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SINGULAR SOLUTIONS TO A SEMILINEAR BIHARMONIC EQUATION WITH A GENERAL CRITICAL NONLINEARITY

We consider positive solutions u of the semilinear biharmonic equation ∆ 2 u " |x| ´n`4 2 gp|x| n´4 2 uq in R n zt0u with non-removable singularities at the origin. Under natural assumptions on the nonlinearity g, we show that |x| n´4 2 u is a periodic function of ln |x| and we classify all such solutions.

Introduction and main results

We are interested in positive solutions u of the semilinear biharmonic equation

∆ 2 u " 1 |x| n`4 2 gp|x| n´4 2 uq in R n zt0u (1) 
which may have singularities at the origin. We always assume n ě 5. The nonlinearity g P C 1 pR `q is taken to satisfy a set of growth conditions which will be specified below.

The seemingly strange way the right hand side of equation ( 1) is written ensures invariance of the equation under rotations, dilations and inversion in the unit sphere.

The form becomes very natural later when we pass to logarithmic radial coordinates. We will always interpret [START_REF] Buffoni | Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system[END_REF] in the weak sense, that is, we assume u P H 2 loc pR n zt0uq, gpuq P L 1 loc pR n zt0uq and ż

R n ∆u ∆ϕ " ż R n
gpuqϕ for all ϕ P C 8 0 pR n zt0uq .

Our goal is to classify all positive solutions of [START_REF] Buffoni | Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system[END_REF]. Under some natural assumptions on g we will be able to show that, if u has a non-removable singularity at 0, then |x| n´4 2 u is a periodic function of ln |x| and, up to dilations, all such functions are uniquely parametrized by the minimal value of this periodic function.
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Assume that either u R L 2n n´4 pR n q or that the inequality g 1 ptq ď n`4 n´4 gptq t in (5) is strict for a.e. t ą 0.

Then u is radially symmetric-decreasing with respect to 0.

When u P L 2n n´4 pR n q and the inequality g 1 ptq ď n`4 n´4 gptq t in [START_REF] Lieb | Analysis[END_REF] is not strict for a.e. t ą 0, then the conclusion of the theorem need not hold. Indeed, it is well-known that equation [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], which is translation invariant, has a solution which is strictly radially symmetric-decreasing with respect to an arbitrary given point. This shows that some extra condition is needed to conclude radial symmetry with respect to the origin, although the condition given in the theorem can probably be relaxed.

Remark 2. We will show in Section 3 that, in fact, Bu B|x| ă 0 for all x P R n zt0u, using ODE methods.

We now proceed to the second step of our argument. According to Theorem 3 we can write equation [START_REF] Buffoni | Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system[END_REF] as an ordinary differential equation. It becomes particularly simple in logarithmic coordinates. That is, we make the so-called Emden-Fowler change of variables upxq " |x| ´n´4 2 vpln |x|q .

After a lengthy, but straightforward computation, we can write (1) as

v p4q ´Av 2 `Bv " gpvq in R, (6) with 
A " npn ´4q `8 2 and B " n 2 pn ´4q 2 16 .

The following is our second main result. Recall from [START_REF] Lieb | Analysis[END_REF] that by definition β " lim tÑ0 g 1 ptq.

Theorem 3 (Classification of ODE solutions). Suppose that g satisfies [START_REF] Lieb | Analysis[END_REF].

Then any positive solution v P C 4 pRq of (6) is either constant, or homoclinic to zero, or periodic. These solutions can be classified, up to translations, by their minimal value in the following sense.

(i) There is a unique a 0 ą 0 such that gpa 0 q " Ba 0 . Moreover, if v P C 4 pRq is a positive solution of (6), then inf R v ď a 0 , with equality if and only if v is a non-zero constant.

(ii) If a P p0, a 0 q, then there is a unique (up to translations) bounded solution v P C 4 pRq of (6) with inf R v " a. This solution is periodic, has a unique local maximum and minimum per period and is symmetric with respect to its local extrema.

(iii) There is a unique (up to translations) positive solution v P C 4 pRq of [START_REF] Maz | Sobolev spaces with applications to elliptic partial differential equations[END_REF] with inf R v " 0. This solution is symmetric-decreasing and satisfies vptq ď C e ´p?

µ´ q|t| for any ą 0, where µ " 1 2 pA ´aA 2 ´4pB ´βqq. Moreover, if |gptq ´βt| ď Ct r for all t ď 1 , for some r ą 1, C ă 8 ,

then lim |t|Ñ8 e ? µ|t| vptq exists and is finite. When gptq ě βt for all t ą 0, then the limit is positive.

Note that for homoclinic solutions we prove exponential decay, since the assumption β ă B implies µ ą 0. Moreover, recalling the explicit expression of A and B, we

obtain ? µ " n ´4 2 if β " 0 .
The combination of Theorems 1 and 3 yields immediately the following classification of positive singular solutions of the PDE (1). To state this result, we denote, for a P r0, a 0 s, by v a the unique positive solution to (6) obtained from Theorem 3 by requiring that inf R v a " a and v a p0q " max R v. For a P p0, a 0 q we denote by L a the minimal period length of v a and we set L a 0 " 0 and L 0 " 8.

Theorem 4 (Classification of PDE solutions). Suppose that g satisfies (5). Let u P C 4 pR n zt0uq be a positive solution of (1) and assume that either u R L 2n n´4 pR n q or that the inequality g 1 ptq ď n`4 n´4 gptq t in (5) is strict for a.e. t ą 0. Then there are a P r0, a 0 s and L P r0, L a s such that

upxq " |x| ´n´4 2 v a plog |x| `Lq ,
where v a is the solution of (6) introduced above.

In particular, if a " a 0 , then upxq " |x| ´n´4 2 a 0 , and if a P p0, a 0 q, then 0 ă lim inf Under assumption [START_REF] Terracini | Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions[END_REF], if a " 0, then

lim |x|Ñ0 |x| n´4 2 ´µupxq " lim |x|Ñ8 |x| n´4 2 `µupxq ă 8
and, if gptq ě βt for all t ą 0, then the limit is positive.

Let us discuss the implications of this theorem to the question of removability of singularities. When a ą 0, the solution u has a non-removable singularity at the origin. When a " 0, the situation depends on whether the parameter β from (5) vanishes or not. For β " 0, when µ " n´4 2 , the solution extends continuously to the origin, while for β ą 0, when µ ă n´4 2 , the solution has a power-like singularity at the origin. Note, however, that this singularity is weaker than in the case a ą 0.

It is also remarkable that the behavior near the origin is closely related to the behavior of u at infinity.

In the remainder of this paper we prove Theorem 1, Remark 2 and Theorem 3. The first one is proved in Section 2 using the method of moving planes, while the second and third one are proved in Section 3 using ODE techniques.

Method of moving Planes

Our goal in this section is to prove Theorem 1. We will deduce it from the following theorem, which is our main symmetry result. We point out that for the proof of Theorem 5 below, we actually do not need the lower bound gptq{t ă g 1 ptq from [START_REF] Lieb | Analysis[END_REF].

Throughout the following, we will fix a point a P R n zt0u and consider

S " t0, au Ă R n . ( 8 
)
We shall prove Theorem 5. Suppose that g satisfies (5).

Let k be a positive function in R n zS which is symmetric-decreasing with respect to a hyperplane H passing through 0 and a. Assume that kpxq Á distpx, Sq ´1 in a neighborhood of S, that k P L pn`2q{4 loc pR n q and that k P L n pΩq for every Ω which is a positive distance away from S.

Let v P H 2 loc pR n zSq be a weak solution of ∆ 2 v " kpxq n`4 2 gpkpxq ´n´4 2 vpxqq in R n zS (9) 
and assume that v ą 0 and that v P L 2n n´4 pΩq for every Ω which is a positive distance away from S.

Assume that either v R L 2n n´4 pR n q, or that the inequality g 1 ptq ď n`4 n´4 gptq t in (5) is strict for a.e. t ą 0 and k is strictly symmetric-decreasing.

