open science

Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent

Rupert L Frank, Tobias König

To cite this version:

Rupert L Frank, Tobias König. Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent. Analysis \& PDE, 2019, 12 (4), pp.1101-1113. 10.2140/apde.2019.12.1101 . hal-03505315

HAL Id: hal-03505315

https://hal.science/hal-03505315

Submitted on 30 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Classification of positive singular solutions to a nonlinear biharmonic equation with critical exponent

Rupert L. Frank ${ }^{* 1,2}$ and Tobias König ${ }^{\dagger 1}$
${ }^{1}$ Mathematisches Institut, Ludwig-Maximilians-Universität München
${ }^{2}$ Department of Mathematics, Caltech

October 24, 2018

Abstract

For $n \geqslant 5$, we consider positive solutions u of the biharmonic equation $$
\Delta^{2} u=u^{\frac{n+4}{n-4}} \quad \text { on } \mathbb{R}^{n} \backslash\{0\}
$$ with a non-removable singularity at the origin. We show that $|x|^{\frac{n-4}{2}} u$ is a periodic function of $\ln |x|$ and we classify all periodic functions obtained in this way. This result is relevant for the description of the asymptotic behavior of local solutions near singularities and for the Q-curvature problem in conformal geometry.

1 Introduction and main results

In this paper we are interested in positive solutions u of the equation

$$
\begin{equation*}
\Delta^{2} u=u^{\frac{n+4}{n-4}} \quad \text { in } \mathbb{R}^{n} \backslash\{0\} \tag{1}
\end{equation*}
$$

for $n \geqslant 5$. As we will explain later in more detail, this equation serves on one hand as a model problem for higher order equations with critical non-linearity and on the other hand has a concrete meaning in the Q-curvature problem in conformal geometry. It is well-known that the absence of the maximum principle for equations involving the bi-Laplacian poses great challenges both on a conceptual and on a technical level. Nevertheless we will succeed here in proving a classification result for positive solutions of (1) which is completely analogous to its second order counterpart.

We will work throughout with classical solutions of (1), that is, $u \in C^{4}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Because of the regularity theory in [18] (which extends that in [5] to $n \geqslant 5$) this is not a restriction.

[^0]In a fundamental work [12] Lin has shown that all solutions u with a removable singularity at the origin (so that (1) holds in all of \mathbb{R}^{n}) are given by

$$
\begin{equation*}
u(x)=c_{n}\left(\frac{\lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-4}{2}}, \quad c_{n}=((n-4)(n-2) n(n+2))^{\frac{n-4}{8}} \tag{2}
\end{equation*}
$$

for some $\lambda>0$ and $x_{0} \in \mathbb{R}^{n}$. Solutions of the closely related equation $\Delta^{2} u=|u|^{\frac{8}{n-4}} u$ in \mathbb{R}^{n} are, in particular, given by optimizers of the Sobolev inequality

$$
\int_{\mathbb{R}^{n}}(\Delta u)^{2} \mathrm{~d} x \geqslant \mathcal{S}_{n}\left(\int_{\mathbb{R}^{n}}|u|^{\frac{2 n}{n-4}} \mathrm{~d} x\right)^{\frac{n-4}{n}}
$$

These optimizers were classified in [11] in an equivalent dual formulation and are again given by constant multiples of the functions in (2). For a classification of positive solutions with removable singularities of the four-dimensional analogue of (1) we refer to $[6,12]$ and for the higher order case to $[20,13]$.

In this paper we will be concerned with solutions u of (1) with non-removable singularities. It was also shown by Lin [12] that such solutions are necessarily radial. We pass to logarithmic coordinates (in this context also known as Emden-Fowler coordinates) and write

$$
u(x)=|x|^{-\frac{n-4}{2}} v(\ln |x|)
$$

By a short computation we find that equation (1) for u is equivalent to the following ordinary differential equation for v,

$$
\begin{equation*}
v^{(4)}-\frac{n(n-4)+8}{2} v^{\prime \prime}+\frac{n^{2}(n-4)^{2}}{16} v-|v|^{\frac{8}{n-4}} v=0 \quad \text { in } \mathbb{R} \tag{3}
\end{equation*}
$$

Note that positive solutions u of (1) correspond to positive solutions v of (3) and so $|v|^{\frac{8}{n-4}} v=v^{\frac{n+4}{n-4}}$. For some of our results, however, we also need to consider not necessarily positive functions v and for such functions (3) is the relevant extension. We set

$$
a_{0}=\left(\frac{n(n-4)}{4}\right)^{\frac{n-4}{4}}
$$

Our first main result classifies all positive periodic solutions of (3) and describes their shape.

Theorem 1. (i) Let $v \in C^{4}(\mathbb{R})$ be a solution of (3). Then $\inf _{\mathbb{R}}|v| \leqslant a_{0}$, with equality if and only if v is a non-zero constant.
(ii) Let $a \in\left(0, a_{0}\right)$. Then there is a unique (up to translations) bounded solution $v \in C^{4}(\mathbb{R})$ of (3) with minimal value a. This solution is periodic, has a unique local maximum and minimum per period and is symmetric with respect to its local extrema.

To state our second main result, we denote by v_{a} the unique solution to (3) obtained from Theorem 1 by requiring that $v_{a}(0)=\min _{\mathbb{R}} v_{a}=a$. Also, denote by L_{a} the minimal period of v_{a}. For the constant solution $v_{a_{0}} \equiv a_{0}$, we set $L_{a_{0}}=0$.

The following theorem provides a classification of positive solutions u of (1) with nonremovable singularities in terms of a two-parameter family.

