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ENERGY ASYMPTOTICS IN THE THREE-DIMENSIONAL
BREZIS-NIRENBERG PROBLEM

RUPERT L. FRANK, TOBIAS KONIG, AND HYNEK KOVARIK

ABSTRACT. For a bounded open set Q2 = R® we consider the minimization problem

Vaul|? Mlul?) d
S(a+eV) = inf So(IVul + (@ + V)lul) da
0#ueHJ (Q) (SQ ub dzx)1/3

involving the critical Sobolev exponent. The function a is assumed to be critical in the sense
of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of
S(a +€V) — S as € = 0+, where S is the Sobolev constant. (Almost) minimizers concentrate at
a point in the zero set of the Robin function corresponding to a and we determine the location of
the concentration point within that set. We also show that our assumptions are almost necessary
to have S(a + €V) < S for all sufficiently small € > 0.

1. Introduction and main results

1.1. Setting of the problem. In their celebrated paper [§] Brézis and Nirenberg considered the
problem of minimizing the quotient
So(IVul? + alul?) dx

Salu] = (§q ub dx)'/3

over all 0 £ u e H& (€2), where Q < R3 is a bounded open set and a is a continuous function on Q.
We denote the corresponding infimum by

S(a):= inf
0z£ueH} (2

4/3
7T

the sharp constant [25] [26), B, [31] in the Sobolev inequality

)Sa[u] .

This number is to be compared with

1/3 _
f |Vul|? daz > S (J u® dx) , ue H'(R?). (1.1)
R3 R3

One of the findings in [§] is that if a is small (for instance, in L*(Q)), then S(a) = S. This is in
stark contrast to the case of dimensions N > 4 where the corresponding analogue of S(a) (with the
exponent 6 replaced by 2N /(N — 2)) is always strictly below the corresponding Sobolev constant,
whenever a is negative somewhere.
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This phenomenon leads naturally to the following notion due to Hebey and Vaugon [20].

Definition 1.1. Let a be a continuous function on Q. We say that a is critical in Q if S(a) = S
and if for any continuous function @ on Q with @ < a and @ # a one has S(a) < S(a).

Our goal in this paper is to compute the asymptotics of S(a+€V)— S as e — 0 for critical a and to
understand the behavior of corresponding minimizers. Here V' is a bounded function on €2, without
any restrictions on its sign.

A key role in our analysis is played by the regular part of the Green’s function and its zero set. To
introduce these, we follow the sign and normalization convention of [24]. If the operator —A + a in
Q with Dirichlet boundary conditions is coercive (which, in particular, is the case if a is critical),
then it has a Green’s function G, satisfying

A, Ga(x7y) + a(x) Ga((L’, y) =47 5y in Q7
(1.2)
Go(z,y) =0 on 09.

The regular part of G is defined by

1
Hy(z,y) =
T
It is well-known that for each x €  the function H,(z,-), which is originally defined in Q\{z},
extends to a continuous function in Q2 and we abbreviate

¢a(z) = Hy(z, 7).

It is well-known that the function ¢, is relevant for problems involving the critical Sobolev exponent,
see, e.g., [27] and [4]. For the problem at hand, it was shown in [6, Thm. 7] that if ¢4(z) < 0 for
some z € €2, then S(a) < S. (In [6] this is attributed to Schoen [27] and a work in preparation by
McLeod.) Conversely, it was conjectured in [6] and proved by Druet in [12] that if S(a) < S, then
¢a(r) < 0 for some x € Q. An alternative proof, assuming only continuity of a, is given in [I5].
Thus, the (non-local) condition ming ¢, < 0 is necessary and sufficient for S(a) < S, and replaces
the (local) condition ming a < 0 in dimensions N > 4.

- Ga(%y)- (13)

The above results imply that, if a is critical, then ming ¢, = 0. In particular, the set

Ny ={reQ: ¢u(x) =0}
is non-empty.
1.2. Main results. Let us proceed to a precise statement of our main results. Throughout this
paper we work under the following assumption.
Assumption 1.2. The set < R? is open, bounded and has a C? boundary. The function a
satisfies a € C(Q) N C1(2) and is critical in €. Moreover,

a(x) <0  forallzeN,. (1.4)
Finally, V € L*(Q).
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We will see in Corollary that criticality of a alone implies a(z) < 0 for all z € N,. Therefore
assumption ((1.4]) is not severe.

We set
Qv (z) := L V(y) Ga(z, y)* dy, re, (1.5)

and

No(V):={x e Ny : Qy(x) <0}.

The following is our main result.

Theorem 1.3. Assume that N,(V) # &. Then S(a+€V) < S for all ¢ > 0 and
S(a+GV)—s__(3)% 1 Qv (2)?

lim — —
2 872 sen,(vy la(z)]

e—0+ €

- (1.6)

We supplement this theorem with a result for the opposite case where N, (V) = &.

Theorem 1.4. Assume that N,(V) = &. Then S(a +¢€V) = S + o(e?) as e — 0+. If, in addition,
Qv (x) >0 for all x € N, then S(a+ €V) =S for all sufficiently small € > 0.

It follows from the above two theorems that the condition N, (V) # ¢ is ’almost’ necessary for the
inequality S{a +€V') < S for all small € > 0. Only the case where miny;, Qy = 0 is left open.

Example 1.5. When = B is the unit ball in R3, then it is well-known that the constant function
a = —m?/4 is critical and that in this case A, = {0} and G,(0,y) = |y|~! cos(m|y|/2); see, e.g., [6].
Thus, with

cos®(rly|/2)

qv:=Qv0=JVy dy
©) B (@) |y|?
we have )
. Sla+eV)—-5 32 1 , ,
= | = R <
eli%i €2 (S) ot WV ifav <0

and S(a + V) = S for all sufficiently small € > 0 if gy > 0.

Remark 1.6. It is instructive to compare our results here with the results for the analogous problem

So(IVul? + eVu?) da
(N—-2)/N

S(eV):= inf
0£ueHY(Q) (SQ |u[2N/(N-2) dx)

in dimension N > 4. Let Sy be the sharp constant in the Sobolev inequality in RY. From [8] we
know that S(eV) < Sy if and only if V(z) < 0 for some z € , and therefore we focus on the case
where N (V) :={xeQ: V(z) <0} # &. Then

V()| ¥ xo  nes .
S(eV)=Sy—Cn sup —————5— eN-1 +o0(eN-1) if N>5, (1.7)
weN(V) go(a) T
S(eV) = Sy — exp ( L vo) nf do(z) ) if N =4 (1.8)
; 2N (V) V()] ’
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with explicit constants C depending only on N. Note that, as a reflection of the Brézis—Nirenberg
phenomenon, V enters pointwisely into the asymptotic coefficient in (1.7) and (1.8)), while it enters
non-locally through Qv into the asymptotic coefficient in Theorem

Asymptotics and in the case where V is a negative constant are essentially contained
in [30]; see also [32] for related results. The case of general V € C(£) can be treated by similar
methods. For details, we refer to [I8]. We emphasize that the proof of Theorem is considerably
more complicated than that of and , since the expansion in Theorem should rather be
thought of as a higher order expansion of S(a + €V') — S where the coefficient of the term of order

€ vanishes due to criticality. In the higher dimensional context, no such cancellation occurs.

1.3. Behavior of almost minimizers. We prove Theorems[l.3|and[1.4]by proving upper and lower
bounds on S(a + €V'). For the upper bound it suffices to evaluate Sgicv[ue] for an appropriately
chosen family of functions u.. For the lower bound we need to evaluate the same quantity where
now u, is an optimizer for S(a + €V'). To do so, we will show that w. is essentially of the same form
as the family chosen to prove the upper bound. In fact, we will not use the minimality of the u,. and
show that, more generally, all ‘almost minimizers’ have essentially the same form as the functions
chosen for the upper bound.

Given earlier works and, in particular, those by Druet [12] and Esposito [I5] it is not surprising that
almost minimizers concentrate at a point in the set N,. One of our new contributions is to show
that this concentration happens at a point in the subset A, (V) and, more precisely, at a point in
Na (V) where the supremum in is attained.

In order to state our theorem about almost minimizers, for x € Q and A > 0, let
\1/2
(4 Ny — a7
The functions U, » and their multiples are precisely the optimizers of the Sobolev inequality ;

see the references mentioned above and [22, Cor. L.1]. We introduce PU, ) € H(Q) as the unique
function satisfying

Ux,)\(y) =

APUL)\ = AUx’)\ in Q, PUx,)\ =0 on 01). (1.9)
Moreover, let
T, ) 1= span {PULA, O\PUy x, 05, PU, 5 (i = 1,2,3)}

and let Tj‘A be the orthogonal complement of T, in H}(2) with respect to the inner product
SQ Vu - Vudy. Finally, by Il y and Hi)\ we denote the orthogonal projections in Hg () onto Ty
and Tzi/\, respectively.

Theorem 1.7. Assume that No(V) # &. Let (uc) < H} () be a family of functions such that

. Sagrev|u] = Sla+€ev) J 6, [S\?
lgl(l) S—Sat V) =0 and Quedx— 5) (1.10)

Then there are (x.) < Q, (Ae) € (0,00) and (a.) € R such that

Njw

Ue = (PU%A( NPT (Ha(we,-) — Holae, ) + 7’5) (1.11)
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and, along a subsequence,

Qv (z0)* _ Qv (y)*

- Sup 9
la(zo)]  yenuvy la(y)

Te — To for some xg € No(V') with

$a(zc) = 0(e€)
|a(zo)]
Qv (x0)|’
ae = s+ O(e) for some s € {+1}.

Finally, r. € Tgi)\é and |Vre| = o(e).

lim €\, = 472
e—0

The L5 normalization in (L.10) is chosen in view of

S
6 dy = =
JR3 Ve dy 3

There is a huge literature on blow-up results for solutions of equations involving the critical Sobolev

N

exponent. Early contributions related to the problem we are considering are, for instance, |2} 10} 9]
19, 23]; see also the book [13] for more recent developments and further references. Here we follow a
somewhat different philosophy and focus not on the equation satisfied by the minimizers, but solely
on their minimality property. Therefore our proofs also apply to almost minimizers in the sense of
and we obtain blow-up results for those as well. This extension is not really necessary for
the proof of our main results, Theorems and but it is crucial when studying parabolic or
hyperbolic versions of the problem studied here. On the other hand, with our variational methods
we cannot say anything about non-minimizing solutions of the corresponding equation and our
blow-up bounds are only obtained in H! instead of L® norm. Other related works which study
Sobolev critical problems from a variational point of view are, for instance, [17, 1, [16].

As already mentioned before, the works of Druet [12] and Esposito [15], and similarly [I7, 1] in
related problems, show that concentration happens at a point in N,. In terms of S(a + €V'), this
corresponds essentially to the fact that S(a + V) =S + o(e). In order to go further than that and
to compute the coefficient of €2, we need to prove that concentration happens in the subset NV, (V)
at a point where the supremum in is attained.