Then v is strictly symmetric-decreasing with respect to H.

By saying that a function f is symmetric-decreasing with respect to a hyperplane H through 0 with normal vector e we mean that f py ´teq " f py `teq ě f py `seq for all 0 ď s ď t and all y ¨e " 0 .

By saying that f is strictly symmetric-decreasing we mean that the inequality is strict for s ă t.

2.1. Kelvin transformation and proof of Theorem 1. Although neither u nor |x| ´1 from Theorem 1 satisfy the assumptions of Theorem 5, we will now show that we can transform equation (1) to another equation for which these assumptions are satisfied. Indeed, for z ‰ 0 we denote by z ˚" z |z| 2 the inversion of z about the unit sphere and for any function u on R n zt0u, we define its Kelvin-type transform u z with respect to the point z by

u z pxq :" 1 |x| n´4 up x |x| 2 `zq, x P R n zt0, ´z˚u . (10) 
If z " 0, we denote u ˚:" u 0 .

The technique of improving the decay properties of a solution to a conformally invariant equation by passing to the Kelvin transform goes back to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF] and has been widely used in the context of the method of moving planes. Since our equation ( 1) is, in general, not translation invariant, u z with z ‰ 0 is, in general, no longer a solution of (1). It will, however, satisfy a related equation. Indeed, if u solves (1), then from the formula

∆ 2 ϕ ˚pxq " 1 |x| n`4 ∆ 2 ϕp x |x| 2 q, ϕ P C 8 0 pR n zt0uq
and a straightforward calculation using the fact that | x |x| 2 ´z |z| 2 | " |x´z| |x||z| , it follows that u z satisfies the equation Notice that this means that if u solves equation (1), then so does u ˚.

∆ 2 u z pxq " k z pxq n`4 2 gpk z pxq ´n´4 2 u z pxqq in R n zt0, ´z˚u (11) 
Here are some more properties of u z which we need for our argument.

Lemma 6. Suppose that u P H 2 loc pR n zt0uq. (a) If z ‰ 0, then u z P H 2 loc pR n zt0, ´z˚u q and, in fact, we have ż

Ω |∆u z | 2 ă 8 and ż Ω |u z | 2n n´4 ă 8
for every Ω which is a positive distance away from 0 and ´z˚.

(b) If z " 0, then u ˚P H 2 loc pR n zt0uq.
Proof. Let Ω Ă R n be a positive distance away from 0 and ´z˚a nd let Ω ˚" tx ˚:

x P Ωu. 

We show square integrability of each of the three terms on the right side. First, ż

Ω ˇˇ|x| 2´n up x |x| 2 `zq ˇˇ2 " ż Ω ˚|x| ´4|upx `zq| 2 À ż Ă Ω ˚|∆upx `zq| 2 ă 8
by the Hardy-Rellich inequality, where we choose some larger Ă Ω ˚Ą Ω ˚which is still a positive distance away from ´z. This follows by a simple argument using cutoff functions. For the second term of (13), we have ˇˇ∇ `up

x |x| 2 `zq ˘ˇÀ |x| ´2ˇ∇ up x |x| 2 `zq ˇǎnd therefore ż Ω ˇˇ|x| 2´n x ¨∇`u p x |x| 2 `zq ˘ˇˇ2 À ż Ω |x| 2´2n |∇up x |x| 2 `zq| 2 " ż Ω |x| ´2|∇upx `zq| 2 À }u} 2 H 2 p Ă Ω ˚`zq ă 8
by Hardy's inequality applied to B j u, j " 1, ..., n, with some set Ă Ω ˚as above. The third term of (13) gives

ż Ω |x| ´2n |∆up x |x| 2 `zq| 2 " ż Ω ˚`z |∆upxq| 2 ă 8
because u P H 2 loc pR n zt0uq. The proof of part (b) is similar, but simpler, and we omit it.

We can now deduce Theorem 1 from Theorem 5 in a straightforward way.

Proof of Theorem 1 given Theorem 5. Step 1. Let z ‰ 0 and denote by l z the line through 0 and z. We shall show that for any hyperplane H orthogonal to l z the function u z is strictly radially symmetric-decreasing in H with respect to H X l z .

We want to deduce this from Theorem 5 with a " ´z˚, v " u z and k " k z applied to equation (11). Let us verify that the assumptions of this theorem are satisfied. This is clear for the assumptions on g. Next, the function kpxq " |z ˚| |x||x`z ˚| is strictly symmetric-decreasing with respect to any hyperplane passing through 0 and z (which is the same as passing through 0 and a " ´z˚) . It decreases as |x| ´2 as |x| Ñ 8 and behaves as distpx, Sq ´1 near the set S given by [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]. Therefore the assumptions on k are satisfied. Finally, according to Lemma 6 the function v " u z belongs to H 2 loc pR n zt0, ´z˚u q and is in L 2n n´4 on any Ω which is a positive distance away from 0 and ´z˚. As in the proof of that lemma one sees that u P L 2n n´4 pR n q if and only if

u z P L 2n n´4 pR n q.
Thus, from Theorem 5 we deduce that u z is strictly symmetric-decreasing with respect to any hyperplane passing through 0 and z. This implies the assertion.

Step 2. We now deduce that u is radially symmetric-decreasing.

By letting z Ñ 0 along a fixed direction ν P S n´1 , the assertion of Step 1 implies that in any hyperplane with normal ν, u ˚is radially symmetric-decreasing with respect to the point where the hyperplane intersects the line through 0 in direction ν. Since ν is arbitrary, we conclude that u ˚is radially symmetric-decreasing with respect to 0.

Applying what we have proved so far to u ˚, which, by Lemma 6, is in H 2 loc pR n zt0uq if and only if u is and which solves (1) if and only if u does, we also find that u " pu ˚qi s radially symmetric-decreasing with respect to 0.

Some integrability estimates.

We have therefore reduced the proof of Theorem 1 to the proof of Theorem 5.

In this and the next subsection we always assume that g and v satisfy the assumptions in Theorem 5 and that (9) holds in the weak sense.

Our first step in proving Theorem 5 is to understand the behavior of the solution near the singular points. This will later allow us to use a larger class of test functions, including functions whose support contains the set S given by [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]. This amounts to proving integrability of v at S and constitutes the purpose of the present subsection. Our arguments in this subsection are inspired by [10, Proof. First, assume that Ω is a positive distance away from S. The inequality g 1 ptq ď n`4 n´4 gptq t in (5) implies by integration that gptq ď gp1qt pn`4q{pn´4q for t ě 1 and therefore gptq ď gp1qt pn`4q{pn´4q `sup 0ďtď1 g À t pn`4q{pn´4q `1 for all t ě 0 .

Thus, k n`4 2 gpk ´n´4 2 vq À v n`4 n´4 `k n`4 2 
and consequently

ż Ω ´k n`4 2 gpk ´n´4 2 vq ¯2n n`4 À ż Ω ´v 2n n´4 `kn ¯.
The integral on the right side is finite by our assumptions.

In order to prove the local integrability, let η be a smooth, non-negative function on R n with η " 1 near 0 and with support in a ball not containing a. We shall show that ş k n`4

2 gpk ´n´4 2 vqη ă 8. This and a corresponding assertion for η supported near a proves the lemma.

