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ENERGY ASYMPTOTICS IN THE THREE-DIMENSIONAL

BREZIS�NIRENBERG PROBLEM

RUPERT L. FRANK, TOBIAS KÖNIG, AND HYNEK KOVA�ÍK

Abstract. For a bounded open set Ω � R3 we consider the minimization problem

Spa� εV q � inf
0�uPH1

0 pΩq

³
Ω
p|∇u|2 � pa� εV q|u|2q dx

p
³
Ω
u6 dxq1{3

involving the critical Sobolev exponent. The function a is assumed to be critical in the sense
of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of
Spa � εV q � S as ε Ñ 0�, where S is the Sobolev constant. (Almost) minimizers concentrate at
a point in the zero set of the Robin function corresponding to a and we determine the location of
the concentration point within that set. We also show that our assumptions are almost necessary
to have Spa� εV q   S for all su�ciently small ε ¡ 0.

1. Introduction and main results

1.1. Setting of the problem. In their celebrated paper [8] Brézis and Nirenberg considered the

problem of minimizing the quotient

Sarus :�
³
Ωp|∇u|2 � a|u|2q dx

p³Ω u6 dxq1{3
over all 0 � u P H1

0 pΩq, where Ω � R3 is a bounded open set and a is a continuous function on Ω.

We denote the corresponding in�mum by

Spaq :� inf
0�uPH1

0 pΩq
Sarus .

This number is to be compared with

S :� 3

�
π

2


4{3

,

the sharp constant [25, 26, 3, 31] in the Sobolev inequality»
R3

|∇u|2 dx ¥ S

�»
R3

u6 dx


1{3

, u P 9H1pR3q . (1.1)

One of the �ndings in [8] is that if a is small (for instance, in L8pΩq), then Spaq � S. This is in

stark contrast to the case of dimensions N ¥ 4 where the corresponding analogue of Spaq (with the

exponent 6 replaced by 2N{pN � 2q) is always strictly below the corresponding Sobolev constant,

whenever a is negative somewhere.
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This phenomenon leads naturally to the following notion due to Hebey and Vaugon [20].

De�nition 1.1. Let a be a continuous function on Ω. We say that a is critical in Ω if Spaq � S

and if for any continuous function ã on Ω with ã ¤ a and ã � a one has Spãq   Spaq.

Our goal in this paper is to compute the asymptotics of Spa� εV q�S as εÑ 0 for critical a and to

understand the behavior of corresponding minimizers. Here V is a bounded function on Ω, without

any restrictions on its sign.

A key role in our analysis is played by the regular part of the Green's function and its zero set. To

introduce these, we follow the sign and normalization convention of [24]. If the operator �∆� a in

Ω with Dirichlet boundary conditions is coercive (which, in particular, is the case if a is critical),

then it has a Green's function Ga satisfying$'&
'%

�∆xGapx, yq � apxqGapx, yq � 4π δy in Ω ,

Gapx, yq � 0 on BΩ .

(1.2)

The regular part of Ga is de�ned by

Hapx, yq :� 1

|x� y| �Gapx, yq . (1.3)

It is well-known that for each x P Ω the function Hapx, �q, which is originally de�ned in Ωztxu,
extends to a continuous function in Ω and we abbreviate

φapxq :� Hapx, xq .
It is well-known that the function φa is relevant for problems involving the critical Sobolev exponent,

see, e.g., [27] and [4]. For the problem at hand, it was shown in [6, Thm. 7] that if φapxq   0 for

some x P Ω, then Spaq   S. (In [6] this is attributed to Schoen [27] and a work in preparation by

McLeod.) Conversely, it was conjectured in [6] and proved by Druet in [12] that if Spaq   S, then

φapxq   0 for some x P Ω. An alternative proof, assuming only continuity of a, is given in [15].

Thus, the (non-local) condition minΩ φa   0 is necessary and su�cient for Spaq   S, and replaces

the (local) condition minΩ a   0 in dimensions N ¥ 4.

The above results imply that, if a is critical, then minΩ φa � 0. In particular, the set

Na :� tx P Ω : φapxq � 0u
is non-empty.

1.2. Main results. Let us proceed to a precise statement of our main results. Throughout this

paper we work under the following assumption.

Assumption 1.2. The set Ω � R3 is open, bounded and has a C2 boundary. The function a

satis�es a P CpΩq X C1pΩq and is critical in Ω. Moreover,

apxq   0 for all x P Na . (1.4)

Finally, V P L8pΩq.
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We will see in Corollary 2.2 that criticality of a alone implies apxq ¤ 0 for all x P Na. Therefore

assumption (1.4) is not severe.

We set

QV pxq :�
»

Ω
V pyqGapx, yq2 dy, x P Ω , (1.5)

and

NapV q :� tx P Na : QV pxq   0u .
The following is our main result.

Theorem 1.3. Assume that NapV q � H. Then Spa� εV q   S for all ε ¡ 0 and

lim
εÑ0�

Spa� εV q � S

ε2
� �

�
3

S


 1
2 1

8π2
sup

xPNapV q

QV pxq2
|apxq| . (1.6)

We supplement this theorem with a result for the opposite case where NapV q � H.

Theorem 1.4. Assume that NapV q � H. Then Spa� εV q � S � opε2q as εÑ 0�. If, in addition,

QV pxq ¡ 0 for all x P Na, then Spa� εV q � S for all su�ciently small ε ¡ 0.

It follows from the above two theorems that the condition NapV q � H is 'almost' necessary for the

inequality Spa� εV q   S for all small ε ¡ 0. Only the case where minNa QV � 0 is left open.

Example 1.5. When Ω � B is the unit ball in R3, then it is well-known that the constant function

a � �π2{4 is critical and that in this case Na � t0u and Gap0, yq � |y|�1 cospπ|y|{2q; see, e.g., [6].
Thus, with

qV :� QV p0q �
»
B
V pyq cos2pπ|y|{2q

|y|2 dy

we have

lim
εÑ0�

Spa� εV q � S

ε2
� �

�
3

S


 1
2 1

2π4
q2
V if qV ¤ 0

and Spa� εV q � S for all su�ciently small ε ¡ 0 if qV ¡ 0.

Remark 1.6. It is instructive to compare our results here with the results for the analogous problem

SpεV q :� inf
0�uPH1

0 pΩq

³
Ωp|∇u|2 � εV u2q dx�³

Ω |u|2N{pN�2q dx
	pN�2q{N

in dimension N ¥ 4. Let SN be the sharp constant in the Sobolev inequality in RN . From [8] we

know that SpεV q   SN if and only if V pxq   0 for some x P Ω, and therefore we focus on the case

where N pV q :� tx P Ω : V pxq   0u � H. Then

SpεV q � SN � CN sup
xPN pV q

|V pxq|N�2
N�4

φ0pxq
2

N�4

ε
N�2
N�4 � opεN�2

N�4 q if N ¥ 5 , (1.7)

SpεV q � SN � exp
�
� 4

ε

�
1� op1q� inf

xPN pV q

φ0pxq
|V pxq|

	
if N � 4 , (1.8)
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with explicit constants CN depending only on N . Note that, as a re�ection of the Brézis�Nirenberg

phenomenon, V enters pointwisely into the asymptotic coe�cient in (1.7) and (1.8), while it enters

non-locally through QV into the asymptotic coe�cient in Theorem 1.3.

Asymptotics (1.7) and (1.8) in the case where V is a negative constant are essentially contained

in [30]; see also [32] for related results. The case of general V P CpΩq can be treated by similar

methods. For details, we refer to [18]. We emphasize that the proof of Theorem 1.3 is considerably

more complicated than that of (1.7) and (1.8), since the expansion in Theorem 1.3 should rather be

thought of as a higher order expansion of Spa� εV q � S where the coe�cient of the term of order

ε vanishes due to criticality. In the higher dimensional context, no such cancellation occurs.

1.3. Behavior of almost minimizers. We prove Theorems 1.3 and 1.4 by proving upper and lower

bounds on Spa � εV q. For the upper bound it su�ces to evaluate Sa�εV ruεs for an appropriately

chosen family of functions uε. For the lower bound we need to evaluate the same quantity where

now uε is an optimizer for Spa� εV q. To do so, we will show that uε is essentially of the same form

as the family chosen to prove the upper bound. In fact, we will not use the minimality of the uε and

show that, more generally, all `almost minimizers' have essentially the same form as the functions

chosen for the upper bound.

Given earlier works and, in particular, those by Druet [12] and Esposito [15] it is not surprising that

almost minimizers concentrate at a point in the set Na. One of our new contributions is to show

that this concentration happens at a point in the subset NapV q and, more precisely, at a point in

NapV q where the supremum in (1.6) is attained.

In order to state our theorem about almost minimizers, for x P Ω and λ ¡ 0, let

Ux,λpyq :� λ1{2

p1� λ2|y � x|2q1{2 .

The functions Ux,λ and their multiples are precisely the optimizers of the Sobolev inequality (1.1);

see the references mentioned above and [22, Cor. I.1]. We introduce PUx,λ P H1
0 pΩq as the unique

function satisfying

∆PUx,λ � ∆Ux,λ in Ω, PUx,λ � 0 on BΩ . (1.9)

Moreover, let

Tx,λ :� span
 
PUx,λ, BλPUx,λ, BxiPUx,λ pi � 1, 2, 3q(

and let TKx,λ be the orthogonal complement of Tx,λ in H1
0 pΩq with respect to the inner product³

Ω ∇u �∇v dy. Finally, by Πx,λ and ΠK
x,λ we denote the orthogonal projections in H1

0 pΩq onto Tx,λ
and TKx,λ, respectively.

Theorem 1.7. Assume that NapV q � H. Let puεq � H1
0 pΩq be a family of functions such that

lim
εÑ0

Sa�εV ruεs � Spa� εV q
S � Spa� εV q � 0 and

»
Ω
u6
ε dx �

�
S

3


 3
2

. (1.10)

Then there are pxεq � Ω, pλεq � p0,8q and pαεq � R such that

uε � αε

�
PUxε,λε � λ�1{2

ε ΠK
xε,λεpHapxε, �q �H0pxε, �qq � rε

	
(1.11)
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and, along a subsequence,

xε Ñ x0 for some x0 P NapV q with QV px0q2
|apx0q| � sup

yPNapV q

QV pyq2
|apyq| ,

φapxεq � opεq ,

lim
εÑ0

ε λε � 4π2 |apx0q|
|QV px0q| ,

αε � s�Opεq for some s P t�1u .
Finally, rε P TKxε,λε and }∇rε} � opεq.

The L6 normalization in (1.10) is chosen in view of»
R3

U6
x,λ dy �

�
S

3


 3
2

.

There is a huge literature on blow-up results for solutions of equations involving the critical Sobolev

exponent. Early contributions related to the problem we are considering are, for instance, [2, 10, 9,

19, 23]; see also the book [13] for more recent developments and further references. Here we follow a

somewhat di�erent philosophy and focus not on the equation satis�ed by the minimizers, but solely

on their minimality property. Therefore our proofs also apply to almost minimizers in the sense of

(1.10) and we obtain blow-up results for those as well. This extension is not really necessary for

the proof of our main results, Theorems 1.3 and 1.4, but it is crucial when studying parabolic or

hyperbolic versions of the problem studied here. On the other hand, with our variational methods

we cannot say anything about non-minimizing solutions of the corresponding equation and our

blow-up bounds are only obtained in H1 instead of L8 norm. Other related works which study

Sobolev critical problems from a variational point of view are, for instance, [17, 1, 16].

As already mentioned before, the works of Druet [12] and Esposito [15], and similarly [17, 1] in

related problems, show that concentration happens at a point in Na. In terms of Spa � εV q, this
corresponds essentially to the fact that Spa� εV q � S � opεq. In order to go further than that and

to compute the coe�cient of ε2, we need to prove that concentration happens in the subset NapV q
at a point where the supremum in (1.6) is attained.

The strategy of the proof of the lower bound is to expand the quotient Sa�εV ruεs for an almost

minimizer uε as precisely as allowed by the available information on uε, then to use a coercivity

bound to deduce that certain terms are small and thereby improving our knowledge about uε. We

repeat this procedure three times (namely, in Sections 4, 5 and 6). Therefore, a key tool in our

analysis is the coercivity of the quadratic form»
Ω
p|∇v|2 � av2 � 15U4

x,λv
2q dx , v P TKx,λ ,

provided that λ distpx, BΩq is su�ciently large; see Lemma 4.3. This coercivity was proved by

Esposito [15] and comes ultimately from the non-degeneracy of the Sobolev minimizer Ux,λ. Esposito

used this bound to obtain an a priori bound on the term α�1
ε uε � PUxε,λε in Theorem 1.7. We will

use it for the same purpose in Proposition 4.1, but then we will use it two more times in Propositions

5.1 and in Lemma 6.6 in order to get bounds on α�1
ε uε�PUxε,λε � λ�1{2pHapxε, �q �H0pxε, �qq and

α�1
ε uε � PUxε,λε � λ�1{2 ΠK

x,λpHapxε, �q �H0pxε, �qq, respectively. After the last step we are able to
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compute the energy to within opε2q. We emphasize that in principle there is nothing preventing us

from continuing this procedure and computing the energy to even higher precision.

Let us brie�y comment on a surprising technical subtlety in our proof. While Theorem 1.7 says

that almost minimizers are essentially given by

PUx,λ � λ�1{2 ΠK
x,λpHapx, �q �H0px, �qq

with x P NapV q a maximum point for the right side in (1.6) and λ proportional to ε�1, to prove the

upper bound we use the simpler functions

PUx,λ � λ�1{2pHapx, �q �H0px, �qq
(with the same choices of x and λ). The di�erence between the two functions, namely

�λ�1{2 Πx,λpHapx, �q �H0px, �qq ,
can be shown to be of order ε (when λ is proportional to ε�1), but not smaller; see Remark 6.2.

