. To achieve this, we rst integrate (1.2) against u ε to obtain

3 ¢» Ω u 6¡ε ε 4¡ε 6¡ε ³ Ω |∇u ε | 2 ¡ ³ Ω u 6¡ε ε © 2 6¡ε ³ Ω au 2 ε ¡ ³ Ω u 6¡ε ε © 2 6¡ε
.

By (1.5) and Hölder, the right side is bounded, hence }u ε } 6¡ε À 1. By (1.5) again, }∇u ε } 2 À 1.

On the other hand, the right side is Á 1 by coercivity of ¡∆ a, which is a consequence of criticality, and by Hölder. This gives }u ε } 6¡ε Á 1, and hence }∇u ε } 2 Á 1 by Sobolev and Hölder.

This completes the analogue of Step 1 in the proof of Proposition 2.2.

Let us now turn to

Step 2 in that proof. We denote by u 0 a weak limit point of u ε in H 1 0 pΩq, which exists by Step 1. Still by Step 1, we may assume that the quantities }u ε } 6¡ε and }∇u ε } 2 have non-zero limits. The only dierence to Proposition 2.2 is now that we modify the denition of M to

M lim εÑ0 » Ω pu ε ¡ u 0 q 6¡ε ,
where the exponent is 6 ¡ ε instead of 6. Thanks to the uniform bound }u ε } 6¡ε À 1 by Step 1, it can be easily checked that the proof of the Brézis-Lieb lemma (see e.g. [START_REF] Lieb | Analysis[END_REF]) still yields

lim εÑ0 » Ω u 6¡ε ε lim εÑ0 » Ω u 6¡ε 0 M » Ω u 6 0 M .
Then the modied assumption (1.5) can be used to conclude

S ¢» Ω u 6 0 M 1{3 » Ω |∇u 0 | 2 T .
The rest of the proof is identical to Proposition 2.2.

We again adopt the convention that in the remainder of the proof we only consider the above subsequence and we will drop the subscript ε.

In order to prove Proposition 5.1, we will prove in the following subsections that x 0 Ω, }∇w} 2 Opλ ¡1{2 q and ε Opλ ¡1 q. 5.2. The bound on }∇w} 2 . The goal of this subsection is to prove Proposition 5.2. As ε Ñ 0, }∇w} 2 Opλ ¡1{2 q Oppλdq ¡1 q Opεq .

(

Note that, in contrast to Proposition 2.4, there appears an additional error Opεq. We will prove in an extra step (Proposition 5.5) that ε Oppλdq ¡1 q, so this extra term will disappear later.

The proof of Proposition 5.2 is somewhat lengthy and we precede it by an auxiliary result, which is a simple consequence of the fact that α Ñ 1.

Lemma 5.3. As ε Ñ 0, ε log λ op1q.

A useful consequence of this lemma is that U ¡ε

x,λ À 1 in Ω .

(

Indeed, this follows from the lemma together with the fact that U x,λ Á λ ¡1{2 in Ω.

Proof. We integrate equation (1.2) against u and use the decomposition (5.1). This gives

» Ω |∇pPU x,λ wq| 2 » Ω apP U x,λ wq 2 3α 4¡ε » Ω pPU x,λ wq 6¡ε . (5.5) By orthogonality » 
Ω |∇pPU x,λ wq| 2 » Ω |∇PU x,λ | 2 » Ω |∇w| 2 3π 2 4 op1q.
Moreover, using Lemmas A.1 and A.2 we nd ³ Ω apP U x,λ wq 2 op1q. On the other hand,

» Ω pPU x,λ wq 6¡ε » Ω U 6¡ε
x,λ op1q.

Hence equation (5.5) combined with the fact that α Ñ 1 implies

» Ω U 6¡ε x,λ π 2 4 op1q . (5.6) Since » 
Ω U 6¡ε x,λ λ ¡ ε 2 λ 3 » Ω 1 λ 2 |x ¡ y| 2 ¨¡3 ε 2 λ ¡ ε 2 π 2 4 p1 op1qq,
we have λ ¡ ε 2 Ñ 1 and hence the claim.

The next result quanties the dierence between

³ Ω U 5¡ε x,λ v and ³ Ω U 5
x,λ v 0 for v T u

x,λ .

Lemma 5.4. For every v T u

x,λ , § § » Ω U 5¡ε

x,λ v § § À ε }v} 6 .

(

Proof. By orthogonality,

» Ω U 5¡ε x,λ v λ ¡ ε 2 » Ω U 5 x,λ e ε log c 1 λ 2 |x¡y| 2 v λ ¡ ε 2 » Ω U 5 x,λ ¡ e ε log c 1 λ 2 |x¡y| 2 ¡ 1 © v . By Lemma 5.3, ε log 1 λ 2 |x ¡ y| 2 op1q
(5.8)

uniformly in x and y. Hence

0 e ε log c 1 λ 2 |x¡y| 2 ¡ 1 À ε log 1 λ 2 |x ¡ y| 2 ¤ ελ |x ¡ y|, (5.9) 
where we have used the inequality log

c 1 t 2 ¤ |t|. Since }|x ¡ y| U 5
x,λ } 6{5 Opλ ¡1 q, the result follows from the Hölder inequality.

We are now in position to give the Proof of Proposition 5.2. From equation (1.2) for u we obtain the following equation for w, ¡ ∆w aw ¡3U 5

x,λ ¡ aP U x,λ 3α 4¡ε pPU x,λ wq 5¡ε .

(5.10)

Integrating this equation against w gives

» Ω p|∇w| 2 aw 2 q ¡ » Ω aP U x,λ w 3α 4¡ε » Ω wpP U x,λ wq 5¡ε . (5.11) 
As before, the rst term on the right hand side is controlled easily by Hölder, §

§ § § » Ω aP U x,λ w § § § § À }PU x,λ } 2 }w} 2 À λ ¡1{2 }∇w} 2 .
In order to control the second term we use the fact that P U x,λ U x,λ ¡ ϕ x,λ . Moreover, by Taylor and (5.4), pPU x,λ wq 5¡ε pU x,λ ¡ ϕ x,λ wq 5¡ε U 5¡ε

x,λ p5 ¡ εqU 4¡ε x,λ w O ¡ U 4
x,λ ϕ x,λ U 3

x,λ w 2 |w| 5¡ε ϕ 5¡ε

x,λ © .

(5.12)

Hence, § § » Ω pPU x,λ wq 5¡ε w ¡ p5 ¡ εqα 4¡ε » Ω U 4¡ε x,λ w 2 § § ¤ § § » Ω U 5¡ε x,λ w § § O ¢» Ω U 4 x,λ ϕ x,λ |w| O ¡ }∇w} 3 2 }∇w} 2 }ϕ x,λ } 5¡ε 6 © .
We estimate the rst term on the right side using Lemma 5.4. For the second term on the right side we argue as in the proof of Proposition 2.4 and obtain

» Ω U 4 x,λ ϕ x,λ |w| O ¡ pλdq ¡1 }∇w} 2 © .
For the last term on the right side we use }ϕ x,λ } 2 6 Oppλdq ¡1 q. Moreover, in view of (5.9),

» Ω U 4¡ε x,λ w 2 ¤ λ ¡ε{2 » Ω U 4 x,λ w 2 Cελ » Ω U 4 x,λ |x ¡ y| w 2 ¤ 1 op1q ¨»Ω U 4
x,λ w 2 Opελ ¡1{2 }∇w} 2 2 q.

(5.13)

Altogether we obtain from (5.11),

» Ω p|∇w| 2 aw 2 ¡ 15α 4¡ε U 4 x,λ w 2 q À pλdq ¡1 λ ¡1{2 ε ¨}∇w} 2 op}∇w} 2 2 q
An application of the coercivity inequality of Lemma 2.3 now implies (5.3).

5.3.

The bound on ε. The goal of this subsection is to prove Proposition 5.5. As ε Ñ 0, ε Oppλdq ¡1 q .

(5.14)

We note that the analogue of this proposition is not needed in Section 2 when studying (1.3).

The proof of Proposition 5.5 is based on the Pohozaev-type identity

» Ω ∇P U x,λ ¤ ∇f λ P U x,λ » Ω apP U x,λ wqf λ P U x,λ α 4¡ε 3 » Ω pPU x,λ wq 5¡ε f λ P U x,λ , (5.15) 
which arises from integrating equation (4.4) against f λ P U x,λ and inserting the following bounds.