For ą 0 so small that η " 1 on t|x| ď 2 u, we can find non-negative cut-off functions

η P C 8 0 such that η pxq $ & % " 0 if |x| ď , " η if |x| ě 2 ,
and

|D k η pxq| À ´k for all k " 1, 2 , 3, 4 . 
For q as in assumption [START_REF] Lieb | Analysis[END_REF], let m " 4q q´1 and define ξ " pη q m . Since ξ is supported away from S, it is a valid test function for equation ( 9), and we obtain ż

R n k n`4 2 gpk ´n´4 2 vqξ " ż R n ∆v∆ξ " ż R n v∆ 2 ξ .
Observing that

|∆ 2 ξ | À ´4η m´4 1 t ă|x|ă2 u `∆2 η m " ´4ξ 1{q 1 t ă|x|ă2 u `∆2 η m ,
and using the assumed lower bound on k (note that q ď n`4 n´4 , since gptq À t pn`4q{pn´4q ), we find that ż

R n k n`4 2 gpk ´n´4 2 vqξ À ´4 ż t ă|x|ă2 u vξ 1{q `ż v∆ 2 η m À ´4`n `4 2q ´n´4 2 ż t ă|x|ă2 u vk ´n´4 2 `n`4 2q ξ 1{q `ż v∆ 2 η m À ´4`n `4 2q ´n´4 2 `n q´1 q `żt ă|x|ă2 u v q k ´q n´4 2 `n`4 2 ξ ˘1 q `ż v∆ 2 η m .
Because of the equivalence

´4 `n `4 2q ´n ´4 2 `nq ´1 q ą 0 ô q ą 1 , (14) 
the exponent of is positive and therefore we can drop the factor in front of the first term. The second term is finite since ∆ 2 η m " 0 near zero, and independent of . To close the estimate, we will use the fact that t q ď c ´1gptq `1 À gptq `1 for all t ě 0 .

Using this, we can estimate

`żt ă|x|ă2 u v q k ´q n´4 2 `n`4 2 ξ ˘1 q À `żt ă|x|ă2 u k n`4 2 gpk ´n´4 2 vqξ `żt ă|x|ă2 u k n`4 2 ˘1 q .
The second term on the right side is finite by assumption. We have thus proved that ż

R n k n`4 2 gpk ´n´4 2 vqξ À `żR n k n`4 2 gpk ´n´4 2 vqξ ˘1 q `1 , which implies that ż R n k n`4 2 gpk ´n´4 2 vqξ À 1.
Letting Ñ 0, we conclude by monotone convergence that

ż R n k n`4 2 gpk ´n´4 2 vqη ă 8,
which finishes the proof.

We can use the fundamental integrability properties from Lemma 7 to enlarge the class of functions one can test equation ( 9) against. This is the content of the next lemma.

We recall that by definition 9 H 2 pR n q is the completion of C 8 0 pR n q with respect to }∆u} 2 , see e.g. [START_REF] Maz | Sobolev spaces with applications to elliptic partial differential equations[END_REF]. Lemma 8. Let ϕ P 9

H 2 pR n q and assume, in addition, that ∆ϕ " 0 in a neighborhood of S. Then ż

R n ∆v∆ϕ " ż R n k n`4 2 gpk ´n´4 2 vqϕ.
Proof. We begin by localizing the problem. We choose non-negative C 8 functions χ 0 , χ a and χ 8 such that χ 0 `χa `χ8 " 1 on R n and such that χ 0 and χ a are " 1 near the points 0 and a, respectively, and both have compact support.

Given ϕ as in the lemma, it clearly suffices to prove the theorem for each of the functions χ 0 ϕ, χ a ϕ and χ 8 ϕ. Note that all three functions belong to 9 H 2 pR n q and are harmonic near S.

The identity for χ 8 ϕ follows by a straightforward approximation argument using the fact that on the support of χ 8 ϕ, ∆v is in L 2 and, by Lemma 7,

k n`4 2 gpk ´n´4 2 vq is in L 2n n`4 .
The argument for χ a ϕ is the same as that for χ 0 ϕ, so we focus on the latter. To ease notation, we write ϕ instead of χ 0 ϕ and assume that ϕ has compact support not containing a and is harmonic near 0. By harmonicity, ϕ is C 8 near zero and, in particular, ϕ and all its derivatives are bounded in a ball B near zero.

For ą 0 so small that Bp0, 2 q Ă B, fix η P C 8 pR n q such that η pxq

$ & % " 0 if |x| ď , " 1 if |x| ě 2 , ( 15 
)
and |D k η | À ´k for k " 1, 2, 3, 4. We can now test the equation for v with ϕη , which is a valid test function, since it is in 9

H 2 pR n q and supported away from S. We obtain

ż R n ∆v∆pϕη q " ż R n k n`4 2 gpk ´n´4 2 vqϕη .
As Ñ 0, the right hand side tends to

ş R n k n`4
2 gpk ´n´4 2 vqϕ by dominated convergence, using ϕ P L 8 pBq and Lemma 7. To evaluate the left hand side, we write ∆pϕη q " η ∆ϕ `2∇ϕ ¨∇η `ϕ∆η (16)

and consider the three terms of ( 16) separately. For the first term, since ∆ϕ " 0 in tη ‰ 1u, we have ż

R n p∆v∆ϕqη " ż R n ∆v∆ϕ .
Therefore, to finish the proof, it remains to show that

lim Ñ0 ż R n ∆vp2∇ϕ ¨∇η `ϕ∆η q " 0. (17) 
Using the facts that ϕ P 9 H 2 pR n q and that ∆ϕ " 0 on suppp∇η q Y suppp∆η q Ă t ă |x| ă 2 u Ă B, we obtain from integration by parts that ż

R n ∆vp2∇ϕ ¨∇η `ϕ∆η q " ż t ă|x|ă2 u v `p4 n ÿ i,j"1 B ij ϕB ij η q `4∇ϕ ¨∇∆η `ϕ∆ 2 η ˘.
Similarly to the proof of Lemma 7, since k Á ´1 on t ă |x| ă 2 u and since B ij ϕ is bounded on t ă |x| ă 2 u, we have

ˇˇż t ă|x|ă2 u v n ÿ i,j"1 B ij ϕB ij η ˇÀ ´n´4 2 `n`4 2q `żt ă|x|ă2 u k n`4 2 p1 `gpk ´n´4 2 vqq ˘1 q `żt ă|x|ă2 u n ÿ i,j"1 |B ij η | q q´1
˘q´1 q by Hölder's inequality. From Lemma 7 and the bound |D 2 η | À ´2, we infer that

ˇˇż t ă|x|ă2 u v n ÿ i,j"1 B ij ϕB ij η ˇˇÀ ´2`n pq´1q q ´n´4 2 `n`4 2q .
By (14), we have ´2 `npq´1q

q ´n´4 2 `n`4
2q ą 0 and we conclude that

lim Ñ0 ż R n v n ÿ i,j"1 B ij ϕB ij η " 0.
By an analogous argument, using boundedness of ∇ϕ and ϕ on B and the bounds

|D k η | ď ´k for k " 3, 4, one can establish that lim Ñ0 ż R n vp∇ϕ ¨∇∆η q " lim Ñ0 ż R n vϕ∆ 2 η " 0 .
The proof of (17), and therefore of Lemma 8, is complete.

Proof of Theorem 5.

In this subsection we prove Theorem 5 using the method of moving planes in a variant relying mostly on integral estimates, the crucial ones being derived in Lemma 10 below. The use of such bounds in the context of the method of moving planes goes back at least to [START_REF] Terracini | Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions[END_REF]. In the present context of a fourth-order equation, this strategy is however much harder to implement because more regularity is required from admissible test functions, compare Lemma 8. We achieve this by a careful regularization procedure together with odd reflection across the hyperplane tx 1 " λu. This is carried out in the proofs of Lemmas 9 and 10 below.

Notation. Again we assume that g and v satisfy the assumptions of Theorem 5 and that (9) holds in the weak sense. Recall moreover that we denote S " t0, au Ă R n for some fixed a P R n zt0u.

Since the assumptions and the conclusion of the theorem are invariant under rotations, we may assume that a 1 " 0 and H " tx 1 " 0u.

For any number λ ă 0, we introduce the moving planes notation by letting Σ λ " tx 1 ą λu, x λ " p2λ ´x1 , x 2 , ..., x n q, v λ pxq " vpx λ q and k λ pxq " kpx λ q. (This should not be confused with the function k z from Subsection 2.1.) Moreover, on Σ λ , we define the difference function w pλq " v ´vλ . We will consider this function only in the half-space Σ λ . When λ is understood, we will often abbreviate this function by w.