The strategy of the proof of the lower bound is to expand the quotient S,y [uc] for an almost
minimizer u. as precisely as allowed by the available information on wu., then to use a coercivity
bound to deduce that certain terms are small and thereby improving our knowledge about u.. We
repeat this procedure three times (namely, in Sections and @ Therefore, a key tool in our
analysis is the coercivity of the quadratic form

f (|Vv|2+a1)2—15U;17)\v2) dx , UGT;/\,
Q

provided that Adist(z,dQ) is sufficiently large; see Lemma [4.3] This coercivity was proved by
Esposito [15] and comes ultimately from the non-degeneracy of the Sobolev minimizer U, x. Esposito
used this bound to obtain an a priori bound on the term ozﬁ_luE — PUy, ». in Theorem . We will
use it for the same purpose in Proposition [4.1] but then we will use it two more times in Propositions
and in Lemma in order to get bounds on a_ tuc — PU,, . + N V2(H,(x.,-) — Ho(z,-)) and
o ue — PU,, 5, + A2 Hi)\(Ha(ace, ) — Ho(x,+)), respectively. After the last step we are able to
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compute the energy to within o(e?). We emphasize that in principle there is nothing preventing us
from continuing this procedure and computing the energy to even higher precision.

Let us briefly comment on a surprising technical subtlety in our proof. While Theorem says
that almost minimizers are essentially given by

PUy\ = A2 105\ (Ha(x, ) — Ho(x, )

with 2 € N5 (V) a maximum point for the right side in (1.6) and A proportional to e !, to prove the
upper bound we use the simpler functions

PU:):,)\ - )\71/2(Ha([£, ) - H()(.%', ))
(with the same choices of x and \). The difference between the two functions, namely
_)‘_1/2 HOC)\(Ha(x? ) - Ho(l‘, )) s

can be shown to be of order e (when A is proportional to €~!), but not smaller; see Remark
Therefore it is not at all obvious that the two families of functions lead to the same (within o(e?))
value of Syyev[]- The fact that they do is contained in Lemma where the contributions of
—A\"Y210, \(H,(z,-) — Ho(z,-)) to the numerator and to the denominator are shown to cancel each
other to within o(e?).

At first sight, the problem considered in this paper resembles the problem of minimizing the quotient
Sev ([VulP + eV0uP) dz/ o n |ufP dz for p < N, which is a classical problem for p = 2 [28] motivated
by quantum mechanics and which was studied in [14] for general p. The underlying mechanism,
however, is rather different. In these works almost minimizers spread out, whereas here and in its
higher dimensional version [18] they concentrate. The concentration regime is much more sensitive
to the local details of the perturbation and necessitates, in particular, the use of orthogonality
conditions in Tai/\ and the resulting coercivity.

1.4. Notation. Given a set M and two functions fi, fo : M — R, we write fi(m) < fa(m) if
there is a numerical constant ¢ such that fi(m) < ¢ fo(m) for all m € M. The symbol 2 is defined
analogously. For any p € [1,00] and u € LP(Q2) we denote

[ullp = llul ey

If p = 2, we typically drop the subscript and write [u] = |[u] z2(q)-

2. Upper bound on S(a + €V)

Recall that we always work under Assumption . In this section (and only in this section), however,
we do not assume (1.4).

2.1. Statement of the bounds and consequences. Our goal in this section is to prove an upper
bound on S(a + €V') by evaluating the quotient Sy+ev|[-] on a certain family of trial functions. For
xeQand A >0, let

Ver(y) i= PUpa(y) — AV (Hu(z,y) — Ho(z,y)). (2.1)

This function belongs to H}(2). We shall prove the following expansions.
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Theorem 2.1. As A — oo, uniformly for x in compact subsets of 2 and for e = 0,

L (|V¢:M|2 + (a + eV)z/Ji)\) dy =3 <§> F AT ()N L+ 204 — ) a(z) N2 + %Qv(x)

+o(A2) +o(e™ ) (2.2)
and

f wg/\ dy = <§> F 877%(36))(1 + 8ma(x) A2 4+ 1572 ¢a($)2 A2 4 0()\*2) . (2.3)

Q

In particular,

Savliaal =5+ (5) " amo,x
<‘§> ’ ( —o2n?a(z) A2 — (15m% — 128) ¢ (2)? )\2>

oA +o(eA™h). (2.4)

In the proof of Theorem we do not use the fact that a is critical. We only use the fact that
—A + a is coercive. In the following corollary we use criticality.

Corollary 2.2. One has ¢q(x) =0 for all x € Q and a(z) <0 for all z € N,.

The first part of this corollary appears in [6 Thm. 7]. Note that the second part is non-trivial since

we do not assume ([1.4)).

Proof. We apply ([@2.4) with ¢ = 0. We get Su[ther] = S + (S/3)"24nwha(x)A~" + o(A™1) for
any fixed z € Q. Since S = S(a) < Su[ts, ,\] we infer that ¢,(x) = 0 for all z € Q. Similarly,
Saltvzn] = S — (S/3)~2212a(x)A=2 + o(A\~?) for any fixed z € N, implies that a(x) < 0 for all
zeN,. O

Corollary 2.3. Assume that No(V) # . Then S(a+€V) < S for all e > 0 and, as € > 0+,

S 3 1 QV(»T)2 2 2
S(a+ €V <S—<> — sup € +o(e”),
(a+eV) 3) 5o et © T

where the right side is to be understood as —oo if a(z) = 0 for some x € Ny(V).

Proof. We fix x € N and k > 0 and apply (2.4) with A\ = (ke)~!. Since S(a + €V) < Su[thz 2], we
obtain

lim sup S(a—i—e—QV)—S < (5/3)71/2 <kj V G2(z,y) dy — 2r°% a(x) k2> .
e—0 € Q
Thus,
lim sup S(a—i—e—z‘/)—S < (8/3)"'2  inf (k:f V G3(z,y) dy — 27 a(x) /<:2) ,
e—0 € IENa,k>0 Q

which implies the claimed upper bound.
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For each u € H}(Q), € = Satev[u] is an affine linear function, and therefore its infimum over u,
which is € — S(a + €V), is concave. Since S(a +€V') < S for all sufficiently small € > 0, as we have
just shown, we conclude that S(a + V) < S for all € > 0. O

2.2. Auxiliary facts. In this preliminary subsection we collect some expansions that will be useful
in the proof of Theorem as well as later on. In order to emphasize that criticality is not needed,
we state them for a function b € C(Q2) n C1(Q) such that the operator —A + b in © with Dirichlet
boundary conditions is coercive.

Lemma 2.4. As A — oo, uniformly in x from compact subsets of €1,

(e = 2P H () =X Gy, | =00,
H@&A—A*V%ﬂ@¢»2—A*%%@,Fm;:Oufhnm.

Proof. Since

(Usp = A2 Hy(2,y)) = AT2Gy(,y) = —A71/2 ( : : > ’

lz—y| 1+ Nz —yl?

the first bound follows immediately from

0< LI A <min{ ! , 21 3}. (2.5)
lz—y| A1+ X2z —y|? [z — y|" 2X2|z — y|

To prove the second bound, we write

1 A2 )
lz =yl 1+ Xz —yf?

+ 20 Hy (2, ) ( ! A ) .

e =yl 1+ Az —yP)

(Uap — N2 Hy(2,))? — X' Gi(a,y) = —xl(

The last term on the right side can be bounded as before, using the fact that Hy(x,-) is uniformly
bounded in L*(2) for x in compact subsets of , see (2.6 below. The first term on the right side
can be bounded using

0< 1 A2 . 1 1
< — < min , .
lz —yl? 1+ Xz —yf? |z —y>" A2z —y|4
This proves the lemma. O

Lemma 2.5. As A — oo, uniformly for x in compact subsets of €2,

47

Q

Proof. Step 1. We claim that, with d(z) := dist(z, 0Q),
IHy(z,)|oo S d(z)! for all z € Q. (2.6)

Indeed, since Hy(z, -) is harmonic in 2, the maximum principle implies

| Ho(, )0 = sup Ho(z,y) = d(z)~". (2.7)
yeofd
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In order to deduce (2.6) we note that the resolvent identity implies

1
Hia.9) = Holan) = 1 | Golw 2)p(2)Go(z0) = (28)
The claim now follows from the fact that

sup f Go(z,2) Gp(z,y)dz < .

z,ye) JQ

Step 2. We claim that for any = € Q there is a &, € R? such that

_b@)
2

The asymptotics are uniform for x from compact subsets of €.

Hy(z,y) = Hp(z,2) + & - (y — ) ly — x| + o(ly — zI) as y— . (2.9)

To prove this, let

Woly) = Hio.y) — Hyfar.) + "y — o). (2.10)
Using the equation
Ay Ha(z,y) + aly) Galz,y) =0 (2.11)
as well as the fact that A]z| = 2|z| ! as distributions we see that ¥, is a distributional solution of
—AyUu(y) = Fu(y) in 9, (2.12)
where
Ey) o= Sy ey,

|z —yl
By Step 1 and the assumption b € C(Q) n C1(2), we have F, € L (Q). In particular, F, € L (Q)

for any 3 < p < o0 and therefore, by elliptic regularity (see, e.g., [21, Thm. 10.2]), ¥, € Cﬁ)g(Q) for
a = 1—3/p. Thus, in particular, ¥, € C1(€2). Inserting the Taylor expansion

V. (y) = VyVe(z) - (y — z) + oy — ) as Yy —T

into (2.10), we obtain the claim with &, = V,¥,(x). The uniformity statement follows from the
fact that if z is from a compact set K < €2, then there is an open set w with K < w < w < Q such
that the norm of F, in LP(w) is uniformly bounded for z € K.

Step 3. We now complete the proof of the lemma. Let 0 < p < d(z) and write, using Step 2,

b(z
[ vsm@nar=ow [ v+ [ v w-na-"2 [ vliy-alay
Q ) By () Bp(z)

+o <J Up sy — = dy> + J U2 \Hy(z,y) dy
BP(I) Q\Bp(x)

with p — 0 as A — oo. Since z belongs to a compact subset of 2, we have d(z) = 1, and therefore
the bound (2.6) from Step 1 implies

2 dt

Q0
Ug Hy(z,y)dy| < f U; dy < A2 47TJ =X\ p2).
JQ\BP(z) 2 Hal@y) B, Ao (1+12)5/2 ( )
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Similarly,

A 42 gt A7
Ul dy =\ "Y24 f _Ua R a-12 o (\ 52,2
[, vty =3 [ < S 0 ()

; © 3t © B3t
U, |o—y|dy = 4m A2 J _f _ trat
JBP(I) Al | o (L+82)52  J\ (1+12)572

and

= 8?” A2+ 0 (/\_5/2 p_1> .
Finally, since U,y is radial about x,
| vwew-oa-o. (213)
Bﬂ(f)
Choosing p — 0 with A\p? — oo we obtain the conclusion of the lemma. O

The argument in Step 2 is the only place in this paper where we use the C' assumption on a.
Clearly the same proof would work if we only assumed a € C1%(Q) for some o > 0.

Lemma 2.6. As A — o0, uniformly for x in compact subsets of €2,

L Upx Hy(z,y)* dy = 7° ¢p()? A" + 0(A71) .