Theorem 2. Let $u \in C^{4}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be a positive solution of (1) whose singularity at the origin is non-removable. Then there are $a \in\left(0, a_{0}\right]$ and $L \in\left[0, L_{a}\right]$ such that

$$
u(x)=|x|^{-\frac{n-4}{2}} v_{a}(\log |x|+L),
$$

where v_{a} is the solution of (3) introduced after Theorem 1. Moreover, $\frac{\partial u}{\partial|x|}<0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

This theorem answers an open question raised in [7] and shows, in particular, that the positivity of the scalar curvature in their conjecture is not necessary.
It is easy to see that as $a \rightarrow 0$ one has $L_{a} \rightarrow \infty$ and $v_{a}\left(t+L_{a} / 2\right) \rightarrow c_{n}(2 \cosh t)^{-\frac{n-4}{2}}$. Undoing the logarithmic change of variables we therefore recover the non-singular solution (2) in the limit $a \rightarrow 0$.

We believe that Theorems 1 and 2 will have several applications. Firstly, it should be a key step in describing the asymptotic behavior near the origin of positive solutions u of $\Delta^{2} u=u^{\frac{n+4}{n-4}}$ in a punctured ball $\{0<|x|<\rho\}$. This would be the fourth order analogue of a celebrated result of Caffarelli-Gidas-Spruck [4]; see also [10]. Secondly, we believe that our theorems will prove useful in the construction of constant Q-curvature metrics with isolated singularities in the spirit of the classical works $[16,14]$ for the scalar curvature; see $[2,8]$ for results in this direction in the fourth order case. For an introduction to the Q-curvature problem see, for instance, [9].

We end this introduction by comparing the statement and proof of Theorems 1 and 2 with their second order counterpart, which concerns positive solutions u of

$$
\begin{equation*}
-\Delta u=u^{\frac{n+2}{n-2}} \quad \text { in } \mathbb{R}^{n} \backslash\{0\} \tag{4}
\end{equation*}
$$

for $n \geqslant 3$. A famous result of Caffarelli-Gidas-Spruck [4] says that if this equation is valid on all of \mathbb{R}^{n}, then

$$
u(x)=c_{n}^{\prime}\left(\frac{\lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}, \quad c_{n}^{\prime}=(n(n-2))^{\frac{n-2}{4}},
$$

for some $\lambda>0$ and $x_{0} \in \mathbb{R}^{n}$. Moreover, they show that if u is a positive solution of (4) with a non-removable singularity, then u is radial. Using this information, Schoen [17] observed that all solutions can be classified by standard phase-plane analysis. Indeed, setting

$$
u(x)=|x|^{-\frac{n-2}{2}} v(\ln |x|)
$$

one obtains

$$
-v^{\prime \prime}+\frac{(n-2)^{2}}{4} v-v^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}
$$

and the positive solutions of this equation are given by the constant $\left(\frac{n-2}{2}\right)^{\frac{n-2}{2}}$, by the homoclinic solution $c_{n}^{\prime}(2 \cosh (t+T))^{\frac{n-2}{2}}$ and by periodic solutions uniquely parametrized, up to translations, by their minimal value in $\left(0,\left(\frac{n-2}{2}\right)^{\frac{n-2}{2}}\right)$. Moreover, these periodic solutions have a unique local maximum and minimum per period and are symmetric with respect to their local extrema.

Thus, our Theorems 1 and 2 provide exactly the same conclusions as in the second order case. Their proof, however, is considerably more difficult, because the phase 'plane' in the fourth order case is four-dimensional. Moreover, solutions to fourth order equations show, in general, a much richer and typically more erratic behavior than solutions to second order equations; see, e.g., the introduction of the textbook [15] for examples. To emphasize the structure of our equation we abbreviate

$$
\begin{equation*}
A=\frac{n(n-4)+8}{2}, \quad B=\frac{n^{2}(n-4)^{2}}{16}, \quad p=\frac{n+4}{n-4} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f(v)=|v|^{p-1} v-B v \tag{6}
\end{equation*}
$$

and rewrite (3) as

$$
\begin{equation*}
v^{(4)}-A v^{\prime \prime}-f(v)=0 \quad \text { in } \mathbb{R} . \tag{7}
\end{equation*}
$$

Of fundamental importance for us is that the coefficients A and B in (3) satisfy the inequalities

$$
\begin{equation*}
A>0 \quad \text { and } \quad 4 B<A^{2} . \tag{8}
\end{equation*}
$$

These inequalities guarantee that the characteristic equation $\xi^{4}-A \xi^{2}+B=0$ associated to the linearization of (7) around the zero solution has four distinct, real solutions. The picture that has emerged from the analysis of fourth order equations is that under this structural assumption the solution sets is better behaved than that of general fourth order equations and resembles in some sense the solution set of second order equations; see, e.g., $[15,19,3]$. The reason is that certain techniques are available which are reminiscent of the maximum principle. Technically, this better, 'second-order'-like behavior can be proved for bounded solutions of the equation and for such solutions there are certain substitutes for two-dimensional phase plane arguments (see, in particular, Propositions 4 and 6). Parts of our analysis will rely on results of van den Berg [19] for bounded solutions, which in turn rely on results of Buffoni-Champneys-Toland [3]. Our crucial new ingredient, however, which does not appear in these works, is that global solutions are necessarily bounded (Lemma 11). We emphasize that boundedness is a non-local property and breaks the local character of the ODE analysis.
Most of our results (except for the explicit expression of the homoclinic solution) hold, mutatis mutandis, for any equation of the form (7) with f given by (6), where $p>1$ is arbitrary and A and B are arbitrary subject to (8).

Acknowledgement. Partial support through US National Science Foundation grant DMS-1363432 (R.L.F.) is acknowledged.

2 Classification of global ODE solutions

In this section we will classify all solutions v of (7) which are defined on all of \mathbb{R}. Positivity will not play a role here.

