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Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent

For n ě 5, we consider positive solutions u of the biharmonic equation

with a non-removable singularity at the origin. We show that |x| n´4 2 u is a periodic function of ln |x| and we classify all periodic functions obtained in this way. This result is relevant for the description of the asymptotic behavior of local solutions near singularities and for the Q-curvature problem in conformal geometry.

Introduction and main results

In this paper we are interested in positive solutions u of the equation

∆ 2 u " u n`4 n´4 in R n zt0u (1) 
for n ě 5. As we will explain later in more detail, this equation serves on one hand as a model problem for higher order equations with critical non-linearity and on the other hand has a concrete meaning in the Q-curvature problem in conformal geometry.

It is well-known that the absence of the maximum principle for equations involving the bi-Laplacian poses great challenges both on a conceptual and on a technical level. Nevertheless we will succeed here in proving a classification result for positive solutions of (1) which is completely analogous to its second order counterpart.

We will work throughout with classical solutions of (1), that is, u P C 4 pR n zt0uq. Because of the regularity theory in [START_REF] Uhlenbeck | Regularity of weak solutions to critical exponent variational equations[END_REF] (which extends that in [START_REF] Sun- | Regularity of a fourth order nonlinear PDE with critical exponent[END_REF] to n ě 5) this is not a restriction.
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In a fundamental work [START_REF] Lin | A classification of solutions of a conformally invariant fourth order equation in R n[END_REF] Lin has shown that all solutions u with a removable singularity at the origin (so that [START_REF] Amick | Homoclinic orbits in the dynamic phase-space analogy of an elastic strut[END_REF] holds in all of R n ) are given by

upxq " c n ˆλ 1 `λ2 |x ´x0 | 2 ˙n´4 2 , c n " `pn ´4qpn ´2qnpn `2q ˘n´4 8 , (2) 
for some λ ą 0 and x 0 P R n . Solutions of the closely related equation ∆ 2 u " |u| These optimizers were classified in [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] in an equivalent dual formulation and are again given by constant multiples of the functions in [START_REF] Baraket | Construction of dipole type singular solutions for a biharmonic equation with critical Sobolev exponent[END_REF]. For a classification of positive solutions with removable singularities of the four-dimensional analogue of (1) we refer to [START_REF] Sun-Yung | On uniqueness of solutions of nth order differential equations in conformal geometry[END_REF][START_REF] Lin | A classification of solutions of a conformally invariant fourth order equation in R n[END_REF] and for the higher order case to [START_REF] Wei | Classification of solutions of higher order conformally invariant equations[END_REF][START_REF] Martinazzi | Classification of solutions to the higher order Liouville's equation on R 2m[END_REF].

In this paper we will be concerned with solutions u of (1) with non-removable singularities. It was also shown by Lin [START_REF] Lin | A classification of solutions of a conformally invariant fourth order equation in R n[END_REF] that such solutions are necessarily radial. We pass to logarithmic coordinates (in this context also known as Emden-Fowler coordinates) and write upxq " |x| ´n´4 2 vpln |x|q .

By a short computation we find that equation [START_REF] Amick | Homoclinic orbits in the dynamic phase-space analogy of an elastic strut[END_REF] for u is equivalent to the following ordinary differential equation for v, v p4q ´npn ´4q `8 2 v 2 `n2 pn ´4q 2 16 v ´|v|

8 n´4 v " 0 in R . (3) 
Note that positive solutions u of (1) correspond to positive solutions v of (3) and so

|v| 8 n´4 v " v n`4
n´4 . For some of our results, however, we also need to consider not necessarily positive functions v and for such functions (3) is the relevant extension. We set

a 0 " ˆnpn ´4q 4 ˙n´4 4 .
Our first main result classifies all positive periodic solutions of (3) and describes their shape.

Theorem 1. (i) Let v P C 4 pRq be a solution of (3). Then inf R |v| ď a 0 , with equality if and only if v is a non-zero constant.

(ii) Let a P p0, a 0 q. Then there is a unique (up to translations) bounded solution v P C 4 pRq of (3) with minimal value a. This solution is periodic, has a unique local maximum and minimum per period and is symmetric with respect to its local extrema.