The proof is similar, but simpler than that of Lemma [2.5 and is omitted. We only note that the

constant comes from

J Ut dy =4 Aljthdt 23!
= 477 =T .
R3 z,A y 0 (1+t2)2

Lemma 2.7. As x — o, uniformly for x from compact subsets of €2,

1

| v s (ﬁ_ - Ux,my)) dy = 2m(r — 2)b@) A2 + O (A *log ) .
Q z —y|

1
Proof. Let 0 < p < dist(z, 0€2). Since ﬁ — Uz a(y) = 0 for any x,y € Q, the differentiability of b
at x implies '

1

j b(y) Usa() (A Um@)) dy=b<x>j Usa(y) (A Ux,my)) dy + Ry
By () B

|z — | |z — |

[N
M

with

|RA|

N

-
T =yl Upn(y) | ——— —Usn(y) | dy
JBP@' | A<><|x_y| N ))

B PA t2 t3 -
Y 3L (m—lthQ)dt:O()\ 31n(/\,0)>. (2.14)

N



ENERGY ASYMPTOTICS IN THE THREE-DIMENSIONAL BREZIS-NIRENBERG PROBLEM 11

Moreover,

_% PA 2
JB ( )UJ:,/\(y) <|$)\_ y| - Ux,)x(?/)) dy = >‘_2 47TL (\/li—j - 1 j—t2> dt
=222 —2) (1 + O((\p)™h)).

On the complement of B,(x) we use the bound ({2.5)), which gives

J b(y) Uz (v) Ly (y) | dy| < A7 J R O(p™" A7)
z,A T 7 Yz N — 15 — .
\B, () |z =yl px T (1 +12)1/2
Choosing p = 1/In A we obtain the bound in the lemma. O

The same proof shows that if b is merely continuous, but not necessarily C!, then the expansion
still holds with an error o(A~?). This would be sufficient for our analysis.

2.3. Expansion of the numerator. One easily checks that for all z € R? and A > 0,

— AU, \ =3UJ,. (2.15)
This, together with the equation (2.11]), the harmonicity of Ho(z,-) and (1.9)), implies that
= Aytua(y) = =B, Usay) + 377 A, Hyla,y) = 8ULL() =A% aly) Galayy).  (2.16)
We now introduce f, ) by
PUy\ = Upp = A2 Ho(z,") = fon, (2.17)
and recall that |24, Prop. 1 (b)], with d := dist(z, 092),
| ferloo = ON2d73). (2.18)

Hence, by (2.16) and the fact that 1, » vanishes on the boundary,
_1 _1
| 960aP = | (3U240) =3 Faw) Galr)) (Uea(®) = A} Halar) = foa(w) dy
Q Q
_1
=3[ Uy =3a [ Ul B dy
1
N | o) Guler) (Uaale) = A7 Hola) dy
_1
~ | (3020 =X 0l Galan) Fonlr) . (219)
It is easy to see that

| Bz =3 bt Gutew| dy = 00 12)
Q
and therefore, by (2.18)) and the fact that x is in a compact subset of €,

|| (U230 =3 a0 Guto ) Fer() dy = 0.

A simple computation shows that the first term on the right side of (2.19) is

3
J US \dy = J US\dy + O(A?%) = (g) g O\ ™3). (2.20)
Q Rn
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For the second term we use Lemma and obtain
zmlj US \(4) Ha(w, ) dy = dmda(a)A " — dra(@)A > + o(A ).
We will combine the third term with the term coming from SQ awg’ \ dy.
Using again expansion of PU, ) we find
| @ evizadn = | @+ @) (Unr =22 Holw)) dy
—2 L(a + V) (Upr — N"Y2H,(2,y)) for dy + L(a +eV)fiady.
Using and the fact that x is in a compact subset of €0 it is easy to see that

-2 J (a+ V) (Upr — AV H(2,)) for dy + f (a+eV)f2ydy = O 3(1+).
Q Q
To summarize, we have shown that

f (|v¢z,A|2 +atl ) dy =3 (g) —4m ga() A + 4w a(z) AN+ T(z, \)
Q

Urp = A2 Ho(,9))* dy + o(A ") + O(er ™)

%

with

~1/2
T(x,A) = L a(y) (Ux,x(y) — A2 Hy(a, y)) (Ux,)\(y) - A) dy .

|z =yl
Similarly as in the proof of Lemma [2.7 one finds that

x [ at) e (2

— = U, dy=0M\"In\).
|]: y| ,)\(y)> Y O( n )
Hence, by Lemma [2.7]

T(x,\) = =27(7m —2) a(z) A2 + o(A7?).
Finally, by Lemma
L V(Upr — N Y2 H, (2, )2 dy = X7 L VGa(z,y)*dy + OX\ ?1In)).
This proves the first assertion in Theorem [2.1]

2.4. Expansion of the denominator. By the decomposition (2.17)) for PU, \ we obtain

f ¥ dy—f Upr — NV H, (2,9))0 dy + O(|Upp — AV Hy ()2 9.

Using (2.6) and (| -, together with the fact that x is in a compact subset of (2, we see that the
remainder term is O(A~3). Next, we expand

JQ(U%A - )\71/2Ha(:z, y))6 dy = JQ Ugﬂ/\ dy — 6N /2 JQ U;’AH@(L y)dy + 15271 JQ UI47/\Ha(J:, y)2 dy

+ O\ 2| Uy a3 Ha(z, )% + A3 Hal,)[§) -
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Using (2.6]), together with the fact that x is in a compact subset of €, we see that the remainder
term is O(A~31In \). The first three terms on the right side are evaluated in (2.20) and Lemmas
and This proves the second assertion in Theorem [2.1]

2.5. Expansion of the quotient. Expansion (2.3) implies that

B rgNTT 79\ 728
(Jotaar) == (5) +(5) Faen

—2 T 2
+ (g) (—83 a(x) — 572 gpo(z)? + ;(36/43)3/2 qba(as)Q) A2 40172,

Expansion (2.4) now follows by multiplying the previous equation with (2.2)). This concludes the
proof of Theorem [2.1]

3. Lower bound on S(a + €V). Preliminaries

3.1. The asymptotic form of almost minimizers. The remainder of this paper is concerned
with proving a lower bound on S(a + €V') which matches the upper bound from Corollary We
will establish this by proving that functions ue for which S,y |ue] is ‘close’ to S(a+€V') are ‘close’
to the functions v, » used in the upper bound for certain x and A depending on e. We will prove
this in several steps. The very first step is the following proposition.

Proposition 3.1. Let (u.) = HE(Q) be a sequence of functions satisfying

Surevfud = S+ o(1), f S da = (S/3)32. (3.1)
Q
Then, along a subsequence,
ue = ae (PUg, 5, + we), (3.2)
where
Qe — 8 for some s € {—1,+1},
Te — T for some xg € Q,
(3.3)
Aede — o0,
|[Vw| — 0 and  w.€ Tjﬁ)\e .

Here d. =dist(xc, 09).

If the u, are minimizers for S(a +€V'), and therefore solutions to the corresponding Euler-Lagrange
equation, this proposition is well-known and goes back to work of Struwe [29] and Bahri-Coron [5].
The result for almost minimizers is also well-known to specialists, but since we have not been able
to find a proof in the literature, we include one in Appendix [Bl Here we only emphasize that the
fact that u, converges weakly to zero in H{(Q) is deduced from a theorem of Druet [12] which says
that S(a) is not attained for critical a. (Note that this part of the paper [12] is valid for a € L3?(1),
without any further regularity requirement.)
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Convention. From now on we will assume that
S(a+eV)y<S forale>0 (3.4)

and that (u¢) satisfies (1.10)). In particular, assumption (3.1) is satisfied. We will always work with
a sequence of €’s for which the conclusions of Proposition hold. To enhance readability, we will
drop the index € from «, x¢, A¢, de and we.

4. A priori bounds

4.1. Statement of the bounds. From Proposition [3.1] we know that |Vw| = o(1) and that the
limit point xg of (z,) lies in . The following proposition, which is the main result of this section,
improves both these results.

Proposition 4.1. Ase — 0,

[Vl =0 (A7), (4.1)
dt=0(01) (4.2)

and
AS—S(a+eV))=0(1) and A (Saveviud = S(a+€eV)) =o(1). (4.3)

The bounds and were shown in [I5, Lem. 2.2 and Thm. 1.1] in the case where u, is
a minimizer for S(a + €V'). Since the proof in [I5] uses the Euler-Lagrange equation satisfied by
minimizers, this proof is not applicable in our case. We will replace the use of the Euler-Lagrange
equation by a suitable expansion of Syev[ue], which is carried out in Subsection The other
ingredient in the proof of [15, Lem. 2.2| and in our proof is the coercivity of a certain quadratic form,

see Lemma .3 in Subsection [£.3] Finally, in Subsection we will prove Proposition [L.1]

4.2. A first expansion. In this subsection, we shall prove the following lemma.

Lemma 4.2. Ase— 0,
Sareviue] = S + (S/3) "2 amgo(z)A~! + (S/3) /2 JQ(|Vw|2 +aw?® — 15U \w?) dy
+0 (N2I V) +o((dX) ) +o(|Vul?).
Proof of Lemma[{.4 We will expand separately the numerator and the denominator in Sqev[ue].

Ezxpansion of the numerator. Since w is orthogonal to PU, we have
a2J |Vu|* dy = J |V PU,|* dy +J |Vw|* dy . (4.4)
Q Q Q

The first term on the right side is computed in (A.1)). The other terms in the numerator are
a2 f (a+ eV)uldy = J (a+eV)PU3 , dy + 2J
Q Q Q
Since 0 < PU, \ < Uy < A™Y2|z — y|, see [24, Prop. 1], we have
dy
|z —yl?

(a + &) PUy yw dy + J (a+ eV)w? dy.
Q

=0\,

J (a+ eV)PUi/\ dy‘ <Ja+ Vo™t f
Q Q
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Clearly,

f Vw? dy‘ eIV lwlw]® < €lV]w| Vul* = o [Vw|?),

and, by (A.5),

= O\ 2| Vw]).

J (a + €V)PU, ywdx
Q

< a+ V| PU,

To summarize, the numerator is a? times

372832 _ 4ngpy(x)A" + f (|w;|2 + aw2) dy + O (xmuwu) +o((A) ™Y + o(|Vw|?) .
Q

Ezxpansion of the denominator. We have
aGJ ul dy :f PUS dy+6f PU ywdy + 15J PUS \w? dy + O(|Vw|?) .
Q Q Q Q

The first term on the right side is computed in (A.2] - Moreover, abbreviating ¢, \ := >\_1/2H0(:U, D+
fa ), so that, by -7 PU, » = Uy ) — ¢z 1, we find

| Puzswas = [ v2swdy+ 0 ([ Ulsartulans [ o2 aluldy).

(Note that ¢, \ = 0, since PU, y < U,y by [24, Prop. 1 (a)].) By -, . the fact that w
vanishes on the boundary and since w € T+ =\, we have

1
J /\wdy— J (=AU N wdy = J VPU, - Vwdy =0.
Q 3 Ja
Also, by the equation after [15] (10)],
L Up ualw|dy + JQ ¢l dy = O((dN) [ Vwl) = o((dN) ™).

Finally,

f PU; \w? dy = f Upw’dy + O < f U2 \dupw? dy +J Py AW dy>

Q Q Q Q
and, since [, ls = O((dX)"Y/2) by [22, Prop.1 (c)],
| vtstsiy+ | byt dy = o(17ul?).
Q Q
To summarize, we have shown that
a_GJ WS dy — (/332 — 8meo(x)A"L + 15 f UL yw? dy + o((dN) ™) + of [Vl
Q Q

6 S |Unalsl Vel = o(1),

and therefore, by the rough bound §, U, xuw? dy < ||U,,

6
—1/3 —1 -2
o? <J ul dy) = (g) ’ + <§> 8%(]50(.%))\*1 — 455’2J U;{)\wQ dy
Q Q

+o((dN) ) + o(|Vuw?).