Lemma 5.6. As ε Ñ 0, we have

» Ω ∇P U x,λ ¤ ∇f λ P U x,λ » Ω apP U x,λ wqf λ P U x,λ Opλ ¡2 d ¡1 λ ¡1 }∇w} 2 2 q (5.16) and 3 » 
Ω pPU x,λ wq 5¡ε f λ P U x,λ ¡ 1 16 p1 op1qq ελ ¡1 Opλ ¡2 d ¡1 λ ¡1 }∇w} 2 2 q .
(5.17)

Before proving Lemma 5.6, let us use it to deduce the main result of this subsection.

Proof of Proposition 5.5. Inserting (5.16) and (5.17) into (5.15) and applying the bound (5.3) on }∇w} we obtain p1 op1qqε À pλdq ¡1 }∇w} 2 2 À pλdq ¡1 ε 2 . Since ε op1q, (5.14) follows.

In the proof of Lemma 5.6 we need the following auxiliary bound. Lemma 

For every

v T u x,λ , § § » Ω U 4¡ε x,λ f λ U x,λ v § § À ε λ ¡1 }∇v} 2 .
(5.18)

The proof of this lemma is analogous to that of Lemma 5.4 and is omitted.

Proof of Lemma 5.6. We begin with proving (5.16). First, by [31, (B.5)],

»

Ω ∇P U x,λ ¤ ∇f λ P U x,λ Opλ ¡2 d ¡1 q. Writing P U x,λ U x,λ ¡ ϕ x,λ , the second term in (5.16) is bounded by § § § § » Ω apP U x,λ wqf λ P U x,λ § § § § À p}U x,λ } 2 }w} 2 qp}f λ U x,λ } 2 }f λ ϕ x,λ } 2 q À λ ¡2 d ¡1{2 λ ¡3{2 d ¡1{2 }∇w} 2 À λ ¡2 d ¡1 λ ¡1 }∇w} 2
2 , by Lemma A.1 and (A.3), followed by Young's inequality.

Next, we prove (5.17). Using (5.12) and (5.4) we bound pointwise pPU x,λ wq 5¡ε f

λ P U x,λ U 5¡ε x,λ f λ U x,λ p5 ¡ εqU 4¡ε x,λ f λ U x,λ w O ¢ ¡ U 4 x,λ ϕ x,λ U 3 x,λ w 2 |w| 5¡ε ϕ 5¡ε x,λ © |f λ U x,λ | O ¢ ¡ U 5 x,λ |w| 5¡ε ϕ 5¡ε x,λ © |f λ ϕ x,λ | . ( 5.19) 
The integral over Ω of the two remainder terms is bounded by a constant times

}ϕ x,λ } V }U x,λ } 4 5 }f λ U x,λ } 5 ¡ }U x,λ } 3 6 }w} 2 6 }w} 5¡ε 6 }ϕ x,λ } 5¡ε
By Lemma 5.7, the integral over Ω of the second term on the right side of (5. [START_REF] Grossi | On an eigenvalue problem related to the critical exponent[END_REF]) is bounded by a constant times ελ ¡1 }∇w} 2 opελ ¡1 q.

Finally, by an explicit calculation,

» Ω U 5¡ε x,λ f λ U x,λ » Ω U 5¡ε x,λ ¡ U x,λ 2λ ¡ λ 3{2 |x ¡ y| 2 p1 λ 2 |x ¡ y| 2 q 3{2 © πλ ¡1¡ ε 2 Γp 3 2 qΓp 3¡ε 2 q Γp3 ¡ ε 2 q ¡ 2 Γp 5 2 qΓp 3¡ε 2 q Γp4 ¡ ε 2 q ' Opλ ¡4 d ¡3 q ¡ π 3{2 4 ελ ¡1¡ ε 2 Γp 3¡ε 2 q Γp4 ¡ ε 2 q Opλ ¡4 d ¡3 q ¡ π 2 48 ελ ¡1 p1 op1qq Opλ ¡4 d ¡3 q, (5.20)
where, in the last step, we used Lemma 5.3. This completes the proof of (5.17). The proof is very similar to that of Proposition 2.5 and we will be brief. Integrating the rst equation in (1.2) against ∇u implies the Pohozaev-type identity

¡ » Ω p∇aq u 2 » fΩ n ¡ fu fn © 2 . ( 5.21) 
The volume integral on the left side can be estimated as before, since by Propositions 5.2 and 5.5 we have the same bound }∇w} 2 2 À λ ¡1 pλdq ¡2 as before. To bound the surface integral, we use the fact that

» fΩ ¢ fw fn 2 Opλ ¡1 d ¡1 q o λ ¡1 d ¡2 q .
This is the analogue of Lemma 2.6. We only note that by (5.10) we have

F : ¡∆w 3α 4¡ε pPU x,λ wq 5¡ε ¡ 3U 5 x,λ ¡ apP U x,λ wq (5.22) 
and that this function satises (2.15). Therefore, using the above bound on }∇w} 2 we can proceed exactly in the same was as in the proof of Lemma 2.6.

Thus, as before, we obtain Cλ ¡1 ∇φ 0 pxq Opλ ¡1 d ¡3{2 q opλ ¡1 d ¡2 q and then from |∇φ 0 pxq| Á d ¡2 we conclude that d ¡1 Op1q, as claimed. 5.5. Proof of Proposition 5.1. The existence of the expansion is discussed in Subsection 5.1. Proposition 5.8 implies that d ¡1 Op1q, which implies that x 0 Ω. Moreover, inserting the bound d ¡1 Op1q into Propositions 5.2 and 5.5, we obtain ε Opλ ¡1 q and }∇w} 2 Opλ ¡1{2 q, as claimed in Proposition 5.1. This completes the proof of the proposition.

Subcritical case: Refining the expansion

As in the additive case, we rene the analysis of the remainder term w ε in Proposition 5.1, which we write as w ε λ ¡1{2 ε pH 0 px ε , ¤q ¡ H a px ε , ¤qq s ε r ε with s ε and r ε as in (3.4).

The following proposition summarizes the main results of this section. Proposition 6.1. Let pu ε q be a family of solutions to (1.2) satisfying (1.5). Then, up to the extraction of a subsequence, there are sequences px ε q Ω, pλ ε q p0, Vq, pα ε q R, ps ε q T xε,λε and pr ε q T u xε,λε such that

u ε α ε pψ xε,λε s ε r ε q (6.1)
and a point x 0 Ω such that, in addition to Proposition 5.1,

}∇r ε } 2 O ε λ ¡3{2 ε φ a px ε q λ ¡1 ε ¨, (6.2) 
φ a px ε q π apx ε q λ ¡1 ε π 32 ελ ε 1 op1q ¨ opλ ¡1 ε q , (6.3 
)

∇φ a pxq O ¡ ελ 1{2 ε λ ¡µ ε φ a px ε q λ ¡1{2 ε © for any µ 1 , (6.4) 
α 4¡ε ε 1 ε 2 log λ ε ¡ 4βλ ¡1 ε O ε φ a px ε qλ ¡1 ε ¨ opλ ¡1 ε q . (6.5) 
We will prove Proposition 6.1 through a series of propositions in the following subsections. Proof. Notice that ¡∆r ¡3U 5

x,λ 3α 4¡ε pψ x,λ s rq 5¡ε a g x,λ f x,λ ¨¡ aps rq ∆s, with g x,λ as in (A.4). Hence

» Ω |∇r| 2 ar 2 ¨ 3α 4¡ε » Ω pψ x,λ s rq 5¡ε r ¡ » Ω a U x,λ ¡ λ ¡1{2 |x ¡ y| s ¡ f x,λ ¨r . (6.7) By Lemma 3.5(b) § § § » Ω a g x,λ f x,λ ¡ s ¨r § § § À λ ¡3{2 }r} 6 . Now, » Ω pψ x,λ s rq 5¡ε r » Ω U 5¡ε
x,λ r p5 ¡ εq

» Ω U 4¡ε
x,λ r 2 p5 ¡ εq

» Ω U 4¡ε x,λ rs ¡ p5 ¡ εq » Ω U 4¡ε x,λ pλ ¡1{2 H a px, ¤q f x,λ qr T 3,ε , (6.8) 
where similarly as in the proof Lemma 3.5 we nd that |T 3,ε | À λ ¡2 }r} 6 }r} 3 6 . Moreover, similarly as in (5.13) we obtain

3α 4¡ε p5 ¡ εq » Ω U 4¡ε x,λ r 2 ¤ 15 » Ω U 4
x,λ r 2 op}r} 2 6 q.

