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ENERGY ASYMPTOTICS IN THE BREZIS–NIRENBERG PROBLEM.
THE HIGHER-DIMENSIONAL CASE

RUPERT L. FRANK, TOBIAS KÖNIG, AND HYNEK KOVAŘÍK

Abstract. For dimensions N ě 4, we consider the Brézis-Nirenberg variational problem of finding

SpεV q :“ inf
0ıuPH1

0 pΩq

ş

Ω
|∇u|2 dx` ε

ş

Ω
V |u|2 dx

´

ş

Ω
|u|q dx

¯2{q
,

where q “ 2N
N´2

is the critical Sobolev exponent, Ω Ă RN is a bounded open set and V : Ω Ñ R is a
continuous function. We compute the asymptotics of Sp0q´SpεV q to leading order as εÑ 0`. We
give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular,
we characterize the concentration points as being extrema of a quotient involving the Robin function.
This complements the results from our recent paper in the case N “ 3.

1. Introduction and main results

1.1. Setting of the problem. Let N ě 4 and let Ω Ă RN be a bounded open set. For ε ą 0

and a function V P CpΩq, Brézis and Nirenberg study in their famous paper [3] the quotient
functional

SεV rus :“

ş

Ω |∇u|
2 dx` ε

ş

Ω V |u|
2 dx

´

ş

Ω |u|
q dx

¯2{q
, q “

2N

N ´ 2
, (1.1)

and the corresponding variational problem of finding

SpεV q :“ inf
0ıuPH1

0 pΩq
SεV rus . (1.2)

This number is to be compared with

SN “ πNpN ´ 2q

ˆ

ΓpN{2q

ΓpNq

˙2{n

,

the sharp constant [10, 11, 1, 13] in the Sobolev inequality. Indeed, in [3] it is shown that SpεV q ă SN
as soon as

N pV q :“ tx P Ω : V pxq ă 0u (1.3)

is non-empty. This behavior is in stark contrast to the case N “ 3 also treated in [3], where there
is an εV ą 0 such that SpεV q “ SN for all ε P p0, εV s even if N pV q is non-empty.
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The purpose of this paper is, for N ě 4, to describe the asymptotics of SN ´ SpεV q to leading
order as εÑ 0, as well as the asymptotic behavior of corresponding (almost) minimizing sequences
and, in particular, their concentration behavior. This is the higher-dimensional complement to our
recent paper [6], where analogous results are shown in the more difficult case N “ 3.

Notation. To prepare the statement of our main results, we now introduce some key objects
for the following analysis. An important role is played by the Green’s function of the Dirichlet
Laplacian on Ω, which in the sense of distributions satisfies, in the normalization of [9],

$

’

&

’

%

´∆xGpx, yq “ pN ´ 2qωN δy in Ω,

Gpx, yq “ 0 on BΩ,

(1.4)

where ωN is the surface of the unit sphere in RN , and δy denotes the Dirac delta function centered
at y. We denote by

Hpx, yq “
1

|x´ y|N´2
´Gpx, yq (1.5)

the regular part of G. The function Hpx, ¨q, defined on Ωztxu, extends to a continuous function on
Ω and we may define the Robin function

φpxq :“ Hpx, xq . (1.6)

Using this function, we define the numbers

σN pΩ, V q :“ sup
xPN pV q

ˆ

φpxq´
2

N´4 |V pxq|
N´2
N´4

˙

, N ě 5 ,

σ4pΩ, V q :“ sup
xPN pV q

´

φpxq´1|V pxq|
¯

, N “ 4 ,

which will turn out to essentially be the coefficients of the leading order term in SN ´SpεV q.

Another central role is played by the family of functions

Ux,λpyq “
λpN´2q{2

p1` λ2|x´ y|2qpN´2q{2
x P RN , λ ą 0. (1.7)

It is well-known that the Ux,λ are exactly the optimizers of the Sobolev inequality on RN .

Since (1.1) is a perturbation of the Sobolev quotient, it is reasonable to expect the Ux,λ to be nearly
optimal functions for (1.2). However, since (1.2) is set on H1

0 pΩq, we consider, as in [2], the functions
PUx,λ P H

1
0 pΩq uniquely determined by the properties

∆PUx,λ “ ∆Ux,λ in Ω, PUx,λ “ 0 on BΩ . (1.8)

Moreover, let
Tx,λ :“ span

 

PUx,λ, BλPUx,λ, BxiPUx,λ pi “ 1, 2, . . . , Nq
(

and let TKx,λ be the orthogonal complement of Tx,λ in H1
0 pΩq with respect to the inner product

ş

Ω ∇u ¨∇v dy.

In what follows we denote by } ¨ } the L2´norm on Ω. Finally, given a set X and two functions
f1, f2 : X Ñ R, we write f1 À f2 if there exists a numerical constant c such that f1pxq ď c f2pxq

for all x P X.
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1.2. Main results. Throughout this paper and without further mention we assume that the fol-
lowing properties are satisfied.

Assumption 1.1. The set Ω Ă RN , N ě 4, is open and bounded and has a C2 boundary. Moreover,
V P CpΩq and N pV q ‰ H, with N pV q given by (1.3).

Here is our first main result. It gives the asymptotics of SN ´ SpεV q to leading order in ε.

Theorem 1.2. As εÑ 0`, we have

SpεV q “ SN ´ CN σN pΩ, V q ε
N´2
N´4 ` opε

N´2
N´4 q if N ě 5 (1.9)

and
SpεV q “ S4 ´ exp

´

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1
¯

if N “ 4. (1.10)

Here the constants CN are defined in (1.14) below.

Our second main result shows that the blow-up profile of an arbitrary almost minimizing sequence
puεq is given to leading order by the family of functions PUx,λ. Moreover, we give a precise charac-
terization of the blow-up speed λ “ λε and of the point x0 around which the uε concentrate.

Theorem 1.3. Let puεq Ă H1
0 pΩq be a family of functions such that

lim
εÑ0

SεV ruεs ´ SpεV q
SN ´ SpεV q

“ 0 and
ż

Ω
|uε|

q dx “

ˆ

SN
NpN ´ 2q

˙

q
q´2

. (1.11)

Then there are pxεq Ă Ω, pλεq Ă p0,8q, pαεq Ă R and pwεq Ă H1
0 pΩq with wε P T

K
xε,λε

such that

uε “ αε
`

PUxε,λε ` wε
˘

(1.12)

and, along a subsequence, xε Ñ x0 for some x0 P N pV q. Moreover,
$

&

%

φpx0q
´ 2
N´4 |V px0q|

N´2
N´4 “ σN pΩ, V q, N ě 5,

φpx0q
´1|V px0q| “ σ4pΩ, V q , N “ 4,

$

&

%

}∇wε} “ opε
N´2
2N´8 q, N ě 5,

}∇wε} ď exp
´

´ 2
ε

`

1` op1q
˘

σ4pΩ, V q
´1
¯

, N “ 4,
$

&

%

limεÑ0 ε λ
N´4
ε “

N pN´2q2 aN φpx0q

2 bN |V px0q|
, N ě 5,

limεÑ0 ε lnλε “
2φpx0q

|V px0q|
, N “ 4,

$

’

’

’

&

’

’

’

%

αε “ s

ˆ

1`DN ε
N´2
N´4 ` opε

N´2
N´4 q

˙

, N ě 5,

αε “ s

ˆ

1` exp
´

´ 4
ε

`

1` op1q
˘

σ4pΩ, V q
´1
¯

˙

, N “ 4,
for some s P t˘1u .