For any function u, we denote by u ´:" maxt0, ´uu its negative part (note that with our convention u ´ě 0).

The following lemma will be at the core of the moving planes argument used to prove Theorem 5.

We recall that by definition 9 W 1, 2n n´2 0 pΣ λ q is the completion of C 8 0 pΣ λ q with respect to }∇u} 2n n´2 , see e.g. [START_REF] Maz | Sobolev spaces with applications to elliptic partial differential equations[END_REF].

Lemma 9. Let v, g and k fulfill the assumptions of Theorem 5 and let w pλq " v ´vλ on Σ λ . Define, for x P Σ λ ,

V pλq pxq " k λ pxq 4 gpvpxqk λ pxq ´n´4 2 q ´gpv λ pxqk λ pxq ´n´4 2 q vpxqk λ pxq ´n´4 2 ´vλ pxqk λ pxq ´n´4 2 . ( 18 
)
Then the following holds.

(a) We have V pλq ě 0 and V pλq P L n 4 ptw pλq ă 0uq for all λ ă 0. Moreover,

lim λÑ´8 ż tw pλq ă0u
´V pλq ¯n 4 " 0 .

(b) Let ψ P 9 H 2 pΣ λ q X 9 W 1, 2n n´2 
0
pΣ λ q with ψ ě 0 and assume that ∆ψ " 0 in a neighborhood of S. Then

ż Σ λ ∆w pλq ∆ψ ě ´żΣ λ V pλq pw pλq q ´ψ. (19) 
Proof. As a rule, we will abbreviate w " w pλq and V " V pλq .

Proof of (a). Firstly, since k ą 0 and g 1 ě 0 by (5), we have V ě 0.

Secondly, as we have seen in the proof of Lemma 7, gptq À t n`4 n´4 for t ě 1. Reinserting this bound into the assumed upper bound on g 1 and using the fact that g 1 is bounded on p0, 1s (since lim tÑ0 g 1 ptq exists and is finite), we obtain the bound

g 1 ptq À 1 `t 8 n´4 .
Therefore, by the mean value theorem,

gptq ´gpsq t ´s À 1 `t 8 n´4 for all 0 ă s ă t. (20) 
Applying (20) with t " v λ pxqk λ pxq and noticing that t ą s whenever w ă 0, we can bound

ż twă0u V n 4 À ż twă0u k n λ `żtwă0u v 2n n´4 λ ď ż tx 1 ăλu ´kn `v 2n n´4 ¯.
The right side is finite by the integrability assumptions on k and v and, by dominated convergence, tends to zero as λ Ñ ´8.

Proof of (b). Let ψ P 9 H 2 pΣ λ q X 9 W 1, 2n n´2 0 pΣ λ q fulfill the assumptions of Lemma 9. Then the odd extension of ψ, ϕpxq "

$ & % ψpxq if x P Σ λ , ´ψpx λ q if x P Σ c λ ,
belongs to 9 H 2 pR n q and is harmonic near S. Therefore, Lemma 8 and a straightforward change of variables yield ż

Σ λ ∆w∆ψ " ż R n ∆v∆ϕ " ż R n k n`4 2 gpk ´n´4 2 vqϕ " ż Σ λ ´k n`4 2 gpk ´n´4 2 vq ´k n`4 2 λ gpv λ k ´n´4 2 λ q ¯ψ " ż Σ λ V wψ `żΣ λ ´k n`4 2 gpk ´n´4 2 vq ´k n`4 2 λ gpvk ´n´4 2 λ q ¯ψ ě ż Σ λ V wψ ě ´żΣ λ V w ´ψ.
In the first inequality, we used k ě k λ on Σ λ together with the fact that the function s Þ Ñ s n`4

2 gpvs ´n´4 2 q is non-decreasing on p0, 8q for every fixed v ą 0, which follows from the inequality g 1 ptq ď n`4 n´4 gptq t in assumption [START_REF] Lieb | Analysis[END_REF]. In the second inequality, we used V ě 0 and ψ ě 0.

We can now derive the crucial technical ingredient for the moving planes method from inequality (19).

Lemma 10. Let v, g and k fulfill the assumptions of Theorem 5 and let w pλq " v ´vλ on Σ λ . Let V pλq be defined by (18). Then there is 0 ą 0, depending only on n, such that if |tw pλq ă 0u| ą 0, then ş

tw pλq ă0u
´V pλq ¯n 4 ě 0 .

Proof. We abbreviate w " w pλq and V " V pλq . We claim that the assertion follows if we can prove the following two inequalities,

`żΣ λ w 2n n´4 ´˘n´4 2n À `żΣ λ p´∆wq 2 ´˘1 2 , (21) 
`żΣ λ p´∆wq 2 ´˘1 2 À `żtwă0u V n 4 ˘4 n `żΣ λ w 2n n´4 ´˘n´4 2n , (22) 
with implied constants depending only on n. In (22), we have written p´∆wq 2

´:" pp´∆wq ´q2 . Indeed, (21) and ( 22) together yield the bound

`żΣ λ w 2n n´4 ´˘n´4 2n À `żtwă0u V n 4 ˘4 n `żΣ λ w 2n n´4 ´˘n´4 2n .
If w ´ı 0, we may divide by `şΣ λ w 2n n´4 ´˘n´4 2n ‰ 0 to deduce the bound

1 À `żtwă0u V n 4 ˘4 n ,
which concludes the proof of Lemma 10. Thus, it remains to prove inequalities (21) and ( 22).

Before proving these inequalities, let us note that the second factor on the right side of ( 22) is finite since w ě ´vλ and v λ P L 2n n´4 pΣ λ q by our assumption on v. Moreover, by Lemma 9 the first factor on the right side of ( 22) is finite and therefore it is part of the assertion of this inequality that p´∆wq ´P L 2 pΣ λ q.

For any f P L 2 pΣ λ q, we can define

ψpxq :" c n ż Σ λ `1 |x ´y| n´2 ´1 |x ´yλ | n´2 ˘f pyq, x P Σ λ , (23) 
with c n " `pn ´2q|S n´1 | ˘´1 . Then we have ψ P 9 H 2 pΣ λ q X 9 W 1, 2n n´2 0 pΣ λ q and ´∆ψ " f on Σ λ .

Notice that f ď 0 implies that ψ ď 0 on Σ λ . Moreover, formula (23) and the Hardy-Littlewood-Sobolev inequality [5, Theorem 4.3] imply the bound }ψ} L r pΣ λ q À }f } L s pΣ λ q (24)

for every pair of exponents 1 ă s ă r ă 8 related by n´2 n `1 s " 1 `1 r . We now give the proofs of the two inequalities (21) and (22).

To prove (21), for every k P N and x P Σ λ zS, set

f k pxq " ´w n`4 n´4
´pxq1 tw ´ďku pxq1 tdistpx,Sqěk ´1,|x|ďku pxq. Thus, f k is bounded and has compact support and, in particular, f k P L 2 pΣ λ q. We consider ψ k associated to f k by (23). Notice that ´∆ψ k " f k " 0 in a neighborhood of S.

We have, by dominated (or monotone) convergence,

ż Σ λ w 2n n´4 ´" lim kÑ8 ż Σ λ wf k " lim kÑ8 ż Σ λ wp´∆ψ k q.
Let us introduce a family of cutoff functions η as in (15), but now vanishing both near 0 and a. Since ψ k and w vanish on BΣ λ , integration by parts gives

ż Σ λ wp´∆pψ k η qq " ż Σ λ p´∆wqpψ k η q ď ´żΣ λ p´∆wq ´pψ k η q. ( 25 
)
Here the inequality holds simply because ψ k ď 0. As Ñ 0, the right hand side of (25) tends to ´şΣ λ p´∆wq ´ψk , by monotone convergence. Moreover, since ψ k is harmonic in a neighborhood of S, we can argue as in the proof of Lemma 8 that the left hand side of (25) tends to ş Σ λ wp´∆ψ k q as Ñ 0. We therefore have that ż

Σ λ wp´∆ψ k q ď ´żΣ λ p´∆wq ´ψk ď }p´∆wq ´}2 }ψ k } 2 À }p´∆wq ´}2 }f k } 2n n`4
.