Therefore it is not at all obvious that the two families of functions lead to the same (within opε2q)
value of Sa�εV r�s. The fact that they do is contained in Lemma 6.3, where the contributions of

�λ�1{2 Πx,λpHapx, �q�H0px, �qq to the numerator and to the denominator are shown to cancel each

other to within opε2q.
At �rst sight, the problem considered in this paper resembles the problem of minimizing the quotient³
RN p|∇u|p� εV |u|pq dx{

³
RN |u|p dx for p ¤ N , which is a classical problem for p � 2 [28] motivated

by quantum mechanics and which was studied in [14] for general p. The underlying mechanism,

however, is rather di�erent. In these works almost minimizers spread out, whereas here and in its

higher dimensional version [18] they concentrate. The concentration regime is much more sensitive

to the local details of the perturbation and necessitates, in particular, the use of orthogonality

conditions in TKx,λ and the resulting coercivity.

1.4. Notation. Given a set M and two functions f1, f2 : M Ñ R, we write f1pmq À f2pmq if
there is a numerical constant c such that f1pmq ¤ c f2pmq for all m PM . The symbol Á is de�ned

analogously. For any p P r1,8s and u P LppΩq we denote
}u}p � }u}LppΩq.

If p � 2, we typically drop the subscript and write }u} � }u}L2pΩq.

2. Upper bound on Spa� εV q
Recall that we always work under Assumption 1.2. In this section (and only in this section), however,

we do not assume (1.4).

2.1. Statement of the bounds and consequences. Our goal in this section is to prove an upper

bound on Spa� εV q by evaluating the quotient Sa�εV r�s on a certain family of trial functions. For

x P Ω and λ ¡ 0, let

ψx,λpyq :� PUx,λpyq � λ�1{2pHapx, yq �H0px, yqq . (2.1)

This function belongs to H1
0 pΩq. We shall prove the following expansions.



ENERGY ASYMPTOTICS IN THE THREE-DIMENSIONAL BREZIS�NIRENBERG PROBLEM 7

Theorem 2.1. As λÑ8, uniformly for x in compact subsets of Ω and for ε ¥ 0,»
Ω

�
|∇ψx,λ|2 � pa� εV qψ2

x,λ

	
dy � 3

�
S

3


 3
2

� 4π φapxqλ�1 � 2πp4� πq apxqλ�2 � ε

λ
QV pxq

� opλ�2q � opελ�1q (2.2)

and »
Ω
ψ6
x,λ dy �

�
S

3


 3
2

� 8πφapxqλ�1 � 8π apxqλ�2 � 15π2 φapxq2 λ�2 � opλ�2q . (2.3)

In particular,

Sa�εV rψx,λs � S �
�
S

3


� 1
2

4π φapxqλ�1

�
�
S

3


� 1
2
�
ε

λ
QV pxq � 2π2 apxqλ�2 � p15π2 � 128qφapxq2 λ�2



� opλ�2q � opελ�1q . (2.4)

In the proof of Theorem 2.1 we do not use the fact that a is critical. We only use the fact that

�∆� a is coercive. In the following corollary we use criticality.

Corollary 2.2. One has φapxq ¥ 0 for all x P Ω and apxq ¤ 0 for all x P Na.

The �rst part of this corollary appears in [6, Thm. 7]. Note that the second part is non-trivial since

we do not assume (1.4).

Proof. We apply (2.4) with ε � 0. We get Sarψx,λs � S � pS{3q�1{24πφapxqλ�1 � opλ�1q for

any �xed x P Ω. Since S � Spaq ¤ Sarψx,λs, we infer that φapxq ¥ 0 for all x P Ω. Similarly,

Sarψx,λs � S � pS{3q�1{22π2apxqλ�2 � opλ�2q for any �xed x P Na implies that apxq ¤ 0 for all

x P Na. �

Corollary 2.3. Assume that NapV q � H. Then Spa� εV q   S for all ε ¡ 0 and, as εÑ 0�,

Spa� εV q ¤ S �
�
S

3


� 1
2 1

8π2
sup

xPNapV q

QV pxq2
|apxq| ε

2 � opε2q ,

where the right side is to be understood as �8 if apxq � 0 for some x P NapV q.

Proof. We �x x P Na and k ¡ 0 and apply (2.4) with λ � pkεq�1. Since Spa� εV q ¤ Sarψx,λs, we
obtain

lim sup
εÑ0

Spa� εV q � S

ε2
¤ pS{3q�1{2

�
k

»
Ω
V G2

apx, yq dy � 2π2 apxq k2



.

Thus,

lim sup
εÑ0

Spa� εV q � S

ε2
¤ pS{3q�1{2 inf

xPNa, k¡0

�
k

»
Ω
V G2

apx, yq dy � 2π2 apxq k2



,

which implies the claimed upper bound.
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For each u P H1
0 pΩq, ε ÞÑ Sa�εV rus is an a�ne linear function, and therefore its in�mum over u,

which is ε ÞÑ Spa� εV q, is concave. Since Spa� εV q   S for all su�ciently small ε ¡ 0, as we have

just shown, we conclude that Spa� εV q   S for all ε ¡ 0. �

2.2. Auxiliary facts. In this preliminary subsection we collect some expansions that will be useful

in the proof of Theorem 2.1 as well as later on. In order to emphasize that criticality is not needed,

we state them for a function b P CpΩq X C1pΩq such that the operator �∆� b in Ω with Dirichlet

boundary conditions is coercive.

Lemma 2.4. As λÑ8, uniformly in x from compact subsets of Ω,���pUx,λ � λ�1{2Hbpx, �qq � λ�1{2Gbpx, �q
���
6{5

� Opλ�2q ,���pUx,λ � λ�1{2Hbpx, �qq2 � λ�1Gbpx, �q2
���
1
� Opλ�2 lnλq .

Proof. Since

pUx,λ � λ�1{2Hbpx, yqq � λ�1{2Gbpx, yq � �λ�1{2

�
1

|x� y| �
λa

1� λ2|x� y|2

�
,

the �rst bound follows immediately from

0 ¤ 1

|x� y| �
λa

1� λ2|x� y|2 ¤ min

"
1

|x� y| ,
1

2λ2|x� y|3
*
. (2.5)

To prove the second bound, we write

pUx,λ � λ�1{2Hbpx, yqq2 � λ�1G2
bpx, yq � �λ�1

� 1

|x� y|2 �
λ2

1� λ2|x� y|2
	

� 2λ�1Hbpx, yq
�

1

|x� y| �
λa

1� λ2|x� y|2q

�
.

The last term on the right side can be bounded as before, using the fact that Hbpx, �q is uniformly

bounded in L8pΩq for x in compact subsets of Ω, see (2.6) below. The �rst term on the right side

can be bounded using

0 ¤ 1

|x� y|2 �
λ2

1� λ2|x� y|2 ¤ min

"
1

|x� y|2 ,
1

λ2|x� y|4
*
.

This proves the lemma. �

Lemma 2.5. As λÑ8, uniformly for x in compact subsets of Ω,»
Ω
U5
x,λHbpx, yq dy � 4π

3
φbpxqλ�1{2 � 4π

3
bpxqλ�3{2 � opλ�3{2q .

Proof. Step 1. We claim that, with dpxq :� distpx, BΩq,
}Hbpx, �q}8 À dpxq�1 for all x P Ω . (2.6)

Indeed, since H0px, �q is harmonic in Ω, the maximum principle implies

}H0px, �q}8 � sup
yPBΩ

H0px, yq � dpxq�1 . (2.7)
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In order to deduce (2.6) we note that the resolvent identity implies

Hbpx, yq �H0px, yq � 1

4π

»
Ω
G0px, zqbpzqGbpz, yq dz . (2.8)

The claim now follows from the fact that

sup
x,yPΩ

»
Ω
G0px, zqGbpz, yq dz   8 .

Step 2. We claim that for any x P Ω there is a ξx P R3 such that

Hbpx, yq � Hbpx, xq � ξx � py � xq � bpxq
2

|y � x| � op|y � x|q as y Ñ x . (2.9)

The asymptotics are uniform for x from compact subsets of Ω.

To prove this, let

Ψxpyq :� Hbpx, yq �Hbpx, xq � bpxq
2

|y � x| . (2.10)

Using the equation

∆yHapx, yq � apyqGapx, yq � 0 (2.11)

as well as the fact that ∆|x| � 2|x|�1 as distributions we see that Ψx is a distributional solution of

�∆yΨxpyq � Fxpyq in Ω, (2.12)

where

Fxpyq :� bpyq � bpxq
|x� y| � bpyqHbpx, yq .

By Step 1 and the assumption b P CpΩqXC1pΩq, we have Fx P L8locpΩq. In particular, Fx P LplocpΩq
for any 3   p   8 and therefore, by elliptic regularity (see, e.g., [21, Thm. 10.2]), Ψx P C1,α

loc pΩq for
α � 1� 3{p. Thus, in particular, Ψx P C1pΩq. Inserting the Taylor expansion

Ψxpyq � ∇yΨxpxq � py � xq � op|y � x|q as y Ñ x

into (2.10), we obtain the claim with ξx � ∇yΨxpxq. The uniformity statement follows from the

fact that if x is from a compact set K � Ω, then there is an open set ω with K � ω � ω � Ω such

that the norm of Fx in Lppωq is uniformly bounded for x P K.

Step 3. We now complete the proof of the lemma. Let 0   ρ ¤ dpxq and write, using Step 2,»
Ω
U5
x,λHbpx, yq dy � φbpxq

»
Bρpxq

U5
x,λ dy �

»
Bρpxq

U5
x,λξx � py � xq dy � bpxq

2

»
Bρpxq

U5
x,λ|y � x| dy

� o

�»
Bρpxq

U5
x,λ|y � x| dy

�
�
»

ΩzBρpxq
U5
x,λHbpx, yq dy

with ρÑ 0 as λÑ 8. Since x belongs to a compact subset of Ω, we have dpxq Á 1, and therefore

the bound (2.6) from Step 1 implies�����
»

ΩzBρpxq
U5
x,λHapx, yq dy

����� À
»

ΩzBρpxq
U5
x,λ dy ¤ λ�1{2 4π

» 8

λρ

t2 dt

p1� t2q5{2 � O
�
λ�5{2 ρ�2

	
.
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Similarly, »
Bρpxq

U5
x,λ dy � λ�1{2 4π

» λρ
0

t2 dt

p1� t2q5{2 �
4π

3
λ�1{2 �O

�
λ�5{2ρ�2

	
and »

Bρpxq
U5
x,λ |x� y| dy � 4π λ�

3
2

�» 8

0

t3 dt

p1� t2q5{2 �
» 8

ρλ

t3 dt

p1� t2q5{2

�

� 8π

3
λ�

3
2 �O

�
λ�5{2 ρ�1

	
.

Finally, since Ux,λ is radial about x,»
Bρpxq

U5
x,λpyq ξx � py � xq dy � 0 . (2.13)

Choosing ρÑ 0 with λρ2 Ñ8 we obtain the conclusion of the lemma. �

The argument in Step 2 is the only place in this paper where we use the C1 assumption on a.

Clearly the same proof would work if we only assumed a P C1,αpΩq for some α ¡ 0.

Lemma 2.6. As λÑ8, uniformly for x in compact subsets of Ω,»
Ω
U4
x,λHbpx, yq2 dy � π2 φbpxq2 λ�1 � opλ�1q .

The proof is similar, but simpler than that of Lemma 2.5 and is omitted. We only note that the

constant comes from »
R3

U4
x,λ dy � 4π λ�1

» 8

0

t2 dt

p1� t2q2 � π2 λ�1 .

Lemma 2.7. As xÑ8, uniformly for x from compact subsets of Ω,»
Ω
bpyqUx,λpyq

�
λ�

1
2

|x� y| � Ux,λpyq
�
dy � 2πpπ � 2q bpxqλ�2 �O

�
λ�3 log λ

	
.

Proof. Let 0   ρ ¤ distpx, BΩq. Since λ�
1
2

|x�y| � Ux,λpyq ¥ 0 for any x, y P Ω, the di�erentiability of b

at x implies»
Bρpxq

bpyqUx,λpyq
�

λ�
1
2

|x� y| � Ux,λpyq
�
dy � bpxq

»
Bρpxq

Ux,λpyq
�

λ�
1
2

|x� y| � Ux,λpyq
�
dy �Rλ

with

|Rλ| À
»
Bρpxq

|x� y|Ux,λpyq
�

λ�
1
2

|x� y| � Ux,λpyq
�
dy

À λ�3

» ρλ
0

�
t2?

1� t2
� t3

1� t2

�
dt � O

�
λ�3 lnpλρq

	
. (2.14)
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Moreover, »
Bρpxq

Ux,λpyq
�

λ�
1
2

|x� y| � Ux,λpyq
�
dy � λ�2 4π

» ρλ
0

�
t?

1� t2
� t2

1� t2

�
dt

� λ�2 2πpπ � 2q p1�Oppλρq�1qq .
On the complement of Bρpxq we use the bound (2.5), which gives������

»
ΩzBρpxq

bpyqUx,λpyq
�

λ�
1
2

|x� y| � Ux,λpyq
�
dy

������ À λ�2

» 8

ρλ

dt

t p1� t2q1{2 � Opρ�1 λ�3q .

Choosing ρ � 1{ lnλ we obtain the bound in the lemma. �

The same proof shows that if b is merely continuous, but not necessarily C1, then the expansion

still holds with an error opλ�2q. This would be su�cient for our analysis.