The lemma follows immediately from the expansions of the numerator and the denominator. O
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4.3. Coercivity. We will frequently use the following bound from [I5, Lem. 2.2].

Lemma 4.3. There are constants Ty < o0 and p > 0 such that for all x € Q, all A\ > 0 with d\ = Ty
and all v e Ti/\,

L (|Vv|2 +av® —15 U;M) dy > pL Vo2 dy . (4.5)

The proof proceeds by compactness, using the inequality [24, (D.1)]
4
J (|VU|2 —15 Uﬁ/\v2> dy = J |Vol?dy  forall ve Tty .
0 ’ 7 Ja ’
For details of the proof we refer to [15].

4.4. Proof of Proposition We combine the expansion from Lemma with the coercivity
bound from Lemma and the fact that ¢ := infyeq dist(y, Q) do(y) > 0, see [24, (2.8)] or [16]
Lem. 8.3]. (Note that this bound uses the C? assumption on d€2.) Thus,

Suveviud = 8+ ((5/3)7ame + o(1)) (@07 + ((/3)72p + o(1) ) | Vel + OO |Tw]).

Since A™Y2|Vw| < 6| Vw|? + (46)~'A~! for every § > 0, we obtain, for all sufficiently small € > 0
and some constants c1,co > 0 and C' < o0 independent of e,

CN !+ (Savev[ud] = Sa+eV)) = S = S(a+eV) +ea(dN) " + 2| Vol

By assumption ((1.10]), this becomes
CA ' = (1+0(1)) (S = S(a+eV)) +er(dN) ™ + ea| V.

Since all three terms on the right side are non-negative, we obtain (4.1)), (4.2) and the first bound
in (4.3). The second bound in ({4.3) follows from the first one by assumption ((1.10]). This completes
the proof of the proposition.

5. A priori bounds reloaded

5.1. Statement and heuristics for the improved a priori bound. In order to prove a suffi-
ciently precise lower bound on S(a+€V') we need more detailed information on the almost minimizers
ue. Here we extract the leading term from the remainder term w = w; in (3.2)).

Proposition 5.1. One has, as ¢ — 0,
AMS —S(a+€V)) =o(1), dal(z) = 0(1) (5.1)

and

w=-A"Y?(Hy(z,) — Ho(z,")) +q  with  |Vq| =o(A"?). (5.2)

Note that the second statement in implies that ¢q(zg) = 0 for the limit point z¢ in (3.3)).
In particular, together with Corollary [2.2] we obtain ming ¢, = 0 for critical a, which is Druet’s
theorem [12]. Our proof, which is closely related to that by Esposito [15], uses another theorem of
Druet, which says that S(a) is not attained for critical a [12} Step 1] (see Proposition 3.1)), but is
otherwise independent of [12].
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The proof of Proposition [5.1]is given at the end of this section. Let us explain the heuristics behind
the proof. In Lemma we will derive the following expansion,

N[

Savevus] =S+ 171 (S)

3 AT o (x) + (4m) 7" J Go(z,y)a(y)Ga(y,y)a(y)Goly', z) dy dy

QxQ

1
S\ "2
+ <3> JQ (|Vw|2 + aw?® + 202Gy (x, y)w — 15 U;)\w2> dy +o(\71). (5.3)
Note that this is an improvement over the expansion in Lemma which only had a remainder
O(A~1). This improvement is possible thanks to the information from Proposition [4.1]

From the expansion (5.3) we want to determine the asymptotic form of w. In order to (almost)
minimize the quotient Sqiev|ue| the function w will (almost) minimize the expression

J (|Vw|2 + aw? + 2272aGo(x, y)w — 15 U;{/\w2> dy .
Q

This is quadratic and linear in w, so it can be minimized by ‘completing a square’. If the term
—15 U;Cl \ were absent, then the minimum would be

)™ [ ol )a(w)Galy ) Jal)Golw' ) dy d
QxQ
and the optimal choice for w would be —\~Y2(H,(z,-) — Ho(x,-)). Using the positive contribution
that arises when completing the square, we will be able to show that if u, almost minimizes S(a+€V),
then w almost minimizes the above problem and is therefore almost equal to —A~Y2(H,(x,-) —
Hy(z,-)). Proposition provides a quantitative version of these heuristics.

As the above argument shows, the main difficulty will be to show that the term —15 U;} ) is negligible
to within o(A~1). This does not follow from a straightforward bound since |[Vw|? is only O(A71).
The orthogonality conditions satisfied by w will play an important role.

5.2. A second expansion. In this subsection, we shall prove the following lemma.

Lemma 5.2. Ase — 0,

N

Sa+€v[u€] =S+t (g)

(5)

Proof. Ezpansion of the numerator. We claim that

4 () + (4m) ! f Gola,1)a(y) Caly.y')a(y')Coly' z) dy dy/
QOxQ

=

J (|Vw|2 + aw?® + 227 Y2aGo(z, y)w — 15 U;{)\uﬂ) dy +o(\71). (5.4)
Q

aQJ (|Vu€|2 + auz + eVuz) dy = 3712832 _ \—1 (47rq50(x) — J aGo(x, y)2 dy)
Q Q

+ J (|Vw|2 + aw? + 22712 aGo(x,y)w) dy + oA . (5.5)
Q
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Indeed, arguing as in the proof of Lemma[{.2and using the bounds on d and |Vw| from Proposition
[4.1, we obtain

oz_QJ (V| + au? + eVu?) dy = 371/28%% — dmgo(x) A" + J aPUai)\ dy
Q Q
+ J (|Vw|2 + aw® + ZaPUx,)\w> dy +o(\71).
Q

Note that here we have kept the term SQ a(PU§A + 2PU, yw) dy instead of estimating it. We now
treat this contribution more carefully. We expand PU, y as in (2.17), which leads to

[ atpuz,+ 2PV )ty = [ 0 (U= AP o)) + 20 = AP o)) dy
Q

Q
2 [ aPUss+ whfendy — | aftdy.
Q Q
By (2.18) and (A.5), taking into account (4.2,

[ o (Pves s w)fn + £2) o] = 0 (Jalo1P0

sl s + Tl e logs + 1faal2)) = OO,

On the other hand, by Lemma
f a (U = X"V2Ho (,9))? + 2(Usp = X2 Ho(, y))w) dy
Q
= J a (A_lGo(x,y)Q + 2A7Y2Gy (x, y)w) dy + OA2In)).
Q

This proves (5.5)).

Ezpansion of the denominator. Combining the bound from the proof of Lemma[£.2) with the bounds
on d and |[Vw| from Proposition we obtain

-1/3 B 8T B ~ B
o? ( Lufdy) = (/37 + (59 T gu(e)h ! — 455 QL Ut P dy +o(A"Y).  (5.6)

Ezxpansion of the quotient. Multiplying and gives
Sverus] = S+ A 1(S/3) amgo(x) + A1 (S/3) 2 L aGol,y)* dy
+(5/3)7 12 fﬂ (|Vw|2 + aw® + 22" Y2aGy(z, y)w — 15 U;l’)\wQ) dy +o(A71).
The resolvent identity together with the symmetry Go(z,y) = Go(y, =) implies

JQ a(y)Go(z,y)* dy — (4m) 7" J Gola, y)a(y)Galy, y)a(y)Go(y , ) dy dyf
QxQ

=L%@wwmmmwzm@mw%my

This completes the proof of the lemma. O
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5.3. Regularization and coercivity. In this subsection we will show that the coercivity bound
from Lemma [4.3|remains essentially true after regularization. A convenient regularization procedure
for us is a spectral cut-off. Namely, we denote by 1(—A + a < p) the spectral projection for the
interval (—oo, 1] of the self-adjoint operator —A + a in L?(Q) with Dirichlet boundary condition.
The parameter p here will be later chosen large depending on e.

Lemma 5.3. Let v e H}(Q). Then for any p > 1,

[1(-A+a<u)low S p*|Vo. (5.7)
Proof. Let a— = max{0, —a}. By the maximum principle or the Trotter product formula, we have
0 < e 2D (g 2) < (4mt) 32 etlla-l= forall t > 0; (5.8)

see, e.g., [11, Thm. 2.4.4| for related estimates.

We denote by E, the eigenvalues of —A + a in L?(Q2) and by ®,, the corresponding L?-normalized
eigenfunctions. We bound for any z € 2

(A=A +a<mo) @)|=| D (@0 0)00()

En<p
< (3 Bl@oP) (Y B ewp)”
En<p En<p

We clearly have

D Enl(@n, )] < D En|(®n,0) P = (v, (A + a)v) S Vo,
En<p n

The heat kernel bound (5.8) implies that for any s > 0 and ¢ > 0
Z |(I) |2 < els 2 e tE"|(I) ( )|2 < 6t(s+Ha_||([) (47Tt)73/2,

E,<s En,<s
and choosing t = (3/2)(s + a_|lsw) ! we obtain for any s > 0,
o\ 32
D @@ < () G+l
T
FE,<s
Thus, writing E~! = {7 s~ 2 ds, we get

S Bl @k = [ mriE <G - [ () %

En<p En<p ! En <mm{u s}

e 3/2 o)
<(¢) JElmin{mHa|oo>3/2,<s+|a| eyl

The integral is easily seen to be bounded by a universal constant times
1/2 -1 3/2
W2 4 B a5

This proves the claimed bound. ([l
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Lemma 5.4. There are constants T, < o, p > 0 and C < o such that for all x € Q, A > 0 with
dA =Ty, and all v e T;:A and all = 1 the function

vs = 1(-A+a>pjv
satisfies

J (|VU>|2 +av? — 15 Ui)\ vi) dy > pf Vo |?dy — Cu'X=Y V2. (5.9)
Q Q

Proof. Step 1. We construct an orthonormal basis in T, y = Span{¢1,...,¢s}, where
¢1=PUr N, ¢2=0\PUryr, ¢j=0u; ,PUrx, j=3,45.
From [24, Appendix B| we know that, as A — o0,
[Vor] ~ 1, IVeel ~ A Ve ~ A =345, (5.10)

uniformly in z with Ad = Ty, where T} is any fixed constant. Here ~ means that the quotient of
both quantities is bounded from above and away from zero. Let
7 ®;

b= . j=1,...,5, (5.11)
T Vel

and
Gy = Lv&j-vgﬁkdy, i k=1,...,5.
By [24, Appendix B] and (5.10)),
Gjr =0\ forallj#k  and Gj;j=1 forallj. (5.12)

Hence, if A is large enough, which follows from dX\ > T, with sufficiently large T} since €2 is bounded,
then G is invertible and

(G V) k=0 + O ). (5.13)
Hence, by the Gram—Schmidt procedure,
b= DG kb j=1,....5, (5.14)
k

is an HE(Q)-orthonormal basis of T, .

Step 2. We decompose
Vs =v) t vy with vy e T, and v, € Tgb\ (5.15)

and claim that
[Vl = ONTH2ul | Vo). (5.16)

Since the 1); are an orthonormal basis of T}, y, we have
5
v = Z m;p; with mj = J Vpj - Vos dy.
j=1 @

Since

JQ |VUH|2 dy = Zm? ,
j
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the claim (5.16]) follows from
m; = O\ Y24 Vo) forall j=1,...,5.