The second inequality here is Hölder's inequality and the third one uses (24) with r " 2, s " 2n n`4 . Letting k Ñ 8, we find that ż

Σ λ w 2n n´4 ´À }p´∆wq ´}2 }w n`4 n´4 ´} 2n n`4 " }p´∆wq ´}2 }w ´} n`4 n´4 2n n´4
, which implies inequality (21) since }w ´} 2n n´4 ă 8 as we have noted before.

To prove (22), for every k P N and x P Σ λ zS, set

f k pxq " ´p´∆wq ´pxq1 tp´∆wq ´ďku 1 tdistpx,Sqěk ´1,|x|ďku .
Thus, f k is bounded and has compact support and, in particular, f k P L 2 pΣ λ q. We consider the associated ψ k as above and notice that ´∆ψ k " f k " 0 in a neighborhood of S.

We have, by monotone convergence, ż

Σ λ p´∆wq 2 ´" ´lim kÑ8 ż Σ λ ∆wf k " lim kÑ8 ż Σ λ ∆w∆ψ k .
Since ´ψk ě 0 fulfills all the assumptions of Lemma 9, by (19) we obtain

ż Σ λ ∆w∆ψ k ď ´żΣ λ V w ´ψk ď }V 1 twă0u } n 4 }w ´} 2n n´4 }ψ k } 2n n´4 À }V 1 twă0u } n 4 }w ´} 2n n´4 }f k } 2 ,
where we used Hölder's inequality followed by (24) again. Since

ż Σ λ ∆w∆ψ k " }f k } 2 2 ă 8,
we deduce that

}f k } 2 À }V 1 twă0u } n 4 }w ´} 2n n´4
for all k P N. Passing to the limit k Ñ 8, we obtain inequality (22) by monotone convergence.

We are finally in a position to prove Theorem 5.

Proof of Theorem 5. By rotation invariance we may assume that a 1 " 0 and H " tx 1 " 0u. For λ ă 0, we consider the function w pλq " v ´vλ , defined on Σ λ , and V pλq given by (18). By Lemma 9, we have ş tw pλq ă0u pV pλq q n negative. Therefore Lemma 10 implies that w pλq ě 0 on Σ λ for all λ sufficiently negative.

Therefore λ 0 " suptλ ă 0 : w pµq ě 0 for all µ ă λu, is well-defined.

We claim that either w λ 0 ą 0 a.e. on Σ λ 0 or w λ 0 " 0. Indeed, by continuity, we still have w pλ 0 q ě 0 a.e. in Σ λ 0 . Moreover, inequality (22) implies that ´∆w pλq ě 0 in Σ λ for λ ă λ 0 and, therefore, by continuity ´∆w pλ 0 q ě 0 in Σ λ 0 . (For the continuity argument, we pass to the limit in the inequality ş Σ λ w pλq p´∆qϕ ě 0 for 0 ď ϕ P C 8 0 pΣ λ q.) The claim now follows by the strong maximum principle in Σ λ 0 . After these preliminaries we now show that if λ 0 ă 0, then w pλ 0 q " 0. Later we will see that w pλ 0 q " 0 is impossible and therefore we will conclude that λ 0 " 0. We argue by contradiction and assume that λ 0 ă 0 and that w pλ 0 q ı 0. Then by the above argument w pλ 0 q ą 0 a.e. on Σ λ 0 . This strict inequality implies that the quantity

Ipλq " ż txPΣ λ : w pλq pxqă0u ˆv 2n n´4 λ `kn λ ṫends
to zero as λ OE λ 0 . Indeed, any sequence of λ's tending to λ 0 has a subsequence along which w pλq pxq Ñ w pλ 0 q pxq pointwise for a.e. x P Σ λ 0 . Since w pλ 0 q ą 0, we have that 1 tw pλq ă0u pxq Ñ 0 pointwise for a.e. x P Σ λ 0 , which is the same as 1 tvpxqąvpx λ qu Ñ 0 pointwise almost everywhere in tx 1 ă λ 0 u. Therefore,

Ipλq " ż tx 1 ăλu
1 tvpxqąvpx λ qu pxqpv 2n n´4 pxq `kn pxqq Ñ 0 by dominated convergence, in view of the integrability assumptions on v and k and the assumption λ 0 ă 0.

On the other hand, as in the proof of Lemma 9, we have ş tw pλq ă0u pV pλq q n 4 À Ipλq for all λ ă 0. This, together with Ipλq Ñ 0 as λ OE λ 0 , implies by Lemma 10 that there is a δ ą 0 such that w pλq ě 0 for all λ P pλ 0 , λ 0 `δq. This is a contradiction to the definition of λ 0 , and therefore we conclude that w pλ 0 q " 0 if λ 0 ă 0.

We now show that w pλ 0 q " 0 for λ 0 ă 0 is impossible under the assumptions of the theorem. Indeed, if v " v λ 0 and λ 0 ă 0, then, by the integrability assumption on v,

ż R n v 2n n´4 " ż x 1 ăλ 0 v 2n n´4 `żx 1 ąλ 0 v 2n n´4 " 2 ż x 1 ăλ 0 v 2n n´4 ă 8 .
This is impossible under the assumption v R L 2n n´4 pR n q. Also, if v " v λ 0 , then by [START_REF] Xu | Uniqueness theorem for the entire positive solutions of biharmonic equations in R n[END_REF] and when the integrand is positive for almost every s, then we deduce that k " k λ . To summarize, under the assumptions of the theorem it is impossible that w pλ 0 q " 0 for λ 0 ă 0. Thus, we conclude that λ 0 " 0.

The fact that λ 0 " 0 implies that vpx 1 , x 2 , ..., x n q ě vp´x 1 , x 2 , ..., x n q for all x 1 ą 0, x 2 , ..., x n P R and that v is strictly increasing in x 1 on tx 1 ă 0u. (The strictness follows from the fact that w pλq ą 0 for λ ă 0.) Considering ṽpx 1 , x 2 , ..., x n q " vp´x 1 , x 2 , ..., x n q, which solves the same equation as v due to the symmetry of k, and repeating all of the previous arguments, we derive the complementary inequality vpx 1 , x 2 , ..., x n q ď vp´x 1 , x 2 , ..., x n q for all x 1 ą 0, x 2 , ..., x n P R and the fact that v is strictly decreasing in x 1 on tx 1 ą 0u.

Hence v is strictly symmetric-decreasing with respect to tx 1 " 0u, as claimed.

ODE analysis

In this section, we prove Theorem 3 as well as Remark 2.

Recall from the introduction that by the radial symmetry of any solution u on R n zt0u of (1) proved in Theorem 1, we can define a function v on R by setting upxq " |x| ´n´4 2 vpln |x|q. Via this Emden-Fowler change of variables, equation ( 1) is equivalent to

v p4q ´Av 2 `Bv " gpvq in R (26) 
for certain constants A and B, depending on n. The only property of these constants that we will be using is that

A 2 ą 4B ą 0 and A ą 0 . (27) 
In [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF] we have classified all entire solutions (i.e., solutions defined on all of R) of equation (26) in the case gpvq " v n`4 n´4 . In the present section we extend this classification to all g satisfying the assumptions [START_REF] Lieb | Analysis[END_REF]. In a complementary way to the proof of Theorem 5, in this section we actually make no use of the upper bound gptq{t ď pn `4q{pn ´4qg 1 ptq from (5).

Our exposition here will focus on the main steps of the argument, providing details only where there is a significant difference to [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF].

3.1. Proof of Theorem 3. We will assume throughout this section that g satisfies the assumptions [START_REF] Lieb | Analysis[END_REF]

. Let us introduce

Gpvq "

ż v 0 gptq dt ´B v 2 2 . (28) 
The crucial observation is that for the proofs in [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF] only some qualitative properties of G are needed, as described in the next lemma.