2.3. Expansion of the numerator. One easily checks that for all x P R3 and λ ¡ 0,

�∆Ux,λ � 3U5
x,λ . (2.15)

This, together with the equation (2.11), the harmonicity of H0px, �q and (1.9), implies that

�∆yψx,λpyq � �∆yUx,λpyq � λ�
1
2 ∆yHapx, yq � 3U5

x,λpyq � λ�
1
2 apyqGapx, yq. (2.16)

We now introduce fx,λ by

PUx,λ � Ux,λ � λ�1{2H0px, �q � fx,λ , (2.17)

and recall that [24, Prop. 1 (b)], with d :� distpx, BΩq,
}fx,λ}8 � Opλ�5{2d�3q . (2.18)

Hence, by (2.16) and the fact that ψx,λ vanishes on the boundary,»
Ω
|∇ψx,λ|2 �

»
Ω

�
3U5

x,λpyq � λ�
1
2 apyqGapx, yq

	�
Ux,λpyq � λ�

1
2 Hapx, yq � fx,λpyq

	
dy

� 3

»
Ω
U6
x,λpyq dy � 3λ�

1
2

»
Ω
U5
x,λpyqHapx, yq dy

� λ�1{2

»
Ω
apyqGapx, yq

�
Ux,λpyq � λ�

1
2 Hapx, yq

	
dy

�
»

Ω

�
3U5

x,λpyq � λ�
1
2 apyqGapx, yq

	
fx,λpyq dy . (2.19)

It is easy to see that »
Ω

���3U5
x,λpyq � λ�

1
2 apyqGapx, yq

��� dy � Opλ�1{2q
and therefore, by (2.18) and the fact that x is in a compact subset of Ω,»

Ω

�
3U5

x,λpyq � λ�
1
2 apyqGapx, yq

	
fx,λpyq dy � Opλ�3q .

A simple computation shows that the �rst term on the right side of (2.19) is»
Ω
U6
x,λ dy �

»
Rn
U6
x,λ dy �Opλ�3q �

�
S

3


 3
2

�Opλ�3q . (2.20)
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For the second term we use Lemma 2.5 and obtain

3λ�
1
2

»
Ω
U5
x,λpyqHapx, yq dy � 4πφapxqλ�1 � 4πapxqλ�2 � opλ�2q .

We will combine the third term with the term coming from
³
Ω aψ

2
x,λ dy.

Using again expansion (2.17) of PUx,λ we �nd»
Ω
pa� εV qψ2

x,λpyq dy �
»

Ω
pa� εV q

�
Ux,λ � λ�1{2Hapx, yq

	2
dy

� 2

»
Ω
pa� εV qpUx,λ � λ�1{2Hapx, yqqfx,λ dy �

»
Ω
pa� εV qf2

x,λ dy .

Using (2.18) and the fact that x is in a compact subset of Ω it is easy to see that

�2

»
Ω
pa� εV qpUx,λ � λ�1{2Hapx, yqqfx,λ dy �

»
Ω
pa� εV qf2

x,λ dy � Opλ�3p1� εqq .

To summarize, we have shown that»
Ω

�
|∇ψx,λ|2 � aψ2

x,λ

	
dy � 3

�
S

3


 3
2

� 4π φapxqλ�1 � 4π apxqλ�2 � T px, λq

� ε

»
Ω
V pUx,λ � λ�1{2Hapx, yqq2 dy � opλ�2q �Opελ�3q

with

T px, λq :�
»

Ω
apyq

�
Ux,λpyq � λ�1{2Hapx, yq

	�
Ux,λpyq � λ�1{2

|x� y|

�
dy .

Similarly as in the proof of Lemma 2.7 one �nds that

λ�1{2

»
Ω
apyqHapx, yq

� λ�1{2

|x� y| � Ux,λpyq
	
dy � Opλ�3 lnλq .

Hence, by Lemma 2.7,

T px, λq � �2πpπ � 2q apxqλ�2 � opλ�2q.

Finally, by Lemma 2.4,»
Ω
V pUx,λ � λ�1{2Hapx, yqq2 dy � λ�1

»
Ω
V Gapx, yq2 dy �Opλ�2 lnλq .

This proves the �rst assertion in Theorem 2.1.

2.4. Expansion of the denominator. By the decomposition (2.17) for PUx,λ we obtain»
Ω
ψ6
x,λ dy �

»
Ω
pUx,λ � λ�1{2Hapx, yqq6 dy �Op}Ux,λ � λ�1{2Hapx, �q}55}fx,λ}8 � }fx,λ}66q.

Using (2.6) and (2.18), together with the fact that x is in a compact subset of Ω, we see that the

remainder term is Opλ�3q. Next, we expand»
Ω
pUx,λ � λ�1{2Hapx, yqq6 dy �

»
Ω
U6
x,λ dy � 6λ�1{2

»
Ω
U5
x,λHapx, yq dy � 15λ�1

»
Ω
U4
x,λHapx, yq2 dy

�Opλ�3{2}Ux,λ}33}Hapx, �q}28 � λ�3}Hapx, �q}66q .
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Using (2.6), together with the fact that x is in a compact subset of Ω, we see that the remainder

term is Opλ�3 lnλq. The �rst three terms on the right side are evaluated in (2.20) and Lemmas 2.5

and 2.6. This proves the second assertion in Theorem 2.1.

2.5. Expansion of the quotient. Expansion (2.3) implies that

�»
Ω
ψ6
x,λ dy


�1{3

�
�
S

3


� 1
2

�
�
S

3


�2 8π

3
φapxqλ�1

�
�
S

3


�2
�
�8π

3
apxq � 5π2 φapxq2 � 2

9

64π2

pS{3q3{2 φapxq
2

�
λ�2 � opλ�2q.

Expansion (2.4) now follows by multiplying the previous equation with (2.2). This concludes the

proof of Theorem 2.1.

3. Lower bound on Spa� εV q. Preliminaries
3.1. The asymptotic form of almost minimizers. The remainder of this paper is concerned

with proving a lower bound on Spa� εV q which matches the upper bound from Corollary 2.3. We

will establish this by proving that functions uε for which Sa�εV ruεs is `close' to Spa� εV q are `close'
to the functions ψx,λ used in the upper bound for certain x and λ depending on ε. We will prove

this in several steps. The very �rst step is the following proposition.

Proposition 3.1. Let puεq � H1
0 pΩq be a sequence of functions satisfying

Sa�εV ruεs � S � op1q ,
»

Ω
u6
ε dx � pS{3q3{2 . (3.1)

Then, along a subsequence,

uε � αε
�
PUxε,λε � wε

�
, (3.2)

where

αε Ñ s for some s P t�1,�1u ,
xε Ñ x0 for some x0 P Ω ,

λεdε Ñ8 ,

}∇wε} Ñ 0 and wε P TKxε,λε .

(3.3)

Here dε �distpxε, BΩq.

If the uε are minimizers for Spa� εV q, and therefore solutions to the corresponding Euler�Lagrange

equation, this proposition is well-known and goes back to work of Struwe [29] and Bahri�Coron [5].

The result for almost minimizers is also well-known to specialists, but since we have not been able

to �nd a proof in the literature, we include one in Appendix B. Here we only emphasize that the

fact that uε converges weakly to zero in H1
0 pΩq is deduced from a theorem of Druet [12] which says

that Spaq is not attained for critical a. (Note that this part of the paper [12] is valid for a P L3{2pΩq,
without any further regularity requirement.)
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Convention. From now on we will assume that

Spa� εV q   S for all ε ¡ 0 (3.4)

and that puεq satis�es (1.10). In particular, assumption (3.1) is satis�ed. We will always work with

a sequence of ε's for which the conclusions of Proposition 3.1 hold. To enhance readability, we will

drop the index ε from αε, xε, λε, dε and wε.

4. A priori bounds

4.1. Statement of the bounds. From Proposition 3.1 we know that }∇w} � op1q and that the

limit point x0 of pxεq lies in Ω. The following proposition, which is the main result of this section,

improves both these results.

Proposition 4.1. As εÑ 0,

}∇w} � O
�
λ�1{2

	
, (4.1)

d�1 � Op1q (4.2)

and

λ
�
S � Spa� εV q� � Op1q and λ

�
Sa�εV ruεs � Spa� εV q� � op1q . (4.3)

The bounds (4.1) and (4.2) were shown in [15, Lem. 2.2 and Thm. 1.1] in the case where uε is

a minimizer for Spa � εV q. Since the proof in [15] uses the Euler�Lagrange equation satis�ed by

minimizers, this proof is not applicable in our case. We will replace the use of the Euler�Lagrange

equation by a suitable expansion of Sa�εV ruεs, which is carried out in Subsection 4.2. The other

ingredient in the proof of [15, Lem. 2.2] and in our proof is the coercivity of a certain quadratic form,

see Lemma 4.3 in Subsection 4.3. Finally, in Subsection 4.4 we will prove Proposition 4.1.

4.2. A �rst expansion. In this subsection, we shall prove the following lemma.

Lemma 4.2. As εÑ 0,

Sa�εV ruεs � S � pS{3q�1{24πφ0pxqλ�1 � pS{3q�1{2

»
Ω
p|∇w|2 � aw2 � 15U4

x,λw
2q dy

�O
�
λ�1{2}∇w}

	
� oppdλq�1q � op}∇w}2q .

Proof of Lemma 4.2. We will expand separately the numerator and the denominator in Sa�εV ruεs.

Expansion of the numerator. Since w is orthogonal to PU , we have

α�2

»
Ω
|∇uε|2 dy �

»
Ω
|∇PUx,λ|2 dy �

»
Ω
|∇w|2 dy . (4.4)

The �rst term on the right side is computed in (A.1). The other terms in the numerator are

α�2

»
Ω
pa� εV qu2

ε dy �
»

Ω
pa� εV qPU2

λ,x dy � 2

»
Ω
pa� εqPUλ,xw dy �

»
Ω
pa� εV qw2 dy .

Since 0 ¤ PUx,λ ¤ Ux,λ ¤ λ�1{2|x� y|, see [24, Prop. 1], we have����
»

Ω
pa� εV qPU2

x,λ dy

���� ¤ }a� εV }8λ�1

»
Ω

dy

|x� y|2 � Opλ�1q .
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Clearly,

ε

����
»

Ω
V w2 dy

���� ¤ ε}V }8}w}2 À ε}V }8}∇w}2 � op}∇w}2q ,

and, by (A.5),����
»

Ω
pa� εV qPUx,λw dx

���� ¤ }a� εV }8}PUx,λ}6{5}w}6 � Opλ�1{2}∇w}q .

To summarize, the numerator is α2 times

3�1{2S3{2 � 4πφ0pxqλ�1 �
»

Ω

�
|∇w|2 � aw2

	
dy �O

�
λ�1{2}∇w}

	
� oppλdq�1q � op}∇w}2q .

Expansion of the denominator. We have

α�6

»
Ω
u6
ε dy �

»
Ω
PU6

x,λ dy � 6

»
Ω
PU5

x,λw dy � 15

»
Ω
PU4

x,λw
2 dy �Op}∇w}3q .

The �rst term on the right side is computed in (A.2). Moreover, abbreviating φx,λ :� λ�1{2H0px, �q�
fx,λ, so that, by (2.17), PUx,λ � Ux,λ � φx,λ, we �nd»

Ω
PU5

x,λw dy �
»

Ω
U5
x,λw dy �O

�»
Ω
U4
x,λφx,λ|w| dy �

»
Ω
φ5
x,λ|w| dy



.

(Note that φx,λ ¥ 0, since PUx,λ ¤ Ux,λ by [24, Prop. 1 (a)].) By (2.15), (1.9), the fact that w

vanishes on the boundary and since w P TKx,λ, we have»
Ω
U5
x,λw dy �

1

3

»
Ω
p�∆Ux,λqw dy � 1

3

»
Ω
∇PUx,λ �∇w dy � 0 .

Also, by the equation after [15, (10)],»
Ω
U4
x,λφx,λ|w| dy �

»
Ω
φ5
x,λ|w| dy � Oppdλq�1}∇w}q � oppdλq�1q .

Finally, »
Ω
PU4

x,λw
2 dy �

»
Ω
U4
x,λw

2 dy �O
�»

Ω
U3
x,λφx,λw

2 dy �
»

Ω
φ4
x,λw

2 dy



and, since }φx,λ}6 � Oppdλq�1{2q by [24, Prop. 1 (c)],»

Ω
U3
x,λφx,λw

2 dy �
»

Ω
φ4
x,λw

2 dy � op}∇w}2q .

To summarize, we have shown that

α�6

»
Ω
u6
ε dy � pS{3q3{2 � 8πφ0pxqλ�1 � 15

»
Ω
U4
x,λw

2 dy � oppdλq�1q � op}∇w}2q

and therefore, by the rough bound
³
Ω Ux,λw

2 dy ¤ }Ux,λ}46}w}26 À }Ux,λ}46}∇w}2 � op1q,

α2

�»
Ω
u6
ε dy


�1{3

�
�
S

3


� 1
2

�
�
S

3


�2 8π

3
φ0pxqλ�1 � 45S�2

»
Ω
U4
x,λw

2 dy

� oppdλq�1q � op}∇w}2q .

The lemma follows immediately from the expansions of the numerator and the denominator. �
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4.3. Coercivity. We will frequently use the following bound from [15, Lem. 2.2].

Lemma 4.3. There are constants T�   8 and ρ ¡ 0 such that for all x P Ω, all λ ¡ 0 with dλ ¥ T�
and all v P TKx,λ, »

Ω

�
|∇v|2 � av2 � 15U4

x,λv
2
	
dy ¥ ρ

»
Ω
|∇v|2 dy . (4.5)

The proof proceeds by compactness, using the inequality [24, (D.1)]»
Ω

�
|∇v|2 � 15U4

x,λv
2
	
dy ¥ 4

7

»
Ω
|∇v|2 dy for all v P TKx,λ .

For details of the proof we refer to [15].