In order to prove the latter, we introduce
4= J ngj -Vous dy,
Q

so that, by (5.14)),

m; = Z(Gilﬂ)j’k Iy .
k

Therefore, in view of (5.13)), the claim (5.17)) follows from
0; = O\ V2 A vo)  forallj=1,...,5.
To prove ([5.18]), we use the fact that v e T;x\ to find

Ejz—f V(;;j-Vv<dy=f U<Ad~>jdy.
Q Q

Thus,
1451 < [v<lloo [Adj]1 -

21

(5.17)

(5.18)

According to (5.7) we have |[v<|lo < p'/*|Vo|. Thus, in order to complete the proof of (5.18) we

need to show that HAﬁf;jHl = (9()\_1/2) for j =1,...,5. We have
~Ad1 = [V | 13035, ~A¢y = |Veo| 115U 0\Us
~A¢; = [V, 15UL \0;Un  for j =3,4,5.

(5.19)

Thus, the claimed bound on [Ag;|; follows from (5.10) and straightforward bounds on |U, |5,

|0AUz.2|5 and ||0;Uz 2||5. This completes the proof of (5.18)) and therefore of (5.16]).

Step 8. By the orthogonal decomposition ((5.15)) we have

J Vs 2 dy = J |Vv|||2dy —i—J Vo, | dy.
Q Q Q
Moreover, we bound, with a parameter d > 0 to be determined,
J Ui/\ vidy < (14 5_1)J U;{)\ vﬁ dy + (1 + 5)J U;l,)\ v? dy
Q Q Q
and
J avidy > —(1 +51)J |a|vﬁdy+f avidy—(SJ la| v} dy .
Q Q Q Q
Thus,

JQ (|W>|2 +av - 15 Umvi) dy > L (|Vvl|2 +av? — 15 Umvi) dy — 5fﬂ(|a| + 15U )0t dy

+ JQ Vo Pdy — (1+67) L(|a| +15 U;{,\)vﬁ dy.

Clearly,

L('“' +15U;,5) 22 dy < (lalys + 151Unn ) J213 < IV22 vze HY(Q).

(5.20)
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Since v, € Té/\, Lemma and (5.20)) imply that, after increasing T if necessary, there are § > 0
and ¢ > 0 such that

JQ <|V'UJ_|2 +avt — 15 Ux,,\vi> dy — 5JQ(|a| +15 Uﬁ,x)”i dy > CJQ VoL |?dy.
On the other hand, by (5.20)) and (5.16)),
JQ(|a| + 15U, )vijdy S JQ (V2 dy = O 2| Vol?) .

This completes the proof of Lemma [5.4] U

5.4. Completing the square. The following lemma gives a lower bound on the term in ({5.4)
which involves w. As explained above, this is the crucial step in the proof of Proposition [5.1}

Lemma 5.5. For some constant ¢ > 0,

JQ (|Vw|2 + aw?® + 227 Y2aGo(z, y)w — 15 U;{/\w2> dy

> A" (4m) ! f Go(z,9)a(y)Galy, v )a(y)Goly', ) dy dyf
OxQ

2
+e H(—A +a)Y2w + (A + @) 2AY2aGy (z, )H OO, (5.21)

Proof. For a parameter u = 1 to be specified later we decompose w = w~ + w. with
ws =1(-A+a> pw, we =1(-A +a < pw.
Then
JQ <|Vw|2 + aw2> dy = JQ (|Vw>|2 + awi) dy + JQ <|Vw<|2 + aw2<> dy (5.22)

and therefore, for any § > 0,
J (IVwf? + aw? + 20~ 2aGo (e, yyw — 15U ) dy > I + L + R(9) + R (5).  (5.23)
Q

where

I := J (IVe<? + aw? + 22~ 2aGo (e, yu- ) dy,
Q
I = J (IVw>|2 +aw? —15 U;‘,Awi) dy ,
Q
R_(6):=—=15(1 461 L Uf,Awi dy ,

R-(6) := —155J U;{)\wi dy + 2271/ f aGo(z,y)ws dy .
Q Q
By completing the square we find
Io= -2 (4m)™! J Go(z,y)a(y)Ga(y,y)aly)Go(y', z) dy dyf
QxQ

H=a+ @) Pus + (—A+ @) aGo(a, )

)

[
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and with 0 € ¢ < 1 to be determined we estimate

Io = —A"'dm) ™! J Go(z,y)a(y)Ga(y, y)a(y)Goly', z) dy dy’
QxQ

+c H(—A +a) Pws + (—A + a)TVPATV20Gy (x, )H2

= A (4! j Golz,9)a(y)Galy, ¥ )aly)Go(y', z) dy dy’

QxQ
+c H(—A +a) Pw+ (=A + a)"VPAT2aGy (x, )H2

—c H(—A + a)1/2w>H2 — 2eA"1/2 L aGo(z, y)w- dy . (5.24)

According to Lemma there are p > 0 and C' < o such that for all sufficiently small € > 0,
L2 | (VP dy = Cp A Tul?.
Since a € L* (), we have
(A +a)22)? < C'|Vz|? Vze HYQ). (5.25)
We apply this with v = w~ and infer that

Io+I-(8) + Re(8) + Re = =\ (4m) ! f Go(z,y)a(y)Ga(y,y)aly)Go(y', x) dy dy’
QOxQ
2

+c +R1(5) +R2(5)

(A +a)w + (—A + a)_l/Q%aGg(:n, )

where

Ri(8) = oIV |* = €'V | = 156 | U dy,
Ra(8) = —CpM22 | Va2 + 2(1 — C)AWJ aGol(, y)w- dy — 15 (1 + 61 f Ut w? dy.
Q Q

We now choose ¢ = min{1, p/(2C")}. Moreover, by (5.20) we can choose a > 0, independent of ¢
and p such that

Ri(8) = 0.

From now on, we fix this value of §.

It remains to show that Ry(8) is O(A~%/?) for an appropriate choice of u. By (1)) and (5.25) and
by the orthogonality (5.22) we have

ot = J |Vw|2dy > f (|Vw|2 + aw2) dy > J (|Vw>|2 + awi) dy = p Hw>|\2. (5.26)
Q Q Q

Thus, since a € L*(Q) and since Gy(z, ) is uniformly bounded in L?(2), we have

J aGo(z, y)ws dy‘ S Jws | S pPA2,
Q
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Moreover, by Lemma |5.3]

[ vty <pudl, [ vhidy < pPIvul? [ Uy < a2t
Q Q RS
Thus,
Ro(6) = — (M1/2)\_2 n N_I/Q)\_l) ‘
With the choice 1 = A the right side becomes O(A\~%/?), as claimed. O

Now we prove the main result of this section.

Proof of Proposition[5.1 Inserting (5.21]) into gives
Sareviue] = 8 +4r X71(S/3) 2y (x)
2
+(8/3)" V2 H(—A +a)w + (A + a)"Y2A"V2aGy )H ToA7Y.  (5.27)

We subtract S{a + €V') from both sides, multiply by A and take the limsup as € — 0+. Using the
second relation in (4.3) we obtain

0 > lim sup </\(S — S(a+€V)) + 41(S/3) " V2 u(x)

e—0
2
+(5/3)"V2en H(—A + @) 2w+ (—A + a) V2NV 206Gy (x, )H ) .

Since the three terms in the limsup are all non-negative (which for ¢, follows from Corollary ,
we deduce that

AS = Sla+eV))=o(l),  ¢a(z)=o0(l)
and
H(—A + ) Pw+ (A + a)VPAV2aGo(x, )
Since —A + a is coercive, the last bound implies
[V (w+ (-2 + ) A aGo(a, ) H2 — oA},
By the resolvent identity,
(—A +a)"'aGo(x,-) = Go(x, ) = Galw,") = Ha(z,-) — Ho(,),

and therefore, setting ¢ := w + A\~Y2(H,(z,-) — Ho(z,-)), the previous bound can be rewritten as
|Vq|? = o(A™!). This completes the proof of the proposition. O

6. A refined decomposition of almost minimizers
From Proposition [5.1| we infer that any sequence (u.) satisfying (1.10) can be decomposed as
Ue = (wx,)\ + Q) )
where
Yo = PUpy = A2 (H(x, ) = Ho(x,))
is as in the proof of the upper bound, see (2.1)), and where
IVl = o(x"'7?).
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Thus, expanding Sg+cv[ue] leads to an expression that coincides with the upper bound in Corollary
[2.2]up to additional terms involving q. Using coercivity we will be able to show that the contribution
from

. 1
T = H$7)\q,

the orthogonal projection of ¢ onto Tj/\ in H}(), is negligible; see Lemma . below. The main
focus in this section is on

H:c,)\q = Hm,)\ (’U) + /\71/2(Ha(w7 ) - HO(xa ))) = )‘71/2 Hx,/\(Ha(x7 ) - H()(l’, ))7

where the last identity follows from w € Txi)\. In Lemma we will prove that the contribution
from II, yq is negligible. This is not obvious and, in fact, somewhat surprising since II; yq is of
order A™! and not smaller.

6.1. Preliminary estimates. Let us write
3
oaq = BAT PUux + 90\ PUsy + Y 0 X300, PU, 5 -
j=1
Since PUy x, 0xPUy x and 0y, PU, y, j = 1,2, 3, are linearly independent for sufficiently large A, the

numbers 3, v and §;, j = 1,2,3, (depending on ¢, of course) are uniquely determined. The choice of
the different powers of A multiplying these coefficients is motivated by the following lemma.

Lemma 6.1. As ¢ — 0, we have

By v, 6= O(1).
Proof. We recall that the functions ¢~)j, j=1,...,5, were introduced in . Let
aj:JQV&j-quy, j=1,....5.
Step 1. We shall show that
ay,ay = OA71), as, aq,a5 = OA72). (6.1)
Since —A\"V2(H,(z,) — Ho(z,")) +q=we T;:/\, we have

aj = A_I/QJ V- Vy(Ha(z,y) — Ho(z,y)) dy = —Ylﬂf (A;)(Hq(z,y) — Ho(z,y)) dy .
Q Q

Formulas for the Laplacians Ag; are given in (5.19) and the quantities | V¢;|| appearing there were
estimated in (5.10). For ay, the integral §, U2 \(Ha(z,y) — Ho(z,y)) dy is O(A~Y2) according to
Lemma , which proves the claim in (6.1)). To bound a; for j = 2,...,5 we compute
A2 1= N2y — zf? Yi — T

2 (L Xy — o) (L4 2ely — 2P
This expression and straightforward bounds lead to the claim for ay in (6.1)).

azi Ux,k (y) = >‘5/2

WUz (y) = i=1,2,3.

To prove (6.1)) for a; with j = 3,4,5 we need to bound

L(Hm,y) — Ho(, y))U% \2u, Usa dy.
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From Step 1 in the proof of Lemma recalling (4.2)), we infer that there are p > 0 and C > 0,
both independent of ¢, such that

|Hao(z,y) — Ho(z,y) — Ho(z, x) + Ho(w,2)| < |y — 2 for all y € By(x).
Since the function U;{)ﬁxj Uz, is odd, we have
f (Ha(, ) — Ho(@, @)U 300, Upndy = 0.
By(z)
On the other hand, using the above expression for d,;U, x we find

L min{|y

This proves (6.1]) for j = 3,4, 5.

Up 30z, Usp| dy = O(X¥?).