Lemma 11. One has Gp0q " G 1 p0q " 0. Moreover, there is an a 0 ą 0 such that G is strictly decreasing on p0, a 0 q and strictly increasing towards 8 on pa 0 , 8q.

Proof. The first part follows directly from (28) and the fact that lim tÑ0 gptq " 0.

For the second part, we write G 1 " gpvq ´Bv " vp gpvq v ´Bq. The assumptions (5) imply that gpvq v ´B is negative for all sufficiently small v and that v Þ Ñ gpvq v is strictly increasing. Thus, there is an a 0 ą 0 such that G 1 is strictly negative on p0, a 0 q and strictly positive on pa 0 , 8q. From the assumption gptq ě ct q in (5) we obtain

Gpvq ě c q`1 v q`1 ´B 2 v 2 ´C Ñ 8 as v Ñ 8.
The following lemma concerns the asymptotic behavior of entire solutions. Its most notable consequence is that any solution to (26) which tends to 8 must blow up in finite time.

Lemma 12. Let v P C 4 pRq be a positive solution of (26) and suppose that a :" lim tÑ8 vptq P r0, 8s exists. Then either a " 0 or a " a 0 .

If one uses Lemma 11 and the inequality gptq ě ct q from (5), the proof is analogous to that of [4, Lemma 2.1], which treats the special case gpvq " v n`4 n´4 . We omit the details.

The following comparison lemma is a key technical ingredient in our argument. It is a variant of [8, Lemma 1], see also [START_REF] Buffoni | Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system[END_REF]Theorem 2.1]. The novelty here is that it is stated and proved for positive solutions, instead of bounded solutions. This difference allows to significantly shorten the proof in [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF], because boundedness of entire solutions, which was one of the main steps in [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF], need no longer be shown a priori.

For the statement of the lemma we recall the structural assumption (27), which implies that the polynomial ξ 2 ´Aξ `B has two distinct positive roots. We denote these by λ ą µ ą 0.

Lemma 13. Let v, w P C 4 pRq be positive solutions to the equation (26) with vp0q ě wp0q, v 1 p0q ě w 1 p0q, v 2 p0q ´µvp0q ě w 2 p0q ´µwp0q, v 3 p0q ´µv 1 p0q ě w 3 p0q ´µw 1 p0q.

Then v " w.

Because of its importance for us, we include a complete proof of this lemma. It follows closely that of [8, Lemma 1], but uses in addition Lemma 12.

Proof. Let v and w satisfy the assumptions of the lemma and suppose, by contradiction, that v ı w. Then by uniqueness of ODE solutions and by our hypotheses on the initial conditions, there is k P t0, 1, 2, 3u such that v pkq p0q ą w pkq p0q and v plq p0q " w plq p0q for all 0 ď l ă k. Therefore, in any case,

v ą w on p0, σq (29) 
for some sufficiently small σ ą 0.

We define the auxiliary functions φptq :" v 2 ptq ´µvptq and ψptq :" w 2 ptq ´µwptq.

Then by the hypotheses, we have pφ ´ψqp0q ě 0 and pφ ´ψq 1 p0q ě 0.

From equation (26) and by the definition of λ and µ, we have pφ ´ψq 2 ptq ´λpφ ´ψqptq " gpvptqq ´gpwptqq for all t P R. Because of (29) and the fact that g is strictly increasing on p0, 8q, this implies that pφ ´ψq 2 ptq ´µpφ ´ψqptq ą 0 for all t P p0, σq.

The inequalities (30) and (31) easily imply that pφ ´ψqptq ě 0 for t P p0, σq, or equivalently, that pv ´wq 2 ptq ě λpv ´wqptq for all t P p0, σq.

Since pv ´wq 1 p0q ě 0 by the hypotheses of the lemma, we see from (32) and (29) that pv ´wq 1 ptq ą 0 for all t P p0, σq. Hence v ´w is strictly increasing on p0, σq and, since σ ą 0 was arbitrary with the property (29), we infer that v ´w remains strictly positive for all times.

Repeating the above arguments for the interval p0, 8q instead of p0, σq, we see from (32) and (29) that pv´wq 1 is positive and strictly increasing on p0, 8q. Thus lim tÑ8 pv´ wqptq " 8. Since w is positive, this implies, in particular, that lim tÑ8 vptq " 8. This contradicts Lemma 12, and we have therefore proved that v " w.

From Lemma 13 we can deduce a remarkable rigidity property, namely that positive entire solutions to (26) are determined by only two (instead of four!) initial values. A simple consequence of this is that positive solutions of (26) are symmetric with respect to local extrema.

Corollary 14.

(i) Let v, w P C 4 pRq be positive solutions of (26) with vp0q " wp0q and v 1 p0q " w 1 p0q. Then v " w.

(ii) Suppose that v P C 4 pRq is a positive solution of (26) with v 1 pt 0 q " 0 for some t 0 P R. Then v is symmetric with respect to t 0 , i.e. vpt 0 `tq " vpt 0 ´tq for all t P R.

We point out once more that we only assume positivity of v in Corollary 14, whereas in [3, Corollary 5] we assumed boundedness of v.

Proof of Corollary 14. To prove piq, we observe that up to exchanging v and w, we may assume v 2 p0q ě w 2 p0q. Furthermore, up to replacing vptq and wptq by vp´tq and wp´tq (which still solve (26)), we may assume v 3 p0q ě w 3 p0q. Then all assumptions of Lemma 13 are satisfied and we conclude v " w.

To prove piiq, we simply apply piq to v and wptq " vpt 0 ´tq, which also solves (26).

We now prove a variant of Lemma 13 where one of the functions is constant.

Lemma 15. Let v P C 4 pRq be a positive solution of (26) and assume that either vp0q ě a 0 , v 1 p0q " 0, v 2 p0q ě 0, v 3 p0q " 0 or vp0q ď a 0 , v 1 p0q " 0, v 2 p0q ď 0, v 3 p0q " 0 .

Then v " a 0 .

Proof. Proof under the first set of assumptions. Suppose, by contradiction, that v ı a 0 . Then by uniqueness of ODE solutions, either vp0q ą a 0 or v 2 p0q ą 0. Moreover, from the equation, we have v p4q ptq " Av 2 ptq ``gpvptqq ´Bvptq ˘.

Observing that gpvq ´Bv ą 0 for v P pa 0 , 8q, we deduce that in both cases (vp0q ą a 0 or v 2 p0q ą 0) we have v p4q ą 0 on p0, σq for some sufficiently small σ ą 0.

Together with the initial conditions, this implies that v pkq is strictly increasing on p0, σq for k " 0, 1, 2, 3. Since σ ą 0 was arbitrary with the property that the right side of (33) is positive, we infer, in particular, that v 1 is positive and strictly increasing on p0, 8q. Thus lim tÑ8 vptq " 8. This contradicts Lemma 12, and we have therefore proved that v " a 0 .

Proof under the second set of assumptions. Suppose, by contradiction, that v ı a 0 . Then by uniqueness of ODE solutions, either vp0q ă a 0 or v 2 p0q ă 0.

Observing that gpvq ´Bv ă 0 for v P p0, a 0 q, we deduce from (33) that in both cases (vp0q ă a 0 or v 2 p0q ă 0) we have v p4q ă 0 on p0, σq for some sufficiently small σ ą 0.

Together with the initial conditions, this implies that v pkq is strictly decreasing on p0, σq for k " 0, 1, 2, 3. Since σ ą 0 was arbitrary with the property that the right side of (33) is negative, we infer, in particular, that v 1 is negative and strictly decreasing as long as v ą 0. Therefore, we must have vpt 0 q " 0 with v 1 pt 0 q ă 0 for some finite t 0 ă 8. This contradicts the positivity of v and we have therefore proved that v " a 0 .

At last, we give the main ideas for the proofs of Theorems 3 and 4 using the ingredients introduced so far.