4.4. Proof of Proposition 4.1. We combine the expansion from Lemma 4.2 with the coercivity

bound from Lemma 4.3 and the fact that c :� infyPΩ distpy, BΩqφ0pyq ¡ 0, see [24, (2.8)] or [16,

Lem. 8.3]. (Note that this bound uses the C2 assumption on BΩ.) Thus,

Sa�εV ruεs ¥ S �
�
pS{3q�1{24πc� op1q

	
pdλq�1 �

�
pS{3q�1{2ρ� op1q

	
}∇w}2 �Opλ�1{2}∇w}q.

Since λ�1{2}∇w} ¤ δ}∇w}2 � p4δq�1λ�1 for every δ ¡ 0, we obtain, for all su�ciently small ε ¡ 0

and some constants c1, c2 ¡ 0 and C   8 independent of ε,

Cλ�1 � �
Sa�εV ruεs � Spa� εV q� ¥ S � Spa� εV q � c1pdλq�1 � c2}∇w}2 .

By assumption (1.10), this becomes

Cλ�1 ¥ p1� op1qq �S � Spa� εV q�� c1pdλq�1 � c2}∇w}2 .
Since all three terms on the right side are non-negative, we obtain (4.1), (4.2) and the �rst bound

in (4.3). The second bound in (4.3) follows from the �rst one by assumption (1.10). This completes

the proof of the proposition.

5. A priori bounds reloaded

5.1. Statement and heuristics for the improved a priori bound. In order to prove a su�-

ciently precise lower bound on Spa�εV q we need more detailed information on the almost minimizers

uε. Here we extract the leading term from the remainder term w � wε in (3.2).

Proposition 5.1. One has, as εÑ 0,

λpS � Spa� εV qq � op1q , φapxq � op1q (5.1)

and

w � �λ�1{2pHapx, �q �H0px, �qq � q with }∇q} � opλ�1{2q . (5.2)

Note that the second statement in (5.1) implies that φapx0q � 0 for the limit point x0 in (3.3).

In particular, together with Corollary 2.2, we obtain minΩ φa � 0 for critical a, which is Druet's

theorem [12]. Our proof, which is closely related to that by Esposito [15], uses another theorem of

Druet, which says that Spaq is not attained for critical a [12, Step 1] (see Proposition 3.1), but is

otherwise independent of [12].
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The proof of Proposition 5.1 is given at the end of this section. Let us explain the heuristics behind

the proof. In Lemma 5.2 we will derive the following expansion,

Sa�εV ruεs � S � λ�1

�
S

3


� 1
2

�
��4π φapxq � p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1
�
�

�
�
S

3


� 1
2
»

Ω

�
|∇w|2 � aw2 � 2λ�1{2aG0px, yqw � 15U4

x,λw
2
	
dy � opλ�1q . (5.3)

Note that this is an improvement over the expansion in Lemma 4.2, which only had a remainder

Opλ�1q. This improvement is possible thanks to the information from Proposition 4.1.

From the expansion (5.3) we want to determine the asymptotic form of w. In order to (almost)

minimize the quotient Sa�εV ruεs the function w will (almost) minimize the expression»
Ω

�
|∇w|2 � aw2 � 2λ�1{2aG0px, yqw � 15U4

x,λw
2
	
dy .

This is quadratic and linear in w, so it can be minimized by `completing a square'. If the term

�15U4
x,λ were absent, then the minimum would be

�λ�1p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

and the optimal choice for w would be �λ�1{2pHapx, �q �H0px, �qq. Using the positive contribution

that arises when completing the square, we will be able to show that if uε almost minimizes Spa�εV q,
then w almost minimizes the above problem and is therefore almost equal to �λ�1{2pHapx, �q �
H0px, �qq. Proposition 5.1 provides a quantitative version of these heuristics.

As the above argument shows, the main di�culty will be to show that the term �15U4
x,λ is negligible

to within opλ�1q. This does not follow from a straightforward bound since }∇w}2 is only Opλ�1q.
The orthogonality conditions satis�ed by w will play an important role.

5.2. A second expansion. In this subsection, we shall prove the following lemma.

Lemma 5.2. As εÑ 0,

Sa�εV ruεs � S � λ�1

�
S

3


� 1
2

�
��4π φapxq � p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1
�
�

�
�
S

3


� 1
2
»

Ω

�
|∇w|2 � aw2 � 2λ�1{2aG0px, yqw � 15U4

x,λw
2
	
dy � opλ�1q . (5.4)

Proof. Expansion of the numerator. We claim that

α�2

»
Ω
p|∇uε|2 � au2

ε � εV u2
ε q dy � 3�1{2S3{2 � λ�1

�
4πφ0pxq �

»
Ω
aG0px, yq2 dy




�
»

Ω

�
|∇w|2 � aw2 � 2λ�1{2 aG0px, yqw

	
dy � opλ�1q . (5.5)
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Indeed, arguing as in the proof of Lemma 4.2 and using the bounds on d and }∇w} from Proposition

4.1, we obtain

α�2

»
Ω
p|∇uε|2 � au2

ε � εV u2
ε q dy � 3�1{2S3{2 � 4πφ0pxqλ�1 �

»
Ω
aPU2

x,λ dy

�
»

Ω

�
|∇w|2 � aw2 � 2 aPUx,λw

	
dy � opλ�1q .

Note that here we have kept the term
³
Ω apPU2

x,λ � 2PUx,λwq dy instead of estimating it. We now

treat this contribution more carefully. We expand PUx,λ as in (2.17), which leads to»
Ω
apPU2

x,λ � 2PUx,λwq dy �
»

Ω
a
�
pUx,λ � λ�1{2H0px, yqq2 � 2pUx,λ � λ�1{2H0px, yqqw

	
dy

� 2

»
Ω
apPUx,λ � wqfx,λ dy �

»
Ω
af2

x,λ dy .

By (2.18) and (A.5), taking into account (4.2),����
»

Ω
a
�

2pPUx,λ � wqfx,λ � f2
x,λ

	
dy

���� � O
�
}a}8p}PUx,λ}6{5}f}6 � }w}6}fx,λ}6{5 � }fx,λ}2q

	
� Opλ�3q .

On the other hand, by Lemma 2.4,»
Ω
a
�
pUx,λ � λ�1{2H0px, yqq2 � 2pUx,λ � λ�1{2H0px, yqqw

	
dy

�
»

Ω
a
�
λ�1G0px, yq2 � 2λ�1{2G0px, yqw

	
dy �Opλ�2 lnλq .

This proves (5.5).

Expansion of the denominator. Combining the bound from the proof of Lemma 4.2 with the bounds

on d and }∇w} from Proposition 4.1, we obtain

α2

�»
Ω
u6
ε dy


�1{3

� pS{3q�1{2 � pS{3q�2 8π

3
φ0pxqλ�1 � 45S�2

»
Ω
U4
x,λw

2 dy � opλ�1q . (5.6)

Expansion of the quotient. Multiplying (5.5) and (5.6) gives

Sa�εV ruεs � S � λ�1pS{3q�1{24πφ0pxq � λ�1pS{3q�1{2

»
Ω
aG0px, yq2 dy

� pS{3q�1{2

»
Ω

�
|∇w|2 � aw2 � 2λ�1{2aG0px, yqw � 15U4

x,λw
2
	
dy � opλ�1q .

The resolvent identity together with the symmetry G0px, yq � G0py, xq implies»
Ω
apyqG0px, yq2 dy � p4πq�1

¼
Ω�Ω

G0pa, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

�
»

Ω
G0px, yqapyqGapy, xq dy � 4π

�
φapxq � φ0pxq

�
.

This completes the proof of the lemma. �
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5.3. Regularization and coercivity. In this subsection we will show that the coercivity bound

from Lemma 4.3 remains essentially true after regularization. A convenient regularization procedure

for us is a spectral cut-o�. Namely, we denote by 1p�∆ � a ¤ µ q the spectral projection for the

interval p�8, µs of the self-adjoint operator �∆ � a in L2pΩq with Dirichlet boundary condition.

The parameter µ here will be later chosen large depending on ε.

Lemma 5.3. Let v P H1
0 pΩq. Then for any µ ¥ 1,

}1p�∆� a ¤ µ qv}8 À µ1{4 }∇v} . (5.7)

Proof. Let a� � maxt0,�au. By the maximum principle or the Trotter product formula, we have

0 ¤ e�tp�∆�aqpx, xq ¤ p4πtq�3{2 et}a�}8 for all t ¡ 0 ; (5.8)

see, e.g., [11, Thm. 2.4.4] for related estimates.

We denote by En the eigenvalues of �∆� a in L2pΩq and by Φn the corresponding L2-normalized

eigenfunctions. We bound for any x P Ω

����1p�∆� a ¤ µqv� pxq��� �
������
¸
En¤µ

pΦn, vqΦnpxq
������

¤
� ¸
En¤µ

En|pΦn, vq|2
	1{2� ¸

En¤µ

E�1
n |Φnpxq|2

	1{2
.

We clearly have ¸
En¤µ

En|pΦn, vq|2 ¤
¸
n

En|pΦn, vq|2 � pv, p�∆� aqvq À }∇v}2 .

The heat kernel bound (5.8) implies that for any s ¡ 0 and t ¡ 0¸
En¤s

|Φnpxq|2 ¤ ets
¸
En¤s

e�tEn |Φnpxq|2 ¤ etps�}a�}8q p4πtq�3{2 ,

and choosing t � p3{2qps� }a�}8q�1 we obtain for any s ¡ 0,

¸
En¤s

|Φnpxq|2 ¤
�
e

6π


3{2

ps� }a�}8q3{2 .

Thus, writing E�1 � ³8
E s

�2 ds, we get

¸
En¤µ

E�1
n |Φnpxq|2 �

» 8

0

¸
En¤µ

|Φnpxq|21pEn ¤ sq ds
s2

�
» 8

E1

¸
En¤mintµ,su

|Φnpxq|2 ds
s2

¤
�
e

6π


3{2 » 8

E1

min
 pµ� }a�}8q3{2, ps� }a�}8q3{2

( ds
s2
.

The integral is easily seen to be bounded by a universal constant times

µ1{2 � E�1
1 }a�}3{28 .

This proves the claimed bound. �
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Lemma 5.4. There are constants T�   8, ρ ¡ 0 and C   8 such that for all x P Ω, λ ¡ 0 with

dλ ¥ T�, and all v P TKx,λ and all µ ¥ 1 the function

v¡ :� 1p�∆� a ¡ µqv
satis�es »

Ω

�
|∇v¡|2 � av2

¡ � 15U4
x,λ v

2
¡

	
dy ¥ ρ

»
Ω
|∇v¡|2 dy � Cµ1{2λ�1}∇v}2 . (5.9)

Proof. Step 1. We construct an orthonormal basis in Tx,λ � Spantφ1, . . . , φ5u, where
φ1 � PUx,λ, φ2 � BλPUx,λ, φj � Bxj�2PUx,λ, j � 3, 4, 5 .

From [24, Appendix B] we know that, as λÑ8,

}∇φ1} � 1, }∇φ2} � λ�1, }∇φj} � λ, j � 3, 4, 5 , (5.10)

uniformly in x with λd ¥ T�, where T� is any �xed constant. Here � means that the quotient of

both quantities is bounded from above and away from zero. Let

φ̃j :� φj
}∇φj} , j � 1, . . . , 5 , (5.11)

and

Gj,k :�
»

Ω
∇φ̃j �∇φ̃k dy , j, k � 1, . . . , 5 .

By [24, Appendix B] and (5.10),

Gj,k :� Opλ�1q for all j � k and Gj,j � 1 for all j . (5.12)

Hence, if λ is large enough, which follows from dλ ¥ T� with su�ciently large T� since Ω is bounded,

then G is invertible and

pG�1{2qj,k � δj,k �Opλ�1q . (5.13)

Hence, by the Gram�Schmidt procedure,

ψj :�
¸
k

pG�1{2qj,k φ̃k j � 1, . . . , 5 , (5.14)

is an H1
0 pΩq-orthonormal basis of Tx,λ.

Step 2. We decompose

v¡ � v‖ � vK with v‖ P Tx,λ and vK P TKx,λ (5.15)

and claim that

}∇v‖} � Opλ�1{2µ1{4 }∇v}q . (5.16)

Since the ψj are an orthonormal basis of Tx,λ, we have

v‖ �
5̧

j�1

mjψj with mj :�
»

Ω
∇ψj �∇v¡ dy .

Since »
Ω
|∇v‖|2 dy �

¸
j

m2
j ,



ENERGY ASYMPTOTICS IN THE THREE-DIMENSIONAL BREZIS�NIRENBERG PROBLEM 21

the claim (5.16) follows from

mj � Opλ�1{2µ1{4 }∇v}q for all j � 1, . . . , 5 . (5.17)

In order to prove the latter, we introduce

`j :�
»

Ω
∇φ̃j �∇v¡ dy ,

so that, by (5.14),

mj �
¸
k

pG�1{2qj,k lk .

Therefore, in view of (5.13), the claim (5.17) follows from

`j � Opλ�1{2µ1{4}∇v}q for all j � 1, . . . , 5 . (5.18)

To prove (5.18), we use the fact that v P TKx,λ to �nd

`j � �
»

Ω
∇φ̃j �∇v  dy �

»
Ω
v  ∆φ̃j dy .

Thus,

|`j | ¤ }v }8 }∆φ̃j}1 .
According to (5.7) we have }v }8 À µ1{4}∇v}. Thus, in order to complete the proof of (5.18) we

need to show that }∆φ̃j}1 � Opλ�1{2q for j � 1, . . . , 5. We have

�∆φ̃1 � }∇φ1}�13U5
x,λ , �∆φ̃2 � }∇φ2}�115U4

x,λBλUx,λ ,
�∆φ̃j � }∇φj}�115U4

x,λBjUx,λ for j � 3, 4, 5 . (5.19)

Thus, the claimed bound on }∆φ̃j}1 follows from (5.10) and straightforward bounds on }Ux,λ}5,
}BλUx,λ}5 and }BjUx,λ}5. This completes the proof of (5.18) and therefore of (5.16).