We begin with some preliminary remarks, which we will use several times below. The function $v \mapsto f(v)$ in (6) has exactly three zeros, namely, at 0 and at $\pm B^{\frac{1}{p-1}}= \pm a_{0}$. These correspond to exactly three constant solutions. Moreover, if $v(t)$ is a solution to (7), then so are the functions

- $v(-t)$ (because (7) contains only even-order derivatives),
- $-v(t)$ (because f is odd) and
- $v(t+T)$ for any $T \in \mathbb{R}$ (because (7) is autonomous).

We now state the main result of this section.

Proposition 3. Let $v \in C^{4}(\mathbb{R})$ be a solution of (7). Then one of the following three alternatives holds:
(a) $v \equiv \pm B^{\frac{1}{p-1}}$, or $v \equiv 0$,
(b) $v(t)= \pm c_{n}(2 \cosh (t-T))^{-\frac{n-4}{2}}$ for some $T \in \mathbb{R}$ with c_{n} from (2),
(c) v is periodic, has a unique local maximum and minimum per period and is symmetric with respect to its local extrema.

For the proof of this proposition we will need two results, taken from [19], which quantify the intuition that the set of bounded solutions to the fourth order equation (7) behaves in some respects similar as the set of solutions of a second order equation. As we pointed out in the introduction, for this it is crucial that the relation $4 B<A^{2}$ is satisfied. The first result is that every bounded entire solution v is uniquely determined by only two (instead of four) initial values.

Proposition 4 (Theorem 1 in [19]). Let $v, w \in C^{4}(\mathbb{R})$ be bounded solutions of (7) and suppose that $v(0)=w(0)$ and $v^{\prime}(0)=w^{\prime}(0)$. Then $v \equiv w$.

Since this result is of crucial importance for us, we give a (slightly more direct) proof with our notation in an appendix. Proposition 4 has the following consequence.

Corollary 5. Let $v \in C^{4}(\mathbb{R})$ be a bounded solution of (7).
(i) Suppose that $v^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in \mathbb{R}$. Then v is symmetric with respect to t_{0}, i.e., for all $t \in \mathbb{R}, v\left(t_{0}+t\right)=v\left(t_{0}-t\right)$.
(ii) Suppose that $v\left(t_{0}\right)=0$ for some $t_{0} \in \mathbb{R}$. Then v is antisymmetric with respect to t_{0}, i.e., for all $t \in \mathbb{R}, v\left(t_{0}-t\right)=-v\left(t_{0}+t\right)$.

Proof. (i) Since equation (7) is autonomous, we may assume $t_{0}=0$. Moreover, if v is a solution, then so is $w(t):=v(-t)$. Thus $v(0)=w(0)$ and, by assumption, $v^{\prime}(0)=$ $w^{\prime}(0)=0$. Proposition 4 gives $v \equiv w$.
(ii) Again, we may assume $t_{0}=0$. Moreover, if v solves (7), then so does $w(t):=-v(-t)$. Since $v(0)=w(0)$ and $v^{\prime}(0)=w^{\prime}(0)$, we conclude by Proposition 4 that $v \equiv w$.

In order to state the second result from [19] that we need, we introduce

$$
F(v)=\int_{0}^{v} f(s) \mathrm{d} s=\frac{|v|^{p+1}}{p+1}-\frac{B}{2} v^{2}
$$

as well as the following quantity, also referred to as the energy,

$$
\mathcal{E}_{v}(t)=-v^{\prime \prime \prime}(t) v^{\prime}(t)+\frac{1}{2}\left(v^{\prime \prime}(t)\right)^{2}+\frac{A}{2}\left(v^{\prime}(t)\right)^{2}+F(v(t)) .
$$

Using equation (7) one easily finds that for every solution v of (7)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}_{v}(t)=0
$$

that is, the energy is conserved. We emphasize that this conservation is a local property and valid on the maximal interval of existence and does not require any a-priori boundedness assumptions like Proposition 4 and the following Proposition 6 and Lemma 7.

The second result says that, as in the second order case, the energy is a parameter which orders bounded solutions in the $\left(v, v^{\prime}\right)$-phase plane.

Proposition 6 (Theorem 2 in [19]). Let $v, w \in C^{4}(\mathbb{R})$ be bounded solutions of (7) with $v(0)=w(0)$ and either $v^{\prime}(0)>w^{\prime}(0) \geqslant 0$ or $v^{\prime}(0)<w^{\prime}(0) \leqslant 0$. Then $\mathcal{E}_{v}>\mathcal{E}_{w}$.

For the proof we refer to [19]. The assumption there is satisfied since $4 B<A^{2}$. (Note that no a-priori bound on the solutions is necessary for our f.)

Next, we state two lemmas concerning the asymptotic behavior of solutions at infinity.
Lemma 7 (Lemma 4 in [19]). Let $v \in C^{4}(\mathbb{R})$ be a bounded solution of (7). If v is eventually monotone for $t \rightarrow \infty$, then

$$
\lim _{t \rightarrow \infty} v(t) \in\left\{0, \pm B^{\frac{1}{p-1}}\right\} \quad \text { and } \quad \lim _{t \rightarrow \infty} v^{(k)}(t)=0 \quad \text { for } k=1,2,3
$$

Similarly, if v is eventually monotone for $t \rightarrow-\infty$, then

$$
\lim _{t \rightarrow-\infty} v(t) \in\left\{0, \pm B^{\frac{1}{p-1}}\right\} \quad \text { and } \quad \lim _{t \rightarrow-\infty} v^{(k)}(t)=0 \quad \text { for } k=1,2,3
$$

The following lemma from [7] shows that equation (7) does not have a solution which tends to either plus or minus infinity at infinity, that is, solutions that blow up do so in finite time.

Lemma 8 (Lemma 2.1 in [7]). Let $v \in C^{4}(\mathbb{R})$ be a solution of (7). If $a_{+}:=\lim _{t \rightarrow \infty} v(t) \in$ $\mathbb{R} \cup\{ \pm \infty\}$ exists, then $a_{+} \in \mathbb{R}$. Similarly, if $a_{-}:=\lim _{t \rightarrow-\infty} v(t) \in \mathbb{R} \cup\{ \pm \infty\}$ exists, then $a_{-} \in \mathbb{R}$.