To state our second main result, we denote by v a the unique solution to (3) obtained from Theorem 1 by requiring that v a p0q " min R v a " a. Also, denote by L a the minimal period of v a . For the constant solution v a 0 " a 0 , we set L a 0 " 0.

The following theorem provides a classification of positive solutions u of (1) with nonremovable singularities in terms of a two-parameter family.

Theorem 2. Let u P C 4 pR n zt0uq be a positive solution of (1) whose singularity at the origin is non-removable. Then there are a P p0, a 0 s and L P r0, L a s such that

upxq " |x| ´n´4 2 v a plog |x| `Lq ,
where v a is the solution of (3) introduced after Theorem 1. Moreover, Bu B|x| ă 0 for all x P R n zt0u.

This theorem answers an open question raised in [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] and shows, in particular, that the positivity of the scalar curvature in their conjecture is not necessary.

It is easy to see that as a Ñ 0 one has L a Ñ 8 and v a pt `La {2q Ñ c n p2 cosh tq

´n´4 2 .
Undoing the logarithmic change of variables we therefore recover the non-singular solution (2) in the limit a Ñ 0.

We believe that Theorems 1 and 2 will have several applications. Firstly, it should be a key step in describing the asymptotic behavior near the origin of positive solutions u of ∆ 2 u " u n`4 n´4 in a punctured ball t0 ă |x| ă ρu. This would be the fourth order analogue of a celebrated result of Caffarelli-Gidas-Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]; see also [START_REF] Korevaar | Refined asymptotics for constant scalar curvature metrics with isolated singularities[END_REF]. Secondly, we believe that our theorems will prove useful in the construction of constant Q-curvature metrics with isolated singularities in the spirit of the classical works [START_REF] Schoen | The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation[END_REF][START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF] for the scalar curvature; see [START_REF] Baraket | Construction of dipole type singular solutions for a biharmonic equation with critical Sobolev exponent[END_REF][START_REF] Guo | Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation[END_REF] for results in this direction in the fourth order case. For an introduction to the Q-curvature problem see, for instance, [START_REF] Hang | Lectures on the fourth-order Q curvature equation[END_REF].

We end this introduction by comparing the statement and proof of Theorems 1 and 2 with their second order counterpart, which concerns positive solutions u of

´∆u " u n`2 n´2 in R n zt0u (4) 
for n ě 3. A famous result of Caffarelli-Gidas-Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF] says that if this equation is valid on all of R n , then

upxq " c 1 n ˆλ 1 `λ2 |x ´x0 | 2 ˙n´2 2 , c 1 n " `npn ´2q ˘n´2 4 ,
for some λ ą 0 and x 0 P R n . Moreover, they show that if u is a positive solution of (4) with a non-removable singularity, then u is radial. Using this information, Schoen [START_REF] Schoen | Variational theory for the total scalar curvature functional for Riemannian metrics and related topics[END_REF] observed that all solutions can be classified by standard phase-plane analysis. Indeed, setting upxq " |x| and by periodic solutions uniquely parametrized, up to translations, by their minimal value in p0, p n´2 2 q n´2 2 q. Moreover, these periodic solutions have a unique local maximum and minimum per period and are symmetric with respect to their local extrema. Thus, our Theorems 1 and 2 provide exactly the same conclusions as in the second order case. Their proof, however, is considerably more difficult, because the phase 'plane' in the fourth order case is four-dimensional. Moreover, solutions to fourth order equations show, in general, a much richer and typically more erratic behavior than solutions to second order equations; see, e.g., the introduction of the textbook [START_REF] Peletier | Spatial patterns, volume 45 of Progress in Nonlinear Differential Equations and their Applications[END_REF] for examples. To emphasize the structure of our equation we abbreviate

A " npn ´4q `8 2 , B " n 2 pn ´4q 2 16 , p " n `4 n ´4 , (5) 
and

f pvq " |v| p´1 v ´Bv (6) 
and rewrite (3) as

v p4q ´Av 2 ´f pvq " 0 in R . (7) 
Of fundamental importance for us is that the coefficients A and B in (3) satisfy the inequalities