Step 2. Let us deduce the statement of the lemma. We have

5
Hzaq = Z ijo;
j=1
with
1= AT VPU A, a2 i=9|VOPU, @5 i= 07 |Vay, ,PUs A, j = 3,4,5.
In view of , the assertion of the lemma is equivalent to
ar,as = ON 1Y), @ =00\"?), j=3,4,5. (6.2)

With respect to the orthonormal system 1, j = 1,...,5, from (5.14) we have
5
My 2q = 2 Ve, V)i
]:

Using (5.14) twice to express v; in terms of bi’s we obtain

Thus,
deZ(Gfl)kjag, k=1,...,5.

Similarly as in (5.13)) one finds
(G™jk =01 +O0T),

and then (6.2) follows from (6.1). This completes the proof of the lemma. O

Remark 6.2. The same method of proof shows that there are non-zero numbers Sy, 0, do; such
that

B—DBo, v—, do;—d
as € — 0. Indeed, proceeding as in Step 1 above one can show that Aay for k = 1,2 and A\2ay, for
k = 3,4,5 have a non-zero limit as ¢ — 0. As in Step 2 above, this implies that Aag for k = 1,2
have a non-zero limit as € — 0. In order to compute the limits of Aax for £k = 3,4,5 one needs to
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use, in addition, the fact that (Gil)k,g = 0o+ O(A72?) for k = 3,4, 5. Indeed, by a Neumann series
for G =1— (1 — G) one finds

(G Vs = (2= Qg + O(N2) = 260 — f Vo - Ve dy + ON?),
Q

and then one can use bounds from [24) Appendix B]| for the integral on the right side.
6.2. A third expansion. In this subsection, we shall prove the following lemma.

Lemma 6.3. As e — 0,

Sa-‘reV[ue] = S¢1+EV[¢CL‘,/\] + (5/3)_1/2 <SO[T] B 3]\TZ;)OI[T]) " O(A_Q) i O(EA_I) (63)

with
Ny = fﬂ (100l + @+ Vi) dy,  Do:= JQ doady (6.4

and

T[r] := =30 xlﬂf U \Ha(z, y)r dy + 15f Upar®dy + QOJ U \ridy. (6.5)
Q Q Q

We emphasize that the coefficients 3, v and §; enter only into the remainders o(A~2) + o(eA™1).
This is somewhat surprising since § enters to orders A~! and A™2 and v enters to order A~2 in the
expansion of the numerator and the denominator.

In the following, it will be convenient to abbreviate
3
9= BATPU A + 90\ PUsx,  hi= Y 6A 20, PUs,
j=1
so that
u=a(+g+h+r).

We record the bounds

[Vgl =0T, VA =0(?),  |Vr|=o(A 3. (6.6)

Indeed, the bounds on ¢ and h follow from Lemma together with (5.10) and that for r follows
from Proposition [5.1] since, by orthogonality, |[Vr| < [Vq].

We will also use the fact that
| ARy = O(A?). (6.7)
This follows from Lemma [6.1] together with (5.19) and the same bounds that led to (5.18).

We will obtain Lemma from separate expansions of the numerator and the denominator, which
we state in the following two lemmas.
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Erpanding the numerator. We abbreviate
Ev] = J (|Vv|2 + (a + eV)vQ) dy
Q
and write & [v1, va] for the associated bilinear form. Recall that Ny was defined in (6.4). We shall

show

Lemma 6.4. As e — 0,
a2 Ju] = No + Ny + E[r] + o(A™2) + o(eA™h),

where

Ny e fﬂwwdwzs@ww,m

Proof. Step 1. We show that the contribution from h to o2& [uc] is negligible, that is,
a 28 [uc] = E[toen + g+ 1] + oA ). (6.8)

Indeed,
aPE[uc] = Ec[pan + g + 7] +2E[ e + g+ 7, h] + E[R].
Since Ec[v1,v2] < |[Vur[||[Vue| for all vy, ve € HE(Q), we immediately conclude from that

Elnl =00 &g+ h] =0o(A?).
Next, using (6.7), (2-6) and ([2.7),

j Vs - Vhdy = j VPU,» - Vhdy + OZ 2| Ha(z, ) — Ho(z, )| AR]1)
Q Q
- J VPU,» - Vhdy + OON3).
Q
Moreover, by (5.12)) and (5.10)),

3
J VPU, - Vhdy = @A*’J VPU, - Vo, PUy \dy = O(A %)
Q : Q
7j=1

Finally, by (A.§) and (6.6),

L(a +eV)aah dy‘ < Jla + eV oo |veAless bl = OA?)

This proves .

Step 2. We now extract the relevant contribution from ¢ and show

Eltbor + g+ 1] = Etonr + 1] + 2 Eo[tbansg] + JQ Vg2 dy + o(A ). (6.9)

Indeed,
Elvar +g+71]=Elvar+ 1] +2E|Vr ) +1,9] +E|g]-
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By Lemma , , and ,

[RETGLCRS dy\ < la+ V1olgless 2l + lgllo)

< (1B 1PU

l6/5 + [V OAPUq

lo5) (Il + lglls) = oA ).
We have, since r € T;:A and g € T} »,
J Vr-Vgdy =0.
Q

This proves .

Step 3. We finally extract the relevant contribution from r and show

Ec[har + 7] = Ecftben] + Eolr] + oA 2) +o(eX ™). (6.10)

Indeed,
ge[wa:)\ + T] =& [wz,)\] + 256[¢1‘,)\7 T] + & [T] .
Using r € Ti/\, the harmonicity of Hyp and equation ({2.11)) for H,, we find

f Vb s - Vrdy = —A_mf Vy(Hq(z,y) — Ho(z,y)) - Vrdy = —A‘l/QJ aGo(z,y)rdy.
Q Q Q

On the other hand, by (2.17)), (2.18)) and (4.2)),

| avardy = [ aUoardy+ 372 [ att @y dy = Ollalssl fraliclrle) = o017,
Thus,
o, ] = JQ a (Ux,A — A_l/zHa(:c, y) — A_l/QGa(w, y)) rdy + 0()\_3) .
By Lemma [2.4]

[ 0 (ar A2 ) <3 PG v
Q
< laloo|Usn = X2 Ho(@, ) = X 2Ga(@, ) oslrlle = o(A~5).

Finally, by and ((A.g]),

\ jﬂ vwxmy\ < Vol

o/sl7ls = o(A™")

and
\ jﬁ V2 dy\ < IVlspalrlZ = oA 1)

This proves (6.10).

The lemma follows by collecting the estimates from the three steps. O
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Ezpanding the denominator. Recall that Dy and Z[r] were defined in (6.4) and (6.5)) respectively.
We shall show

Lemma 6.5. As e — 0,
oz_6J uldy = Do + Dy + Z[r] + o(A7?),
Q
where

Dy = 6f V) g dy + 15f Yy a9’ dy -
0 Q

Proof. Step 1. We show that the contribution from h to a6 SQ u8 dy is negligible, that is,
O JQ ul dy = Jﬂ(wx)\ +g+7)°%dy +o(\7?). (6.11)
Indeed,
ot L ul dy = L(%,A +g+7)°dy+ GJQ(%,A +g+7)°hdy+ 0O (H%,A +g+r3|nlE + HhHS)
and by the last term is O(A~*). The middle term is
| ety = | w2 andy+ 0 (sl +rlslils + la +riE10s)

and again by the last term here is o(A~%/2). The first term here is

f ) \hdy = J Uy \hdy + O (HU :

which, by (6.6) and (A.7)), is O(A~ 52). Finally, by (5.12) and (5.10),

3
J U \hdy = 3—1f VPU, - Vhdy =) 5jx3f VPUyp - Vg, PU, xdy = O(X7%).
Q Q Q

j=1
This proves (6.11)).

Step 2. We now extract the relevant contribution from g and show
f (Yur +g+1)0dy = f (ar +7)° dy—l—GJ wx)\gdy—i-lE)J ¢;M9 dy + o(A7?). (6.12)
Indeed,
| et gy = [ (ot 1Py +6 [ an+ P9y 415 | (o + )5 dy
Q Q Q Q

+0 (o +rlRIglE + 1918)

and by the last term is O(A~3). We need to show that the contribution from r to the second
and third term on the right side is negligible. The third term is

J (Ve +7)g" dy = J Uy g’ dy + O (I
Q Q

lollgl? + Ilalgl3)
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and by (6.6) the last term is o(A~>2). The second term above is
| @er oty = | utagdu+s | vlirgay+of

and by . ) the last term is o(A~2). Let us show that the second term on the right side of the
previous equation is negligible. We have

| wtarady = [ Ulargdu+ 0 (Waslilin—U
and by and (A.7) the last term is o(A72). Now

J Uy \rgdy = mlf U;{APUm,Ardywa Uy AONPU \1 dy
Q Q Q

Bllgls + Ir11913)

4
il lgle)

lellglls + [ x = U.

— - f S rdy 4 J UL \\Usar dy
+ O((|BINH|PU » — 10\PU» — AUz 6) Uz A|l6lI7]6) -

By Lemmal6.1] [24, Prop. 1 (c)] and (6.6), the last term is o(A~2). Finally, by (5-19) and the fact
that 7 € Ty,

f U2 \rdy = 3—1J VPU, - -Vrdy =0, f Up \OAUg a1 dy = (15)—1J Vo\PU, - Vrdy =0.
Q Q Q Q

This proves (6.12)).

Step 3. We finally extract the relevant contribution from r and show
J (o +7)0dy = J U8\ dy +I[r] +o(A7?). (6.13)
Q Q
Indeed,
J (Yan + )¢ dy = J @bg,)\ dy + GJ wg,/\r dy + 15J wi)\rQ dy + 20J ’903337)\1"3 dy
Q Q Q Q Q

O (Iu Bl +1r1§)

and by the last term is o(A~2). We need to extract Z[r] from the three terms on the right side
involving r. We begin with the term which is linear in r,

f%v“dy—J mrd3/+5JQ AWz = Up\)r dy

+0o (|,

).

= O(\7Y), the last term is o(A™2). Since r € T+ 7 the first term is

l6 + b2 = U,

By -, and Uy,

18/5
f Up \rdy = 3—1J VPU, - -Vrdy=0.
Q Q
Writing 1, 5 — Upx = —A"V2H,(x,-) — fo.x, we have
ls) -

= O(A\1/2), the last term on the right side is o(A~2).

L Ui \(hup — Up)rdy = —A7H2 L Us \Ha(z,y)r dy + O(|Us,

By (2.18), @.2), (6.6) and [T,

24/5
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We now turn to the terms that are quadratic in r. We have
| wtartdy = | Ul dy+ 0 (JU2
Q Q

and by (A7), and [[Us

one shows that

4
AIr1R)

|S/2 = O(A1/2), the last term on the right side is o(A~2). Similarly,

ol 7§ + [Yzx = Uspy

[o/2l1%zx = Uzl

f Y3 \r’ dy = J Us\rdy + o(A7?).
Q Q
This proves (6.13]).