Next, we write

» Ω U 4¡ε x,λ rs λ ¡ε{2 £ » Ω U 4 x,λ rs » Ω U 4 x,λ ¢ e ε log c 1 λ 2 |x¡y| 2 ¡ 1 rs .
The prefactor λ ¡ε{2 on the right side tends to 1 by Lemma 5.3. The rst integral in the paren- theses is bounded in (3.22). For the second integral we proceed again as in (5.13) and obtain §

§ § § § » Ω U 4 x,λ ¢ e ε log c 1 λ 2 |x¡y| 2 ¡ 1 rs § § § § § À λε U 4 |x ¡ y| 3{2 }r} 6 }s} 6 À ελ ¡1 }r} 6 ,
where we used (3.10) in the last inequality. Thus, recalling the bound on ε in (5.2), § § » Ω U 4¡ε

x,λ rs § § À λ ¡3{2 }r} 6 .

The fourth term on the right side of (6.8) is bounded, in absolute value, by a constant times

» Ω U 4 x,λ ¡ λ ¡1{2 |H a px, ¤q| |f x,λ | © |r| À ¡ λ ¡1 φ a pxq λ ¡2 © }r} 6 ,
where we used (3.23).

Using Lemma 5.4 to control the rst term on the right hand side of (6.8) and putting all the estimates into (6.7) we nally get 

» Ω ¡ |∇ψ x,λ | 2 aψ 2 x,λ ¡ 3α 4¡ε |ψ x,λ | 6¡ε © 2 » Ω ¢ ∇q ¤ ∇ψ x,λ aqψ x,λ ¡ 3p6 ¡ εq 2 α 4¡ε q|ψ x,λ | 4¡ε ψ x,λ R 0 (6.10) 
with

R 0 : ¡ » Ω ¡ |∇q| 2 aq 2 © 3α 4¡ε » Ω ¡ pψ x,λ qq 6¡ε ¡ |ψ x,λ | 6¡ε ¡ p6 ¡ εq|ψ x,λ | 4¡ε ψ x,λ q © .
We discuss separately the three terms that are involved in the identity (6.10).

First, we claim that

» Ω ¡ |∇ψ x,λ | 2 aψ 2 x,λ ¡ 3α 4¡ε |ψ x,λ | 6¡ε © p1 ¡ α 4¡ε q 3π 2 4 3π 2 8 α 4¡ε ε log λ Opε φ a pxqλ ¡1 λ ¡2 q .
Indeed, this follows in the same way as in the proof of Lemma 3.7 (a), together with the fact that

» Ω ¡ |ψ x,λ | 6¡ε ¡ ψ 6 x,λ © ¡ π 2 8
ε log λ Opε φ a pxqλ ¡1 λ ¡5{2 q . To prove the latter expansion, we write ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q ¡ f x,λ and expand, recalling

(5.4), |ψ x,λ | 6¡ε ¡ ψ 6 x,λ U 6¡ε x,λ ¡ U 6 x,λ O ¢ U 5 
x,λ Opφ a pxqλ ¡1 λ ¡5{2 q.

On the other hand, by an explicit computation,

» Ω ¡ U 6¡ε x,λ ¡ U 6 x,λ © » R 3 ¡ U 6¡ε x,λ ¡ U 6 x,λ © Opλ ¡3 q π 3{2 £ λ ¡ε{2 Γp 3¡ε 2 q Γp3 ¡ ε 2 q ¡ Γp 3 2 q Γp3q Opλ ¡3 q ¡ π 2 8 ε log λ Opε λ ¡3 q ,
proving the claimed expansion of the rst term on the left side of (6.10)

We turn now to the second term on the left side of (6.10) and claim that

» Ω ¢ ∇q ¤ ∇ψ x,λ aqψ x,λ ¡ 3p6 ¡ εq 2 α 4¡ε q|ψ x,λ | 4¡ε ψ x,λ ¡ 1 ¡ 3α 4¡ε © 3π 2 4 βλ ¡1 Opλ ¡2 q .
To show this, we proceed as in the proof of Lemma 3.7 (b) and use the equation for ψ x,λ to write

» Ω ¢ ∇q ¤ ∇ψ x,λ aqψ x,λ ¡ 3p6 ¡ εq 2 α 4¡ε q|ψ x,λ | 4¡ε ψ x,λ 3 ¢ 1 ¡ 6 ¡ ε 2 α 4¡ε » Ω qU 5 
x,λ

¡ 3p6 ¡ εq 2 » Ω q ¡ U 5¡ε x,λ ¡ U 5 x,λ © ¡ » Ω q ¢ 3p6 ¡ εq 2 p|ψ x,λ | 4¡ε ψ x,λ ¡ U 5¡ε
x,λ q apf x,λ g x,λ q .

The rst term on the right side was already computed in the proof of Lemma 3.7 (b) and the last term on the right side can be bounded in the same way as there, except that now, instead of (3.27), we use the bound

}∇q} 2 À λ ¡1 , (6.11) 
which follows from the bounds on s and r in Propositions 3.2 and 6.6. For the second term on the right side we proceed as in the proof of Lemma 5.4 and obtain §

§ § § » Ω q ¡ U 5¡ε
x,λ ¡ U 5

x,λ

© § § § § À ελ 1¡ε{2 » Ω |q|U 5 
x,λ |x ¡ y| ¤ ελ 1¡ε{2 U 5 |x ¡ y| 6{5 }q} 6 À ε}q} 6 À ελ ¡1 . By Proposition 5.5, this is Opλ ¡2 q.

Finally, we bound R 0 , the term on the right side of (6.10). Because of (6.11), the rst integral in the denition of R 0 is Opλ ¡2 q. The second integral is bounded, in absolute value, by a constant times

» Ω ¡ |ψ x,λ | 4¡ε q 2 |q| 6¡ε © À ψ x,λ 4¡ε 6 }q} 2 6 }q} 6¡ε 6 À λ ¡2 .
Inserting all the bounds in (6.10), we obtain the claimed bound. (6.12)

The proof of this proposition, which is the analogue of Proposition 3.8, is a rened version of the proof of Proposition 5.5. We integrate equation (1.2) for u against f λ ψ x,λ and we write the resulting equality in the form

» Ω ¡ ∇ψ x,λ ¤ ∇f λ ψ x,λ aψ x,λ f λ ψ x,λ ¡ 3α 4¡ε |ψ x,λ | 4¡ε ψ x,λ f λ ψ x,λ © ¡ » Ω ¡ ∇q ¤ ∇f λ ψ x,λ aqf λ ψ x,λ ¡ 3p5 ¡ εqα 4¡ε q|ψ x,λ | 4¡ε f λ ψ x,λ © 3p5 ¡ εqp4 ¡ εq 2 α 4¡ε » Ω q 2 |ψ x,λ | 2¡ε ψ x,λ f λ ψ x,λ R (6.13) with R 3α 4¡ε » Ω pψ x,λ qq 5¡ε ¡|ψ x,λ | 4¡ε ψ x,λ ¡p5¡εq|ψ x,λ | 4¡ε q¡ p5 ¡ εqp4 ¡ εq 2 |ψ x,λ | 2¡ε ψ x,λ q 2 ¨fλ ψ x,λ .
Lemma 6.5. As ε Ñ 0, the following holds.

(a)

»

Ω ¡ ∇ψ x,λ ¤ ∇f λ ψ x,λ aψ x,λ f λ ψ x,λ ¡ 3α 4¡ε |ψ x,λ | 4¡ε ψ x,λ f λ ψ x,λ © ¡2π φ a pxq λ ¡2 1 op1q ¨ π 2 16 ελ ¡1 1 op1q ¨ 2π 2 apxqλ ¡3 opλ ¡3 q . (b) » Ω ¡ ∇q ¤ ∇f λ ψ x,λ aqf λ ψ x,λ ¡ 3p5 ¡ εqα 4¡ε q|ψ x,λ | 4¡ε f λ ψ x,λ © ¡ 1 ¡ α 4¡ε ¨2π φ a pxq ¡ φ 0 pxq ¨λ¡2 Opελ ¡2 log λ φ a pxq λ ¡3 q opλ ¡3 q . (c) » Ω q 2 |ψ x,λ | 2¡ε ψ x,λ f λ ψ x,λ π 2 32 βγ λ ¡3 Opελ ¡2 φ a pxq λ ¡3 q opλ ¡3 q . (d) R opλ ¡3 q
The proof of Lemma 6.5 is independent of the expansion of α 4¡ε in Proposition 6.3. We only use the fact that α 1 op1q.