Step 3. By the orthogonal decomposition (5.15) we have»
Ω
|∇v¡|2 dy �

»
Ω
|∇v‖|2 dy �

»
Ω
|∇vK|2 dy .

Moreover, we bound, with a parameter δ ¡ 0 to be determined,»
Ω
U4
x,λ v

2
¡ dy ¤ p1� δ�1q

»
Ω
U4
x,λ v

2
‖ dy � p1� δq

»
Ω
U4
x,λ v

2
K dy

and »
Ω
a v2

¡ dy ¥ �p1� δ�1q
»

Ω
|a| v2

‖ dy �
»

Ω
a v2

K dy � δ

»
Ω
|a| v2

K dy .

Thus,»
Ω

�
|∇v¡|2 � av2

¡ � 15Ux,λv
2
¡

	
dy ¥

»
Ω

�
|∇vK|2 � av2

K � 15Ux,λv
2
K

	
dy � δ

»
Ω
p|a| � 15U4

x,λqv2
K dy

�
»

Ω
|∇v‖|2 dy � p1� δ�1q

»
Ω
p|a| � 15U4

x,λqv2
‖ dy .

Clearly, »
Ω
p|a| � 15U4

x,λq z2 dy ¤
�
}a}3{2 � 15}Ux,λ}46

	
}z}26 À }∇z}2 @ z P H1

0 pΩq. (5.20)
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Since vK P TKx,λ, Lemma 4.3 and (5.20) imply that, after increasing T� if necessary, there are δ ¡ 0

and c ¡ 0 such that»
Ω

�
|∇vK|2 � av2

K � 15Ux,λv
2
K

	
dy � δ

»
Ω
p|a| � 15U4

x,λqv2
K dy ¥ c

»
Ω
|∇vK|2 dy .

On the other hand, by (5.20) and (5.16),»
Ω
p|a| � 15U4

x,λqv2
‖ dy À

»
Ω
|∇v‖|2 dy � Opλ�1µ1{2}∇v}2q .

This completes the proof of Lemma 5.4. �

5.4. Completing the square. The following lemma gives a lower bound on the term in (5.4)

which involves w. As explained above, this is the crucial step in the proof of Proposition 5.1.

Lemma 5.5. For some constant c ¡ 0,»
Ω

�
|∇w|2 � aw2 � 2λ�1{2aG0px, yqw � 15U4

x,λw
2
	
dy

¥ �λ�1p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

� c
���p�∆� aq1{2w � p�∆� aq�1{2λ�1{2aG0px, �q

���2
�Opλ�3{2q . (5.21)

Proof. For a parameter µ ¥ 1 to be speci�ed later we decompose w � w¡ � w  with

w¡ � 1p�∆� a ¡ µqw , w  � 1p�∆� a ¤ µqw .
Then »

Ω

�
|∇w|2 � aw2

	
dy �

»
Ω

�
|∇w¡|2 � aw2

¡

	
dy �

»
Ω

�
|∇w |2 � aw2

 

	
dy (5.22)

and therefore, for any δ ¡ 0,»
Ω

�
|∇w|2 � aw2 � 2λ�1{2aG0px, yqw � 15U4

x,λw
2
	
dy ¥ I  � I¡ �R pδq �R¡pδq , (5.23)

where

I  :�
»

Ω

�
|∇w |2 � aw2

  � 2λ�1{2aG0px, yqw 
	
dy ,

I¡ :�
»

Ω

�
|∇w¡|2 � aw2

¡ � 15U4
x,λw

2
¡

	
dy ,

R pδq :� �15 p1� δ�1q
»

Ω
U4
x,λw

2
  dy ,

R¡pδq :� �15 δ

»
Ω
U4
x,λw

2
¡ dy � 2λ�1{2

»
Ω
aG0px, yqw¡ dy .

By completing the square we �nd

I  � �λ�1p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

�
���p�∆� aq1{2w  � p�∆� aq�1{2λ�1{2aG0px, �q

���2
,
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and with 0 ¤ c ¤ 1 to be determined we estimate

I  ¥ �λ�1p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

� c
���p�∆� aq1{2w  � p�∆� aq�1{2λ�1{2aG0px, �q

���2

� �λ�1p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

� c
���p�∆� aq1{2w � p�∆� aq�1{2λ�1{2aG0px, �q

���2

� c
���p�∆� aq1{2w¡

���2
� 2cλ�1{2

»
Ω
aG0px, yqw¡ dy . (5.24)

According to Lemma 5.4 there are ρ ¡ 0 and C   8 such that for all su�ciently small ε ¡ 0,

I¡ ¥ ρ

»
Ω
|∇w¡|2 dy � Cµ1{2λ�1}∇w}2 .

Since a P L8pΩq, we have
}p�∆� aq1{2z}2 ¤ C 1 }∇z}2 @ z P H1

0 pΩq . (5.25)

We apply this with u � w¡ and infer that

I  � I¡pδq �R pδq �R¡ ¥ �λ�1p4πq�1

¼
Ω�Ω

G0px, yqapyqGapy, y1qapy1qG0py1, xq dy dy1

� c

����p�∆� aq1{2w � p�∆� aq�1{2 α?
λ
aG0px, �q

����
2

�R1pδq �R2pδq

where

R1pδq � ρ}∇w¡}2 � cC 1}∇w¡}2 � 15 δ

»
Ω
U4
x,λw

2
¡ dy ,

R2pδq � �Cµ1{2λ�1}∇w}2 � 2p1� cqλ�1{2

»
Ω
aG0px, yqw¡ dy � 15 p1� δ�1q

»
Ω
U4
x,λw

2
  dy .

We now choose c � mint1, ρ{p2C 1qu. Moreover, by (5.20) we can choose a δ ¡ 0, independent of ε

and µ such that

R1pδq ¥ 0 .

From now on, we �x this value of δ.

It remains to show that R2pδq is Opλ�3{2q for an appropriate choice of µ. By (4.1) and (5.25) and

by the orthogonality (5.22) we have

Opλ�1q �
»

Ω
|∇w|2 dy Á

»
Ω

�
|∇w|2 � aw2

	
dy ¥

»
Ω

�
|∇w¡|2 � aw2

¡

	
dy ¥ µ }w¡}2 . (5.26)

Thus, since a P L8pΩq and since G0px, �q is uniformly bounded in L2pΩq, we have����
»

Ω
aG0px, yqw¡ dy

���� À }w¡} À µ�1{2λ�1{2 .
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Moreover, by Lemma 5.3,»
Ω
U4
x,λw

2
  dy ¤ }w }28

»
Ω
U4
x,λ dy À µ1{2}∇w}2

»
R3

U4
x,λ dy À µ1{2λ�2 .

Thus,

R2pδq Á �
�
µ1{2λ�2 � µ�1{2λ�1

	
.

With the choice µ � λ the right side becomes Opλ�3{2q, as claimed. �

Now we prove the main result of this section.

Proof of Proposition 5.1. Inserting (5.21) into (5.4) gives

Sa�εV ruεs ¥ S � 4π λ�1pS{3q�1{2φapxq

� pS{3q�1{2c
���p�∆� aq1{2w � p�∆� aq�1{2λ�1{2aG0px, �q

���2
� opλ�1q . (5.27)

We subtract Spa � εV q from both sides, multiply by λ and take the limsup as ε Ñ 0�. Using the

second relation in (4.3) we obtain

0 ¥ lim sup
εÑ0

�
λpS � Spa� εV qq � 4πpS{3q�1{2φapxq

�pS{3q�1{2cλ
���p�∆� aq1{2w � p�∆� aq�1{2λ�1{2aG0px, �q

���2


.

Since the three terms in the limsup are all non-negative (which for φa follows from Corollary 2.2),

we deduce that

λpS � Spa� εV qq � op1q , φapxq � op1q
and ���p�∆� aq1{2w � p�∆� aq�1{2λ�1{2aG0px, �q

���2
� opλ�1q .

Since �∆� a is coercive, the last bound implies���∇�
w � p�∆� aq�1λ�1{2aG0px, �q

	���2
� opλ�1q .

By the resolvent identity,

p�∆� aq�1aG0px, �q � G0px, �q �Gapx, �q � Hapx, �q �H0px, �q ,
and therefore, setting q :� w � λ�1{2pHapx, �q �H0px, �qq, the previous bound can be rewritten as

}∇q}2 � opλ�1q. This completes the proof of the proposition. �

6. A re�ned decomposition of almost minimizers

From Proposition 5.1 we infer that any sequence puεq satisfying (1.10) can be decomposed as

uε � α
�
ψx,λ � q

�
,

where

ψx,λ � PUx,λ � λ�1{2pHapx, �q �H0px, �qq
is as in the proof of the upper bound, see (2.1), and where

}∇q} � opλ�1{2q .
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Thus, expanding Sa�εV ruεs leads to an expression that coincides with the upper bound in Corollary

2.2 up to additional terms involving q. Using coercivity we will be able to show that the contribution

from

r :� ΠK
x,λq ,

the orthogonal projection of q onto TKx,λ in H1
0 pΩq, is negligible; see Lemma 6.6 below. The main

focus in this section is on

Πx,λq � Πx,λ

�
w � λ�1{2pHapx, �q �H0px, �qq

	
� λ�1{2 Πx,λpHapx, �q �H0px, �qq,

where the last identity follows from w P TKx,λ. In Lemma 6.3 we will prove that the contribution

from Πx,λq is negligible. This is not obvious and, in fact, somewhat surprising since Πx,λq is of

order λ�1 and not smaller.

6.1. Preliminary estimates. Let us write

Πx,λq � βλ�1PUx,λ � γBλPUx,λ �
3̧

j�1

δj λ
�3BxjPUx,λ .

Since PUx,λ, BλPUx,λ and BxjPUx,λ, j � 1, 2, 3, are linearly independent for su�ciently large λ, the

numbers β, γ and δj , j � 1, 2, 3, (depending on ε, of course) are uniquely determined. The choice of

the di�erent powers of λ multiplying these coe�cients is motivated by the following lemma.

Lemma 6.1. As εÑ 0, we have

β, γ, δj � Op1q.

Proof. We recall that the functions φ̃j , j � 1, . . . , 5, were introduced in (5.11). Let

aj :�
»

Ω
∇φ̃j �∇q dy , j � 1, . . . , 5 .

Step 1. We shall show that

a1, a2 � Opλ�1q , a3, a4, a5 � Opλ�2q . (6.1)

Since �λ�1{2pHapx, �q �H0px, �qq � q � w P TKx,λ, we have

aj � λ�1{2

»
Ω
∇φ̃j �∇ypHapx, yq �H0px, yqq dy � �λ�1{2

»
Ω
p∆φ̃jqpHapx, yq �H0px, yqq dy .

Formulas for the Laplacians ∆φ̃j are given in (5.19) and the quantities }∇φj} appearing there were

estimated in (5.10). For a1, the integral
³
Ω U

5
x,λpHapx, yq � H0px, yqq dy is Opλ�1{2q according to

Lemma 2.5, which proves the claim in (6.1). To bound aj for j � 2, . . . , 5 we compute

BλUx,λpyq � λ�1{2

2

1� λ2|y � x|2
p1� λ2|y � x|2q3{2 , BxiUx,λpyq � λ5{2 yi � xi

p1� λ2|y � x|2q3{2 , i � 1, 2, 3.

This expression and straightforward bounds lead to the claim for a2 in (6.1).

To prove (6.1) for aj with j � 3, 4, 5 we need to bound»
Ω
pHapx, yq �H0px, yqqU4

x,λBxjUx,λ dy .
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From Step 1 in the proof of Lemma 2.5, recalling (4.2), we infer that there are ρ ¡ 0 and C ¡ 0,

both independent of ε, such that��Hapx, yq �H0px, yq �Hapx, xq �H0px, xq
�� À |y � x| for all y P Bρpxq .

Since the function U4
x,λBxjUx,λ is odd, we have»

Bρpxq
pHapx, xq �H0px, xqqU4

x,λBxjUx,λ dy � 0 .

On the other hand, using the above expression for BxjUx,λ we �nd»
Ω

mint|y � x|, ρu
���U4
x,λBxjUx,λ

��� dy � Opλ3{2q .

This proves (6.1) for j � 3, 4, 5.

Step 2. Let us deduce the statement of the lemma. We have

Πx,λq �
5̧

j�1

ãjφ̃j

with

ã1 :� βλ�1}∇PUx,λ} , ã2 :� γ}∇BλPUx,λ} , ãj :� δjλ
�3}∇Bxj�2PUx,λ} , j � 3, 4, 5 .

In view of (5.10), the assertion of the lemma is equivalent to

ã1, ã2 � Opλ�1q , ãj � Opλ�2q , j � 3, 4, 5 . (6.2)

With respect to the orthonormal system ψj , j � 1, . . . , 5, from (5.14) we have

Πx,λq �
5̧

j�1

p∇ψj ,∇qqψj .

Using (5.14) twice to express ψj in terms of φ̃k's we obtain

Πx,λq �
5̧

k�1

5̧

`�1

pG�1qk,`p∇φ̃`,∇qq φ̃k �
5̧

k�1

5̧

`�1

pG�1qk,` a` φ̃k .

Thus,

ãk �
5̧

`�1

pG�1qk,` a` , k � 1, . . . , 5 .