A ą 0 and 4B ă A 2 . ( 8 
)
These inequalities guarantee that the characteristic equation ξ 4 ´Aξ 2 `B " 0 associated to the linearization of ( 7) around the zero solution has four distinct, real solutions. The picture that has emerged from the analysis of fourth order equations is that under this structural assumption the solution sets is better behaved than that of general fourth order equations and resembles in some sense the solution set of second order equations; see, e.g., [START_REF] Peletier | Spatial patterns, volume 45 of Progress in Nonlinear Differential Equations and their Applications[END_REF][START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF][START_REF] Buffoni | Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system[END_REF]. The reason is that certain techniques are available which are reminiscent of the maximum principle. Technically, this better, 'second-order'-like behavior can be proved for bounded solutions of the equation and for such solutions there are certain substitutes for two-dimensional phase plane arguments (see, in particular, Propositions 4 and 6). Parts of our analysis will rely on results of van den Berg [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF] for bounded solutions, which in turn rely on results of Buffoni-Champneys-Toland [START_REF] Buffoni | Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system[END_REF]. Our crucial new ingredient, however, which does not appear in these works, is that global solutions are necessarily bounded (Lemma 11). We emphasize that boundedness is a non-local property and breaks the local character of the ODE analysis.

Most of our results (except for the explicit expression of the homoclinic solution) hold, mutatis mutandis, for any equation of the form [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] with f given by ( 6), where p ą 1 is arbitrary and A and B are arbitrary subject to [START_REF] Guo | Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation[END_REF].
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Classification of global ODE solutions

In this section we will classify all solutions v of ( 7) which are defined on all of R. Positivity will not play a role here.

We begin with some preliminary remarks, which we will use several times below. The function v Þ Ñ f pvq in (6) has exactly three zeros, namely, at 0 and at ˘B 1 p´1 " ˘a0 . These correspond to exactly three constant solutions. Moreover, if vptq is a solution to [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF], then so are the functions • vp´tq (because (7) contains only even-order derivatives),

• ´vptq (because f is odd) and

• vpt `T q for any T P R (because ( 7) is autonomous).

We now state the main result of this section. Proposition 3. Let v P C 4 pRq be a solution of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF]. Then one of the following three alternatives holds:

(a) v " ˘B 1 p´1 , or v " 0, (b) vptq " ˘cn p2 coshpt ´T qq ´n´4 2
for some T P R with c n from (2), (c) v is periodic, has a unique local maximum and minimum per period and is symmetric with respect to its local extrema.

For the proof of this proposition we will need two results, taken from [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF], which quantify the intuition that the set of bounded solutions to the fourth order equation [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] behaves in some respects similar as the set of solutions of a second order equation. As we pointed out in the introduction, for this it is crucial that the relation 4B ă A 2 is satisfied. The first result is that every bounded entire solution v is uniquely determined by only two (instead of four) initial values.

Proposition 4 (Theorem 1 in [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]). Let v, w P C 4 pRq be bounded solutions of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] and suppose that vp0q " wp0q and v 1 p0q " w 1 p0q. Then v " w.

Since this result is of crucial importance for us, we give a (slightly more direct) proof with our notation in an appendix. Proposition 4 has the following consequence.

Corollary 5. Let v P C 4 pRq be a bounded solution of (7).

(i) Suppose that v 1 pt 0 q " 0 for some t 0 P R. Then v is symmetric with respect to t 0 , i.e., for all t P R, vpt 0 `tq " vpt 0 ´tq.

(ii) Suppose that vpt 0 q " 0 for some t 0 P R. Then v is antisymmetric with respect to t 0 , i.e., for all t P R, vpt 0 ´tq " ´vpt 0 `tq.

Proof. piq Since equation ( 7) is autonomous, we may assume t 0 " 0. Moreover, if v is a solution, then so is wptq :" vp´tq. Thus vp0q " wp0q and, by assumption, v 1 p0q " w 1 p0q " 0. Proposition 4 gives v " w.

piiq Again, we may assume t 0 " 0. Moreover, if v solves [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF], then so does wptq :" ´vp´tq. Since vp0q " wp0q and v 1 p0q " w 1 p0q, we conclude by Proposition 4 that v " w.