Proof. (a) As in the proof of Lemma 3.10 (a), see equation (3.31), we have

» Ω ¡ ∇ψ x,λ ¤ ∇f λ ψ x,λ aψ x,λ f λ ψ x,λ ¡ 3α 4¡ε |ψ x,λ | 4¡ε ψ x,λ f λ ψ x,λ © 3 » Ω ¡ U 5 x,λ ¡ α 4¡ε |ψ x,λ | 4¡ε ψ x,λ © f λ ψ x,λ ¡ » Ω apf x,λ g x,λ qf λ ψ x,λ .
The second integral on the right side was shown in the proof of Lemma 3.10 (a) to satisfy » Ω apf x,λ g x,λ qf λ ψ x,λ 2π p3 ¡ πq apxqλ ¡3 opλ ¡3 q .

We write the rst integral on the right side as

» Ω ¡ U 5 x,λ ¡ α 4¡ε |ψ x,λ | 4¡ε ψ x,λ © f λ ψ x,λ ¡ 1 ¡ α 4¡ε © » Ω U 5 x,λ f λ ψ x,λ ¡ α 4¡ε » Ω ¡ U 5¡ε x,λ ¡ U 5 x,λ © f λ ψ x,λ ¡ α 4¡ε » Ω ¡ |ψ x,λ | 4¡ε ψ x,λ ¡ U 5¡ε x,λ © f λ ψ x,λ . (6.14)
As shown in the proof of Lemma 3.10 (a),

» Ω U 5 x,λ f λ ψ x,λ 2π 3 φ a pxqλ ¡2 Opλ ¡3 q . Next, by Lemma A.2, » Ω 5¡ε x,λ ¡ U 5 x,λ ¨fλ ψ x,λ » Ω U 5¡ε
x,λ ¡ U 5

x,λ ¨fλ U x,λ

1 2 λ ¡3{2 » Ω U 5¡ε
x,λ ¡ U 5

x,λ ¨Ha px, ¤q opλ ¡3 q .

For the rst term, we use (5.20) and the bounds from the proof of Lemma 3.10 (a) to get

» Ω ¡ U 5¡ε
x,λ ¡ U 5

x,λ © f λ U x,λ ¡ π 2 48 ελ ¡1 p1 op1qq Opλ ¡4 q .

For the second term, we use the bound }U ¡ε x,λ ¡ 1} V Opε log λq and compute

λ ¡3{2 § § § § » Ω ¡ U 5¡ε x,λ ¡ U 5 x,λ © H a px, ¤q § § § § À ελ ¡3{2 log λ » Ω U 5 
x,λ H a px, ¤q À ελ ¡2 log λ opελ ¡1 q .

Concerning the last term on the right hand side of (6.14), we will prove

» Ω |ψ x,λ | 4¡ε ψ x,λ ¡U 5¡ε
x,λ ¨fλ ψ x,λ 2π 3 φ a pxqλ ¡2 1 op1q ¨¡2π apxq λ ¡3 Opφ a pxq 2 λ ¡3 q opλ ¡3 q.

(6.15) This will complete our discussion of the right hand side of (6.14) and hence the proof of (a).

The proof of (6.15) is similar to the corresponding argument in the proof of Lemma 3.10 (a), but we include some details. We bound pointwise

|ψ x,λ | 4¡ε ψ x,λ ¡ U 5¡ε x,λ ¡p5 ¡ εqλ ¡ 1 2 U 4¡ε x,λ H a px, ¤q 1 2 p5 ¡ εqp4 ¡ εqλ ¡1 U 3¡ε x,λ H a px, ¤q 2 O ¡ λ ¡3{2 U 2 x,λ |H a px, ¤q| 3 λ ¡5{2 |H a px, ¤q| 5 U 4 x,λ |f x,λ | |f x,λ | 5 ©
.

Using the bounds from Lemmas A.1 and A.2, we easily nd that the remainder term, when integrated against |f λ ψ x,λ | is opλ ¡3 q. Using expansion (B.5) we obtain, by an explicit calculation similar to (B.11) and (B.13),

» Ω U 4¡ε x,λ H a px, ¤qf λ ψ x,λ » Ω U 4¡ε
x,λ f λ U x,λ H a px, ¤q Opλ ¡5{2 φ a pxq 2 q opλ ¡5{2 q ¡ ¢ 2π [START_REF] Druet | Stability of the Pohoºaev obstruction in dimension 3[END_REF] Opεq

φ a pxq λ ¡ 3 ε 2 2π 5 apxq λ ¡ 5 2
Opλ ¡5{2 φ a pxq 2 q opλ ¡5{2 q ¡ 2π 15

φ a pxq λ ¡ 3 2 1 op1q ¨ 2π 5 apxq λ ¡ 5 2
Opλ ¡5{2 φ a pxq 2 q opλ ¡5{2 q , where we used Lemma 5.3. In the same way, we get

» Ω U 3¡ε
x,λ H a px, ¤q 2 f λ ψ x,λ Opλ ¡2 φ 2 a pxqq opλ ¡2 q.

This proves (6.15).

(b) As in the proof of Lemma 3.10 (b) we have

» Ω ¡ ∇q ¤ ∇f λ ψ x,λ aqf λ ψ x,λ ¡ 3p5 ¡ εqα 4¡ε |ψ x,λ | 4¡ε qf λ ψ x,λ © 3 » Ω q ¡ 5U 4 x,λ f λ U x,λ ¡ p5 ¡ εqα 4¡ε |ψ x,λ | 4¡ε f λ ψ x,λ © ¡ » Ω aq f λ f x,λ f λ g x,λ
¨.

According to (3.41), the second term on the right side is opλ ¡3 q. (Note that we now use the bound (6.11) instead of (3.27).) We write the rst integral as

» Ω q ¡ 5U 4 x,λ f λ U x,λ ¡ p5 ¡ εqα 4¡ε |ψ x,λ | 4¡ε f λ ψ x,λ © ¢ 5 ¡ 1 ¡ α 4¡ε © εα 4¡ε » Ω qU 4 x,λ f λ U x,λ p5 ¡ εqα 4¡ε » Ω q ¡ U 4 x,λ f λ U x,λ ¡ ψ 4 x,λ f λ ψ x,λ © p5 ¡ εqα 4¡ε » Ω q ¡ ψ 4 x,λ ¡ |ψ x,λ | 4¡ε © f λ ψ x,λ . According to (3.39), ¢ 5 ¡ 1 ¡ α 4¡ε © εα 4¡ε » Ω qU 4 x,λ f λ U x,λ ¢ 5 ¡ 1 ¡ α 4¡ε © εα 4¡ε ¢ ¡ 2π 15 
φ a pxq ¡ φ 0 pxq ¨λ¡2 Opλ ¡3 q ¡ 2π 3 1 ¡ α 4¡ε ¨
φ a pxq ¡ φ 0 pxq ¨λ¡2 Opελ ¡2 q opλ ¡3 q and according to (3.40), using (6.11) instead of (3.27),

» Ω q ¡ U 4 x,λ f λ U x,λ ¡ ψ 4 x,λ f λ ψ x,λ © Opφ a pxqλ ¡3 q opλ ¡3 q
Finally, for any xed δ p0, dpxqq and for any p ¡ 1 we have, by Lemma A.2, }ψ p

x,λ f λ ψ x,λ } L V pB δ pxq c Ωq O λ ¡ 3 p 2 ¨. (6.16) 
On the other hand, taking δ sucienctly small (but independent of ε) we obtain U x,λ À ψ x,λ À U x,λ on B δ pxq. The latter implies ψ ¡ε x,λ U ¡ε x,λ p1 O εqq on B δ pxq, and therefore }1 ¡ ψ ¡ε

x,λ } L V pB δ pxqq O ε log λ ¨.

Consequently, using (6.11) and (6.16

), § § § § » Ω q ¡ ψ 4 x,λ ¡ |ψ x,λ | 4¡ε © f λ ψ x,λ § § § § À }q} 6 ¡ ε log λ }ψ 4 x,λ f λ ψ x,λ } 6{5 λ ¡ 7 2 © À ελ ¡2 log λ λ ¡ 9 2 .
Collecting all the bounds, we arrive at the claimed expansion in (b).