Proof sketch of Theorem 3. By arguments detailed in [3, Proof of Proposition 3], we can deduce from Lemmas 12 and 13 that every positive solution v P C 4 pRq is either constant equal to a 0 , homoclinic to zero or periodic with unique local maximum and minimum per period.

We can now prove piq. The existence and uniqueness of a 0 with the claimed properties is contained in Lemma 11. Next, let v P C 4 pRq be a positive solution with min R v ě a 0 . Suppose without loss that vp0q " min R v. Then v 1 p0q " 0, v 2 p0q ě 0 and, by Corollary 14, v is symmetric, so v 3 p0q " 0. Thus, Lemma 15 implies v " a 0 . This completes the proof of piq.

The existence part of assertion piiq can be proved via the shooting method, identically to [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF]. We invite the reader to check that by the properties of G stated in Lemma 13, all of the argument carries over to the more general case considered here. For the uniqueness part of assertion piiq we use the fact mentioned above that any solution v with inf R v " a ą 0 is either constant or periodic (since it cannot be homoclinic to zero). In particular, inf R v is attained. Therefore the uniqueness follows from the first part of Corollary 14. The stated periodicity and monotonicity properties follow from the second part of Corollary 14.

Finally, we prove piiiq. We obtain the existence of a homoclinic solution simply as a limit of periodic solutions. Indeed, if we denote by v a the periodic solutions obtained in piiq with the normalization v a p0q " max v a and by L a their period length, then v a is symmetric-decreasing on p´L a 2 , La 2 q. Using L a Ñ 8 as a Ñ 0, it is not difficult to prove that v a converges to a non-trivial limit function which must be the homoclinic solution. See Subsection 3.2 for details.

Next, we prove the uniqueness claim in piiiq. We first note that if v is a positive solution with inf R v " 0, then v is homoclinic to zero. This follows from the fact mentioned above, since if v periodic or constant, it cannot be positive and have inf R v " 0. Now let v and w be two positive solutions in C 4 pRq with the property that v 1 p0q " w 1 p0q " 0 and lim |t|Ñ8 vptq " lim |t|Ñ8 wptq " 0. We argue by contradiction and assume v ı w. Then, by the first part of Corollary 14, we may assume that vp0q ą wp0q. By comparison arguments detailed in [START_REF] Frank | Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent[END_REF]Lemma 9], this enforces that vptq ą wptq for all t P R.

We can now derive the desired contradiction. For every R ą 0, we have, using integration by parts and the fact that v and w satisfy (26),

0 " ż R ´R wpv p4q ´Av 2 `Bv ´gpvqq " bpRq `ż R ´R vpw p4q ´Aw 2 `Bw ´gpwqq `ż R ´R wvp gpwq w ´gpvq v q " bpRq `ż R ´R wvp gpwq w ´gpvq v q .
Here, bpRq contains all the boundary terms coming from the integrations by part. As in [8, Lemma 4] one shows that bpRq Ñ 0 as R Ñ 8. But since the function t Þ Ñ gptq t is strictly increasing on p0, 8q and since v ą w, we find that ş R ´R wvp gpwq w ´gpvq v q is a negative and strictly decreasing function of R. Thus we obtain a contradiction by choosing R large enough.

Finally, the claimed decay behavior can be proved by relatively standard comparison arguments, again relying on the factorization structure of equation (26). See Subsection 3.3 for details. This concludes the proof of Theorem 3.

Proof of Remark 2. The inequality Bu

B|x| ă 0 is equivalent to the bound v 1 ă n´4 2 v. Similarly as in the proof of Lemma 13 we introduce µ and λ and φptq :" v 2 ptq ´µvptq , which satisfies

φ 2 ´λφ " gpvq . (34) 
(We emphasize that here µ " pn ´4q 2 {4, which is potentially different from the use of µ in Theorem 3.) Since gpvq ą 0, it follows from the maximum principle that φ ă 0 on R. Indeed, by Theorem 3 we know that v is either constant, periodic or homoclinic to zero. In the first two cases the maximum principle can be clearly applied. In the third case it can be applied since lim |t|Ñ8 φptq " 0, as we already argued in the proof of Theorem 3.

The function w :" v 1 {v satisfies

w 1 " ´w2 `µ `φ v . (35) 
Since φ ă 0 and v ą 0, we have

w 1 ă ´w2 `µ (36) 
In particular, w 1 ptq ă 0 whenever |wptq| ě ? µ. This implies that the set tw ě ? µu is either empty, or equal to R or of the form p´8, T s for some T P R. We will rule out the last two possibilities and conclude that w ă ? µ, as claimed.

We make again use of the classification result from Theorem 3. When v is constant or periodic, there is a two-sided sequence pt n q nPZ with t n Ñ ˘8 as n Ñ ˘8 such that v 1 pt n q " 0 for all n. This implies wpt n q " 0 and therefore the set in question can neither be of the form R nor of the form p´8, T s for T P R.

Now assume that v is homoclinic to zero. Then there is a t 0 P R such that v 1 pt 0 q " 0 and therefore the set cannot be of the form R. Now suppose that there is a T P R such that wptq ě ? µ for all t ď T . By (36), w 1 ă 0 on p´8, T s. Therefore there is an ą 0 such that wptq ě ? µ ` for all t ď T ´1 ": T 1 . Thus, µ ď pµ{pµ ` qqwptq 2 and so (36) implies w 1 ă ´p {pµ ` qqw 2 on p´8, T 1 q and therefore by integration, 1 wpT 1 q ´1 wptq ą µ ` pT 1 ´tq for all t ă T 1 .

Since wptq ą 0, this is a contradiction for t sufficiently negative. This completes the proof.

3.2. Existence of a homoclinic solution. In this subsection we provide the details in the existence part of piiiq in Theorem 3. As already explained, we shall construct a homoclinic solution to (26) as a limit of periodic solutions v a with a OE 0.

The family pv a q aPp0,a 0 q of periodic solutions and their associated minimal period lengths pL a q aPp0,a 0 q were introduced before the statement of Theorem 4. We recall that v a p0q " max R v a , that v a p˘L a 2 q " min R v a " a and that v a is strictly symmetric-decreasing on p´L a 2 , La 2 q. The following lemma is fundamental for our construction.

Lemma 16. Let a n OE 0 and consider v n " v an with associated minimal period length L n " L an . Then there is v 8 P C 4 pRq such that, up to extracting a subsequence, we have v 0 Ñ v 8 in C 4 pKq for every compact K Ă R. Moreover, v 8 p0q ě a 0 and, in particular, v 8 ı 0.

Proof. Fix R ą 0 and consider the compact interval r´R, Rs. We shall prove that 

We can now prove the desired existence result.

Lemma 18. There is a positive solution v 0 P C 4 pRq of (26) with lim |t|Ñ8 v 0 ptq " 0.

Proof. By Lemma 16, there is a nonnegative solution v 0 P C 4 pRq of (26) such that v n Ñ v 0 in C 4 pKq for every compact K Ă R. Since v n is symmetric-decreasing on r´L n 2 , Ln 2 s, and since L n Ñ 8 by Lemma 17, v 0 is symmetric-decreasing on all of R and therefore lim tÑ8 v 0 ptq exists. By Lemma 12, this limit equals either 0 or a 0 and it remains to exclude the second case. Thus, suppose that lim tÑ8 v 0 ptq " a 0 . We can derive a contradiction using the energy E v introduced in the proof of Lemma 16. Using the fact that all derivatives of v 0 vanish at 8 by [8, Lemma 4] (note that v 0 is monotone as required for this lemma), we have

E v 0 " lim tÑ8 E v 0 ptq " Gpa 0 q ă 0 . ( 38 
)
On the other hand, we have for each n, E vn " E vn p La n 2 q " v 2 n p La n 2 q 2 2 `Gpv n p La n 2 qq " v 2 n p La n 2 q 2 2 `Gpa n q ě Gpa n q .