This lemma is proved in [7] for positive solutions. An inspection of the proof shows, however, that this positivity is not needed.

We now use the above results to show uniqueness, up to translations, of the positive homoclinic solution. A similar result for $p=2$ appears in [1] with a different proof.

Lemma 9. Let $v, w \in C^{4}(\mathbb{R})$ be positive solutions of (7) with $\lim _{|t| \rightarrow \infty} v(t)=\lim _{|t| \rightarrow \infty} w(t)=$ 0 and $v^{\prime}(0)=w^{\prime}(0)=0$. Then $v \equiv w$.

Proof. Let us first prove that 0 is the only zero of v^{\prime} and w^{\prime}. Indeed, if v^{\prime} had another zero at, say, $t_{0}>0$, then by repeated application of Corollary 5 (note that by assumption, v is bounded) we deduce that v must be periodic of period $2 t_{0}$. In particular $0<v(0)=$ $v\left(2 k t_{0}\right)$ for all $k \in \mathbb{N}$, which contradicts the assumption that $v(t) \rightarrow 0$ as $t \rightarrow \infty$. The argument for w is analogous. Hence we must have

$$
\begin{equation*}
v^{\prime}(t)<0 \quad \text { and } \quad w^{\prime}(t)<0 \quad \text { for all } t>0 \tag{9}
\end{equation*}
$$

Next, by Lemma 7 and by energy conservation,

$$
\begin{equation*}
\mathcal{E}_{v}=\lim _{t \rightarrow \infty} \mathcal{E}_{v}(t)=F(0)=0 \quad \text { and } \quad \mathcal{E}_{w}=\lim _{t \rightarrow \infty} \mathcal{E}_{w}(t)=F(0)=0 \tag{10}
\end{equation*}
$$

If $v(0)=w(0)$, we are done by Proposition 4 .
To complete the proof, let us suppose for contradiction that $v(0)>w(0)$. We claim that this implies that $v>w$ everywhere. Indeed, otherwise there is $t_{0}>0$ such that $v>w$ on $\left[0, t_{0}\right)$ and $v\left(t_{0}\right)=w\left(t_{0}\right)$. Then by (9) we infer that $v^{\prime}\left(t_{0}\right) \leqslant w^{\prime}\left(t_{0}\right)<0$. If $v^{\prime}\left(t_{0}\right)=w^{\prime}\left(t_{0}\right)$, then Proposition 4 implies $v \equiv w$, contradicting $v(0)>w(0)$. If $v^{\prime}\left(t_{0}\right)<w^{\prime}\left(t_{0}\right)<0$, then Proposition 6 implies $\mathcal{E}_{v}>\mathcal{E}_{w}$, which contradicts (10). Hence $v>w$ everywhere.

We can now derive the desired contradiction. For every $R>0$, we have, using integration by parts and the fact that v and w satisfy (7),

$$
\begin{aligned}
0 & =\int_{-R}^{R} w\left(v^{(4)}-A v^{\prime \prime}-f(v)\right) \\
& =b(R)+\int_{-R}^{R} v\left(w^{(4)}-A w^{\prime \prime}-f(w)\right)+\int_{-R}^{R} w v\left(w^{p-1}-v^{p-1}\right) \\
& =b(R)+\int_{-R}^{R} w v\left(w^{p-1}-v^{p-1}\right)
\end{aligned}
$$

Here, $b(R)$ contains all the boundary terms coming from the integrations by part. By Lemma 7 we have $b(R) \rightarrow 0$ as $R \rightarrow \infty$. But since $\int_{-R}^{R} w v\left(w^{p-1}-v^{p-1}\right)$ is a negative and strictly decreasing function of R, we obtain a contradiction by choosing R large enough.

For the concrete values of A, B and p in (5) one can compute the homoclinic solution explicitly. We emphasize that this is the only place in the proof of Proposition 3 where the precise form of A, B and p enters.

Corollary 10. Suppose that v is a positive solution of (3) with $\lim _{|t| \rightarrow \infty} v(t)=0$. Then there is $T \in \mathbb{R}$ such that

$$
v(t)=c_{n}(2 \cosh (t-T))^{-\frac{n-4}{2}}, \quad t \in \mathbb{R},
$$

with c_{n} from (2).
Proof. A straightforward calculation shows that $w(t)=c_{n}(2 \cosh (t))^{-\frac{n-4}{2}}$ solves (3). From the assumptions on v it follows that v has a global maximum at some $T \in \mathbb{R}$. Since $v^{\prime}(T)=0$, we can apply Lemma 9 to deduce that $v(\cdot+T)=w$.

The following lemma is one of the key new results in this paper.
Lemma 11. Let $v \in C^{4}(\mathbb{R})$ be a solution of (7). Then v is bounded.
Proof. By replacing $v(t)$ by $v(-t)$, we only need to show that v is bounded on $[0, \infty)$. We consider the set $Z_{+}=\left\{t \geqslant 0: v^{\prime}(t)=0\right\}$.
If Z_{+}is bounded (in particular, if it is empty), then v is monotone for large t and thus admits a limit a_{+}as $t \rightarrow \infty$. By Lemma $8, a_{+}$is finite and therefore v is bounded on $[0, \infty)$.
We now assume that Z_{+}is unbounded. Since $F(u) \rightarrow \infty$ as $|u| \rightarrow \infty$, there is an $R>|v(0)|$ such that $F(u)>\mathcal{E}_{v}$ for all $|u| \geqslant R$. We claim that $|v|<R$ on $[0, \infty)$ which, in particular, implies that v is bounded on $[0, \infty)$. Indeed, by contradiction assume that $M_{R}:=\{t \geqslant 0:|v(t)| \geqslant R\}$ is non-empty and define $t^{*}:=\inf M_{R}$. Since $|v(0)|<R$, we must have $t^{*}>0$ and $\left|v\left(t^{*}\right)\right|=R$. Replacing $v(t)$ by $-v(t)$ if necessary (which does not change the set Z_{+}), we may assume that $v\left(t^{*}\right)=R$. Then also $v^{\prime}\left(t^{*}\right) \geqslant 0$. Since Z_{+}is unbounded, the set $Z_{+} \cap\left[t^{*}, \infty\right)$ is non-empty and we can set $T:=\inf \left(Z_{+} \cap\left[t^{*}, \infty\right)\right)$. Then $v^{\prime}(T)=0$ and $v^{\prime} \geqslant 0$ on $\left[t^{*}, T\right]$ by continuity of v^{\prime}. Thus $v(T) \geqslant v\left(t^{*}\right)=R$, and we deduce that