Here the constants aN , bN and DN are defined in (1.13) and (1.15) below.

The coefficients appearing in Theorems 1.2 and 1.3 are

aN :“

ż

RN

dz

p1` z2qpN`2q{2
, bN :“

$

&

%

ş

RN
dz

p1`z2qN´2 , N ě 5,

ω4, N “ 4,
(1.13)



4 RUPERT L. FRANK, TOBIAS KÖNIG, AND HYNEK KOVAŘÍK

as well as

CN :“ S
2´N

2
N pNpN ´ 2qq

N´2
2

N ´ 4

N ´ 2

˜

NpN ´ 2q2

2

¸
2

4´N

a
´ 2
N´4

N b
N´2
N´4

N , N ě 5, (1.14)

and

DN :“ a
´ 2
N´4

N b
N´2
N´4

N S
´N

2
N

`

NpN ´ 2q
˘
N
2
´N´2
N´4

ˆ

N ´ 2

2

˙´N´2
N´4

, N ě 5. (1.15)

A simple computation using beta functions yields the numerical values

aN “
ωN
N
, N ě 4, and bN “ ωN

Γ
´

N
2

¯

Γ
´

N
2 ´ 2

¯

2 ΓpN ´ 2q
, N ě 5.

1.3. Discussion. Let us put our main results, Theorems 1.2 and 1.3, into perspective with respect
to existing results in the literature.

Of course, minimizers of the variational problem (1.2) satisfy the corresponding Euler–Lagrange
equation. It is natural to study general positive solutions of this equation, even if they do not arise
as minimizers of (1.2). In the special case where V is a negative constant, Brézis and Peletier [4]
discussed the concentration behavior of such general solutions and made some conjectures, which
were later proved by Han [7] and Rey [8]. Probably one can use their precise concentration results
to give an alternative proof of our main results in the special case where V is constant and probably
one can even extend the analysis of Han and Rey to the case of non-constant V .

Our approach here is different and, we believe, simpler for the problem at hand. We work directly
with the variational problem (1.2) and not with the Euler–Lagrange equation. Therefore, our
concentration results are not only true for minimizers but even for ‘almost minimizers’ in the sense
of (1.11). We believe that this is interesting in its own right. On the other hand, a disadvantage of
our method compared to the Han–Rey method is that it gives concentration results only in H1 norm
and not in L8 norm and that it is restricted to energy minimizing solutions of the Euler–Lagrange
equation.

In the special case where V is a negative constant, our results are very similar to results obtained
by Takahashi [12], who combined elements from the Han–Rey analysis (see, e.g., [12, Equation
(2.4) and Lemma 2.6]) with variational ideas adapted from Wei’s treatment [14] of a closely related
problem; see also [5]. Takahashi obtains the energy asymptotics in Theorem 1.2 as well as the
characterization of the concentration point and the concentration scale in Theorem 1.3 under the
assumption that uε is a minimizer for (1.2). Thus, in our paper we generalize Takahashi’s results
to non-constant V and to almost minimizing sequences and we give an alternative, self-contained
proof which does not rely on the works of Han and Rey.

The present work is a companion paper to [6] relying on the techniques developed there in the three
dimensional case. In particular, Theorems 1.2 and 1.3 should be compared with [6, Theorems 1.3
and 1.7], respectively. Although the expansions for N ě 4 have the same structure as in the case
N “ 3, the latter case is more involved. In fact, when N “ 3, the coefficient of the leading order
term, namely the term of order ε, vanishes and one has to expand the energy to the next order,
namely ε2.
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Besides the extensions of known results that we achieve here, we also think it is worthwhile from a
methodological point of view to present our arguments again in the conceptually easier case N ě 4.
In the three-dimensional case the basic technique is iterated twice, which to some extent obscures
the underlying simple idea. Moreover, we hope our work sheds some new light on the similarities
and discrepancies between the two cases.

The structure of this paper is as follows. In Section 2 we prove the upper bound from Theorem 1.2
by inserting the PUx,λ as test functions. The proof of the corresponding lower bound is prepared
in Sections 3 and 4, where we derive a crude asymptotic expansion for a general almost minimizing
sequence puεq and the corresponding expansion of SεV ruεs. Section 5 contains the proof of Theorems
1.2 and 1.3. A crucial ingredient there is the coercivity inequality (5.1) from [9], which allows us
to estimate the remainder terms and to refine the aforementioned expansion of uε. Finally, an
appendix contains two auxiliary technical results.

2. Upper bound

The computation of the upper bound to SpεV q uses the functions PUx,λ, with suitably chosen x

and λ, as test functions. The following theorem gives a precise expansion of the value SεV rPUx,λs.
To state it, we introduce the distance to the boundary of Ω as

dpxq “ distpx, BΩq, x P Ω.

Theorem 2.1. Let x “ xλ be a sequence of points such that dpxqλÑ8. Then as λÑ8, we have
ż

Ω
|∇PUx,λ|2 dy “ NpN ´ 2q

ˆ

SN
NpN ´ 2q

˙

q
q´2

`NpN ´ 2q aN λ
2´N φpxq `Oppdpxqλq

4
3
´N q ,

(2.1)

ż

Ω
V PU2

x,λ dy “

$

’

&

’

%

λ´2 bN V pxq `O
´

pdpxqλq2´N
¯

` opλ´2q, N ě 5,

log λ
λ2 b4 V pxq `O

`

pdpxqλq´2
˘

` o
´

log λ
λ2

¯

N “ 4,
(2.2)

and
ż

Ω
|PUx,λ|

q dy “

ˆ

SN
NpN ´ 2q

˙

q
q´2

´ q aN λ
2´N φpxq ` oppdpxqλq2´N q. (2.3)

In particular, as λÑ8,

SεV rPUx,λs “

$

’

&

’

%

SN`
´

SN
NpN´2q

¯
2

2´q
´

NpN´2q aN φpxq
λN´2 ` bN ε

V pxq
λ2

¯

` oppdpxqλq2´N q ` opελ´2q, N ě 5,

S4 `
8
S4

´

8 a4 φpxq
λ2 ` b4 ε

V pxq log λ
λ2

¯

` oppdpxqλq´2q ` opε log λ
λ2 q, N “ 4.