In order to state the second result from [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF] that we need, we introduce

F pvq " ż v 0 f psq ds " |v| p`1 p `1 ´B 2 v 2
as well as the following quantity, also referred to as the energy,

E v ptq " ´v3 ptqv 1 ptq `1 2 `v2 ptq ˘2 `A 2 `v1 ptq ˘2 `F pvptqq .
Using equation ( 7) one easily finds that for every solution v of ( 7)

d dt E v ptq " 0 ,
that is, the energy is conserved. We emphasize that this conservation is a local property and valid on the maximal interval of existence and does not require any a-priori boundedness assumptions like Proposition 4 and the following Proposition 6 and Lemma 7.

The second result says that, as in the second order case, the energy is a parameter which orders bounded solutions in the pv, v 1 q-phase plane.

Proposition 6 (Theorem 2 in [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]). Let v, w P C 4 pRq be bounded solutions of (7) with vp0q " wp0q and either v 1 p0q ą w 1 p0q ě 0 or v 1 p0q ă w 1 p0q ď 0. Then E v ą E w .

For the proof we refer to [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]. The assumption there is satisfied since 4B ă A 2 . (Note that no a-priori bound on the solutions is necessary for our f .)

Next, we state two lemmas concerning the asymptotic behavior of solutions at infinity.

Lemma 7 (Lemma 4 in [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]). Let v P C 4 pRq be a bounded solution of (7 v pkq ptq " 0 for k " 1, 2, 3 .

The following lemma from [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] shows that equation ( 7) does not have a solution which tends to either plus or minus infinity at infinity, that is, solutions that blow up do so in finite time.

Lemma 8 (Lemma 2.1 in [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF]). Let v P C 4 pRq be a solution of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF]. If a `:" lim tÑ8 vptq P R Y t˘8u exists, then a `P R. Similarly, if a ´:" lim tÑ´8 vptq P R Y t˘8u exists, then a ´P R.

This lemma is proved in [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] for positive solutions. An inspection of the proof shows, however, that this positivity is not needed.

We now use the above results to show uniqueness, up to translations, of the positive homoclinic solution. A similar result for p " 2 appears in [START_REF] Amick | Homoclinic orbits in the dynamic phase-space analogy of an elastic strut[END_REF] with a different proof.

Lemma 9. Let v, w P C 4 pRq be positive solutions of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] with lim |t|Ñ8 vptq " lim |t|Ñ8 wptq " 0 and v 1 p0q " w 1 p0q " 0. Then v " w.

Proof. Let us first prove that 0 is the only zero of v 1 and w 1 . Indeed, if v 1 had another zero at, say, t 0 ą 0, then by repeated application of Corollary 5 (note that by assumption, v is bounded) we deduce that v must be periodic of period 2t 0 . In particular 0 ă vp0q " vp2kt 0 q for all k P N, which contradicts the assumption that vptq Ñ 0 as t Ñ 8. The argument for w is analogous. Hence we must have v 1 ptq ă 0 and w 1 ptq ă 0 for all t ą 0 .

Next, by Lemma 7 and by energy conservation,

E v " lim tÑ8 E v ptq " F p0q " 0 and E w " lim tÑ8 E w ptq " F p0q " 0 . (10) 
If vp0q " wp0q, we are done by Proposition 4.

To complete the proof, let us suppose for contradiction that vp0q ą wp0q. We claim that this implies that v ą w everywhere. Indeed, otherwise there is t 0 ą 0 such that v ą w on r0, t 0 q and vpt 0 q " wpt 0 q. Then by [START_REF] Hang | Lectures on the fourth-order Q curvature equation[END_REF] we infer that v 1 pt 0 q ď w 1 pt 0 q ă 0. If v 1 pt 0 q " w 1 pt 0 q, then Proposition 4 implies v " w, contradicting vp0q ą wp0q. If v 1 pt 0 q ă w 1 pt 0 q ă 0, then Proposition 6 implies E v ą E w , which contradicts [START_REF] Korevaar | Refined asymptotics for constant scalar curvature metrics with isolated singularities[END_REF]. Hence v ą w everywhere.