Similarly as in (5.13) one �nds

pG�1qj,k � δj,k �Opλ�1q ,
and then (6.2) follows from (6.1). This completes the proof of the lemma. �

Remark 6.2. The same method of proof shows that there are non-zero numbers β0, γ0, δ0,j such

that

β Ñ β0 , γ Ñ γ0 , δ0,j Ñ δ0

as ε Ñ 0. Indeed, proceeding as in Step 1 above one can show that λak for k � 1, 2 and λ2ak for

k � 3, 4, 5 have a non-zero limit as ε Ñ 0. As in Step 2 above, this implies that λãk for k � 1, 2

have a non-zero limit as ε Ñ 0. In order to compute the limits of λãk for k � 3, 4, 5 one needs to
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use, in addition, the fact that pG�1qk,` � δk,`�Opλ�2q for k � 3, 4, 5. Indeed, by a Neumann series

for G � 1� p1�Gq one �nds

pG�1qk,` � p2�Gqk,` �Opλ�2q � 2δk,` �
»

Ω
∇φ̃k �∇φ̃` dy �Opλ�2q ,

and then one can use bounds from [24, Appendix B] for the integral on the right side.

6.2. A third expansion. In this subsection, we shall prove the following lemma.

Lemma 6.3. As εÑ 0,

Sa�εV ruεs � Sa�εV rψx,λs � pS{3q�1{2

�
E0rrs � N0

3D0
Irrs



� opλ�2q � opελ�1q (6.3)

with

N0 :�
»

Ω

�
|∇ψx,λ|2 � pa� εV qψ2

x,λ

	
dy, D0 :�

»
Ω
ψ6
x,λ dy (6.4)

and

Irrs :� �30λ�1{2

»
Ω
U4
x,λHapx, yqr dy � 15

»
Ω
U4
x,λr

2 dy � 20

»
Ω
U3
x,λr

3 dy . (6.5)

We emphasize that the coe�cients β, γ and δj enter only into the remainders opλ�2q � opελ�1q.
This is somewhat surprising since β enters to orders λ�1 and λ�2 and γ enters to order λ�2 in the

expansion of the numerator and the denominator.

In the following, it will be convenient to abbreviate

g :� βλ�1PUx,λ � γBλPUx,λ , h :�
3̧

j�1

δjλ
�3BxjPUλ,x ,

so that

u � αpψx,λ � g � h� rq .
We record the bounds

}∇g} � Opλ�1q , }∇h} � Opλ�2q , }∇r} � opλ�1{2q . (6.6)

Indeed, the bounds on g and h follow from Lemma 6.1 together with (5.10) and that for r follows

from Proposition 5.1 since, by orthogonality, }∇r} ¤ }∇q}.
We will also use the fact that

}∆h}1 � Opλ�5{2q . (6.7)

This follows from Lemma 6.1 together with (5.19) and the same bounds that led to (5.18).

We will obtain Lemma 6.3 from separate expansions of the numerator and the denominator, which

we state in the following two lemmas.
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Expanding the numerator. We abbreviate

Eεrvs :�
»

Ω

�
|∇v|2 � pa� εV qv2

	
dy

and write Eεrv1, v2s for the associated bilinear form. Recall that N0 was de�ned in (6.4). We shall

show

Lemma 6.4. As εÑ 0,

α�2Eεruεs � N0 �N1 � E0rrs � opλ�2q � opελ�1q ,
where

N1 :�
»

Ω
|∇g|2 dy � 2 E0rψx,λ, gs .

Proof. Step 1. We show that the contribution from h to α�2Eεruεs is negligible, that is,
α�2Eεruεs � Eεrψx,λ � g � rs � opλ�5{2q . (6.8)

Indeed,

α�2Eεruεs � Eεrψx,λ � g � rs � 2 Eεrψx,λ � g � r, hs � Eεrhs .
Since Eεrv1, v2s À }∇v1}}∇v2} for all v1, v2 P H1

0 pΩq, we immediately conclude from (6.6) that

Eεrhs � Opλ�4q Eεrg � r, hs � opλ�5{2q .
Next, using (6.7), (2.6) and (2.7),»

Ω
∇ψx,λ �∇h dy �

»
Ω
∇PUx,λ �∇h dy �Opλ�1{2}Hapx, �q �H0px, �q}8}∆h}1q

�
»

Ω
∇PUx,λ �∇h dy �Opλ�3q .

Moreover, by (5.12) and (5.10),»
Ω
∇PUx,λ �∇h dy �

3̧

j�1

δjλ
�3

»
Ω
∇PUx,λ �∇BxjPUx,λ dy � Opλ�3q .

Finally, by (A.8) and (6.6),����
»

Ω
pa� εV qψx,λh dy

���� ¤ }a� εV }8}ψx,λ}6{5}h}6 � Opλ�5{2q

This proves (6.8).

Step 2. We now extract the relevant contribution from g and show

Eεrψx,λ � g � rs � Eεrψx,λ � rs � 2 E0rψx,λ, gs �
»

Ω
|∇g|2 dy � opλ�2q . (6.9)

Indeed,

Eεrψx,λ � g � rs � Eεrψx,λ � rs � 2 Eεrψx,λ � r, gs � Eεrgs .
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By Lemma 6.1, (A.5), (A.6) and (6.6),����
»

Ω
pa� εV qp2rg � g2q dy

���� ¤ }a� εV }8}g}6{5p2}r}6 � }g}6q

À
�
|β|λ�1}PUx,λ}6{5 � |γ|}BλPUx,λ}6{5

	
p}r}6 � }g}6q � opλ�2q .

We have, since r P TKx,λ and g P Tx,λ, »
Ω
∇r �∇g dy � 0 .

This proves (6.9).

Step 3. We �nally extract the relevant contribution from r and show

Eεrψx,λ � rs � Eεrψx,λs � E0rrs � opλ�2q � opελ�1q . (6.10)

Indeed,

Eεrψx,λ � rs � Eεrψx,λs � 2Eεrψx,λ, rs � Eεrrs .
Using r P TKx,λ, the harmonicity of H0 and equation (2.11) for Ha, we �nd»

Ω
∇ψx,λ �∇r dy � �λ�1{2

»
Ω
∇ypHapx, yq �H0px, yqq �∇r dy � �λ�1{2

»
Ω
aGapx, yqr dy .

On the other hand, by (2.17), (2.18) and (4.2),»
Ω
aψx,λr dy �

»
Ω
aUx,λr dy � λ�1{2

»
Ω
aHapx, yqr dy � Op}a}6{5}fx,λ}8}r}6q � opλ�3q .

Thus,

E0rψx,λ, rs �
»

Ω
a
�
Ux,λ � λ�1{2Hapx, yq � λ�1{2Gapx, yq

	
r dy � opλ�3q .

By Lemma 2.4, ����
»

Ω
a
�
Ux,λ � λ�1{2Hapx, yq � λ�1{2Gapx, yq

	
r dy

����
¤ }a}8}Ux,λ � λ�1{2Hapx, �q � λ�1{2Gapx, �q}6{5}r}6 � opλ�5{2q .

Finally, by (6.6) and (A.8),����
»

Ω
V ψx,λr dy

���� ¤ }V }8}ψx,λ}6{5}r}6 � opλ�1q

and ����
»

Ω
V r2 dy

���� ¤ }V }3{2}r}26 � opλ�1q .

This proves (6.10).

The lemma follows by collecting the estimates from the three steps. �
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Expanding the denominator. Recall that D0 and Irrs were de�ned in (6.4) and (6.5) respectively.

We shall show

Lemma 6.5. As εÑ 0,

α�6

»
Ω
u6
ε dy � D0 �D1 � Irrs � opλ�2q ,

where

D1 :� 6

»
Ω
ψ5
x,λg dy � 15

»
Ω
ψ4
x,λg

2 dy .

Proof. Step 1. We show that the contribution from h to α�6
³
Ω u

6
ε dy is negligible, that is,

α�6

»
Ω
u6
ε dy �

»
Ω
pψx,λ � g � rq6 dy � opλ�2q . (6.11)

Indeed,

α�6

»
Ω
u6
ε dy �

»
Ω
pψx,λ � g � rq6 dy � 6

»
Ω
pψx,λ � g � rq5h dy �O

�
}ψx,λ � g � r}46}h}26 � }h}66

	
and by (6.6) the last term is Opλ�4q. The middle term is»

Ω
pψx,λ � g � rq5h dy �

»
Ω
ψ5
x,λh dy �O

�
}ψx,λ}46}g � r}6}h}6 � }g � r}56}h}6

	
and again by (6.6) the last term here is opλ�5{2q. The �rst term here is»

Ω
ψ5
x,λh dy �

»
Ω
U5
x,λh dy �O

�
}Ux,λ}46}ψx,λ � Uλ,x}6}h}6 � }ψx,λ � Ux,λ}56}h}6

	
,

which, by (6.6) and (A.7), is Opλ�5{2q. Finally, by (5.12) and (5.10),»
Ω
U5
x,λh dy � 3�1

»
Ω
∇PUx,λ �∇h dy �

3̧

j�1

δjλ
�3

»
Ω
∇PUx,λ �∇BxjPUx,λ dy � Opλ�3q .

This proves (6.11).

Step 2. We now extract the relevant contribution from g and show»
Ω
pψx,λ � g � rq6 dy �

»
Ω
pψx,λ � rq6 dy � 6

»
Ω
ψ5
x,λg dy � 15

»
Ω
ψ4
x,λg

2 dy � opλ�2q . (6.12)

Indeed,»
Ω
pψx,λ � g � rq6 dy �

»
Ω
pψx,λ � rq6 dy � 6

»
Ω
pψx,λ � rq5g dy � 15

»
Ω
pψx,λ � rq4g2 dy

�O
�
}ψx,λ � r}36}g}36 � }g}66

	
and by (6.6) the last term is Opλ�3q. We need to show that the contribution from r to the second

and third term on the right side is negligible. The third term is»
Ω
pψx,λ � rq4g2 dy �

»
Ω
ψ4
x,λg

2 dy �O
�
}ψx,λ}36}r}6}g}26 � }r}46}g}26
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and by (6.6) the last term is opλ�5{2q. The second term above is»
Ω
pψx,λ � rq5g dy �

»
Ω
ψ5
x,λg dy � 5

»
Ω
ψ4
x,λrg dy �O

�
}ψx,λ}36}r}26}g}6 � }r}56}g}26

	
and by (6.6) the last term is opλ�2q. Let us show that the second term on the right side of the

previous equation is negligible. We have»
Ω
ψ4
x,λrg dy �

»
Ω
U4
x,λrg dy �O

�
}Ux,λ}36}ψx,λ � Ux,λ}6}r}6}g}6 � }ψx,λ � Ux,λ}46}r}6}g}6

	
and by (6.6) and (A.7) the last term is opλ�2q. Now»

Ω
U4
x,λrg dy � βλ�1

»
Ω
U4
x,λPUx,λr dy � γ

»
Ω
U4
x,λBλPUx,λr dy

� βλ�1

»
Ω
U5
x,λr dy � γ

»
Ω
U4
x,λBλUx,λr dy

�Opp|β|λ�1}PUx,λ � Ux,λ}6 � |γ|}BλPUx,λ � BλUx,λ}6q}Ux,λ}46}r}6q .
By Lemma 6.1, [24, Prop. 1 (c)] and (6.6), the last term is opλ�2q. Finally, by (5.19) and the fact

that r P TKx,λ,»
Ω
U5
x,λr dy � 3�1

»
Ω
∇PUx,λ �∇r dy � 0 ,

»
Ω
U4
x,λBλUx,λr dy � p15q�1

»
Ω
∇BλPUx,λ �∇r dy � 0 .

This proves (6.12).

Step 3. We �nally extract the relevant contribution from r and show»
Ω
pψx,λ � rq6 dy �

»
Ω
ψ6
x,λ dy � Irrs � opλ�2q . (6.13)

Indeed, »
Ω
pψx,λ � rq6 dy �

»
Ω
ψ6
x,λ dy � 6

»
Ω
ψ5
x,λr dy � 15

»
Ω
ψ4
x,λr

2 dy � 20

»
Ω
ψ3
x,λr

3 dy

�O
�
}ψx,λ}26}r}46 � }r}66

	
and by (6.6) the last term is opλ�2q. We need to extract Irrs from the three terms on the right side

involving r. We begin with the term which is linear in r,»
Ω
ψ5
x,λr dy �

»
Ω
U5
x,λr dy � 5

»
Ω
U4
x,λpψx,λ � Ux,λqr dy

�O
�
}Ux,λ}318{5}ψx,λ � Ux,λ}8}r}6 � }ψx,λ � Ux,λ}56}r}6

	
.

By (A.7), (6.6) and }Ux,λ}318{5 � Opλ�1q, the last term is opλ�2q. Since r P TKx,λ, the �rst term is»
Ω
U5
x,λr dy � 3�1

»
Ω
∇PUx,λ �∇r dy � 0 .

Writing ψx,λ � Ux,λ � �λ�1{2Hapx, �q � fx,λ, we have»
Ω
U4
x,λpψx,λ � Ux,λqr dy � �λ�1{2

»
Ω
U4
x,λHapx, yqr dy �Op}Ux,λ}424{5}fx,λ}8}r}6q .

By (2.18), (4.2), (6.6) and }Ux,λ}424{5 � Opλ�1{2q, the last term on the right side is opλ�2q.
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We now turn to the terms that are quadratic in r. We have»
Ω
ψ4
x,λr

2 dy �
»

Ω
U4
x,λr

2 dy �O
�
}Ux,λ}39{2}ψx,λ � Ux,λ}8}r}26 � }ψx,λ � Ux,λ}46}r}26

	
and by (A.7), (6.6) and }Ux,λ}39{2 � Opλ�1{2q, the last term on the right side is opλ�2q. Similarly,

one shows that »
Ω
ψ3
x,λr

3 dy �
»

Ω
U3
x,λr

3 dy � opλ�2q .

This proves (6.13).

The lemma follows by collecting the estimates from the three steps. �

Proof of Lemma 6.3. Note that, by (6.6), D1 � Opλ�1q and Irrs � opλ�1q. Moreover, by (2.3), D0

stays away from zero. Therefore, the expansion from Lemma 6.5 implies that�
α�6

»
Ω
u6
ε dy


�1{3

� D
�1{3
0

�
1� 1

3

D1

D0
� 1

3

Irrs
D0

� 2

9

D2
1

D2
0

� opλ�2q
�
.