(2.4)

In view of Proposition 3.1 below, the assumption dpxqλÑ8 in Theorem 2.1 is no restriction, even
when dealing with general almost minimizing sequences.
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Corollary 2.2. As εÑ 0`, we have

SpεV q ď SN ´ CN σN pΩ, V q ε
N´2
N´4 ` opε

N´2
N´4 q if N ě 5 (2.5)

and

SpεV q ď S4 ´ exp
´

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1
¯

if N “ 4. (2.6)

Proof of Corollary 2.2. By [9, (2.8)], we have

dpxq2´N À φpxq À dpxq2´N . (2.7)

(Note that this bound uses the C2 assumption on Ω.) Since, moreover, V “ 0 on BN pV qzBΩ,
the function φ´

2
N´4 |V |

N´2
N´4 can be extended to a continuous function on N pV q which vanishes on

BN pV q. Thus there is z0 P N pV q such that

σN pΩ, V q “ φpz0q
´ 2
N´4 |V pz0q|

N´2
N´4 , N ě 5. (2.8)

The corollary for N ě 5 now follows by choosing x “ z0 in (2.4) and optimizing the quantity
NpN´2q aN φpz0q

λN´2 ` bN ε
V pz0q
λ2 in λ. The optimal choice is

λpεq “

˜

N pN ´ 2q2 aN φpz0q

2 bN |V pz0q|

¸
1

N´4

ε´
1

N´4 , (2.9)

and (2.5) follows from a straightforward computation.

Similarly, if N “ 4, since φpyq
|V pyq| is a positive continuous function on N pV q which goes to `8 as

y Ñ BN pV q, we find some z0 P N pV q such that

σ4pΩ, V q “
φpz0q

|V pz0q|
. (2.10)

Thus we may choose x “ z0 in (2.4) and optimize the quantity Aλ´2´Bελ´2 log λ in λ ą 0, where
A “ 8 a4 φpz0q ` op1q and B “ b4 |V pz0q| ` op1q. The optimal choice is

λpεq “
?
e exp

ˆ

A

Bε

˙

. (2.11)

Inserting this into (2.4), we get

SpεV q ď SεV rPUx,λpεqs “ S4 ´
4b4
eS4

ε|V pz0q| exp

ˆ

´
16 a4 pφpz0q ` op1qq

b4 ε |V pz0q| ` op1q

˙

“ S4 ´ exp
´

´
4

ε

`

1` op1q
˘

inf
xPN pV q

φpxq

|V pxq|

¯

,

where we have used the fact that

ε b exp
´

´
a

ε

¯

“ exp
´

´
a

ε
` o

´1

ε

¯¯

, εÑ 0` (2.12)

holds for all a ě 0 and all b ą 0.

This completes the proof of (2.6), and thus of Corollary 2.2. �
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Proof of Theorem 2.1. We prove equations (2.1)–(2.3) separately. Then expansion (2.4) follows by
a straightforward Taylor expansion of the quotient functional SεV rPUx,λs.

Proof of (2.1). Since the Ux,λ satisfy the equation

´∆yUx,λpyq “ NpN ´ 2qUx,λpyq
q´1, y P RN , (2.13)

it follows using integration by parts that
ż

Ω
|∇PUx,λ|2 dy “ NpN ´ 2q

ż

Ω
U q´1
x,λ PUx,λ dy.

On the other hand, by [9, Prop. 1] we know that

PUx,λ “ Ux,λ ´ ϕx,λ, ϕx,λ “
Hpx, ¨q

λpN´2q{2
` fx,λ, (2.14)

where
}fx,λ}L8pΩq “ O

´

λ´pN`2q{2 dpxq´N
¯

, λÑ8. (2.15)

By putting the above equations together we obtain
ż

Ω
|∇PUx,λ|2 dy “ NpN ´ 2q

ˆ
ż

Ω
U qx,λ dy ´ λ

2´N
2

ż

Ω
U q´1
x,λ Hpx, ¨q dy ´

ż

Ω
U q´1
x,λ fx,λ dy

˙

. (2.16)

A direct calculation shows that
ż

Ω
U qx,λ dy “

ż

RN
U qx,λ dy `Oppdpxqλq´N q “

ˆ

SN
NpN ´ 2q

˙

q
q´2

`Oppdpxqλq´N q. (2.17)

Moreover, for any x P Ω we have

dpxq2´N À }Hpx, ¨q}L8pΩq À dpxq2´N (2.18)

and
sup
yPΩ

|∇yHpx, yq| À dpxq1´N , (2.19)

see [9, Sec. 2 and Appendix].

Now let ρ P p0, dpxq2 q. A direct calculation using (1.7), (2.18) and (2.19) shows that
ż

Bρpxq
U q´1
x,λ Hpx, ¨q dy “ λ1`N

2

`

φpxq `Opρ dpxq1´N q
˘

ż

Bρpxq

dy

p1` λ2|x´ y|2qpN`2q{2

“ λ1´N
2 aN

´

φpxq `Opρ dpxq1´N q
¯

p1`Oppλ ρq´2qq

and
ż

ΩzBρpxq
U q´1
x,λ Hpx, ¨q dy “ λ1`N

2 Opdpxq2´N q
ż 8

ρ

rN´1 dr

p1` λ2 r2q
N`2

2

“ λ1´N
2 Opdpxq2´N q

ż 8

ρλ

tN´1 dt

p1` t2q
N`2

2

“ λ1´N
2 O

´

dpxq2´N pλ ρq´2
¯

.
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Hence for the second term on the right hand side of (2.16) we get

λ
2´N

2

ż

Ω
U q´1
x,λ Hpx, ¨q dy “ λ2´N aN φpxq ` λ

2´N O
´

ρ dpxq1´N
¯

` λ2´N O
´

dpxq2´N pλ ρq´2
¯

.

(2.20)

As for the last term on the right hand side of (2.16), we note that in view of (2.15)
ˇ

ˇ

ˇ

ˇ

ż

Ω
U q´1
x,λ fx,λ dy

ˇ

ˇ

ˇ

ˇ

ď }fx,λ}L8pΩq

ż

RN
U q´1
x,λ dy “ }fx,λ}L8pΩq aN λ

1´N
2 “ O

´

pλ dpxqq´N
¯

.

The claim thus follows from (2.16) by choosing ρ “ dpxq1{3λ´2{3 in (2.20). (Notice that ρ “
dpxqpdpxqλq´2{3q ď

dpxq
2 for λ large enough.)

Proof of (2.2). We have
ż

Ω
V PU2

x,λ dy “

ż

Ω
V U2

x,λ dy `

ż

Ω
V pϕ2

x,λ ´ 2 Ux,λ ϕx,λq dy . (2.21)

Since by [9, Prop. 1],

0 ď ϕx,λpyq ď Ux,λpyq @ y P Ω, (2.22)

together with (2.14), (2.15) and (2.18) we obtain the following upper bound on the last integral in
(2.21),

ˇ

ˇ

ˇ

ż

Ω
V pϕ2

x,λ ´ 2 Ux,λ ϕx,λq dy
ˇ

ˇ

ˇ
ď 2 }V }L8pΩq }ϕx,λ}L8pΩq

ż

Ω
Ux,λ dy “ O

´

pdpxqλq2´N
¯

.