The lemma follows by collecting the estimates from the three steps. 0

Proof of Lemma[6.3 Note that, by (6-6), D1 = O(A™') and Z[r] = o(A~1). Moreover, by ([2.3), Do
stays away from zero. Therefore, the expansion from Lemma implies that

1/3 1D 1Z[r] 2D?
6 6 _p- Bz 2 =2y 7.
(a JQ Ye dy) 0 3 DO 3 DO 9 1)(2] O(A )

Combining this with the expansion from Lemma [6.4] and using N1 = O(A™!) (again from (6.6)), we
obtain

1 N, - -
Sa+eV[ue] = SaJreV[wx,)\] + A+ Do 13 (gO[T] - 3DOOI[T]) + O()‘ 2) + 0(6)‘ 1)
with
iy D D 2 D2
A=D (N — ZL N — 2L N+ 223N, |
y ( L300 T 3D, T o pR

Thus, the assertion of the lemma is equivalent to A = o(A\72) + o(eA™!). We write

- Dy 1 D} No 2Dy
A=D7B (N =D 1— —— -t l—— | D1 (1 —— .
0 <( ! 1)< 3D0>+3D0+ 3D0) '\ T 3D,
It follows from (2.2)) and (2.3) that

—— =1 . .14
3Dy + ON2) + O(ed™) (6.14)

This, together with D; = O(A™1), yields

_ D 1 D?
A=Dy"? ((N1 — D) (1 - 350) + 317(1)) +o(A2).

We shall show in Appendix [A] that

372 1572
N1=72Tf”_1+< z

2
T i~ 8T do(@) B+ 4r do(w) 7) A2+ o(A72) (6.15)

2
4ﬁ+

and

2 2 2
D=2y (154” 5+ 22 — 8w () B + 4 o() v) ANZroN ). (6.16)
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Thus, in particular,

3T

Ny — Dy = =3723°272 + o(A7?%) and D? = ( 5

2
) BEA2 4+ oA,
This, together with Dy = (S/3)3/2 + o(A™1) (from (2.3)), implies A = o(A\~2), as claimed. O

Before continuing with the main line of the argument, let us expand «. By the normalization (1.10)),

Lemma [6.5] (2.3) and ( E

a 5(S/3)%% = (5/3)%2 + ﬁAl—Smba() !

2
+ (877@(30) 45 5 1562 72 — 87 go(x) B + 4 do(2) 7) A2 T[] 4 oA 2).
(6.17)

6.3. Coercivity. To complete the proof of our main results, it remains to prove that the terms
involving r in the expansion (6.3) give a non-negative contribution. Recall that Z[r] was defined in

(6.5) and Ny and Dy in Lemmas and [6.5] respectively.

Lemma 6.6. There is a p > 0 such that for all sufficiently small € > 0,

&l = 5 1 2lr) = p | [V dy +o(x72).
Q
Proof. We bound, using (£.2)), Lemma[2.6| and (.1]), for any § > 0,

1 1
2 2
‘30 A2 L U\ Ha(,y)r dy‘ <30\ < fﬂ Ut 12 dy) (Jﬂ U\ Ho(a,y)? dy)

1
<o(A™hH (f U;{)\TQ dy) ’ < 5J Ui/\ r2dy + 6" to(A72) .
Q Q

Similarly, using ,

3 1 3
‘ZOJ Ug’)\ 7 dy‘ <20 (J U;{)\ﬂ dy) ’ (J 70 dy) ’ < 0()\_%) (J U4>\1" dy) )
Q Q Q Q
<6 L Upar®dy + 672 0(A7%).
This, together with implies that
Eolr] — ?;NDOOI[T] > JQ (|Vr|2 +ar® —15 U;ArQ) dy
- (25 + O(N %)+ O(eN f aar dy + 0 o(A%) + 6 P0(A70).

Since r € Twi/\7 Lemma implies that for all sufficiently small € > 0, the first term on the right
side is bounded from below by p { |Vr|? dy for some p > 0 independent of e. On the other hand,
by (5.20)), choosing § > 0 small, but independent of €, and then e small, we can make sure that

. (25 +OON2) + (’)(e)\_l)) L UL\ rdy = —(p/2) L V|2 dy .
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This completes the proof of the lemma. 0

6.4. Proof of the main results. In this subsection we prove Theorems[I.3] [I.4]and Combining
the expansions from Lemma[6.3|and Theorem [2.1]and using the fact that ¢,(z¢) = 0 (see Proposition
5.1)) we obtain

Sa+5V[Ue] = S + (5/3)71/2 (;QV(xO) - W)

T (S/3)" M2 ar g (2) AL + (S/3)" 112 (50[7«] _ ;Vlgoz[r]) +o(A2) + ofeAY).

Using the almost minimizing assumption ((1.10]) as well as the coercivity bound from Lemma we
obtain

0= (1+0(1))(S—S(a+eV))+(5/3)~ /2 (;QV(:EO) — 2”2:2(‘730)> + R+ o0(A\) +o(er™).
(6.18)
with
R :=(9/3)71/? (47T¢a(x))\_1 + pJ |V7‘|2dy> . (6.19)
Q

Note that, by Corollary 2.2 R > 0.
Lemma 6.7. If No(V) # &, then xg € Ny(V).
This is the only place in the proof of Theorem where we need assumption (1.4)).

Proof. We recall the upper bound from Corollary

Qv(y)?®

S(a+eV)<S—(5/3)"Y% sup €2 + o(e?).

yeN,(v) 8m2a(y)]

Combining this with (6.18) and using R > 0, we find
Cre + oA < (—(9/3)77Qu (o) +0(1)) §
with

C1:=(S/3)712 sup M + o(1) Cy = (S/3) "2 212 a(xo)| + 0(1) .
yeN.(v) 8% la(y)| 7

By the assumptions N, (V) # & and (1.4), both C; and Cs tend to some positive quantities as
€ — 0. Since C1€% + CaA™2 = 24/C1 Co eA™! we obtain that Qv (zg) < 0, as claimed. O

We now assume N, (V) # & and complete the proof of Theorems and We can write

(Qu(xo) +o(1)*
4 (2m2|a(zo)| + o(1))

212a(xg)

(5/3)7/* <§Qv<xo> - A) + () + o(eX ™) = —(5/3)7

2
~-1/2 Qv (zo) +o(1) ¢ 2lale o —1
+(S/3) (2\/27r2|a(x0)|+0(1) +\/2 2| ( 0)|+ (1) A ) .
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Inserting this into (6.18) we obtain
2
—1/2 (QV(xO) + 0(1))

(S/3) T2 laeo)] + o(D)) 2> (1+0(1)(S—S(a+eV))+R (6.20)
with
2
R'i= R+ (5/3) 12 (2 ﬁ;ﬁﬁg ffi(l) ¢ +/2n%{a(o)]| + o(1) Al) . 62

Since R’ = 0 we obtain, in particular,

—1/2 (QV(:UO) + 0(1))2 €
4 (2m2|a(zo)| + o(1))

2
< (§/3)1/2 sup Qv(y)
(5/3) yeN,(v) 8m2a(y)]

—1/2 Qv (z0)* 2
se2lawg) ¢ )

S —S(a+eV) < (1+0(1))(S/3) 2= (5/3)

€2 +o(e?). (6.22)

In the last inequality we used zo € N (V). This proves the claimed lower bound on S(a + €V) and
completes the proof of Theorem

We now proceed to the proof of Theorem still under the assumption N,(V) # . Combining
the lower bound on S— S(a+€V) from Corollary 2.3 with the upper bound in (6.22)) we obtain

Qv (wo)? Qv (y)?
la(@o)l  yena(vy la(y)l
Moreover, inserting the lower bound on S — S(a + eV) into (6.20) we infer that R’ = o(e?). Thus,

by (1) and

Qv (20)|

2 2 -1
- d Atz vl
[V o(€%) an 172 [a(zo)]

€+ o(e) .

and, reinserting the last expression into R = o(€?), also
o) = 0(e€) .
Inserting these bounds into (6.17)), we obtain
3
=1 (83T A

+(8/3)732 (87Ta(xo) + 15—” B2 + 15—” v? = 87 po (o) B + 4 po(o) )A‘Q + o(€)

and therefore, using Lemma a=1+0(e). ThlS completes the proof of Theorem .

We now assume Ny (V) = & and prove Theorem [1.4] Estimating Qv (z9) = 0 and R > 0 in (6.18)

we obtain
0= (1+0(1))(S—S(a+eV)) + ((5/3)—1/2 272 |a(xo)| + 0(1)) A2 4 o(er”l).
Since o(eA™1) = —06A "2 + o(€?) for any fixed §, this implies S — S(a + €V) = o(€?).
Under the additional assumption Qv (zo) > 0, we infer from that
0= (1+0(1))(S—S(a+eV)) +Cre ! + Cor 2
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with

C1:=(8/3)"2Qu(xo) +o(1)  and  Co:=(S/3)"?2x%|a(xo)| + o(1).
Since both C and Cy are positive for all sufficiently small € > 0, we arrive at a contradiction. Thus,
assumption (3.4)), under which we have worked so far, is not satisfied. By the concavity argument
in the proof of Corollary this means that S(a + €V) = S for all sufficiently small € > 0. This
concludes the proof of Theorem

APPENDIX A. SOME COMPUTATIONS

A.l. Asymptotics and bounds. We recall that we abbreviate d = dist(z, Q).
Lemma A.1. As A — oo, uniformly in x € Q,
J VP dy = 3792532 — 4z go(z) A~ + o((Ad) 1), (A1)
Q

J PUS, dy = (5/3)%2 — 87 do(x) A" + o((Ad)™Y). (A2)
Q

Proof. We set again ¢,y = Uy x — PU, . Then, by (1.9) and (2.15),
JQ VP22 dy = JQ VPU, - VU, rdy =3 L PU, U \dy =3 JQ US\dy—3 JQ U2 \bapdy.

By |24, Proof of (B.3)]

| vsady = (5739 + oan) . (A3)
Q
and, as shown in [I5, Proof of Thm.1.1],
4
L U2 zGar dy = g do(z) A7+ o((dN)7h). (A.4)

(Since ¢y » = N V2Hy(x, ) + fz.x, the proof of the latter relation is similar to the proof of Lemma
, but to get the uniformity even for x close to the boundary more careful bounds on V,Ho(z,y)

are needed.) This proves (A.1]).
To prove (A.2), we write

| POy = | Udy=6 | UZs0undy+ O (Iaalfloal 6).

For the first two terms we use (A.3), (A4). Moreover, ||¢psalw = OA"Y2d™1) (from (2.7) and

go + H‘bx«\

219)), llpznlle = O((dN)~1/2) (from [24 Prop.1 (c)]) and |U, I3 = O(A71), so the remainder term
is o((d\)™1). O

Lemma A.2. As A\ — oo, uniformly in x €
|PUzA|6/5 = O 2. (A.5)
Moreover, for x in compact subset of €2,
[0xPUs s = O(A™%). (A.6)
[ = Usale = O(A2). (A7)
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and

[¥anles = ONY2). (A.8)

Proof. The bound (A.5)) follows from 0 < PU, ) < U, \ (see [24, Prop. 1(a)]) and a straightforward
computation for U, , using the fact that €2 is bounded.

To prove (A.6) we first note that, by a straightforward computation, the claimed bound holds with
O\Uy » instead of 0\ PU, ). The claimed bound now follows since by the bound on d\U, x — 0\PU, x
in [24, Prop. 1 (c)] (which holds even in L5).