(c) The relevant term with exponent 2 ¡ ε replaced by 2 was computed in Lemma 3.10 (c). The same computation, but with Proposition 6.2 instead of Proposition 3.4, gives

» Ω q 2 ψ 3 x,λ f λ ψ x,λ π 2 32 βγ λ ¡3 Opελ ¡2 φ a pxq λ ¡3 q opλ ¡3 q .
(The Opελ ¡2 q term comes from bounding

³ Ω rsψ 3 x,λ f λ ψ x,λ .)
We bound the dierence similarly as at the end of the previous part (b), namely, §

§ § § » Ω q 2 ¡ |ψ x,λ | 2¡ε ψ x,λ ¡ ψ 3 x,λ © f λ ψ x,λ § § § § À }q} 2 6 ¡ ε log λ }ψ 3 x,λ f λ ψ x,λ } 3{2 λ ¡3 © À ελ ¡3 log λ λ ¡5 opλ ¡3 q .
The proof of (d) uses similar bounds as in the rest of the proof and is omitted.

Proof of Proposition 6.4. Inserting the from Lemma 6.5 into (6.13), we obtain

φ a pxq 1 op1q ¨¡ π 32 ελ 1 op1q ¨¡ πapxqλ ¡1 ¡ ¡ 1 ¡ α 4¡ε © φ 0 pxq 15 π 32 βγ λ ¡1 opλ ¡1 q .
Inserting the expansion of α 4¡ε from Proposition 6.3, this becomes φ a pxq 1 op1q ¨¡ π 32 ελ 1 op1q ¨¡ πapxqλ ¡1 ¡ 4β φ 0 pxq λ ¡1 15 π 32 βγ λ ¡1 opλ ¡1 q .

Using the expansions (3.13) of β and γ, this can be simplied to φ a pxq 1 op1q ¨¡ π 32 ελ 1 op1q ¨¡ πapxqλ ¡1 opλ ¡1 q , which is the assertion. 

To control the boundary integrals involving q in this identity, we need the following lemma, which is the analogue of Lemma 3.13. Lemma 6.7. } fq fn } L 2 pfΩq À ε λ ¡3{2 φ a pxq λ ¡1 .

Before proving this lemma, let us use it to complete the proof of Proposition 6.6. In that proof, and later in this subsection, we will use the inequality

}q} 2 À ε λ ¡3{2 φ a pxq λ ¡1 , (6.19) 
This follows from the bound (3.10) on s and the bound in Proposition 6.2 on r.

Proof of Proposition 6.6. It follows from Lemma 6.7 and the bounds (6.19) and (3.49) that § § Irψ x,λ , qs

§ § À ελ ¡1{2 λ ¡2 φ a pxq λ ¡3{2 , § § Irqs § § À ε 2 λ ¡3 φ a pxq 2 λ ¡2 .
The claim thus follows from Lemma 3.12 and (6.18).

Proof of Lemma 6.7. Note that ¡∆q F with F : ¡3U together with (6.4) gives ∇φ a px 0 q 0, and (6.2) gives }∇r} 2 Opε λ ¡3{2 φ a pxqλ ¡1 q. By the bound on λ in (5.2), this proves the claimed bound on }∇r} 2 if φ a px 0 q $ 0. In case φ a px 0 q 0 we will see below that φ a pxq opλ ¡1 q and ε Opλ ¡2 q, so we again obtain the claimed bound.

Next, equation (6.3) shows that

lim εÑ0 ελ 32 π φ a px 0 q , (7.1) 
which is (1.12).

Equation (1.13) follows from (6.5). In case φ a px 0 q $ 0 this is immediate, and in case φ a px 0 q 0 we use, in addition, the expansion of β from Proposition 3.3 and the fact that ε opλ ¡1 q by (7.1).

Finally, let us assume φ a px 0 q 0 and prove (1.15). We apply Lemma 4.2 to the function upxq : φ a px x 0 q and get φ a pxq À |∇φ a pxq| 2 . From (6.4), together with the fact that ε opλ ¡1 q by (7.1), we then get φ a pxq opλ ¡1 q .

(7.2)

Inserting this into (6.3), we obtain π apxq λ ¡1 π 32 ελ 1 op1q ¨ opλ ¡1 q , which is (1.15). This completes the proof of Theorem 1.2.

7.2.

A bound on }w} V . To complete the proof of Theorem 1.3 it remains to establish a suitable bound on }w} V , as well as on }w} p for p ¡ 6. This is provided by the following modication of Moreover, for every µ ¡ 0, }w} V opλ µ q. (7.4) Proof. To prove the bound (7.3), let r ¡ 1 F given by (5.22). As in the proof of Proposition 

|F| À U 5¡ε x,λ |α 4¡ε ¡ 1| |U 5¡ε x,λ ¡ U 5 x,λ | U 4
x,λ p|w| ϕ x,λ q |w| 5 ϕ x,λ U x,λ |w| . (7.5) Using the bounds ε À λ ¡1 from Proposition 5.1 and |α 4¡ε ¡ 1| À ε log λ by Proposition 6.3, we can estimate, for every r ¡ 1,

» Ω ¡ U 5¡ε x,λ |α 4¡ε ¡ 1| |U 5 x,λ ¡ U 5¡ε x,λ | © |w| r À }w} r 3pr 1q ¢ }U 5¡ε x,λ }3r 3 2r 3 |α 4¡ε ¡ 1| }U 5 x,λ ¡ U 5¡ε x,λ }3r 3 2r 3 À }w} r 3pr 1q ε log λ}U x,λ } 5 5¤ 3r 3 2r 3 À }w} r 3pr 1q ε log λ λ 1 2 r¡1 r 1 ¤ η}w} r 1 3pr 1q C η plog λq r 1 λ ¡ r 3 2 ¤ η}w} r 1 3pr 1q C η λ ¡1 ,
Hence the right side of (4.10) fullls the same estimate as in the proof of Proposition 4.3, and we conclude (7.3) as there.

We now turn to the bound (7.4). From (5.10) we deduce that

wpxq 1 4π » Ω G 0 px, yqF pyq, (7.6) 
As in Proposition 4.3, we need to estimate }F} q for some q ¡ 3{2 using (7.5). We bound }U 5¡ε

x,λ |α 4¡ε ¡ 1|} q À pε log λ λ ¡1 q}U x,λ } 5 5q À λ

3 2 ¡ 3 q log λ for every q ¡ 3{2. Similarly, }U 5¡ε 
x,λ ¡ U 5

x,λ } q À ε log λ}U x,λ } 5 5q À λ 3 2 ¡ 3 q log λ for every q ¡ 3{2. The other terms resulting from (7.5) are identical to those already estimated in Proposition 4.3. As there, we thus obtain }F} q À λ 2¡ 3 q log λ. Letting q × 3{2 yields (7.4).

7.3. Proof of Theorem 1.3. At this point, the proof of Theorem 1.3 is almost identical to the proof of Theorem 1.6. We provide some details nevertheless.

By the bound }w} V opλ 1{2 q from Proposition 7.1 and Proposition 2.1, we have }u ε } V λ 1{2 opλ 1{2 q. Thus part (a) of Theorem 1.3 follows from (1.12) and (1.15), respectively.

To prove part (b), we rewrite equation (1.3) as

upzq 3 4π » Ω G a pz, yqupyq 5¡ε .
Fix again δ δ ε op1q with λ ¡1 opδ ε q, so that 3 4π ³ B δεpxq upyq 5 1 op1q. Then

3 4π » B δ pxq G a pz, yqupyq 5 3 4π » B δ pxq pG a pz, x 0 q op1qqupyq 5 λ ¡ 1 2 ¡ ε 2 G a pz, x 0 q opλ ¡ 1 2 ¡ ε 2 q.
On the other hand, by Lemmas 7.1 and A.1,

| »

ΩzB δ pxq G a pz, yqupyq 5¡ε | À }G a pz, ¤q} 2 p}U x,λ } 5¡ε L 10 pΩzB δ pxqq }w} 5¡ε 10 q À λ ¡5{2 δ ¡7{2 λ ¡3{2 .

Choosing δ λ ¡c with c 0 small enough and observing that λ ¡ε{2 1 op1q by Lemma 5.3, the proof of part (b) of Theorem 1.3 is complete.

Appendix A. Some useful bounds

In this section, we collect some bounds which will be of frequent use in our estimates.