$$
\mathcal{E}_{v}(T)=\frac{1}{2} v^{\prime \prime}(T)^{2}+F(v(T)) \geqslant F(v(T))>\mathcal{E}_{v},
$$

a contradiction to energy conservation. This completes the proof of Lemma 11.
We are now ready to prove the main result of this section.

Proof of Proposition 3. Let $v \in C^{4}(\mathbb{R})$ be a solution to (7) and set

$$
Z:=\left\{t \in \mathbb{R}: v^{\prime}(t)=0\right\} .
$$

We distinguish several cases:
Suppose first that $Z=\varnothing$, so v is strictly monotone. We will show that this case cannot occur. Up to replacing $v(t)$ by $v(-t)$, we may assume that v is strictly increasing, and so both limits $a_{ \pm}=\lim _{t \rightarrow \pm \infty} v(t)$ exist in $\mathbb{R} \cup\{ \pm \infty\}$. By Lemma 8 both limits are finite. By Lemma 7, we are reduced to studying three cases, each of which will lead to a contradiction via an energy argument.
If $a_{-}=0$ and $a_{+}=B^{\frac{1}{p-1}}$, then using Lemma 7 we get $\lim _{t \rightarrow-\infty} \mathcal{E}_{v}(t)=F(0)=0$, while $\lim _{t \rightarrow+\infty} \mathcal{E}_{v}(t)=F\left(B^{\frac{1}{p-1}}\right)<0$, a contradiction to energy conservation. Analogously, a contradiction is obtained if $a_{-}=-B^{\frac{1}{p-1}}$ and $a_{+}=0$.
It remains to consider the case $a_{-}=-B^{\frac{1}{p-1}}, a_{+}=B^{\frac{1}{p-1}}$. Then as above, by Lemma 7 ,

$$
\begin{equation*}
\lim _{|t| \rightarrow \infty} \mathcal{E}_{v}(t)=F\left(B^{\frac{1}{p-1}}\right)<0 . \tag{11}
\end{equation*}
$$

On the other hand, by [19, Corollary 6], the inequality

$$
\begin{equation*}
\mathcal{E}_{v}(t) \geqslant \frac{1}{2} v^{\prime \prime}(t)^{2}+F(v(t)) \tag{12}
\end{equation*}
$$

holds for all $t \in \mathbb{R}$. But now evaluating the energy at t_{0} such that $v\left(t_{0}\right)=0$ gives, together with (12), that $\mathcal{E}_{v}\left(t_{0}\right) \geqslant \frac{1}{2} v^{\prime \prime}\left(t_{0}\right)^{2}+F(0) \geqslant 0$, in contradiction to (11) and energy conservation. Altogether, we have shown that the case $Z=\varnothing$ cannot occur.

If $|Z|=1$, we may assume, up to a translation, that $Z=\{0\}$. Then v is strictly monotone on $(-\infty, 0)$ and $(0, \infty)$, and so both limits $a_{ \pm}=\lim _{t \rightarrow \pm \infty} v(t)$ exist in $\mathbb{R} \cup\{ \pm \infty\}$. By Lemma 8 these limits are finite, so v is bounded and, by Corollary 5 , even. Therefore $a_{+}=a_{-}$. By Lemma 7, only three cases can occur: $a_{+}=a_{-}=0$ or $a_{+}=a_{-}= \pm B^{\frac{1}{p-1}}$. In the first case, monotonicity implies that either $v>0$ or $v<0$, and we conclude that $v(t)= \pm c_{n}(2 \cosh (t))^{-\frac{n-4}{2}}$ by Corollary 10 .
As for the other cases, let us assume without loss of generality that $a_{+}=a_{-}=B^{\frac{1}{p-1}}$ (otherwise replace v by $-v$). We derive a contradiction as follows. Since v is strictly monotone on $[0, \infty), v(0) \neq B^{\frac{1}{p-1}}$, and from $\mathcal{E}_{v}(0)=\frac{1}{2} v^{\prime \prime 2}(0)+F(v(0)) \geqslant F\left(B^{\frac{1}{p-1}}\right)$ we infer that $v(0)=-B^{\frac{1}{p-1}}$ (since F attains its global minimal value only at $\pm B^{\frac{1}{p-1}}$). Hence v changes sign, i.e. there is $t_{0} \in \mathbb{R}$ such that $v\left(t_{0}\right)=0$. By Corollary $5, v$ is antisymmetric with respect to t_{0}. But this is a contradiction to the fact that both a_{+}and a_{-}are positive. Altogether we have thus shown that if $|Z|=1$, then $v(t)= \pm c_{n}(2 \cosh (t))^{-\frac{n-4}{2}}$.