For the proof of (A7) we write ¢, \ — Upx = —A"V2H,(z,+) — fox. Then (A7) follows from (2.6)
and (2.18). Finally, (A.8)) follows from (A.5)) and (A.7). O

A.2. Proof of (6.15). We have
Ny = BQA‘QJ |V PU, | dy + 72J |Vo\PU, \|* dy + 267)\_1J VPU, - Vo\PU, \dy
Q Q Q
+ 25A—1J Vipyx - VPU, A dy + 27 f Ve ) - VOrPU, » dy
Q Q

+ 28271 J athy \PU,\ dy + 2’yJ athy \OANPU, » dy .
Q Q

Therefore (6.15)) will follow from the following relations, together with the facts that ¢, (z) = o(1)
by Proposition and that 8,7 = O(1) by Lemmal6.1]

-2 2 3m° —2 -2
A [VPU A dy = =272 + 0(A79), (A.9)
Q
1 2
f |Vo\PU,5|* dy = LIS o(A7?%), (A.10)
Q ’ 64
A‘lj VPU, - VO\PU, »dy = o(A\™%), (A.11)
Q
2
A1 f Ve - VPU, \dy = %A—l — 47 da(2) A2 + 0o(A7T?), (A.12)
Q
f Vhe - VONPU, » dy = 27 o (x) X2 + 0o(A72), (A.13)
Q
At PUsady = 4 (a(z) = dn(a)) A2+ 0(172), (A.14)
Q
L @ty \ONPU \ dy = =2 ($a(x) — do(x)) A2 + 0o(A?). (A.15)

For the proof of these bounds we recall that d 2 1 by Proposition [.1]

The bounds (A.9), (A.10) and (A.11)) follow from [24, (B.2), (B.7) and (B.5)], respectively.

For the proof of the remaining assertions we decompose ¥,y = Uy x — )\*1/2Ha(x, -) — fz,x and recall

the bound (2.18) on fy x.
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Proof of (A.12). By and (2.15),

A1 L Vipy s - VPU, \dy = 327! L U2 \(Ugp — A2 Ho (2, ) dy + o(A72).
By (A3), 3x 1§, Ug)\ dy = %)\*1 4+ 0o(A2). On the other hand, by Lemma ,

3AT3/2 JQ U;/\Ha(:c, y) dy = 47 () N2 + o(A 7).

Proof of (A.13). By differentiating (1.9) and (2.15)),
J Vipyx - VOAPU, \ dy = 15J Uy — N2 Hy(2,y)) U2 \O\Uz 2 dy + o(A72).
Q Q

To compute the first summand, we use {53 U2 ,0\Uy \ dy = 05 §pa Ug,/\ dy = 0 and thus

_ _ 42
< (2>\)_1f M dz = O(\™4).

Uy a)\Ua:)\dy‘ = J U2 \O\Ug\ dy
UQ a ’ R3\Q : ’ R3\Byra(x) (1 + |7 — 2[?)

To compute the second summand we argue similarly as in the proof of Lemmas and and
obtain

~15 xlﬂf Ho(z,y)Us \0\Upx dy = 27 $a(2) X72 + 0(A72) .
Q
The constant comes from

© (1 —t2)t2dt 27
U\ o\Uyprdy = 2 )\_3/2f (7=——)\—3/2.
J;l@ z A OV A QY T . (1+t2)7/2 15

Proof of (A14). Since PU, ) = Uy — A\"V2Hy(z,") — fun,
A1 L app \PUpxdy = X7 L a(Upx — NV Ho(2, ) (Upn — A\"Y2Ho(,y)) dy + o(A72).
We have
A1 f aU2 y dy = )\2J a(y)
Q Q

and, similarly,

—)\_3/2 JQ aUx)\(Ha(xa y) + HO(x’ y)) dy - _)\_2 JQ a(y)

1

1
=" ———dy + o(\?
N Ey ey fna(y)lﬂc—yl2 y+o™)

Ha(z,y) + Ho(z,y)
|z —y]
Putting everything together and recalling that G,(x,y) = ﬁ — H,(x,y), we obtain
At L g \PUz x dy = A2 L a(y)Ga(,y)Go(z,y) dy + o(A?) = 4m(da(x) — do(2)) A + 0o(A ),
where the last equality follows from the resolvent identity (2.8]).
Proof of (ET3). Since |03 fux
1
| atsdsPUssdy = | aUsn = A2, )@0Un + 53 Hola, ) dy + o3
Q Q

We have

1
J aUp O\Uy x dy = /\2J
Q 2 Q

dy +o(A\72).

lo = O(A"7/2) by [24], Prop. 1 (c)], we get, similarly as before,

A2 — e —yl? Lo 1 2
dy = — =\~ T dy+ o\
) A Zrjz—y22™ " 72 JQ a(w) EETER oA
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and, similarly,

3 [ attyfe sty = 337 | atp Ty
Q |x—y|
and "
A*ﬂfaamﬂaawdyzxﬂjaw)0“”ﬁw+o@4y
9) Q |:r—y|

Putting everything together and using the resolvent identity (2.8) as in the proof of (A.14)), we
obtain (A.15]).

This completes the proof of (6.15)).
A.3. Proof of (6.16). We have

Dy =681"1 L P2 \PUgxdy + 6 L P2 \ONPU, x dy

+15 52)\_2J e \PUZ \ dy + 15 72J Ve A(O\PUg»)? dy + 30 fm—lf Yy \PUz 20\PU, 5 dy.
Q Q Q

Therefore (6.16]) will follow from the following relations, together with the facts that ¢,(x) = o(1)
by Proposition and that 8,7 = O(1) by Lemma

1J;w3XPU¢Ady—-A]=—4”(5¢a(>+—¢Mm»A2+oLx2), (A.16)
. v2aonPUandy = 3 (@ula) + dn(@) A2 +0072), (A1)

2
2f¢$P@A@—A +o(A ), (A.18)

Q ’ ’ 4

2
| wta@ruaady = a2 o072, (4.19)

Q

-1 L Ve \PUz 2ONPU, \ dy = o(A?). (A.20)

Proof of (A16). We insert ¢, = Upx—A"V2H,(x,)— frr and PU, \ = Uy x—A"Y2Hp(, ) — fu
to obtain

! JQ o \PUzady = A1 L US \dy — X 3/2 JQ U2 \(5Ha(z,y) + Ho(z,y)) dy + o(A?).
For the first term we use (A.3) and for the second term we use Lemma
Proof of (A.17)). Similarly as before, we obtain

L V2 \ONPUG \dy = JQ Us 30rUgx dy — 5X~ 12 JQ U xo\UsnHa(z,y) dy

1
+ 3 A2 f U;/\Ho(x, y) dy + o(A7?).
Q

For the first and the second term we argue as in the proof of (A.13) and for the third one we use
Lemma 2.5

The bounds (A.18]), (A.19) and (A.20)) follow from the corresponding relations where 1), \ and PU,, »
are replaced by U, » and where dyPU, , is replaced by d\Uj x.
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This completes the proof of (6.16]).

APPENDIX B. PROOF OF PROPOSITION [3.1]

In this appendix we provide a proof of the approximate form of almost minimizers. This result is
probably well-known to specialists.

Proof of Proposition Step 1. We show that u. — 0 in H}(€).

The assumptions imply that (uc) is bounded in H}(Q) and therefore it has a weak limit point. Let
ug € H(}(Q) be such a limit point and write 7. := u. — ug. In the remainder of this step we restrict
ourselves to values of € along which 7. — 0 in H}(©2). By Rellich’s compactness theorem re — 0 in
L?(9) and, passing to a subsequence if necessary, we may assume that 7. — 0 almost everywhere
in Q. By weak convergence in H{ () and strong convergence in L?(2) we have

3712842 4 o(1) = J
Q

<|Vu€|2 + au? + eVuz) dx
- J (|Vu0|2 + aug) dx + J |Vre|>da + o(1) .
Q Q
Thus,

T := lin%J |Vre|? da exists and satisfies 371/253/2 = J
«=0Jo Q
On the other hand, by the almost everywhere convergence and the Brézis—Lieb lemma [7],

(5/3)3/2 = JQ ul dr = JQ ul dx + fﬂ rSdx + o(1).

<|Vu0|2 + au%) de +T.

Thus,

M := 111% S dx exists and satisfies (5/3)3/2 = J ud dx + M .
€—> Q Q

We conclude that

S0 (|Vu0|2 + au%) de +T

S = lim S[ue] = 73
(SQ ug dr + M)

e—0

In the denominator, we bound

1/3 1/3
(J ug da:+M) < (J ugdx) + M3 (B.1)
Q Q

and in the numerator we bound T > SM'/3. Rearranging terms, we thus obtain

13
S (J ud da:) > J <|Vu0|2 + au%) dz .
Q Q

Since the opposite inequality holds as well by definition of S(a) and the assumption that S{a) = S,
we need to have, in particular, equality in (B.1). It is elementary to see that this holds if and only
if either {udz = 0 (that is, up = 0) or if M = 0.

Let us rule out the case M = 0. If we had M = 0, then, in particular, ug # 0 and therefore ug
would be a minimizer for the S(a) problem. However, as shown by Druet (Step 1 in [12]), the
S(a) problem does not have a minimizer. (Note that this part of Druet’s paper does not need any
regularity of a.) Thus, M > 0, which, as explained before, implies uy = 0.
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Step 2. We show that along a subsequence,
ue = sU; . + 0c (B.2)
with s € {+1}, zc — 20 € Q, pe dist(ze, 0Q) — © and o, — 0 in H'(R3).
Indeed, by Step 1 and Rellich’s compactness theorem we have ue — 0 in L?(Q) and therefore
S |Vue|? do

(SQ uf dx) e

Thus, the u, extended by zero to functions in H* (R3), form a minimizing sequence for the Sobolev
quotient. By a theorem of Lions [22] there exist (z.) < R? and (i) < Ry such that, along a
subsequence, i 1/2
Sobolev inequality. By the classification of these optimizers (which appears, for instance, in [22]

— 5.

ue(p ' - +2) converges in H'(R3) to a function, which is an optimizer for the

Cor. I.1]) and taking the normalization of the u, into account, we can assume, after modifying the
e and ze, that
pe Pucluct -z = sUoy in H'(RY)

for some s € {+1}. By a change of variables (which preserves the H!(R?) norm) this is the same as
B2.
Note that
J USdzs = J ul dx = f (sUse o +0)0da = f US . dx+o(1).
R3 Q Q Q

Thus, pe — oo and dist(ze,2) — 0. Using, in addition, that the boundary of Q is C!, we conclude
that pe dist(ze, R3\Q) — oo. In particular, after passing to a subsequence, z. — zg € Q.

Step 8. We now conclude the proof of the proposition.

Since the remaining arguments are similar to those in [24, Prop. 2| we omit most of the details. As
in that paper, the conclusions from Step 2 allow us to apply the result of Bahri-Coron [5, Prop. 7|
and lead to a decomposition

Ue = acPUz, », + we
with x. € 2, bounded a, and w, € Txlw\s such that we — 0 in H}(Q). This implies

J V(@ PU, )2 dy = f Va2 dy + o(1) = 312532 4 (1) |
Q Q

By the same argument as in [24, Prop. 2| with 371/25%/2 instead of x on the right side of [24, (2.18)]
we infer that Ae/pe + fte/Ae + Aepte|xe — z¢| < 1. From this we conclude that A\e — o0, . — zo and
Acdist(zz, 0Q2) — co. Finally, using [24, (B.2)|, o« — s. The last relation allows us to replace w, by
QaeWwe, which still has the same properties, and obtain the decomposition stated in the proposition.
This completes the proof. ]
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