Lemma A.1. Let x Ω and let 1 ¤ q V. As λ Ñ V, we have }U x,λ } L q pΩq À 6 9 9 8 9 9 7 λ ¡1{2 ,

1 ¤ q 3, λ ¡1{2 plog λq 1 3 q 3, λ 1 2 ¡ 3 q , q ¡ 3. (A.1) Moreover, we have f x i U x,λ pyq λ 5{2 y i ¡x i p1 λ 2 |x¡y| 2 q 3{2 with }f x i U x,λ } L q pΩq À 6 9 9 8 9 9 7 λ ¡1{2 , 1 ¤ q 3{2, λ ¡1{2 plog λq 2 3 , q 3{2, λ 3 2 ¡ 3 q , q ¡ 3{2. and f λ U x,λ pyq 1 2 λ ¡1{2 1¡λ 2 |x¡y| 2 p1 λ 2 |x¡y| 2 q 3{2 with
}f λ U } q ¤ λ ¡1 }U} q for any 1 ¤ q ¤ V. Moreover, for any ρ ρ λ with ρλ Ñ V, }U} L q pΩzBρpxqq À 6 9 9 8 9 9 7 λ ¡1{2 , 1 ¤ q 3, λ ¡1{2 plog λq 1 3 , q 3, λ ¡ 1 2 ρ 3¡q q , q ¡ 3, and }f λ U } L q pΩzBρpxqq À 6 9 9 8 9 9 7 λ ¡3{2 , 1 ¤ q 3, λ ¡3{2 plog λq 1 3 , q 3, λ ¡ 3 2 ρ 3¡q q , q ¡ 3, and }f x i U } L q pΩzBρpxqq À 6 9 9 8 9 9 7 λ ¡1{2 , 1 ¤ q 3{2, λ ¡1{2 plog λq 2 3 , q 3{2, λ ¡ 1 2 ρ 3¡2q q , q ¡ 3{2.

Proof. Taking R ¡ 0 such that Ω B R pxq, we have » Ω U q

x,λ À λ ¡3 q 2 » λR 0 r 2 p1 r 2 q q{2 À λ ¡3 q 2 » λR 1 r 2¡q À 6 9 9 8 9 9 7 λ ¡q{2 , 1 ¤ q 3, λ ¡q{2 plog λq 1 3 q 3, λ q 2 ¡3 , q ¡ 3. This proves (A.1). The remaining bounds follow by analogous explicit computations, which we omit.

Lemma A.2. We have U x,λ P U x,λ λ H 0 px, ¤q f x,λ , with }f x,λ } V À λ ¡5{2 d ¡3 , }f λ f x,λ } V À λ ¡7{2 d ¡3 , }f x i f x,λ } V À λ ¡5{2 d ¡4 .

(A.2)

The function ϕ x,λ : λ ¡1{2 H 0 px, ¤q f x,λ satises 0 ¤ ϕ x,λ ¤ U x,λ as well as }ϕ x,λ } 6 À λ ¡1{2 d ¡1{2 , }ϕ x,λ } V À λ ¡1{2 d ¡1 .

(A.3) Moreover, }f λ ϕ x,λ } 6 À λ ¡3{2 d ¡1{2 , }f λ ϕ x,λ } V À λ ¡3{2 d ¡1 and }f x i ϕ x,λ } 6 À λ ¡1{2 d ¡1{2 , }f x i ϕ x,λ } V À λ ¡1{2 d ¡2 .

Proof. Everything, except for the L V bounds on ϕ x,λ , f x i ϕ x,λ and f λ ϕ x,λ , is taken from [START_REF] Rey | The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent[END_REF]Prop. 1]. Since these functions are harmonic, the remaining bounds follow from the maximum principle.

Lemma A.3. We have We dene the function g x,λ pyq : λ ¡1{2 |x ¡ y| ¡ U x,λ pyq , (A.4)

Lemma A.4. As λ Ñ V, }g x,λ } p À λ 1{2¡3{p }f λ g x,λ } p À λ ¡1{2¡3{p hold if 1 ¤ p 3. Moreover, ∇g x,λ L p pR 3 q for all 1 ¤ p 3{2.

Proof. We have g x,λ pyq λ 1{2 g 0,1 pλpx ¡ yqq with g 0,1 pzq |z| ¡1 ¡ p1 |z| 2 q ¡1{2 . As |z| Ñ V, g 0,1 pzq |z| ¡1 ¡ 1 ¡ p1 |z| ¡2 q ¡1{2 © À |z| ¡3 . Hence g 0,1 L p pR 3 q for all 1 ¤ p 3, which yields }g x,λ } p ¤ λ 1{2¡3{p }g 0,1 } L p pR 3 q . Next, by direct calculation, ∇g 0,1 pzq ¡ z |z| 3 z p1 |z| 2 q 3{2 À |z| ¡4 as |z| Ñ V.

Hence ∇g 0,1 L p pR 3 q for all 1 ¤ p 3{2 and so is ∇g x,λ λ 3{2 p∇g 0,1 qpλpx ¡ yqq.

Finally, we observe f λ g x,λ pyq λ g x,λ λ 1{2 px ¡ yq ¤ p∇g 0,1 qpλpx ¡ yqq. By the above, we have z ¤ ∇g 0,1 L p pR 3 q for all 1 ¤ p 3 and thus }f λ g x,λ } p ¤ λ ¡1 }g x,λ } p λ ¡ 1 compact subsets of Ω. By symmetry of H b , this also |∇ x H b px, yq| ¤ C uniformly for x, y in compact subsets of Ω.

Step 3. We complete the proof of the lemma by treating the case when x remains in a compact subset, but y is close to the boundary. In particular, we may assume for what follows |x ¡ y| ¡1 À 1. |x ¡ y| Op|x ¡ y| 1 µ q p∇Ψ y pyq ∇Ψ x pxqqpy ¡ xq Op|x ¡ y| 1 µ q , (B.9) because b C 0,µ loc pΩq. We now argue that Ψ y Ñ Ψ x in C 1 loc pΩq, which implies ∇Ψ y pyq Ñ ∇Ψ x pxq.

Together with this, (B.8) follows from (B.9).

To justify the convergence of Ψ y we argue similarly as in [START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF]Lemma 2.5]. We note that ¡∆ z Ψ y F y pzq with F y pzq : bpzq ¡ bpyq |z ¡ y| ¡ bpzqH b py, zq . We claim that F y Ñ F x in L p loc pΩq for any p V. Indeed, the rst term in the denition of F y converges pointwise to F x in Ωztxu and is locally bounded, independently of y, since b C 0,1 loc pΩq. The implied constants can be chosen uniformly for x in compact subsets of Ω. |x ¡ y| 2 p1 λ 2 |x ¡ y| 2 q 7{2 opλ ¡5{2 q.

With the help of (B.5) and the bound (B.1) we get » H b |x ¡ y| 2 p1 λ 2 |x ¡ y| 2 q 7{2 4πφ b pxqλ ¡5 » V 0 t 4 dt p1 t 2 q 7{2 ¡ 2πbpxqλ ¡6 » V 0 t 5 dt p1 t 2 q 7{2 opλ ¡6 q 4 5 πφ b pxqλ ¡5 ¡ 16 15 πbpxqλ ¡6 opλ ¡6 q.

Combining the last two equations gives (B.11).

For the proof of (B.14) use again (B. [START_REF] Druet | Stability of the Pohoºaev obstruction in dimension 3[END_REF], but now we use (B.13) instead of (B.10). The constant comes from » V 0 t 4 dt p1 t 2 q 3 3π 16 .

We omit the details.

For the proof of (B.12) we use the explicit formula for f x i U x,λ in Lemma A.1. We split the integral into B d pxq and ΩzB d pxq. In the rst one, we used the bound (B.1) and the expansion (B.5). By oddness, the contribution coming from φ a pxq cancels, as does the contribution from °k$i f k φ b pxqpy k ¡ x k q. For the remaining term we use

» B d pxq U 4
x,λ pyqf x i U x,λ pyqpy i ¡ x i q 4π 3 λ ¡1{2

» λd 0 t 4 dt p1 t 2 q 7{2 4π 15 λ ¡1{2 Opλ ¡5{2 q .

As similar computation shows that the contribution from the error |x ¡ y| 1 µ on B d pxq is Opλ ¡1{2¡µ q. Finally, the bounds from Lemma A.1, show that the contribution from ΩzB d pxq is Opλ ¡5{2 q. This completes the proof.

Remark B.4. The proof just given shows that (B.12) holds with the error bound Opλ ¡1{2¡µ q for any 0 µ 1 instead of opλ ¡1{2 q.

B.2. C 2 dierentiability of φ a . In this subsection, we prove Lemma 4.1. The argument is independent of criticality of a and we give the proof for a general function b C 0,1 pΩq C Since b C 1,1 loc pΩq, and since f x i H b is bounded by Lemma B.1, the right side is in L V loc pΩq as a function of y. By elliptic regularity, f x i Ψpx, yq C 1,µ pΩq for every µ 1, as a function of y. In particular, the mixed derivative f y j f x i Ψpx, yq is in C 0,µ loc pΩq as a function of y. By symmetry, the same argument shows that the mixed derivative f x j f y i Ψpx, yq is in C 0,µ loc pΩq as a function of

x.