Finally, let us consider the case where $|Z| \geqslant 2$. By continuity of v^{\prime}, we see that unless v is constant (and hence $v \equiv \pm B^{\frac{1}{p-1}}$ or $v \equiv 0$), the closed set Z cannot be dense, i.e., there
are real numbers $c<d$ such that $v^{\prime}(c)=v^{\prime}(d)=0$ and $v^{\prime} \neq 0$ on (c, d). By Lemma 11, v is bounded and therefore we can use Corollary 5 as in the first part of the proof of Lemma 9 to conclude that v must be periodic of period $2(d-c)$. Moreover, since v is strictly monotone on (c, d), there is only one maximum and minimum per period interval, and these are strict. The symmetry with respect to the extrema follows at once from Corollary 5. This completes the proof of Proposition 3.

We end this section with one more result that will be needed in the proof of Theorem 2.

Lemma 12. Let $v \in C^{4}(\mathbb{R})$ be a positive solution of (3). Then

$$
v^{\prime}<\sqrt{\frac{A}{2}-\sqrt{\left(\frac{A}{2}\right)^{2}-B}} v
$$

For our values of A and B we have

$$
\sqrt{\frac{A}{2}-\sqrt{\left(\frac{A}{2}\right)^{2}-B}}=\frac{n-4}{2}
$$

but the lemma is true for general A and B satisfying (8).
Proof. Because of (8) we can introduce the two positive numbers

$$
\begin{equation*}
\lambda=\frac{A}{2}-\sqrt{\left(\frac{A}{2}\right)^{2}-B} \quad \text { and } \quad \mu=\frac{A}{2}+\sqrt{\left(\frac{A}{2}\right)^{2}-B} . \tag{13}
\end{equation*}
$$

Using $\lambda+\mu=A$ and $\lambda \mu=B$ we can write equation (3) in terms of the auxiliary function

$$
\phi(t):=v^{\prime \prime}(t)-\lambda v(t)
$$

as

$$
\begin{equation*}
\phi^{\prime \prime}-\mu \phi=v^{p} . \tag{14}
\end{equation*}
$$

According to Proposition $3, \phi$ attains its maximum on \mathbb{R}. Since $v>0$, the maximum principle implies that $\phi<0$.

The function $w:=v^{\prime} / v$ satisfies

$$
\begin{equation*}
w^{\prime}=-w^{2}+\lambda+\frac{\phi}{v} \tag{15}
\end{equation*}
$$

According to Proposition 3 there is a $t_{0} \in \mathbb{R}$ with $v^{\prime}\left(t_{0}\right)=0$, and therefore also $w\left(t_{0}\right)=0$. We shall show now that $M:=\left\{t>t_{0}: w(t) \geqslant \sqrt{\lambda}\right\}$ is empty, which yields the claimed inequality.

Suppose by contradiction that $M \neq \varnothing$ and let $t_{1}:=\inf M$. It is easy to see that $t_{1}>t_{0}$. Then certainly $w^{\prime}\left(t_{1}\right) \geqslant 0$. On the other hand, since $w\left(t_{1}\right)=\sqrt{\lambda}$, equation (15) implies

$$
w^{\prime}\left(t_{1}\right)=\frac{\phi\left(t_{1}\right)}{v\left(t_{1}\right)}<0
$$

where the inequality comes from $\phi<0$ and $v>0$. This is a contradiction.

3 Proof of the main results

3.1 Proof of Theorem 1

We begin with the proof of part (i) of Theorem 1. Let $v \in C^{4}(\mathbb{R})$ be a solution of (7). By Proposition 3, the only case where

$$
\begin{equation*}
\inf _{\mathbb{R}}|v| \leqslant B^{\frac{1}{p-1}} \tag{16}
\end{equation*}
$$

may fail to hold is when v is periodic. In this case, v possesses a local minimum at, say, $t_{0} \in \mathbb{R}$. Note that if v has a zero then (16) is automatically fulfilled, so we may assume that v has a fixed sign and, up to replacing v by $-v$, we may assume that $v>0$. But by [7, Lemma 2.6], either v is constant (and hence $v \equiv B^{\frac{1}{p-1}}$) or $v\left(t_{0}\right)<B^{\frac{1}{p-1}}$, so that (16) holds with strict inequality.

We turn now to proving part (ii) of Theorem 1. We proceed via a shooting argument. The value $a \in\left(0, B^{\frac{1}{p-1}}\right)$ will be considered to be fixed throughout the following argument.

For $\beta \geqslant 0$, we denote by v_{β} the unique solution of (7) with the initial values

$$
\begin{equation*}
v(0)=a, \quad v^{\prime}(0)=0, \quad v^{\prime \prime}(0)=\beta, \quad v^{\prime \prime \prime}(0)=0 \tag{17}
\end{equation*}
$$

and by $T_{\beta} \in(0, \infty]$ its maximal forward time of existence. Also, let $b:=-\min _{v \in \mathbb{R}_{+}} f(v)$.
Suppose that $\beta>\frac{b}{A}=: \beta_{0}$. Then we see from

$$
\begin{equation*}
v_{\beta}^{(4)}=A v_{\beta}^{\prime \prime}+f\left(v_{\beta}\right) \tag{18}
\end{equation*}
$$

and (17) that $v_{\beta}^{(4)}>0$ initially. Thus, $v_{\beta}^{\prime \prime}$ increases initially, and since the right hand side of equation (18) is positive initially, it is easy to see that it will stay positive on $\left[0, T_{\beta}\right)$. Thus, $v_{\beta}^{(4)}>0$ on $\left[0, T_{\beta}\right.$), which implies that v_{β} and its first three derivatives all keep increasing on $\left[0, T_{\beta}\right)$. Thus, if $T_{\beta}=\infty$, then v_{β} is unbounded. On the other hand, if $T_{\beta}<\infty$, then $v_{\beta}(t) \rightarrow \infty$ as $t \rightarrow T_{\beta}$ (since f is locally Lipschitz). To summarize, v_{β} increases monotonically on $\left[0, T_{\beta}\right)$ and diverges to $+\infty$ as $t \rightarrow T_{\beta}$ for $\beta \geqslant \beta_{0}$.