Combining this with the expansion from Lemma 6.4 and using N1 � Opλ�1q (again from (6.6)), we

obtain

Sa�εV ruεs � Sa�εV rψx,λs �A�D
�1{3
0

�
E0rrs � N0

3D0
Irrs



� opλ�2q � opελ�1q

with

A � D
�1{3
0

�
N1 � D1

3D0
N1 � D1

3D0
N0 � 2

9

D2
1

D2
0

N0

�
.

Thus, the assertion of the lemma is equivalent to A � opλ�2q � opελ�1q. We write

A � D
�1{3
0

�
pN1 �D1q

�
1� D1

3D0



� 1

3

D2
1

D0
�
�

1� N0

3D0



D1

�
1� 2D1

3D0


�
.

It follows from (2.2) and (2.3) that

N0

3D0
� 1�Opλ�2q �Opελ�1q . (6.14)

This, together with D1 � Opλ�1q, yields

A � D
�1{3
0

�
pN1 �D1q

�
1� D1

3D0



� 1

3

D2
1

D0

�
� opλ�2q.

We shall show in Appendix A that

N1 � 3π2

2
β λ�1 �

�
3π2

4
β2 � 15π2

64
γ2 � 8π φ0pxqβ � 4π φ0pxq γ

�
λ�2 � opλ�2q (6.15)

and

D1 � 3π2

2
βλ�1 �

�
15π2

4
β2 � 15π2

64
γ2 � 8π φ0pxqβ � 4π φ0pxq γ

�
λ�2 � opλ�2q . (6.16)
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Thus, in particular,

N1 �D1 � �3π2β2λ�2 � opλ�2q and D2
1 �

�
3π2

2

�2

β2λ�2 � opλ�2q .

This, together with D0 � pS{3q3{2 � opλ�1q (from (2.3)), implies A � opλ�2q, as claimed. �

Before continuing with the main line of the argument, let us expand α. By the normalization (1.10),

Lemma 6.5, (2.3) and (6.16)

α�6pS{3q3{2 � pS{3q3{2 � 3π2

2
β λ�1 � 8π φapxqλ�1

�
�

8π apxq � 15π2

4
β2 � 15π2

64
γ2 � 8π φ0pxqβ � 4π φ0pxq γ

�
λ�2 � Irrs � opλ�2q .

(6.17)

6.3. Coercivity. To complete the proof of our main results, it remains to prove that the terms

involving r in the expansion (6.3) give a non-negative contribution. Recall that Irrs was de�ned in

(6.5) and N0 and D0 in Lemmas 6.4 and 6.5, respectively.

Lemma 6.6. There is a ρ ¡ 0 such that for all su�ciently small ε ¡ 0,

E0rrs � N0

3D0
Irrs ¥ ρ

»
Ω
|∇r|2 dy � opλ�2q .

Proof. We bound, using (4.2), Lemma 2.6 and (5.1), for any δ ¡ 0,����30λ�1{2

»
Ω
U4
x,λHapx, yqr dy

���� ¤ 30λ�1{2

�»
Ω
U4
x,λr

2 dy


 1
2
�»

Ω
U4
x,λHapx, yq2 dy


 1
2

¤ opλ�1q
�»

Ω
U4
x,λr

2 dy


 1
2

¤ δ

»
Ω
U4
x,λ r

2 dy � δ�1opλ�2q .

Similarly, using (6.6),����20

»
Ω
U3
x,λ r

3 dy

���� ¤ 20

�»
Ω
U4
x,λ r

2 dy


 3
4
�»

Ω
r6 dy


 1
4

¤ opλ� 3
4 q
�»

Ω
U4
x,λ r

2 dy


 3
4

¤ δ

»
Ω
U4
x,λ r

2 dy � δ�3 opλ�3q .

This, together with (6.14) implies that

E0rrs � N0

3D0
Irrs ¥

»
Ω

�
|∇r|2 � ar2 � 15U4

x,λr
2
	
dy

�
�

2δ �Opλ�2q �Opελ�1q
	 »

Ω
U4
x,λ r

2 dy � δ�1opλ�2q � δ�3opλ�3q .

Since r P TKx,λ, Lemma 4.3 implies that for all su�ciently small ε ¡ 0, the �rst term on the right

side is bounded from below by ρ
³
Ω |∇r|2 dy for some ρ ¡ 0 independent of ε. On the other hand,

by (5.20), choosing δ ¡ 0 small, but independent of ε, and then ε small, we can make sure that

�
�

2δ �Opλ�2q �Opελ�1q
	 »

Ω
U4
x,λ r

2 dy ¥ �pρ{2q
»

Ω
|∇r|2 dy .
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This completes the proof of the lemma. �

6.4. Proof of the main results. In this subsection we prove Theorems 1.3, 1.4 and 1.7. Combining

the expansions from Lemma 6.3 and Theorem 2.1 and using the fact that φapx0q � 0 (see Proposition

5.1) we obtain

Sa�εV ruεs ¥ S � pS{3q�1{2

�
ε

λ
QV px0q � 2π2apx0q

λ2

�

� pS{3q�1{24π φapxqλ�1 � pS{3q�1{2

�
E0rrs � N0

3D0
Irrs



� opλ2q � opελ�1q .

Using the almost minimizing assumption (1.10) as well as the coercivity bound from Lemma 6.6 we

obtain

0 ¥ p1� op1qqpS � Spa� εV qq � pS{3q�1{2

�
ε

λ
QV px0q � 2π2apx0q

λ2

�
�R� opλ2q � opελ�1q .

(6.18)

with

R :� pS{3q�1{2

�
4πφapxqλ�1 � ρ

»
Ω
|∇r|2 dy



. (6.19)

Note that, by Corollary 2.2, R ¥ 0.

Lemma 6.7. If NapV q � H, then x0 P NapV q.

This is the only place in the proof of Theorem 1.3 where we need assumption (1.4).

Proof. We recall the upper bound from Corollary 2.3,

Spa� εV q ¤ S � pS{3q�1{2 sup
yPNapV q

QV pyq2
8π2|apyq| ε

2 � opε2q .

Combining this with (6.18) and using R ¥ 0, we �nd

C1 ε
2 � C2 λ

�2 ¤
�
�pS{3q�1{2QV px0q � op1q

	 ε

λ

with

C1 :� pS{3q�1{2 sup
yPNapV q

QV pyq2
8π2|apyq| � op1q , C2 :� pS{3q�1{2 2π2|apx0q| � op1q .

By the assumptions NapV q � H and (1.4), both C1 and C2 tend to some positive quantities as

εÑ 0. Since C1ε
2 � C2λ

�2 ¥ 2
?
C1C2 ελ

�1 we obtain that QV px0q   0, as claimed. �

We now assume NapV q � H and complete the proof of Theorems 1.3 and 1.7. We can write

pS{3q�1{2

�
ε

λ
QV px0q � 2π2apx0q

λ2

�
� opλ2q � opελ�1q � �pS{3q�1{2

�
QV px0q � op1q�2

4
�
2π2|apx0q| � op1q� ε2

� pS{3q�1{2

�
QV px0q � op1q

2
a

2π2|apx0q| � op1q ε�
a

2π2|apx0q| � op1q λ�1

�2

.
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Inserting this into (6.18) we obtain

pS{3q�1{2

�
QV px0q � op1q�2

4
�
2π2|apx0q| � op1q� ε2 ¥ p1� op1qq �S � Spa� εV q��R1 (6.20)

with

R1 :� R� pS{3q�1{2

�
QV px0q � op1q

2
a

2π2|apx0q| � op1q ε�
a

2π2|apx0q| � op1q λ�1

�2

. (6.21)

Since R1 ¥ 0 we obtain, in particular,

S � Spa� εV q ¤ p1� op1qqpS{3q�1{2

�
QV px0q � op1q�2

4
�
2π2|apx0q| � op1q� ε2 � pS{3q�1{2 QV px0q2

8π2|apx0q| ε
2 � opε2q

¤ pS{3q�1{2 sup
yPNapV q

QV pyq2
8π2|apyq| ε

2 � opε2q . (6.22)

In the last inequality we used x0 P NapV q. This proves the claimed lower bound on Spa� εV q and
completes the proof of Theorem 1.3.

We now proceed to the proof of Theorem 1.7, still under the assumption NapV q � H. Combining

the lower bound on S�Spa�εV q from Corollary 2.3 with the upper bound in (6.22) we obtain

QV px0q2
|apx0q| � sup

yPNapV q

QV pyq2
|apyq| .

Moreover, inserting the lower bound on S � Spa� εV q into (6.20) we infer that R1 � opε2q. Thus,
by (6.19) and (6.21)

}∇r}2 � opε2q and λ�1 � |QV px0q|
4π2 |apx0q| ε� opεq .

and, reinserting the last expression into R � opε2q, also
φapxq � opεq .

Inserting these bounds into (6.17), we obtain

α�6 � 1� pS{3q�3{2 3π

2
β λ�1

� pS{3q�3{2
�

8π apx0q � 15π2

4
β2 � 15π2

64
γ2 � 8π φ0px0qβ � 4π φ0px0q γ

	
λ�2 � opε2q

and therefore, using Lemma 6.1, α � 1�Opεq. This completes the proof of Theorem 1.7.

We now assume NapV q � H and prove Theorem 1.4. Estimating QV px0q ¥ 0 and R ¥ 0 in (6.18)

we obtain

0 ¥ p1� op1qqpS � Spa� εV qq �
�
pS{3q�1{2 2π2|apx0q| � op1q

	
λ�2 � opελ�1q .

Since opελ�1q ¥ �δλ�2 � opε2q for any �xed δ, this implies S � Spa� εV q � opε2q.
Under the additional assumption QV px0q ¡ 0, we infer from (6.18) that

0 ¥ p1� op1qqpS � Spa� εV qq � C1ελ
�1 � C2λ

�2
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with

C1 :� pS{3q�1{2QV px0q � op1q and C2 :� pS{3q�1{2 2π2|apx0q| � op1q .
Since both C1 and C2 are positive for all su�ciently small ε ¡ 0, we arrive at a contradiction. Thus,

assumption (3.4), under which we have worked so far, is not satis�ed. By the concavity argument

in the proof of Corollary 2.3 this means that Spa � εV q � S for all su�ciently small ε ¡ 0. This

concludes the proof of Theorem 1.4.

Appendix A. Some computations

A.1. Asymptotics and bounds. We recall that we abbreviate d � distpx, BΩq.

Lemma A.1. As λÑ8, uniformly in x P Ω,»
Ω
|∇Px,λ|2 dy � 3�1{2S3{2 � 4π φ0pxqλ�1 � oppλdq�1q , (A.1)

»
Ω
PU6

x,λ dy � pS{3q3{2 � 8π φ0pxqλ�1 � oppλdq�1q . (A.2)

Proof. We set again φx,λ � Ux,λ � PUx,λ. Then, by (1.9) and (2.15),»
Ω
|∇Px,λ|2 dy �

»
Ω
∇PUx,λ �∇Ux,λ dy � 3

»
Ω
PUx,λU

5
x,λ dy � 3

»
Ω
U6
x,λ dy � 3

»
Ω
U5
x,λφx,λ dy .

By [24, Proof of (B.3)] »
Ω
U6
x,λ dy � pS{3q3{2 � oppdλq�1q , (A.3)

and, as shown in [15, Proof of Thm.1.1],»
Ω
U5
x,λφx,λ dy �

4π

3
φ0pxqλ�1 � oppdλq�1q . (A.4)

(Since φx,λ � λ�1{2H0px, �q � fx,λ, the proof of the latter relation is similar to the proof of Lemma

2.5, but to get the uniformity even for x close to the boundary more careful bounds on ∇yH0px, yq
are needed.) This proves (A.1).

To prove (A.2), we write»
Ω
PU6

x,λ dy �
»

Ω
U6
x,λ dy � 6

»
Ω
U5
x,λφx,λ dy �O

�
}Ux,λ}44}φx,λ}28 � }φx,λ}66

	
.

For the �rst two terms we use (A.3), (A.4). Moreover, }φx,λ}8 � Opλ�1{2d�1q (from (2.7) and

(2.18)), }φx,λ}6 � Oppdλq�1{2q (from [24, Prop.1 (c)]) and }Ux,λ}44 � Opλ�1q, so the remainder term

is oppdλq�1q. �

Lemma A.2. As λÑ8, uniformly in x P Ω,

}PUx,λ}6{5 � Opλ�1{2q . (A.5)

Moreover, for x in compact subset of Ω,

}BλPUx,λ}6{5 � Opλ�3{2q . (A.6)

}ψx,λ � Ux,λ}8 � Opλ�1{2q . (A.7)
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and

}ψx,λ}6{5 � Opλ�1{2q . (A.8)

Proof. The bound (A.5) follows from 0 ¤ PUx,λ ¤ Ux,λ (see [24, Prop. 1(a)]) and a straightforward

computation for Ux,λ, using the fact that Ω is bounded.

To prove (A.6) we �rst note that, by a straightforward computation, the claimed bound holds with

BλUx,λ instead of BλPUx,λ. The claimed bound now follows since by the bound on BλUx,λ�BλPUx,λ
in [24, Prop. 1 (c)] (which holds even in L6).

For the proof of (A.7) we write ψx,λ � Ux,λ � �λ�1{2Hapx, �q � fx,λ. Then (A.7) follows from (2.6)

and (2.18). Finally, (A.8) follows from (A.5) and (A.7). �

A.2. Proof of (6.15). We have

N1 � β2λ�2

»
Ω
|∇PUx,λ|2 dy � γ2

»
Ω
|∇BλPUx,λ|2 dy � 2βγλ�1

»
Ω
∇PUx,λ �∇BλPUx,λ dy

� 2βλ�1

»
Ω
∇ψx,λ �∇PUx,λ dy � 2γ

»
Ω
∇ψx,λ �∇BλPUx,λ dy

� 2βλ�1

»
Ω
aψx,λPUx,λ dy � 2γ

»
Ω
aψx,λBλPUx,λ dy .