The proof of Lemma 4.1 is therefore complete.

(a) Ω R 3

 3 is a bounded, open set with C 2 boundary (b) a C 0,1 pΩq C 2,σ

2. 4 .

 4 Excluding boundary concentration. The goal of this subsection is to prove Proposition 2.5. d ¡1 Op1q. By integrating the equation for u against ∇u, one obtains the Pohozaev-type identity

4. 2 .

 2 Proof of Theorem 1.5. Equation (1.18) follows from Proposition 2.1, together with (3.2), (3.3) and (3.5

Proposition 4 . 3 . 3 p

 433 As ε Ñ 0, }w} p À λ ¡ for all p p6, Vq.

Thus, by Sobolev's inequality applied to v |w| r 1 2 ,

 2 

(4. 12 )

 12 By Hölder's inequality and the fact that 0 ¤ G 0 px, yq ¤ |x ¡ y| ¡1 , we have for every δ p0, 2q }w} V ¤ sup xΩ }G 0 px, ¤q} 3¡δ }F}3¡δ 2¡δ

  p1 op1qq by the relationship between ε and λ proved in Theorem 1.5. Moreover, U x,λ pxq λ 1{2 }U x,λ } V . This nishes the proof of part (a) in Theorem 1.6. The proof of part (b) necessitates much fewer prerequisites. It only relies on the crude expansion of u given in Proposition 2.1 and the rough bounds on w from Proposition 4.3. By applying p¡∆ aq ¡1 , we write (1.3) as upzq 3 4π » Ω G a pz, yqupyq 5 ¡ ε 4π » Ω G a pz, yqV pyqupyq .

5. 4 .

 4 Excluding boundary concentration. The goal of this subsection is to prove Proposition 5.8. d ¡1 Op1q.

¡λ 5 .¡λ

 5 ¡1{2 |H a px, ¤q| |f x,λ | © λ ¡5{2 |H a px, ¤q| 5 |f x,λ | Using the bounds from Lemma A.2, (B.1) and proceeding as in the proof of Lemma B.3, we obtain » ¡1{2 |H a px, ¤q| |f x,λ | © λ ¡5{2 |H a px, ¤q| 5 |f x,λ | 5

6. 3 .

 3 Expanding φ a pxq. In this subsection we prove the following important expansion. Proposition 6.4. As ε Ñ 0, φ a pxq π apxq λ ¡1 π 32 ελ 1 op1q ¨ opλ ¡1 q .

Proposition 4. 3 .Proposition 7 . 1 . 3 p

 3713 As ε Ñ 0, }w} p À λ ¡ for every p p6, Vq.

© 2 © 2

 22 Cλ ¡1 ∇φ 0 pxq opλ ¡1 d ¡2 q for some constant C ¡ 0, Opλ ¡1 d ¡2 q.For the proof of Lemma A.3 we refer to [31, Eq.(2.7)], [31, Eq.(2.10)], and [31, Eq.(B.25)] respectively.

(B. 4 )ΩG 0 1 |x ¡ z| 2 1∇Ψ x pxq 1 2

 40121 By the resolvent formula, we write H b px, yq H 0 px, yq 1 4π » px, zqbpzqG b pz, yq dz.ByStep 1, the derivatives of H 0 px, yq are uniformly bounded. We thus only need to consider the integral term. Its f x i -derivative equals» Ω f x i p 1 |x ¡ z| qbpzqG b pz, yq dz ¡ » Ω f x i H 0 px, zqbpzqG b pz, yq dz À » Ω |z ¡ y| dz 1 À 1 |x ¡ y| 2 1À 1 where we again used the fact that (B.2) holds for b 0, together with (B.4). This completes the proof of (B.2).The proof of (B.3) can be completed analogously. It suces to write the resolvent formula asH b px, yq H 0 px, yq 1 4π » Ω G b px, zqbpzqG 0 pz,yq dz in order to ensure that the f y i -derivative falls on G 0 and we can use (B.3) for b 0. We now prove an expansion of H b px, yq on the diagonal which improves upon [17, Lemma 2.5]. Lemma B.2. Let 0 µ 1. If y Ñ x, then uniformly for x in compact subsets of Ω, H b px, yq φ b pxq 1 2 ∇φ b pxq ¤ py ¡ xq ¡ bpxq 2 |y ¡ x| Op|y ¡ x| 1 µ q . (B.5)Proof. In [17, Lemma 2.5], it is proved thatΨ x pyq : H b px, yq ¡ φ b pxq bpxq 2 |y ¡ x| (B.6) is in C 1,µ loc pΩq (as a function of y) for any µ 1. Thus, by expanding Ψ x pyq in near y x, H b px, yq φ b pxq ∇Ψ x pxq ¤ py ¡ xq ¡ bpxq 2 |y ¡ x| Op|y ¡ x| 1 µ q . (B.7) This gives (B.5) provided we can show that for each xed x Ω, ∇φ b pxq . (B.8) Indeed, by using (B.7) twice with the roles of and y exchanged, subtracting and recalling H b px, yq H b py, xq, we get φ b pyq ¡ φ b pxq p∇Ψ y pyq ∇Ψ x pxqqpy ¡ xq bpyq ¡ bpxq 2

U 5 x,λ H b px, ¤q 4π 3 φ b pxqλ ¡1{2 ¡ 4π 3 bpxqλ 4 x 15 πφ b pxqλ ¡3{2 2 5 πbpxqλ 4 x 4 x 3 x 4 φ b pxq 2 λ

 533415544342 Thus, by dominated convergence it converges in L p loc pΩq for any p V. Convergence in L V loc pΩq of the second term in the denition of F y follows from the bound on the gradient of H b in Lemma B.1 . This proves the claim. By elliptic regularity, the convergence F y Ñ F x in L p loc pΩq implies the convergence Ψ y Ñ Ψ x in C 1,1¡3{p loc pΩq. This completes the proof. Lemma B.3. For any x Ω we have, as λÑ V, » Ω ¡3{2 opλ ¡3{2 q, ,λ f λ U x,λ H b px, ¤q ¡ 2 ¡5{2 opλ ¡5{2 q, ,λ f x i U x,λ H b px, ¤q 2π15 ∇φ b pxqλ ¡1{2 opλ ¡1{2 q, ,λ H b px, ¤q 2 π 2 φ b pxq 2 λ ¡1 opλ ¡1 q, ,λ f λ U x,λ H b px, ¤q 2 ¡ π 2 ¡2 opλ ¡2 q.(B.[START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] 

3 πφ

 3 Proof.Equalities (B.10) and (B.13) are proved in [17, Lemmas 2.5 and 2.6]. To prove (B.11), we writef λ U x,λ U x,λ 2λ ¡ λ 3{2 |x ¡ y| 2 p1 λ 2 |x ¡ y| 2 q 3{2 , (B.15) and therefore, using (B.10), » Ω H b px, yq U 4x,λ f λ U x,λ 2

  .48) This follows from the bound (3.10) on s and the bounds in Corollary 3.9 on λ ¡1 and r. Note that(3.48) is better than the bound (3.27) in the L 6 norm. Proof of Proposition 3.11. We shall make use of the bounds }ψ x,λ } 2 } fψ x,λ fn } L 2 pfΩq À λ ¡1{2 . The rst bound follows by writing ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q f x,λ and using the bounds in Lemmas A.1 and A.2 and in (B.1). For the second bound we write ψ x,λ P U x,λ ¡λ ¡1{2 pH a px, ¤q¡ H 0 px, ¤qq and use the bounds in Lemmas A.3 and B.1.