So we can restrict our search to $\beta \in\left[0, \beta_{0}\right]$. However, for all $\beta \leqslant \beta_{0}$, we have the uniform energy bound

$$
\mathcal{E}_{v_{\beta}}(0)=\frac{\beta^{2}}{2}+F(a) \leqslant \frac{\beta_{0}^{2}}{2}+F(a) .
$$

Since $F(v) \rightarrow \infty$ as $v \rightarrow \infty$, there is an $R>0$ such that $F(v)>\frac{\beta_{0}^{2}}{2}+F(a)$ for all $v>R$. This implies that whenever $\beta \leqslant \beta_{0}$ and $v_{\beta}\left(t_{0}\right)>R$, we must have $v_{\beta}^{\prime}\left(t_{0}\right) \neq 0$, for otherwise

$$
\mathcal{E}_{v_{\beta}}\left(t_{0}\right)=\frac{v_{\beta}^{\prime \prime}\left(t_{0}\right)^{2}}{2}+F\left(v_{\beta}\left(t_{0}\right)\right) \geqslant F\left(v_{\beta}\left(t_{0}\right)\right)>\frac{\beta_{0}^{2}}{2}+F(a),
$$

which contradicts the upper bound on $\mathcal{E}_{v_{\beta}}(0)$ and energy conservation. In particular, v_{β} which enters the interval (R, ∞) cannot leave it again, and hence is certainly not the periodic solution we are looking for.
On the other hand, if $\beta=0$, we see from (18) that $v_{0}^{(4)}(0)=f(a)<0$, and hence $v_{0}(t)$ and $v_{0}^{\prime \prime}(t)$ are strictly decreasing on some small interval $t \in(0, \sigma)$. Since $f(v)<0$ for $v \in(0, a)$, we deduce from (18) that $v_{0}^{(k)}(t), k=1,2,3$, stay strictly negative until $v_{0}(t)$ reaches a negative value. Hence, if $\beta=0$, there must be t_{0} such that $v_{0}\left(t_{0}\right)<0$.

All of the previous considerations lead us to defining the following shooting sets,

$$
\begin{aligned}
& S:=\left\{\beta \geqslant 0: v_{\beta}(t)<0 \quad \text { for some } t \in\left(0, T_{\beta}\right)\right\}, \\
& T:=\left\{\beta \geqslant 0: v_{\beta}(t)>R \quad \text { for some } t \in\left(0, T_{\beta}\right) \text { and } v_{\beta}>0 \text { on }[0, t]\right\} .
\end{aligned}
$$

Clearly, S and T are open in $[0, \infty)$ because of the continuous dependence of the solution on the initial conditions. Moreover, S and T are disjoint because, as we observed above, once a solution v_{β} enters the interval (R, ∞), it stays there. We also already argued above that $0 \in S$ and $\left(\beta_{0}, \infty\right) \subset T$, i.e. both $S \neq \varnothing$ and $T \neq \varnothing$.
Since our shooting parameter interval $[0, \infty)$ is connected, we deduce that $S \cup T \neq[0, \infty)$. Hence there must be $\beta^{*}>0$ and a corresponding solution $v^{*}:=v_{\beta^{*}}$ such that $0 \leqslant v^{*} \leqslant$ R. In particular, v^{*} is bounded. This and the fact that f is locally Lipschitz imply that $T_{\beta^{*}}=\infty$. By even reflection, we obtain a solution defined on all of \mathbb{R}, which we still refer to as v^{*}. Since $\beta^{*}>0, v^{*}$ has a strict local minimum in 0 . By the classification of solutions from Proposition 3, v^{*} must be periodic. Moreover, it has a unique local maximum and minimum per period and is symmetric with respect to its extrema.

The uniqueness of v^{*} up to translations follows from Proposition 4. This completes the proof of Theorem 1.

3.2 Proof of Theorem 2

By [12, Theorem 4.2], the positivity of u and the non-removability of the singularity in 0 imply that u is radially symmetric. Since the function v defined by $u(x)=$ $|x|^{-\frac{n-4}{2}} v(\ln |x|)$ satisfies (3), we are in a position to apply the classification result from

Proposition 3 and we claim that v is either the constant $B^{\frac{1}{p-1}}=a_{0}$ or periodic. Indeed, the only case that remains to be excluded is that $v(t)=c_{n}(2 \cosh (t-T))^{-\frac{n-4}{2}}$. But in this case, it is clear that $v(t) \sim c_{n} e^{\frac{n-4}{2} t}$ as $t \rightarrow-\infty$ and hence the singularity of u would be removable, contradicting the assumptions. Thus, either v is constant or periodic.

Let $a:=\inf v$. Then, by the first part of Theorem $1, a \in\left(0, a_{0}\right]$, and $a=a_{0}$ if and only if $v \equiv a_{0}$. Moreover, for $a<a_{0}$ the function v is periodic with minimal value a. Therefore, by the second part of Theorem $1, v(t)=v_{a}(t+L)$ for some $L \in \mathbb{R}$.
Finally, a simple computation shows that the inequality $\frac{\partial u}{\partial|x|}<0$ is equivalent to $v^{\prime}<$ $\frac{n-4}{2} v$, which follows from Lemma 12. This completes the proof of Theorem 2.