To treat the first term on the right hand side of (2.21), first assume N ě 5. Choose a sequence
ρ “ ρλ such that ρ ď dpxq, ρÑ 0 and ρλÑ8 as λÑ8. (This is always possible, whether or not
dÑ 0.) Then, by continuity of V ,

ż

Ω
V U2

x,λ dy “ pV pxq ` op1qq

ż

Bρpxq
U2
x,λ dy `

ż

ΩzBρpxq
V U2

x,λ dy

“ λ´2 bN V pxq ` opλ
´2q `O

˜

ż

ΩzBρpxq
U2
x,λ dy

¸

“ λ´2 bN V pxq ` opλ
´2q `O

´

λ´2pρλq´N`4
¯

“ λ´2 bN V pxq ` opλ
´2q.

Similarly, in the case N “ 4 we let Bτ pxq and BRpxq be two balls centered at x with radii τ and
R chosen such that Bτ pxq Ă Ω Ă BRpxq and split the last integration in two parts as follows.
Extending V by zero to BRpxqzΩ we get

ż

ΩzBτ pxq
V U2

x,λ dy “

ż

BRpxqzBτ pxq
V U2

x,λ dy ď ω4 }V }L8pΩq

ż R

τ

λ2

p1` λ2|x´ y|2q2
r3 dr

“ ω4 }V }L8pΩq λ
´2

ż Rλ

τλ

t3

p1` t2q2
dt “ Opλ´2 logpR{τqq. (2.23)
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On the other hand, denoting by oτ p1q a quantity that vanishes as τ Ñ 0 and assuming that τλÑ8

we get
ż

Bτ pxq
V U2

x,λ dy “ b4 V pxq

ż τ

0

λ2 r3 dr

p1` λ2|x´ y|2q2
` oτ p1q

ż τ

0

λ2 r3 dr

p1` λ2|x´ y|2q2

“ b4 λ
´2 V pxq

ż τλ

0

t3 dt

p1` t2q2
` λ´2 oτ p1q

ż τλ

0

t3 dt

p1` t2q2

“ b4
log λ

λ2
V pxq ` oτ p1qO

ˆ

log λ

λ2

˙

`O
ˆ

log τ

λ2

˙

.

By choosing τ “ 1
log λ and taking into account (2.23) we arrive at (2.2) in case N “ 4.

Proof of (2.3).

Recall that q ą 2. Hence from the Taylor expansion of the function t ÞÑ tq on an interval r0, bs it
follows that for any a P r0, bs we have

| bq ´ pb´ aqq ´ q bq´1 a | ď
qpq ´ 1q

2
bq´2 a2. (2.24)

Because of (2.22) and (2.14) we can apply (2.24) with b “ Ux,λpyq and a “ ϕx,λpyq to obtain the
following point-wise upper bound:

ˇ

ˇPU qx,λ ´ U
q
x,λ ` q U

q´1
x,λ ϕx,λ

ˇ

ˇ ď
qpq ´ 1q

2
U q´2
x,λ ϕ2

x,λ (2.25)

Together with estimate (A.2) this gives
ˇ

ˇ

ˇ

ˇ

ż

Ω

´

PU qx,λ ´ U
q
x,λ ` q U

q´1
x,λ ϕx,λ

¯

dy

ˇ

ˇ

ˇ

ˇ

“ O
´

pdpxqλq´N
¯

. (2.26)

On the other hand, the calculations in the proof of (2.1) show that
ż

Ω
U q´1
x,λ ϕx,λ dy “ λ2´N aN φpxq `O

´

pdpxqλq
4
3
´N

¯

“ λ2´N aN φpxq ` o
´

pdpxqλq2´N
¯

.

In view of (2.17) and (2.26) this completes the proof. �

3. Lower bound. Preliminaries

As a starting point for the proof of the lower bound on SpεV q, we derive a crude asymptotic form
of almost minimizers of SεV . The following result is essentially well-known. We have recalled the
proof in [6, Appendix B] in the case N “ 3, but the same argument carries over to N ě 4.

Proposition 3.1. Let puεq Ă H1
0 pΩq be a sequence of functions satisfying

SεV ruεs “ SN ` op1q ,

ż

Ω
|uε|

q dx “

ˆ

SN
NpN ´ 2q

˙

q
q´2

. (3.1)

Then, along a subsequence,

uε “ αε
`

PUxε,λε ` wε
˘

, (3.2)
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where
αε Ñ s for some s P t´1,`1u ,

xε Ñ x0 for some x0 P Ω ,

λεdε Ñ8 ,

}∇wε} Ñ 0 and wε P T
K
xε,λε .

(3.3)

Here dε “ dist pxε, BΩq.

Convention. From now on we will assume that

SpεV q ă SN for all ε ą 0 (3.4)

and that puεq satisfies (1.11). In particular, assumption (3.1) is satisfied. We will always work with
a sequence of ε’s for which the conclusions of Proposition 3.1 hold. To enhance readability, we will
drop the index ε from αε, xε, λε, dε and wε.

4. Lower bound. The main expansion

In this section we expand SεV ruεs by using the decomposition (3.2) of uε. We shall show the following
result.

Proposition 4.1. Let puεq Ă H1
0 pΩq satisfy (3.2) and (3.3). Then

|α|´2

ż

Ω
|∇uε|2 dy “

ż

Ω
|∇PUx,λ|2 dy `

ż

Ω
|∇w|2 dy , (4.1)

|α|´q
ż

Ω
|uε|

q dy “

ż

Ω
PU qx,λ dy `

qpq ´ 1q

2

ż

Ω
U q´2
x,λ w2 dy ` o

ˆ
ż

Ω
|∇w|2 ` pλdq2´N

˙

, (4.2)

|α|´2ε

ż

Ω
V u2

ε dy “ ε

ż

Ω
V PU2

x,λ dy `O

¨

˝ε

ż

Ω
|∇w|2 dy ` ε

d

ż

Ω
|∇w|2 dy

d

ż

Ω
|V |PU2

x,λ dy

˛

‚.

(4.3)

In particular,

SεV ruεs “ SεV rPUx,λs ` Irws `O

¨

˝ε

d

ż

Ω
|∇w|2 dy

d

ż

Ω
|V |PU2

x,λ dy

˛

‚

` o

ˆ
ż

Ω
|∇w|2 dy ` pλdq2´N

˙

, (4.4)

where

Irws :“

ˆ
ż

Ω
U qx,λ dy

˙´ 2
q
ˆ
ż

Ω
|∇w|2 dy ´NpN ` 2q

ż

Ω
U q´2
x,λ w2 dy

˙

. (4.5)

Proof. We prove equations (4.1)–(4.3) separately. Then the expansion (4.4) follows by a straight-
forward Taylor expansion of the quotient functional SεV , using SεV ruεs “ SεV r|α|´1uεs.