We can now derive the desired contradiction. For every R ą 0, we have, using integration by parts and the fact that v and w satisfy (7),

0 " ż R ´R wpv p4q ´Av 2 ´f pvqq " bpRq `ż R ´R vpw p4q ´Aw 2 ´f pwqq `ż R ´R wvpw p´1 ´vp´1 q " bpRq `ż R ´R wvpw p´1 ´vp´1 q .
Here, bpRq contains all the boundary terms coming from the integrations by part. By Lemma 7 we have bpRq Ñ 0 as R Ñ 8. But since ş R ´R wvpw p´1 ´vp´1 q is a negative and strictly decreasing function of R, we obtain a contradiction by choosing R large enough.

For the concrete values of A, B and p in (5) one can compute the homoclinic solution explicitly. We emphasize that this is the only place in the proof of Proposition 3 where the precise form of A, B and p enters.

Corollary 10. Suppose that v is a positive solution of (3) with lim |t|Ñ8 vptq " 0. Then there is T P R such that vptq " c n p2 coshpt ´T qq Proof. A straightforward calculation shows that wptq " c n p2 coshptqq ´n´4 2 solves (3). From the assumptions on v it follows that v has a global maximum at some T P R. Since v 1 pT q " 0, we can apply Lemma 9 to deduce that vp¨`T q " w.

The following lemma is one of the key new results in this paper. Lemma 11. Let v P C 4 pRq be a solution of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF]. Then v is bounded.

Proof. By replacing vptq by vp´tq, we only need to show that v is bounded on r0, 8q. We consider the set Z `" tt ě 0 : v 1 ptq " 0u.

If Z `is bounded (in particular, if it is empty), then v is monotone for large t and thus admits a limit a `as t Ñ 8. By Lemma 8, a `is finite and therefore v is bounded on r0, 8q.

We now assume that Z `is unbounded. Since F puq Ñ 8 as |u| Ñ 8, there is an R ą |vp0q| such that F puq ą E v for all |u| ě R. We claim that |v| ă R on r0, 8q which, in particular, implies that v is bounded on r0, 8q. Indeed, by contradiction assume that M R :" tt ě 0 : |vptq| ě Ru is non-empty and define t ˚:" inf M R . Since |vp0q| ă R, we must have t ˚ą 0 and |vpt ˚q| " R. Replacing vptq by ´vptq if necessary (which does not change the set Z `), we may assume that vpt ˚q " R. Then also v 1 pt ˚q ě 0. Since Z `is unbounded, the set Z `X rt ˚, 8q is non-empty and we can set T :" inf `Z`X rt ˚, 8q ˘. Then v 1 pT q " 0 and v 1 ě 0 on rt ˚, T s by continuity of v 1 . Thus vpT q ě vpt ˚q " R, and we deduce that

E v pT q " 1 2 v 2 pT q 2 `F pvpT qq ě F pvpT qq ą E v ,
a contradiction to energy conservation. This completes the proof of Lemma 11.

We are now ready to prove the main result of this section.

Proof of Proposition 3. Let v P C 4 pRq be a solution to [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] and set Z :" tt P R : v 1 ptq " 0u .

We distinguish several cases: Suppose first that Z " H, so v is strictly monotone. We will show that this case cannot occur. Up to replacing vptq by vp´tq, we may assume that v is strictly increasing, and so both limits a ˘" lim tÑ˘8 vptq exist in R Y t˘8u. By Lemma 8 both limits are finite. By Lemma 7, we are reduced to studying three cases, each of which will lead to a contradiction via an energy argument.

If a ´" 0 and a `" B 1 p´1 , then using Lemma 7 we get lim tÑ´8 E v ptq " F p0q " 0, while lim tÑ`8 E v ptq " F pB 1 p´1 q ă 0, a contradiction to energy conservation. Analogously, a contradiction is obtained if a ´" ´B 1 p´1 and a `" 0.

It remains to consider the case a ´" ´B 1 p´1 , a `" B 1 p´1 . Then as above, by Lemma 7,

lim |t|Ñ8 E v ptq " F pB 1 p´1 q ă 0 . (11) 
On the other hand, by [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF]Corollary 6], the inequality

E v ptq ě 1 2 v 2 ptq 2 `F pvptqq (12) 
holds for all t P R. But now evaluating the energy at t 0 such that vpt 0 q " 0 gives, together with [START_REF] Lin | A classification of solutions of a conformally invariant fourth order equation in R n[END_REF], that E v pt 0 q ě 1 2 v 2 pt 0 q 2 `F p0q ě 0, in contradiction to [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] and energy conservation. Altogether, we have shown that the case Z " H cannot occur.