Thus, since v n Ñ v 0 in C 4 pKq for any compact K implies E vn Ñ E v 0 as n Ñ 8 and since Gpa n q Ñ Gp0q " 0 as n Ñ 8, we have

E v8 " lim nÑ8 E vn ě lim nÑ8
Gpa n q " 0 , contradicting (38). This contradiction shows that lim tÑ8 v 0 ptq " 0. By the symmetry of v 0 , we also obtain lim tÑ´8 v 0 ptq " 0 and the proof is complete.

3.3. Decay behavior of the homoclinic solution. We prove the following decay behavior of the homoclinic solution of (26). We recall that we assume 0 ď β " lim sÑ0 gpsq s ă B and set µ " 1 2 pA ´aA 2 ´4pB ´βqq.

Lemma 19. Let v P C 4 pRq be a positive solution of (26) with lim |t|Ñ8 vptq " 0. Then for every ą 0 there is a C ă 8 such that vptq ď C e ´p?

µ´ q|t| for all t P R.

The proof of this bound relies on a comparison argument using the following fourthorder variant of the maximum principle. for some λ, µ ą 0 and T P R and that wpT q " w 2 pT q " lim tÑ8 wptq " lim tÑ8 w 2 ptq " 0. Then w ě 0 on pT, 8q.

  Lemmas 3.1 and 3.2]. Lemma 7. We have k n`4 2 gpk ´n´4 2 vq P L 1 loc pR n q and k n`4 2 gpk ´n´4 2 vq P L 2n n`4 pΩq for every Ω which is a positive distance away from S.

´n´4 2 and

 2 s " vpxqk λ pxq

  ´n´4

2

 2 

  sup nPN sup tPr´R,Rs `|v n ptq| `|v 2 n ptq| ˘ă 8.

Lemma 20 .d 2 dt 2 ´λqp d 2 dt 2

 2022 Suppose that w P C 4 pRq satisfies the inequality p ´µqwptq ě 0 on pT, 8q

  Then the set Ω ˚`z is bounded and a positive distance away from 0. By a change of variables, we have ż

									ż	ż
		Ω	u	z 2n n´4 pxq dx "	Ω ˚u 2n n´4 px `zq dx "	Ω ˚`z	u	2n n´4 ă 8	(12)
		2n						
	since u P L	n´4 loc pR n zt0uq by Sobolev embedding.
	Let us now turn to the second derivative. As in [9, Proof of Lemma 3.6], using Kelvin's
	transformation rule			
					∆ `|x| 2´n up	x |x| 2 q ˘" |x| ´n´2 p∆uqp	x |x| 2 q,
	we have by the product rule for Sobolev functions that ∆u z exists weakly in R n zt0, ´z˚u
	and is given by						
	∆u z pxq " ∆ `|x| 2 |x| 2´n up	|x| 2 `zq x "
	2n|x| 2´n up	x |x| 2 `zq `4x	¨∇´|	x| 2´n up	x |x| 2 `zq ¯`|x| ´n∆up	x |x| 2 `zq
	" ´2pn ´4q|x| 2´n up	x |x| 2 `zq `4|x| 2´n x	¨∇`u p	x |x| 2 `zq ˘`|x| ´n∆up	x |x| 2 `zq.

Indeed, if (37) holds, then by equation (26), v p4q n " Av 2 n ´Bv n `gpv n q is also bounded on r´R, Rs and so are v 1 n ptq " ş t 0 v 2 n psq ds and v 3 n ptq " ş t 0 v p4q n psq ds. By Arzelà-Ascoli, up to a subsequence, we thus have v n Ñ v 8 in C 3 pr´R, Rsq and, by using the equation again, in C 4 pr´R, Rsq. Since R ą 0 was arbitrary, we conclude by a diagonal argument.

To prove (37), we consider the energy To do so, we claim that v 2 n p La n 2 q ď b{A, where b :" max vPr0,8q pBv ´gpvqq. (We recall from the proof of Lemma 11 that 0 ă b ă 8.) Indeed, if this bound on v 2 n p La 2 q was not true, the initial conditions and the equation v p4q

n " Av 2 n ´Bv n `gpv n q would imply that v p4q n is positive, and v 2 n is increasing for all times. However, this is impossible because v n is periodic. Thus, since v n p La n 2 q " a n P p0, a 0 q and therefore Gpv n p La n 2 qq ă 0, we have

2A 2 for all n P N. This finishes the proof of (37).

Lastly, we prove that v 8 p0q ě a 0 . We first note that the inequality v a p0q ą a 0 follows from Lemma 15, similarly as in the proof of piq in Theorem 3. Letting a Ñ 0, we find v 8 p0q ě a 0 .

The second observation that we need is that the period length diverges as the minimum value approaches 0.

Lemma 17. As a Ñ 0, L a Ñ 8.

Proof. Suppose that there is a sequence a n OE 0 and L 8 ă 8 such that L n :" L an Ñ L 8 . Then by Lemma 16, up to a subsequence, there is a nonnegative v 8 P C 4 pRq which solves (26) such that v n :" v an Ñ v 8 in C 4 pr´L 8 , L 8 sq. Moreover, we have v 8 p L8 2 q " lim nÑ8 v n p Ln 2 q " lim nÑ8 a n " 0 and v 1 8 p L8 2 q " lim nÑ8 v 1 n p Ln 2 q " 0. From Lemma 13, we deduce that v 8 " 0, in contradiction to Lemma 16.

Proof. The inequality for w factorizes into the system

By assumption, we have upT q " 0 and lim tÑ8 uptq " 0. By the maximum principle applied to the inequality u 2 ´µu ě 0, we thus deduce that w 2 ´λw " u ď 0.

By assumption, we have wpT q " 0 and lim tÑ8 wptq " 0. Applying the maximum principle a second time, we deduce w ě 0, as desired.

Proof of Lemma 19. We first observe that the limit behavior of g and g 1 at 0 given by ( 5), together with the mean value theorem easily imply that lim vÑ0 gpvq v exists and is equal to β " lim vÑ0 g 1 pvq. Therefore, we may write gpvq " βv `hpvq with lim vÑ0 hpvq v " 0 and think of equation ( 26) as v p4q ´Av 2 `pB ´βqv " hpvq.

(39)

Fix some ą 0 such that B ´β ´ ą 0 and T such that hpvptqq vptq ď for all t ą T . Since v ą 0, equation (39) implies v p4q ´Av 2 `pB ´β ´ qv ď 0 on pT , 8q.

Since by our choice of , the condition A 2 ą 4pB ´β ´ q ą 0 is still satisfied, the expression on the left hand side factorizes as

dt 2 ´µ qvptq ď 0 on pT , 8q, with some λ ą µ ą 0.

We compare v with a solution f of

dt 2 ´µ qf " 0. and which tends to zero as t Ñ 8. The general solution of this problem is given by f ptq " a e ´?λ t `b e ´?µ t , a , b P R .

We may fix a and b such that f pT q " vpT q and f 2 pT q " v 2 pT q .

(This is always possible as a consequence of λ ‰ µ ). Since moreover, lim tÑ8 v 2 ptq " 0 by [8, Lemma 4], the function w :" f ´v fulfills all assumptions from Lemma 20. We therefore deduce that w ě 0, i.e., v ď f " Ope ´?µ t q as t Ñ 8. Analogously, one obtains v " Ope ? µ t q as t Ñ ´8. Since µ Ñ µ as Ñ 0, we obtain the claimed bound.

Lemma 21. Let v P C 4 pRq be a positive solution of (26) with lim |t|Ñ8 vptq " 0 and assume that g satisfies the additional assumption [START_REF] Terracini | Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions[END_REF] Using this formula and (42) with ą 0 chosen so small that rp ? µ ´ q ą ? µ it is easy to deduce that lim where the right side is finite. Moreover, if h ě 0, then the limit is positive. (Note that [START_REF] Lieb | Analysis[END_REF] implies that hpvq{v ă h 1 pvq for all v ą 0 and therefore h is non-zero.)