In the sequel we denote by c1, c2, . . . various positive constants which are independent of ε.

Proof of (4.1). This follows by (3.2) and w P TKx,λ.
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Proof of (4.2). Recall that α´1uε “ Ux,λ ` pw ´ ϕx,λq by (2.14) and (3.2). We use the associated
pointwise estimate

ˇ

ˇ

ˇ

ˇ

|α|´q|uε|
q ´ U qx,λ ´ q U

q´1
x,λ pw ´ ϕx,λq ´

qpq ´ 1q

2
U q´2
x,λ pw ´ ϕx,λq

2

ˇ

ˇ

ˇ

ˇ

ď c1

´

|w ´ ϕx,λ|
q ` |w ´ ϕx,λ|

q´pq´3q`U
pq´3q`
x,λ

¯

,

where pq ´ 3q` “ maxtq ´ 3, 0u. Using (2.25), it follows that
ˇ

ˇ

ˇ

ˇ

|α|´q|uε|
q ´ PU qx,λ ´ q U

q´1
x,λ w ´

qpq ´ 1q

2
U q´2
x,λ w

2

ˇ

ˇ

ˇ

ˇ

ď c2

´

|w ´ ϕx,λ|
q ` |w ´ ϕx,λ|

q´pq´3q`U
pq´3q`
x,λ ` U q´2

x,λ ϕx,λ |w| ` U
q´2
x,λ ϕ

2
x,λ

¯

ď c3

´

|w|q ` ϕqx,λ ` |w|
q´pq´3q`U

pq´3q`
x,λ ` ϕ

q´pq´3q`
x,λ U

pq´3q`
x,λ ` U q´2

x,λ ϕx,λ |w| ` U
q´2
x,λ ϕ

2
x,λ

¯

ď c4

´

|w|q ` |w|q´pq´3q`U
pq´3q`
x,λ ` U q´2

x,λ ϕx,λ |w| ` U
q´2
x,λ ϕ

2
x,λ

¯

.

In the last inequality we used (2.22) to simplify the form of the remainder terms. Now we use the
identity

N pN ´ 2q

ż

Ω
U q´1
x,λ w dy “

ż

Ω
∇Ux,λ ¨∇w dy “

ż

Ω
∇PUx,λ ¨∇w dy “ 0,

which follows from (1.8), (2.13) and w P TKx,λ, and the fact that
ş

Ω |w|
q Ñ 0, which follows from

(3.3) and the Sobolev inequality. Therefore, with the help of the Hölder inequality, we find
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω

ˆ

|α|´q|uε|
q ´ PU qx,λ ´

qpq ´ 1q

2
U q´2
x,λ w

2

˙

dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď c4

«

ż

Ω
|w|q dy `

ˆ
ż

Ω
|w|q dy

˙

q´pq´3q`
q

ˆ
ż

Ω
U qx,λ dy

˙

pq´3q`
q

`

˜

ż

Ω
U

qpq´2q
q´1

x,λ ϕ
q
q´1

x,λ dy

¸

q´1
q ˆ

ż

Ω
|w|q dy

˙
1
q

`

ż

Ω
U q´2
x,λ ϕ2

x,λ dy

ff

ď c5

«

ˆ
ż

Ω
|∇w|2 dy

˙

q´pq´3q`
2

`

˜

ż

Ω
U

qpq´2q
q´1

x,λ ϕ
q
q´1

x,λ dy

¸

q´1
q ˆ

ż

Ω
|∇w|2 dy

˙
1
2

`

ż

Ω
U q´2
x,λ ϕ2

x,λ dy

ff

.

In the last inequality, we used the Sobolev inequality for w and the (3.3) for w, together with
ż

Ω
U qx,λ dy ď

ż

RN
U qx,λ dy “

ˆ

SN
NpN ´ 2q

˙

q
q´2

.

It follows from Lemma A.1 and (3.3) that
˜

ż

Ω
U

qpq´2q
q´1

x,λ ϕ
q
q´1

x,λ dy

¸

q´1
q

“ o
´

pdλq
2´N

2

¯

,

ż

Ω
U q´2
x,λ ϕ2

x,λ dy “ o
´

pd λq2´N
¯

.
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Thus, we conclude that, as εÑ 0,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω

ˆ

|α|´q|uε|
q ´ PU qx,λ ´

qpq ´ 1q

2
U q´2
x,λ w

2

˙

dy

ˇ

ˇ

ˇ

ˇ

ˇ

“ o

ˆ
ż

Ω
|∇w|2 dy ` pλdq2´N

˙

.

Proof of (4.3). We write

|α|´2

ż

Ω
V u2

ε dy “

ż

Ω
V PU2

x,λ dy ` 2

ż

Ω
V PUx,λw dy `

ż

Ω
V w2 dy . (4.6)

By the Hölder and Sobolev inequalities we have
ˇ

ˇ

ˇ

ˇ

ż

Ω
V w2 dy

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

Ω
|V |

N
2 dy

˙
2
N
ˆ
ż

Ω
|w|q dy

˙
2
q

ď S´1
N

ˆ
ż

Ω
|V |

N
2 dy

˙
2
N
ż

Ω
|∇w|2 dy ,

and
ˇ

ˇ

ˇ

ˇ

ż

Ω
V PUx,λw dy

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

Ω
|V |PU2

x,λ dy

˙
1
2
ˆ
ż

Ω
|V |w2 dy

˙
1
2

ď S
´1{2
N

ˆ
ż

Ω
|V |PU2

x,λ dy

˙
1
2
ˆ
ż

Ω
|V |

N
2 dy

˙
1
n
ˆ
ż

Ω
|∇w|2 dy

˙
1
2

.

Hence (4.3) follows by inserting these estimates into (4.6). �

5. Proof of the main results

We now deduce Theorems 1.2 and 1.3 from Proposition 4.1. To do so, we make crucial use of the
following coercivity bound proved in [9, Appendix D].

Proposition 5.1. For all x P Ω, λ ą 0 and v P TKx,λ, one has
ż

Ω
|∇v|2 dy ´NpN ` 2q

ż

Ω
U q´2
x,λ v2 dy ě

4

N ` 4

ż

Ω
|∇v|2 dy . (5.1)

Corollary 5.2. For all ε ą 0 small enough, we have, if N ě 5,

0 ě p1` op1qqpSN ´ SpεV qq `

ˆ

SN
NpN ´ 2q

˙
2

2´q
ˆ

NpN ´ 2q aN φpxq

λN´2
` bN ε

V pxq

λ2

˙

` c

ż

Ω
|∇w|2 dy ` oppλdq2´N q ` opελ´2q (5.2)

and, if N “ 4,

0 ě p1` op1qqpS4 ´ SpεV qq `
8

S4

ˆ

8a4φpxq

λ2
` b4V pxq

ε log λ

λ2

˙

` c

ż

Ω
|∇w|2 dy ` oppλdq´2q ` opελ´2 log λq . (5.3)

Proof. Firstly, it follows directly from (5.1) and the definition of Irws in (4.5) that there is a c ą 0

such that for all ε ą 0 small enough, we have

Irws ě 4c

ż

Ω
|∇w|2 dy . (5.4)
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Using Proposition 4.1 and (5.4) it follows that for ε small enough one has

SεV ruεs ě SεV rPUx,λs ` 2c

ż

Ω
|∇w|2 dy `O

¨

˝ε

d

ż

Ω
|∇w|2 dy

d

ż

Ω
|V |PU2

x,λ dy

˛

‚` o
´

pλdq2´N
¯

.