Therefore (6.15) will follow from the following relations, together with the facts that φapxq � op1q
by Proposition 5.1 and that β, γ � Op1q by Lemma 6.1,

λ�2

»
Ω
|∇PUx,λ|2 dy � 3π2

4
λ�2 � opλ�2q, (A.9)»

Ω
|∇BλPUx,λ|2 dy � 15π2

64
λ�2 � opλ�2q, (A.10)

λ�1

»
Ω
∇PUx,λ �∇BλPUx,λ dy � opλ�2q, (A.11)

λ�1

»
Ω
∇ψx,λ �∇PUx,λ dy � 3π2

4
λ�1 � 4π φapxqλ�2 � opλ�2q, (A.12)»

Ω
∇ψx,λ �∇BλPUx,λ dy � 2π φapxqλ�2 � opλ�2q, (A.13)

λ�1

»
Ω
aψx,λPUx,λ dy � 4π pφapxq � φ0pxqqλ�2 � opλ�2q, (A.14)»

Ω
aψx,λBλPUx,λ dy � �2π pφapxq � φ0pxqqλ�2 � opλ�2q. (A.15)

For the proof of these bounds we recall that d Á 1 by Proposition 4.1.

The bounds (A.9), (A.10) and (A.11) follow from [24, (B.2), (B.7) and (B.5)], respectively.

For the proof of the remaining assertions we decompose ψx,λ � Ux,λ�λ�1{2Hapx, �q�fx,λ and recall

the bound (2.18) on fx,λ.
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Proof of (A.12). By (1.9) and (2.15),

λ�1

»
Ω
∇ψx,λ �∇PUx,λ dy � 3λ�1

»
Ω
U5
x,λpUx,λ � λ�1{2Hapx, �qq dy � opλ�2q.

By (A.3), 3λ�1
³
Ω U

6
x,λ dy � 3π2

4 λ�1 � opλ�2q. On the other hand, by Lemma 2.5,

3λ�3{2

»
Ω
U5
x,λHapx, yq dy � 4π φapxqλ�2 � opλ�2q.

Proof of (A.13). By di�erentiating (1.9) and (2.15),»
Ω
∇ψx,λ �∇BλPUx,λ dy � 15

»
Ω
pUx,λ � λ�1{2Hapx, yqqU4

x,λBλUx,λ dy � opλ�2q.

To compute the �rst summand, we use
³
R3 U

5
x,λBλUx,λ dy � Bλ

³
R3 U

6
x,λ dy � 0 and thus����

»
Ω
U5
x,λBλUx,λ dy

���� �
�����
»
R3zΩ

U5
x,λBλUx,λ dy

����� ¤ p2λq�1

»
R3zBλdpxq

|1� |x� z|2|
p1� |x� z|2q4 dz � Opλ�4q.

To compute the second summand we argue similarly as in the proof of Lemmas 2.5 and 2.6 and

obtain

�15λ�1{2

»
Ω
Hapx, yqU4

x,λBλUx,λ dy � 2π φapxqλ�2 � opλ�2q .
The constant comes from»

R3

U4
x,λBλUx,λ dy � 2π λ�3{2

» 8

0

p1� t2qt2 dt
p1� t2q7{2 � �2π

15
λ�3{2 .

Proof of (A.14). Since PUx,λ � Ux,λ � λ�1{2H0px, �q � fx,λ,

λ�1

»
Ω
aψx,λPUx,λ dy � λ�1

»
Ω
apUx,λ � λ�1{2Hapx, yqqpUx,λ � λ�1{2H0px, yqq dy � opλ�2q .

We have

λ�1

»
Ω
aU2

x,λ dy � λ�2

»
Ω
apyq 1

λ�2 � |x� y|2 dy � λ�2

»
Ω
apyq 1

|x� y|2 dy � opλ�2q

and, similarly,

�λ�3{2

»
Ω
aUx,λpHapx, yq �H0px, yqq dy � �λ�2

»
Ω
apyqHapx, yq �H0px, yq

|x� y| dy � opλ�2q.

Putting everything together and recalling that Gapx, yq � 1
|x�y| �Hapx, yq, we obtain

λ�1

»
Ω
aψx,λPUx,λ dy � λ�2

»
Ω
apyqGapx, yqG0px, yq dy� opλ�2q � 4πpφapxq�φ0pxqqλ�2� opλ�2q,

where the last equality follows from the resolvent identity (2.8).

Proof of (A.15). Since }Bλfx,λ}8 � Opλ�7{2q by [24, Prop. 1 (c)], we get, similarly as before,»
Ω
aψx,λBλPUx,λ dy �

»
Ω
apUx,λ � λ�1{2Hapx, yqqpBλUx,λ � 1

2
λ�3{2H0px, yqq dy � opλ�2q .

We have»
Ω
aUx,λBλUx,λ dy � 1

2
λ�2

»
Ω
apyq λ�2 � |x� y|2

pλ�2 � |x� y|2q2 dy � �1

2
λ�2

»
Ω
apyq 1

|x� y|2 dy � opλ�2q
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and, similarly,

�λ�1{2

»
Ω
aHapx, yqBλUx,λ dy � 1

2
λ�2

»
Ω
apyqHapx, yq

|x� y| dy
and

λ�3{2

»
Ω
aUx,λH0px, yq dy � λ�2

»
Ω
apyqH0px, yq

|x� y| dy � opλ�2q .
Putting everything together and using the resolvent identity (2.8) as in the proof of (A.14), we

obtain (A.15).

This completes the proof of (6.15).

A.3. Proof of (6.16). We have

D1 � 6βλ�1

»
Ω
ψ5
x,λPUx,λ dy � 6 γ

»
Ω
ψ5
x,λBλPUx,λ dy

� 15β2λ�2

»
Ω
ψ4
x,λPU

2
x,λ dy � 15 γ2

»
Ω
ψ4
x,λpBλPUx,λq2 dy � 30βγλ�1

»
Ω
ψ4
x,λPUx,λBλPUx,λ dy.

Therefore (6.16) will follow from the following relations, together with the facts that φapxq � op1q
by Proposition 5.1 and that β, γ � Op1q by Lemma 6.1,

λ�1

»
Ω
ψ5
x,λPUx,λ dy �

π2

4
λ�1 � 4π

3
p5φapxq � φ0pxqqλ�2 � opλ�2q , (A.16)»

Ω
ψ5
x,λBλPUx,λ dy �

2π

3
pφapxq � φ0pxqqλ�2 � opλ�2q , (A.17)

λ�2

»
Ω
ψ4
x,λPU

2
x,λ dy �

π2

4
λ�2 � opλ�2q , (A.18)»

Ω
ψ4
x,λpBλPUx,λq2 dy �

π2

64
λ�2 � opλ�2q , (A.19)

λ�1

»
Ω
ψ4
x,λPUx,λBλPUx,λ dy � opλ�2q . (A.20)

Proof of (A.16). We insert ψx,λ � Ux,λ�λ�1{2Hapx, �q�fx,λ and PUx,λ � Ux,λ�λ�1{2H0px, �q�fx,λ
to obtain

λ�1

»
Ω
ψ5
x,λPUx,λ dy � λ�1

»
Ω
U6
x,λ dy � λ�3{2

»
Ω
U5
x,λp5Hapx, yq �H0px, yqq dy � opλ�2q .

For the �rst term we use (A.3) and for the second term we use Lemma 2.5.

Proof of (A.17). Similarly as before, we obtain»
Ω
ψ5
x,λBλPUx,λ dy �

»
Ω
U5
x,λBλUx,λ dy � 5λ�1{2

»
Ω
U4
x,λBλUx,λHapx, yq dy

� 1

2
λ�3{2

»
Ω
U5
x,λH0px, yq dy � opλ�2q .

For the �rst and the second term we argue as in the proof of (A.13) and for the third one we use

Lemma 2.5.

The bounds (A.18), (A.19) and (A.20) follow from the corresponding relations where ψx,λ and PUx,λ
are replaced by Ux,λ and where BλPUx,λ is replaced by BλUx,λ.
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This completes the proof of (6.16).

Appendix B. Proof of Proposition 3.1

In this appendix we provide a proof of the approximate form of almost minimizers. This result is

probably well-known to specialists.

Proof of Proposition 3.1. Step 1. We show that uε á 0 in H1
0 pΩq.

The assumptions imply that puεq is bounded in H1
0 pΩq and therefore it has a weak limit point. Let

u0 P H1
0 pΩq be such a limit point and write rε :� uε � u0. In the remainder of this step we restrict

ourselves to values of ε along which rε á 0 in H1
0 pΩq. By Rellich's compactness theorem rε Ñ 0 in

L2pΩq and, passing to a subsequence if necessary, we may assume that rε Ñ 0 almost everywhere

in Ω. By weak convergence in H1
0 pΩq and strong convergence in L2pΩq we have

3�1{2S3{2 � op1q �
»

Ω

�
|∇uε|2 � au2

ε � εV u2
ε

	
dx

�
»

Ω

�
|∇u0|2 � au2

0

	
dx�

»
Ω
|∇rε|2 dx� op1q .

Thus,

T :� lim
εÑ0

»
Ω
|∇rε|2 dx exists and satis�es 3�1{2S3{2 �

»
Ω

�
|∇u0|2 � au2

0

	
dx� T .

On the other hand, by the almost everywhere convergence and the Brézis�Lieb lemma [7],

pS{3q3{2 �
»

Ω
u6
ε dx �

»
Ω
u6

0 dx�
»

Ω
r6
ε dx� op1q .

Thus,

M :� lim
εÑ0

»
Ω
r6
ε dx exists and satis�es pS{3q3{2 �

»
Ω
u6

0 dx�M .

We conclude that

S � lim
εÑ0

Sεruεs �
³
Ω

�|∇u0|2 � au2
0

�
dx� T�³

Ω u
6
0 dx�M

	1{3
.

In the denominator, we bound�»
Ω
u6

0 dx�M


1{3

¤
�»

Ω
u6

0 dx


1{3

�M1{3 (B.1)

and in the numerator we bound T ¥ SM1{3. Rearranging terms, we thus obtain

S

�»
Ω
u6

0 dx


1{3

¥
»

Ω

�
|∇u0|2 � au2

0

	
dx .

Since the opposite inequality holds as well by de�nition of Spaq and the assumption that Spaq � S,

we need to have, in particular, equality in (B.1). It is elementary to see that this holds if and only

if either
³
u6

0 dx � 0 (that is, u0 � 0) or if M � 0.

Let us rule out the case M � 0. If we had M � 0, then, in particular, u0 � 0 and therefore u0

would be a minimizer for the Spaq problem. However, as shown by Druet (Step 1 in [12]), the

Spaq problem does not have a minimizer. (Note that this part of Druet's paper does not need any

regularity of a.) Thus, M ¡ 0, which, as explained before, implies u0 � 0.
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Step 2. We show that along a subsequence,

uε � sUzε,µε � σε (B.2)

with s P t�1u, zε Ñ x0 P Ω, µε distpzε, BΩq Ñ 8 and σε Ñ 0 in 9H1pR3q.
Indeed, by Step 1 and Rellich's compactness theorem we have uε Ñ 0 in L2pΩq and therefore³

Ω |∇uε|2 dx�³
Ω u

6
ε dx

	1{3
Ñ S .

Thus, the uε, extended by zero to functions in 9H1pR3q, form a minimizing sequence for the Sobolev

quotient. By a theorem of Lions [22] there exist pzεq � R3 and pµεq � R� such that, along a

subsequence, µ
�1{2
ε uεpµ�1

ε � �zεq converges in 9H1pR3q to a function, which is an optimizer for the

Sobolev inequality. By the classi�cation of these optimizers (which appears, for instance, in [22,

Cor. I.1]) and taking the normalization of the uε into account, we can assume, after modifying the

µε and zε, that

µ�1{2
ε uεpµ�1

ε � �zεq Ñ sU0,1 in 9H1pR3q
for some s P t�1u. By a change of variables (which preserves the 9H1pR3q norm) this is the same as

(B.2).

Note that »
R3

U6 dx �
»

Ω
u6
ε dx �

»
Ω
psUzε,µε � σεq6 dx �

»
Ω
U6
zε,µε dx� op1q .

Thus, µε Ñ 8 and distpzε,Ωq Ñ 0. Using, in addition, that the boundary of Ω is C1, we conclude

that µε distpzε,R3zΩq Ñ 8. In particular, after passing to a subsequence, zε Ñ x0 P Ω.

Step 3. We now conclude the proof of the proposition.

Since the remaining arguments are similar to those in [24, Prop. 2] we omit most of the details. As

in that paper, the conclusions from Step 2 allow us to apply the result of Bahri�Coron [5, Prop. 7]

and lead to a decomposition

uε � αεPUxε,λε � wε

with xε P Ω, bounded αε and wε P TKxε,λε such that wε Ñ 0 in H1
0 pΩq. This implies»

Ω
|∇pαεPUxε,λεq|2 dy �

»
Ω
|∇uε|2 dy � op1q � 3�1{2S3{2 � op1q .

By the same argument as in [24, Prop. 2] with 3�1{2S3{2 instead of µ on the right side of [24, (2.18)]

we infer that λε{µε � µε{λε � λεµε|xε � zε| À 1. From this we conclude that λε Ñ 8, xε Ñ x0 and

λεdistpxε, BΩq Ñ 8. Finally, using [24, (B.2)], αε Ñ s. The last relation allows us to replace wε by

αεwε, which still has the same properties, and obtain the decomposition stated in the proposition.

This completes the proof. �
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