	(3.49)

Combining the bounds (3.49) with the corresponding bounds for q from Lemma 3.13 and (3.48) we obtain § § Irψ x,λ , qs § § À ελ ¡1 , Irqs À ε 2 λ ¡1 . Moreover, by (3.48) and (3.49),

  Op1q by Proposition 2.5. Then ζq H 2 pΩq H 1 0 pΩq ΩzB d{2 pxq, we have U x,λ À λ ¡1{2 and g x,λ À λ ¡5{2 . By Corollary 3.9, we have λ ¡5{2 Opελ ¡1{2 q. Moreover, we write ψ x,λ U x,λ ¡ λ ¡1{2 H a px, ¤q f x,λ and use the bounds on f x,λ and H a px, ¤q from Lemma A.2 and (B.1). 3{2 ε}ζU x,λ } 3{2 }q} 3{2 ελ ¡1{2 }|∇ζ||∇q|} 3{2 }p∆ζqq} 3{2 . 3{2 À }∇q} L 2 pΩzB d{2 pxqq ¤ }∇s} L 2 pΩzB d{2 pxqq }∇r} 2 À ελ ¡1{2 , where we used }∇s} L 2 pΩzB d{2 pxqq À λ ¡3{2 by Lemma 3.10 and }∇r} 2 À ελ ¡1{2 by Corollary 3.9. (Notice that for the estimate on s it is crucial that the integral avoids B d{2 pxq.) Moreover, by

	Lemma A.1,			
					(3.51)
	Indeed, on Combining (3.51) with inequality (2.12), we obtain
	fq fn	L 2 pfΩq	fpζqq fn	L 2 pfΩq	À }∆pζqq} 3{2 }ζF ¡ 2∇ζ ¤ ∇q ¡ p∆ζqq} 3{2
	À }ζq 5 } It remains to bound the norms on the right side. All terms, except for the rst one, are easily
	bounded. Indeed, by (3.48),	

and ¡∆pζqq ζF ¡ 2∇ζ ¤ ∇q ¡ p∆ζqq . We claim that ζ|F | À ζ|q| 5 εζU x,λ |q| ελ ¡1{2 . }q} 3{2 }p∆ζqq} 3{2 À }q} 2 À ελ ¡1{2 and }|∇ζ||∇q|}

  6.1. The bound on }∇r} 2 . The following proposition contains the bound on }∇r} 2 claimed in Proposition 6.1. Proposition 6.2. As ε Ñ 0, }∇r} 2 O ε λ ¡3{2 φ a pxq λ ¡1 ¨.

(6.6) 

  ¡1 φ a pxq λ ¡3{2 © }r} 6 op}r} 2 6 q . This, in combination with the coercivity inequality of Lemma 2.3, implies the claim. 6.2. Expanding α 4¡ε . In this subsection, we prove the expansion of α 4¡ε in Proposition 6.1.

	» ε λ Proposition 6.3. As ε Ñ 0, Ω |∇r| 2 ar 2 ¡ 15 U 4 x,λ r 2 ¨À ¡ α 4¡ε 1 ε 2 log λ ¡ 4βλ ¡1 O ε φ a pxqλ ¡1 ¨	opλ ¡1 q .	(6.9)
	Proof. As in the proof of Lemma 5.3 we integrate equation (1.2) against u. However, this time
	we write u αpψ x,λ qq and obtain » |∇pψ x,λ qq| 2	»	apψ x,λ qq 2 3α 4¡ε	»	pψ x,λ qq 6¡ε ,
	Ω	Ω		Ω	
	which we write as				

  6.4. Bounding ∇φ a . In this subsection we prove the bound on ∇φ a pxq in Proposition 6.1. Proposition 6.6. For every µ 1, as ε Ñ 0, |∇φ a pxq| À ελ 1{2 λ ¡µ φ a pxq λ ¡1{2 .Note that together with (5.2) it follows from Proposition 6.6 that x 0 is a critical point of φ a .The proof of Proposition 6.6 is a rened version of the proof of Proposition 5.8 and is again based on the Pohozaev identity(5.21). The latter reads, in the notation of (3.46), 0 Irψ x,λ s 2 Irψ x,λ , qs Irqs .

	(6.17)

  3α 4¡ε pψ x,λ qq 5¡ε ¡ aq apf x,λ g x,λ q .With the cut-o function ζ dened as in the proof of Lemma 2.6, we have ¡∆pζqq ζF ¡ 2∇ζ ¤ ∇q ¡ p∆ζqq . Now we follow the line of arguments in the of Lemma 3.13. The only dierence is that instead of (3.48) we have the bound }q} 2 À ε λ ¡3{2 φ a pxq λ ¡1 , (6.21) which follows from (3.10) and Proposition 6.2. Using this estimate we nd }∆pζqq} 3{2 À ε λ ¡3{2 φ a pxq λ ¡1 . Proposition 5.1 gives also |x ε ¡ x 0 | op1q. Moreover, the bound on λ in(5.2) 

	In combination with (2.12), this proves the claim.	
	7. Proof of Theorems 1.2 and 1.3	
	7.1. Proof of Theorem 1.2. Equation (1.10) follows from Proposition 5.1, together with (3.2),
	(3.3) and (3.5).	
	5	
	x,λ	
	Arguing as in (3.51) we deduce that	
	ζ|F | À ζ|q| 5¡ε |q| λ ¡5{2 .	(6.20)

  4.3, we obtain the same bound (4.10), where similarly to (4.11), F satises

  2,σ loc pΩq for some 0 σ 1. The following argument is similar to[START_REF] Frank | Energy asymptotics in the three-dimensional BrezisNirenberg problem[END_REF] Lemma 2.5], where a rst-order dierentiability result is proved, and to[START_REF] Del Pino | The BrezisNirenberg problem near criticality in dimension 3[END_REF] Lemma A.1], where it is shown thatφ b C V pΩq for constant b. Let Ψpx, yq : H b px, yq 1 4 bpxq bpyq ¨|x ¡ y|, px, yq Ω ¢ Ω.Then φ b pxq Ψpx, xq, so it suces to show that Ψ C 2 pΩ ¢ Ωq. Using ¡∆ y |x ¡ y| ¡2|x ¡ y| ¡1 and ¡∆ y H b px, yq bpyqG b px, yq, we have ¡∆ y Ψpx, yq ¡bpyqH b px, yq ¡ 1 Since b C 2,σ loc pΩq and since H b is Lipschitz by Lemma B.1, the right side is in C 0,σ loc pΩq as a function of y. By elliptic regularity, Ψpx, yq is in C 2,σIt remains to justify the existence of mixed f y j f x i Ψpx, yq. For this, we carry out a similar elliptic regularity argument for the function f x i Ψpx, yq. We have ¡∆ y f x i Ψpx, yq ¡bpyqf x i H b px, yq ¡ 1 4 ∆bpyqx i ¡ y i |x ¡ y| ¡ 1 2 f i bpxq ¡ f i bpyq |x ¡ y| 1 2x i ¡ y i |x ¡ y| 3 bpxq ¡ bpyq ¡ ∇bpyq ¤ px ¡ yq

				(B.16)
	2	bpxq ¡ bpyq ¡ ∇bpyq ¤ px ¡ yq |x ¡ y|	¡ 1 4	∆bpyq|x ¡ y|.

loc pΩq as a function of y. Since Ψpx, yq is symmetric in x and y, we infer that Ψpx, yq is in C 2,σ loc pΩq as a function of x.

¨.

© }f λ U x,λ } 6 }U x,λ } 5 5 }f λ ϕ x,λ } V ¡ }w} 5¡ε 6 }ϕ x,λ } 5¡ε 6 © }f λ ϕ x,λ } 6 À λ ¡2 d ¡1 λ ¡1 }w} 2 6, where in the last inequality we used the bounds from Lemmas A.1 and A.2.

¡

p }z ¤ ∇g 0,1 } L p pR 3 q for all 1 ¤ p 3.

support through US National Science Foundation grants DMS-1363432 and DMS-1954995 (R.L.F.) and through ANR BLADE-JC ANR-18-CE40-002 (T.K.) is acknowledged. T.K. thanks Paul Laurain for several useful discussions. The authors are grateful to Haim Brézis for helpful remarks on a rst draft of this manuscript.

Appendix B. Properties of the functions H a px, yq In this appendix, we prove some properties of H a px, yq needed in the proofs of the main results.

Since these properties hold independently of the criticality of a, we state them for a generic function b which satises the same regularity conditions as a, namely, b CpΩq C with C uniform for x in compact subsets of Ω.

Proof.

Step 1. We rst prove the bounds for the special case b 0, which we shall need as an ingredient for the general proof. Since H 0 px, ¤q is harmonic, we have ∆ y ∇ y H 0 px, yq 0. Moreover, we have the bound ∇ y G 0 px, yq À |x ¡ y| ¡2 uniformly for x, y Ω [36, Theorem 2.3]. This implies that for x in a compact subset of Ω and for y fΩ,

We now conclude by the maximum principle.

The proof for the bound on ∇ x H 0 px, yq is analogous, but simpler, because ∇ x G 0 px, yq 0 for y fΩ.

Step 2. For general b, we rst prove the bounds for both x and y lying in a compact subset of Ω. By [17, proof of Lemma 2.5] we have

µ pKq ¤ C for every 0 µ 1 and every compact subset K of Ω, and with C uniform for x in compact subsets. This shows that |∇ y H b px, yq| ¤ C uniformly for x, y in