Since

ε

d

ż

Ω
|∇w|2 dy

d

ż

Ω
|V |PU2

x,λ dy ď c

ż

Ω
|∇w|2 dy ` ε2

4c

ż

Ω
|V |PU2

x,λ dy ,

this further implies that for ε ą 0 small enough

SεV ruεs ě SεV rPUx,λs ` c
ż

Ω
|∇w|2 dy `O

ˆ

ε2
ż

Ω
|V |PU2

x,λ dy

˙

` o
´

pλdq2´N
¯

.

Using (2.2) for the potential term and recalling (3.3), we obtain

SεV ruεs ě

$

&

%

SεV rPUx,λs ` c
ş

Ω |∇w|
2 dy ` opελ´2q ` oppλdq2´N q, N ě 5,

SεV rPUx,λs ` c
ş

Ω |∇w|
2 dy ` opελ´2 log λq ` oppλdq´2q, N “ 4.

Now the fact that SN ´ SεV ruεs “ p1 ` op1qqpSN ´ SpεV qq by (1.11), together with the expansion
of SεV rPUx,λs from Theorem 2.1, implies the claimed bounds (5.2) and (5.3). �

In the next lemma, we prove that the limit point x0 lies in the set N pV q.

Lemma 5.3. We have x0 P N pV q. In particular, d´1 “ Op1q as ε Ñ 0 and x P N pV q for ε small
enough.

Proof. We first treat the case N ě 5. In (5.2), we drop the non-negative gradient term and write
the remaining lower order terms as

ˆ

SN
NpN ´ 2q

˙
2

2´q
ˆ

NpN ´ 2q aN φpxq

λN´2
` bN ε

V pxq

λ2

˙

` oppλdq2´N q ` opελ´2q

“

ˆ

SN
NpN ´ 2q

˙
2

2´q ´

Apdλq2´N ´Bεpdλq´2
¯

,

where
A “ NpN ´ 2q aN φpxqd

N´2 ` op1q, B “ ´bNV px0qd
2 ` op1q. (5.5)

Notice that since φpxq Á d2´N by (2.7), the quantity A is positive and bounded away from zero.
Moreover, by (5.2) and the fact that SpεV q ă SN , which follows from Corollary 2.2, we must have
B ą 0. Optimizing in dλ yields the lower bound

Apdλq2´N ´Bεpdλq´2 ě ´cA´
2

N´4B
N´2
N´4 ε

N´2
N´4 , (5.6)

for some explicit constant c ą 0 independent of ε. On the other hand, by Corollary 2.2, there is
ρ ą 0 such that the leading term in (5.2) is bounded by

p1` op1qqpSN ´ SpεV qq ě ρ ε
N´2
N´4 (5.7)

for all ε ą 0 small enough. Plugging (5.6) and (5.7) into (5.2) and rearranging terms, we thus
deduce that

B ě ρ
N´4
N´2A

2
N´2 c´

N´4
N´2 . (5.8)
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As observed above, the quantity A is bounded away from zero and therefore (5.8) implies that B
is bounded away from zero. Hence, in view of (5.5), d is bounded away from zero and V px0q ă 0.
The fact that x P N pV q for ε small enough is a consequence of the continuity of V . This completes
the proof in case N ě 5.

Now we consider the case N “ 4 in a similar way. In (5.3), we drop the non-negative gradient term
and write the remaining lower order terms as

8

S4

ˆ

8a4φpxq

λ2
` b4V pxq

ε log λ

λ2

˙

` oppλdq´2q ` opελ´2 log λq

“
8

S4

´

Apdλq´2 ´Bεpdλq´2 logpdλq
¯

, (5.9)

where

A “ 8a4φpxqd
2 ` op1q, B “ ´b4pV px0q ` op1qqd

2p1´
log d

log dλ
q. (5.10)

Since φpxq Á dpxq´2 by (2.7), the quantity A is positive and bounded away from zero.

Moreover, by (5.3) and the fact that SpεV q ă S4, we must have B ą 0. Optimizing (5.9) in dλ

yields the lower bound

Apdλq´2 ´Bεpdλq´2 logpdλq ě ´
Bε

2e
exp

ˆ

´
2A

Bε

˙

“ ´ exp

ˆ

´
2A

Bε
` logp

Bε

2e
q

˙

. (5.11)

On the other hand, by Corollary 2.2, there is ρ ą 0 such that the leading term in (5.3) is bounded
by

p1` op1qqpS4 ´ SpεV qq ě expp´
ρ

ε
q. (5.12)

Plugging (5.11) and (5.12) into (5.3), we thus deduce that

0 ě expp´
ρ

ε
q ´ exp

ˆ

´
2A

Bε
` logp

Bε

2e
q

˙

,

which leads to

´
2A

B
` ε logp

Bε

2e
q ě ´ρ. (5.13)

Since φpxq Á d´2 by (2.7), the quantity A is bounded away from zero and moreover B is bounded.
Using this fact, the left hand side of (5.13) can be written as

´
2A

B
p1´

Bε logB

2A
q ` ε log

ε

2e
“ ´

2A

B

`

1` op1q
˘

` op1q.

Together with (5.13), this easily implies, if ε ą 0 is small enough, that

B ě
A

ρ
.

As before, in view of (5.10), we deduce that d is bounded away from zero and that V px0q ă 0. The
fact that x P N pV q for ε small enough is again a consequence of the continuity of V . �
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Proof of Theorem 1.2. We first treat the case N ě 5. In view of Lemma 5.3, the lower bound (5.2)
can be written as (upon dropping the non-negative gradient term)

0 ě p1` op1qqpSN ´ SpεV qq `

ˆ

SN
NpN ´ 2q

˙
2

2´q
ˆ

NpN ´ 2q aN pφpx0q ` op1qq

λN´2
` bN ε

V px0q ` op1q

λ2

˙

ě p1` op1qqpSN ´ SpεV qq ´ CN pφpx0q ` op1qq
´ 2
N´4 |V px0q ` op1q|

N´2
N´4 ε

N´2
N´4

by optimization in λ. Therefore

SpεV q ě SN ´ CNφpx0q
´ 2
N´4 |V px0q|

N´2
N´4 ε

N´2
N´4 ` opε

N´2
N´4 q ě SN ´ CNσN pΩ, V qε

N´2
N´4 ` opε

N´2
N´4 q,

where the last inequality uses the fact that x0 P N pV q by Lemma 5.3.