If |Z| " 1, we may assume, up to a translation, that Z " t0u. Then v is strictly monotone on p´8, 0q and p0, 8q, and so both limits a ˘" lim tÑ˘8 vptq exist in R Y t˘8u. By Lemma 8 these limits are finite, so v is bounded and, by Corollary 5, even. Therefore a `" a ´. By Lemma 7, only three cases can occur: a `" a ´" 0 or a `" a ´" ˘B 1 p´1 . In the first case, monotonicity implies that either v ą 0 or v ă 0, and we conclude that vptq " ˘cn p2 coshptqq As for the other cases, let us assume without loss of generality that a `" a ´" B 1 p´1

(otherwise replace v by ´v). We derive a contradiction as follows. Since v is strictly monotone on r0, 8q, vp0q ‰ B 1 p´1 , and from E v p0q " 1 2 v 22 p0q `F pvp0qq ě F pB 1 p´1 q we infer that vp0q " ´B 1 p´1 (since F attains its global minimal value only at ˘B 1 p´1 ). Hence v changes sign, i.e. there is t 0 P R such that vpt 0 q " 0. By Corollary 5, v is antisymmetric with respect to t 0 . But this is a contradiction to the fact that both a `and a ´are positive. Altogether we have thus shown that if |Z| " 1, then vptq " ˘cn p2 coshptqq Finally, let us consider the case where |Z| ě 2. By continuity of v 1 , we see that unless v is constant (and hence v " ˘B 1 p´1 or v " 0), the closed set Z cannot be dense, i.e., there are real numbers c ă d such that v 1 pcq " v 1 pdq " 0 and v 1 ‰ 0 on pc, dq. By Lemma 11, v is bounded and therefore we can use Corollary 5 as in the first part of the proof of Lemma 9 to conclude that v must be periodic of period 2pd ´cq. Moreover, since v is strictly monotone on pc, dq, there is only one maximum and minimum per period interval, and these are strict. The symmetry with respect to the extrema follows at once from Corollary 5. This completes the proof of Proposition 3.

We end this section with one more result that will be needed in the proof of Theorem 2.

Lemma 12. Let v P C 4 pRq be a positive solution of (3). Then

v 1 ă g f f e A 2 ´dˆA 2 ˙2 ´B v .
For our values of A and B we have

g f f e A 2 ´dˆA 2 ˙2 ´B " n ´4 2 ,
but the lemma is true for general A and B satisfying [START_REF] Guo | Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation[END_REF].

Proof. Because of ( 8) we can introduce the two positive numbers

λ " A 2 ´dˆA 2 ˙2 ´B and µ " A 2 `dˆA 2 ˙2 ´B . (13) 
Using λ `µ " A and λµ " B we can write equation (3) in terms of the auxiliary function

φptq :" v 2 ptq ´λvptq as φ 2 ´µφ " v p . (14) 
According to Proposition 3, φ attains its maximum on R. Since v ą 0, the maximum principle implies that φ ă 0.

The function w :" v 1 {v satisfies

w 1 " ´w2 `λ `φ v . ( 15 
)
According to Proposition 3 there is a t 0 P R with v 1 pt 0 q " 0, and therefore also wpt 0 q " 0.

We shall show now that M :" tt ą t 0 : wptq ě ? λu is empty, which yields the claimed inequality.

Suppose by contradiction that M ‰ H and let t 1 :" inf M . It is easy to see that t 1 ą t 0 . Then certainly w 1 pt 1 q ě 0. On the other hand, since wpt 1 q " ? λ, equation ( 15) implies

w 1 pt 1 q " φpt 1 q vpt 1 q ă 0 ,
where the inequality comes from φ ă 0 and v ą 0. This is a contradiction.

3 Proof of the main results

Proof of Theorem 1

We begin with the proof of part piq of Theorem 1. Let v P C 4 pRq be a solution of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF]. By Proposition 3, the only case where

inf R |v| ď B 1 p´1 (16)
may fail to hold is when v is periodic. In this case, v possesses a local minimum at, say, t 0 P R. Note that if v has a zero then ( 16) is automatically fulfilled, so we may assume that v has a fixed sign and, up to replacing v by ´v, we may assume that v ą 0. But by [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF]Lemma 2.6], either v is constant (and hence v " B 1 p´1 ) or vpt 0 q ă B 1 p´1 , so that ( 16) holds with strict inequality.