4 Appendix: Proof of Proposition 4

In this appendix, we give the proof of Proposition 4, following and simplifying [19].
Let v and w be bounded solutions of (7) which satisfy $v(0)=w(0)$ and $v^{\prime}(0)=w^{\prime}(0)$. We can assume without loss that $v^{\prime \prime}(0) \geqslant w^{\prime \prime}(0)$ (otherwise exchange v and w). We may assume furthermore (up to replacing $v(t)$ and $w(t)$ by $v(-t)$ and $w(-t)$) that $v^{\prime \prime \prime}(0) \geqslant$ $w^{\prime \prime \prime}(0)$.
Suppose, by contradiction, that $v \not \equiv w$. Then by uniqueness of ODE solutions, $v^{(k)}(0) \neq$ $w^{(k)}(0)$ for $k=2$ or $k=3$. In both cases, we deduce from our hypotheses on the initial conditions that

$$
v(t)>w(t) \quad \text { on }(0, \sigma)
$$

for some sufficiently small $\sigma>0$.
With the positive numbers λ and μ from (13) we define the auxiliary functions

$$
\phi(t):=v^{\prime \prime}(t)-\lambda v(t) \quad \text { and } \quad \psi(t):=w^{\prime \prime}(t)-\lambda w(t)
$$

Then by the hypotheses, we have

$$
\begin{equation*}
(\phi-\psi)(0) \geqslant 0 \quad \text { and } \quad(\phi-\psi)^{\prime}(0) \geqslant 0 \tag{19}
\end{equation*}
$$

As in (14) equation (7) for v and w implies that

$$
(\phi-\psi)^{\prime \prime}(t)-\mu(\phi-\psi)(t)=|v(t)|^{p-1} v(t)-|w(t)|^{p-1} w(t) \quad \text { for all } t \in \mathbb{R}
$$

Since $v(t)>w(t)$ on $(0, \sigma)$ and since the function $u \mapsto|u|^{p-1} u$ is strictly increasing on \mathbb{R}, this implies that

$$
\begin{equation*}
(\phi-\psi)^{\prime \prime}(t)-\mu(\phi-\psi)(t)>0 \quad \text { for all } t \in(0, \sigma) \tag{20}
\end{equation*}
$$

The inequalities (19) and (20) and the fact that $\mu>0$ easily imply that $(\phi-\psi)(t) \geqslant 0$ for $t \in(0, \sigma)$, or equivalently, that

$$
\begin{equation*}
(v-w)^{\prime \prime}(t) \geqslant \lambda(v-w)(t)>0 \quad \text { for all } t \in(0, \sigma) \tag{21}
\end{equation*}
$$

Since $(v-w)^{\prime}(0) \geqslant 0$ by the hypotheses of the lemma and since $\lambda>0$, we see from (21) that $(v-w)^{\prime}(t)>0$ for all $t \in(0, \sigma)$. Hence $v-w$ is strictly increasing on $(0, \sigma)$ and since $\sigma>0$ was arbitrary with the property that $v-w>0$ on $(0, \sigma)$, we infer that $v-w$ remains strictly positive for all times.

Repeating the above arguments for the interval $(0, \infty)$ instead of $(0, \sigma)$, we see from (21) that $(v-w)^{\prime}$ is positive and strictly increasing on $(0, \infty)$. This of course contradicts the boundedness of $v-w$. This proves that in fact we must have $v \equiv w$, concluding the proof of Proposition 4.

References

[1] C. J. Amick and J. F. Toland. Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. European J. Appl. Math., 3(2):97-114, 1992.
[2] Sami Baraket and Salem Rebhi. Construction of dipole type singular solutions for a biharmonic equation with critical Sobolev exponent. Adv. Nonlinear Stud., 2(4):459-476, 2002.
[3] B. Buffoni, A. R. Champneys, and J. F. Toland. Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dynam. Differential Equations, 8(2):221-279, 1996.
[4] Luis A. Caffarelli, Basilis Gidas, and Joel Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42(3):271-297, 1989.
[5] Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang. Regularity of a fourth order nonlinear PDE with critical exponent. Amer. J. Math., 121(2):215-257, 1999.
[6] Sun-Yung A. Chang and Paul C. Yang. On uniqueness of solutions of nth order differential equations in conformal geometry. Math. Res. Lett., 4(1):91-102, 1997.
[7] Z. Guo, X. Huang, L. Wang, and J. Wei. On Delaunay solutions of a biharmonic elliptic equation with critical exponent. ArXiv e-prints, August 2017.
[8] Zongming Guo, Juncheng Wei, and Feng Zhou. Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation. J. Differential Equations, 263(2):1188-1224, 2017.
[9] Fengbo Hang and Paul C. Yang. Lectures on the fourth-order Q curvature equation. In Geometric analysis around scalar curvatures, volume 31 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 1-33. World Sci. Publ., Hackensack, NJ, 2016.
[10] Nick Korevaar, Rafe Mazzeo, Frank Pacard, and Richard Schoen. Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math., 135(2):233-272, 1999.
[11] Elliott H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2), 118(2):349-374, 1983.
[12] Chang-Shou Lin. A classification of solutions of a conformally invariant fourth order equation in \mathbf{R}^{n}. Comment. Math. Helv., 73(2):206-231, 1998.
[13] Luca Martinazzi. Classification of solutions to the higher order Liouville's equation on $\mathbb{R}^{2 m}$. Math. Z., 263(2):307-329, 2009.
[14] Rafe Mazzeo and Frank Pacard. Constant scalar curvature metrics with isolated singularities. Duke Math. J., 99(3):353-418, 1999.
[15] L. A. Peletier and W. C. Troy. Spatial patterns, volume 45 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2001. Higher order models in physics and mechanics.
[16] Richard M. Schoen. The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm. Pure Appl. Math., 41(3):317392, 1988.
[17] Richard M. Schoen. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In Topics in calculus of variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pages 120-154. Springer, Berlin, 1989.
[18] Karen K. Uhlenbeck and Jeff A. Viaclovsky. Regularity of weak solutions to critical exponent variational equations. Math. Res. Lett., 7(5-6):651-656, 2000.
[19] Jan Bouwe van den Berg. The phase-plane picture for a class of fourth-order conservative differential equations. J. Differential Equations, 161(1):110-153, 2000.
[20] Juncheng Wei and Xingwang Xu. Classification of solutions of higher order conformally invariant equations. Math. Ann., 313(2):207-228, 1999.

[^0]: *r.frank@lmu.de
 ${ }^{\dagger}$ tkoenig@math.lmu.de