Since the matching upper bound has already been proved in Theorem 2.1, the proof in case N ě 5

is complete.

Similarly, we can handle the case N “ 4. In view of Lemma 5.3, the lower bound (5.3) can be
written as (upon dropping the non-negative gradient term)

0 ě p1` op1qqpS4 ´ SpεV qq `
8

S4

ˆ

8a4pφpx0q ` op1qq

λ2
` b4pV px0q ` op1qq

ε log λ

λ2

˙

ě p1` op1qqpS4 ´ SpεV qq ´
4b4
eS4

ε|V px0q ` op1q| exp

ˆ

´
4pφpx0q ` op1qq

ε|V px0q ` op1q|

˙

by optimization in λ. Therefore

SpεV q ě S4 ´ exp

ˆ

´
4

ε

`

1` op1q
˘ φpx0q

|V px0q|

˙

ě S4 ´ exp

ˆ

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

,

where the last inequality uses the fact that x0 P N pV q by Lemma 5.3.

Since the matching upper bound has already been proved in Theorem 2.1, the proof in case N “ 4

is complete. �

Proof of Theorem 1.3. We start again with the bounds from Corollary 5.2, but this time we need
to take into account the various nonnegative remainder terms more carefully.

Proof for N ě 5. We rewrite (5.2), using Lemma 5.3, as

0 ě p1` op1qqpSN ´ SpεV qq ´ CN pφpx0q ` op1qq
´ 2
N´4 |V px0q ` op1q|

N´2
N´4 ε

N´2
N´4 `R (5.14)

with

R “

ˆ

Aε
λN´2

´Bε
ε

λ2
` CNA

´ 2
N´4

ε B
N´2
N´4
ε ε

N´2
N´4

˙

` c

ż

Ω
|∇w|2 dy ,

where we have set

Aε “

ˆ

SN
NpN ´ 2q

˙
2

2´q
`

NpN ´ 2q aN pφpx0q ` op1qq
˘

, Bε “

ˆ

SN
NpN ´ 2q

˙
2

2´q

bN pV px0q ` op1qq .

Notice that both summands of R are separately nonnegative. Inserting the upper bound from
Corollary 2.2 into (5.14), we get

0 ě CN

ˆ

σN pΩ, V q ´ φpx0q
´ 2
N´4 |V px0q|

N´2
N´4

˙

ε
N´2
N´4 `R` opε

N´2
N´4 q .
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Since each one of the first two summands on the right hand side is nonnegative, we deduce that

φpx0q
´ 2
N´4 |V px0q|

N´2
N´4 “ sup

xPN pV q
φpxq´

2
N´4 |V pxq|

N´2
N´4 “ σN pΩ, V q

and
R “ opε

N´2
N´4 q. (5.15)

In particular, (5.15) implies that
}∇w}22 “ opε

N´2
N´4 q. (5.16)

Denote by

λ0pεq “

ˆ

pN ´ 2qAε
2Bε

˙
1

N´4

ε
1

4´N

the unique value of λ for which the first summand of R vanishes. Using Lemma A.2, the bound
(5.15) implies that

εpλ´1 ´ λ0pεq
´1q2 “ opε

N´2
N´4 q,

which is equivalent to

λ “ λ0pεq ` opε
´ 1
N´4 q “

˜

N pN ´ 2q2 aN φpx0q

2 bN |V px0q|

¸
1

N´4

ε´
1

N´4 ` opε´
1

N´4 q. (5.17)

Finally, to obtain the asymptotics of α, by (4.2), (1.11), (2.3) and (5.16), we have that

|α|´q
ˆ

SN
NpN ´ 2q

˙

q
q´2

“

ˆ

SN
NpN ´ 2q

˙

q
q´2

´ qaNλ
2´Nφpx0q `

qpq ´ 1q

2

ż

Ω
U q´2
x,λ w2 dy ` opλ2´N q .

(5.18)
Moreover, by Hölder and Sobolev inequalities,

ż

Ω
U q´2
x,λ w

2 dy À }∇w}2. (5.19)

We easily conclude from (5.16)–(5.19) that

|α| “ 1`DNσN pΩ, V qε
N´2
N´4 ` opε

N´2
N´4 q

with DN given in (1.15). This completes the proof of Theorem 1.3 in the case N ě 5.

Proof for N “ 4. We rewrite (5.3), using Lemma 5.3, as

0 ě p1` op1qqpS4 ´ SpεV qq ´
Bεε

2e
exp

ˆ

´
2Aε
Bεε

˙

`R (5.20)

with

R “

˜

Aε
λ2
´Bε

ε log λ

λ2
`
Bεε

2e
exp

ˆ

´
2Aε
Bεε

˙

¸

` c

ż

Ω
|∇w|2 dy,

where we have set

Aε “
64

S4
a4pφpx0q ` op1qq, Bε “

8

S4
b4|V px0q ` op1q| .

Notice that both summands of R are separately nonnegative. Inserting the upper bound from
Corollary 2.2 into (5.20), we get

0 ě p1` op1qq exp

ˆ

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

´
Bεε

2e
exp

ˆ

´
2Aε
Bεε

˙

`R . (5.21)
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Dropping the nonnegative term R from the right side and taking the logarithm of the resulting
inequality, we obtain

´
2Aε
Bεε

` log
Bεε

2e
ě ´

4

ε

`

1` op1q
˘

σ4pΩ, V q
´1 ` logp1` op1qq .

Multiplying by ε and passing to the limit we infer, since a4{b4 “ 1{4,

´
φpx0q

|V px0q|
ě ´σ4pΩ, V q

´1 .

By definition of σ4pΩ, V q, this implies

|V px0q|

φpx0q
“ σ4pΩ, V q , (5.22)

as claimed.

With this information at hand, we return to (5.21) and drop the nonnegative first term on the right
side to infer that

R ď
Bεε

2e
exp

ˆ

´
2Aε
Bεε

˙

.

Keeping only the second term in the definition of R and using (5.22) we deduce, in particular, that

}∇w}22 ď exp

ˆ

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

. (5.23)

We now keep only the first term in the definition of R and obtain from (5.21), multiplied by
p2e{pBεεqq expp2Aε{pBεεqq,

1´ p1` op1qq
2e

Bεε
exp

ˆ

2Aε
Bεε

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

ě
2e

Bεε
exp

ˆ

2Aε
Bεε

˙

R

ě
2e

Bεε
exp

ˆ

2Aε
Bεε

˙ˆ

Aε
λ2
´Bε

ε log λ

λ2

˙

` 1

“ 1` y ey`1

with y “ 2
Bεε
pAε ´ εBε log λq. In view of (5.22) and (2.12) we have

p1` op1qq
2e

Bεε
exp

ˆ

2Aε
Bεε

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

“ exp

˜

o

ˆ

1

ε

˙

¸

,

and therefore

´ exp

˜

o

ˆ

1

ε

˙

¸

ě y ey`1 .