We turn now to proving part piiq of Theorem 1. We proceed via a shooting argument. The value a P p0, B 1 p´1 q will be considered to be fixed throughout the following argument.

For β ě 0, we denote by v β the unique solution of [START_REF] Guo | On Delaunay solutions of a biharmonic elliptic equation with critical exponent[END_REF] with the initial values vp0q " a, v 1 p0q " 0, v 2 p0q " β, v 3 p0q " 0 ,

and by T β P p0, 8s its maximal forward time of existence. Also, let b :" ´min vPR `f pvq.

Suppose that β ą b A ": β 0 . Then we see from

v p4q β " Av 2 β `f pv β q (18) 
and ( 17) that v p4q β ą 0 initially. Thus, v 2 β increases initially, and since the right hand side of equation ( 18) is positive initially, it is easy to see that it will stay positive on r0, T β q. Thus, v p4q β ą 0 on r0, T β q, which implies that v β and its first three derivatives all keep increasing on r0, T β q. Thus, if T β " 8, then v β is unbounded. On the other hand, if T β ă 8, then v β ptq Ñ 8 as t Ñ T β (since f is locally Lipschitz). To summarize, v β increases monotonically on r0, T β q and diverges to `8 as t Ñ T β for β ě β 0 .

So we can restrict our search to β P r0, β 0 s. However, for all β ď β 0 , we have the uniform energy bound

E v β p0q " β 2 2 `F paq ď β 2 0 2 `F paq.
Since F pvq Ñ 8 as v Ñ 8, there is an R ą 0 such that F pvq ą β 2 0 2 `F paq for all v ą R. This implies that whenever β ď β 0 and v β pt 0 q ą R, we must have v 1 β pt 0 q ‰ 0, for otherwise

E v β pt 0 q " v 2 β pt 0 q 2 2 `F pv β pt 0 qq ě F pv β pt 0 qq ą β 2 0 2 `F paq ,
which contradicts the upper bound on E v β p0q and energy conservation. In particular, v β which enters the interval pR, 8q cannot leave it again, and hence is certainly not the periodic solution we are looking for.

On the other hand, if β " 0, we see from ( 18) that v p4q 0 p0q " f paq ă 0, and hence v 0 ptq and v 2 0 ptq are strictly decreasing on some small interval t P p0, σq. Since f pvq ă 0 for v P p0, aq, we deduce from (18) that v pkq 0 ptq, k " 1, 2, 3, stay strictly negative until v 0 ptq reaches a negative value. Hence, if β " 0, there must be t 0 such that v 0 pt 0 q ă 0.

All of the previous considerations lead us to defining the following shooting sets, S :" tβ ě 0 : v β ptq ă 0 for some t P p0, T β qu , T :" tβ ě 0 : v β ptq ą R for some t P p0, T β q and v β ą 0 on r0, tsu.

Clearly, S and T are open in r0, 8q because of the continuous dependence of the solution on the initial conditions. Moreover, S and T are disjoint because, as we observed above, once a solution v β enters the interval pR, 8q, it stays there. We also already argued above that 0 P S and pβ 0 , 8q Ă T , i.e. both S ‰ H and T ‰ H.

Since our shooting parameter interval r0, 8q is connected, we deduce that S YT ‰ r0, 8q. Hence there must be β ˚ą 0 and a corresponding solution v ˚:" v β ˚such that 0 ď v ˚ď R. In particular, v ˚is bounded. This and the fact that f is locally Lipschitz imply that T β ˚" 8. By even reflection, we obtain a solution defined on all of R, which we still refer to as v ˚. Since β ˚ą 0, v ˚has a strict local minimum in 0. By the classification of solutions from Proposition 3, v ˚must be periodic. Moreover, it has a unique local maximum and minimum per period and is symmetric with respect to its extrema.

The uniqueness of v ˚up to translations follows from Proposition 4. This completes the proof of Theorem 1.