This implies

0 ă ´y ď o

ˆ

1

ε

˙

,

which is the same as
Aε
Bεε

ă log λ ď
Aε
Bεε

` o

ˆ

1

ε

˙

.

Recalling (5.22) we obtain

λ “ exp

ˆ

´
2

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

, (5.24)
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as claimed.

Finally, to obtain the asymptotics of α, we deduce from (5.18) and (5.19), together with the bounds
(5.23) and (5.24), that

|α| “ 1` exp

ˆ

´
4

ε

`

1` op1q
˘

σ4pΩ, V q
´1

˙

.

This completes the proof of Theorem 1.3 in the case N “ 4. �

Appendix A. Auxiliary results

The proof of the following lemma is similar to the computation in [9, Appendix A]. We provide here
details for the sake of completeness.

Lemma A.1. Let x “ xλ be a sequence of points in Ω such that dpxqλÑ8. Then

˜

ż

Ω
U

qpq´2q
q´1

x,λ ϕ
q
q´1

x,λ dy

¸

q´1
q

“

$

’

’

’

&

’

’

’

%

O
´

pdpxqλq
´2´N

2

¯

if N ą 6,

O
`

pdpxqλq´4 logpdpxqλq
˘

if N “ 6,

O
´

pdpxqλq2´N
¯

if N “ 4, 5

(A.1)

and
ż

Ω
U q´2
x,λ ϕ2

x,λ dy “ O
´

pdpxqλq´N
¯

. (A.2)

Proof. We write d “ dpxq for short in the following proof.

Proof of (A.1). By equations (2.14), (2.15) and (2.18),
ż

Bdpxq
U

qpq´2q
q´1

x,λ ϕ
q
q´1

x,λ dy ď }ϕx,λ}
q
q´1

L8pΩq

ż

Bdpxq
U

qpq´2q
q´1

x,λ dy “ O
´

pd2´N λ
2´N

2 q
q
q´1

¯

ż

Bdpxq
U

qpq´2q
q´1

x,λ dy .

(A.3)
Moreover, since qpq´2q

q´1
N´2

2 “ 4N
N`2 , from (1.7) we obtain

ż

Bdpxq
U

qpq´2q
q´1

x,λ dy “ O
´

λ
4N
N`2

¯

ż d

0

rN´1 dr

p1` λ2 r2q
4N
N`2

“ O
ˆ

λ
2N´N2

N`2

˙
ż λd

0

tN´1 dr

p1` t2q
4N
N`2

“ O
ˆ

λ
2N´N2

N`2

˙

˜

ż λd

1
t
NpN´6q
N`2 t´1 dt`Op1q

¸

. (A.4)

If N ą 6, then
ż λd

1
t
NpN´6q
N`2 t´1 dt “ O

ˆ

pd λq
NpN´6q
N`2

˙

.

If N “ 6, then
ż λd

1
t
NpN´6q
N`2 t´1 dt “ O

`

logpd λq
˘

and if N “ 4, 5, then
ż λd

1
t
NpN´6q
N`2 t´1 dt “ O p1q
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This gives the bound claimed in (A.1) in each case, provided we can bound the integral on the
complement ΩzBdpxq. On this region, we have by Hölder

˜

ż

ΩzBdpxq
U

qpq´2q
q´1

x,λ ϕ
q
q´1

x,λ dy

¸

q´1
q

ď

ˆ
ż

Ω
ϕ

2N
N´2

x,λ dy

˙
N´2
2N

˜

ż

RN zBdpxq
U

2N
N´2

x,λ dy

¸
2
N

“ O
´

pd λq
2´N

2

¯

˜

ż

RN zBdpxq
U

2N
N´2

x,λ dy

¸
2
N

“ O
´

pd λq
2´N

2

¯

ˆ
ż 8

dλ

dt

tN`1

˙
2
N

“ O
´

pd λq
2´N

2

¯

O
´

pd λq´2
¯

,

where we have used (1.7) and the fact that
ˆ
ż

Ω
ϕ

2N
N´2

x,λ dy

˙
N´2
2N

“ O
´

pd λq
2´N

2

¯

(A.5)

by [9, Prop. 1(c)]. Combining all the estimates, we deduce (A.1).

Proof of (A.2). We split the domain of integration Ω again into Bdpxq and ΩzBdpxq. On Bdpxq,
by (2.14),

ż

Bdpxq
U q´2
x,λ ϕ2

x,λ dy ď }ϕx,λ}
2
L8pΩq

˜

ż

Bdpxq
U q´2
x,λ dy

¸

“ O
´

dpxq4´2N λ2´N
¯

˜

λ2´N

ż dλ

0

tN´1 dt

p1` t2q2

¸

“ Oppdλq´N q. (A.6)

On ΩzBdpxq, by Hölder and (A.5),

ż

ΩzBdpxq
U q´2
x,λ ϕ2

x,λ dy ď

ˆ
ż

Ω
ϕqx,λ dy

˙
2
q

˜

ż

RN zBdpxq
U qx,λ dy

¸

q´2
q

“ O
´

pdpxqλq2´N
¯

O
´

pd λq´2
¯

.

(A.7)

Combining (A.6) and (A.7), we obtain (A.2). �

Lemma A.2. Let fε : p0,8q Ñ R be given by

fεpλq “
Aε
λN´2

´Bε
ε

λ2

with Aε, Bε ą 0 uniformly bounded away from 0 and 8. Denote by

λ0 “ λ0pεq “

ˆ

pN ´ 2qAε
2Bε

˙
1

N´4

ε
1

4´N

the unique global minimum of fε. Then there is a c0 ą 0 such that for all ε ą 0 we have

fεpλq ´ fεpλ0q ě

$

&

%

c0ε
`

λ´1 ´ λ0pεq
´1
˘2 if pAεBε

q
1

N´4 ε´
1

N´4λ´1 ď 2p 2
N´2q

1
N´4 ,

c0ε
N´2
N´4 if pAεBε

q
1

N´4 ε´
1

N´4λ´1 ą 2p 2
N´2q

1
N´4 .
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Proof. Let F ptq :“ tN´2 ´ t2 and denote by t0 :“ p 2
N´2q

1
N´4 the unique global minimum on p0,8q

of F . Then it is easy to see that there is c ą 0 such that

F ptq ´ F pt0q ě

$

&

%

cpt´ t0q
2 if 0 ă t ď 2t0,

ctN´2
0 if t ą 2t0.

The assertion of the lemma now follows by rescaling. Indeed, it suffices to observe that

fεpλq “ A
´ 2
N´4

ε B
N´2
N´4
ε ε

N´2
N´4F

ˆ

p
Aε
Bε
q

1
N´4 ε´

1
N´4λ´1

˙

and to use the boundedness of Aε and Bε. �
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