Proof of Theorem 2

By [12, Theorem 4.2], the positivity of u and the non-removability of the singularity in 0 imply that u is radially symmetric. Since the function v defined by upxq " |x| ´n´4 2 vpln |x|q satisfies (3), we are in a position to apply the classification result from Since pv ´wq 1 p0q ě 0 by the hypotheses of the lemma and since λ ą 0, we see from (21) that pv ´wq 1 ptq ą 0 for all t P p0, σq. Hence v ´w is strictly increasing on p0, σq and since σ ą 0 was arbitrary with the property that v ´w ą 0 on p0, σq, we infer that v ´w remains strictly positive for all times.

Repeating the above arguments for the interval p0, 8q instead of p0, σq, we see from (21) that pv ´wq 1 is positive and strictly increasing on p0, 8q. This of course contradicts the boundedness of v ´w. This proves that in fact we must have v " w, concluding the proof of Proposition 4.
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  n´4 u in R n are, in particular, given by optimizers of the Sobolev inequality ż

  with c n from (2).

´n´4 2 by

 2 Corollary 10. 

  ). If v is eventually monotone for t Ñ 8, then

	lim tÑ8	vptq P t0,	˘B 1 p´1 u	and	lim tÑ8	v pkq ptq " 0 for k " 1, 2, 3 .
	Similarly, if v is eventually monotone for t Ñ ´8, then
	lim tÑ´8	vptq P t0,	˘B 1 p´1 u	and	lim tÑ´8

Proposition 3 and we claim that v is either the constant B 1 p´1 " a 0 or periodic. Indeed, the only case that remains to be excluded is that vptq " c n p2 coshpt´T qq ´n´4 2 . But in this case, it is clear that vptq " c n e n´4 2 t as t Ñ ´8 and hence the singularity of u would be removable, contradicting the assumptions. Thus, either v is constant or periodic.

Let a :" inf v. Then, by the first part of Theorem 1, a P p0, a 0 s, and a " a 0 if and only if v " a 0 . Moreover, for a ă a 0 the function v is periodic with minimal value a. Therefore, by the second part of Theorem 1, vptq " v a pt `Lq for some L P R.

Finally, a simple computation shows that the inequality Bu

B|x| ă 0 is equivalent to v 1 ă n´4 2 v, which follows from Lemma 12. This completes the proof of Theorem 2.

4 Appendix: Proof of Proposition 4

In this appendix, we give the proof of Proposition 4, following and simplifying [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF].

Let v and w be bounded solutions of ( 7) which satisfy vp0q " wp0q and v 1 p0q " w 1 p0q.

We can assume without loss that v 2 p0q ě w 2 p0q (otherwise exchange v and w). We may assume furthermore (up to replacing vptq and wptq by vp´tq and wp´tq) that v 3 p0q ě w 3 p0q.

Suppose, by contradiction, that v ı w. Then by uniqueness of ODE solutions, v pkq p0q ‰ w pkq p0q for k " 2 or k " 3. In both cases, we deduce from our hypotheses on the initial conditions that vptq ą wptq on p0, σq for some sufficiently small σ ą 0.

With the positive numbers λ and µ from (13) we define the auxiliary functions φptq :" v 2 ptq ´λvptq and ψptq :" w 2 ptq ´λwptq.

Then by the hypotheses, we have pφ ´ψqp0q ě 0 and pφ ´ψq 1 p0q ě 0.

As in ( 14) equation ( 7) for v and w implies that pφ ´ψq 2 ptq ´µpφ ´ψqptq " |vptq| p´1 vptq ´|wptq| p´1 wptq for all t P R .

Since vptq ą wptq on p0, σq and since the function u Þ Ñ |u| p´1 u is strictly increasing on R, this implies that pφ ´ψq 2 ptq ´µpφ ´ψqptq ą 0 for all t P p0, σq.

The inequalities [START_REF] Bouwe Van Den | The phase-plane picture for a class of fourth-order conservative differential equations[END_REF] and [START_REF] Wei | Classification of solutions of higher order conformally invariant equations[END_REF] and the fact that µ ą 0 easily imply that pφ ´ψqptq ě 0 for t P p0, σq, or equivalently, that pv ´wq 2 ptq ě λpv ´wqptq ą 0 for all t P p0, σq.