Elie Mengin
email: elie.mengin@gmail.com

Fabrice Rossi

on Knowledge-Based and Intelligent Information & Engineering Systems Improved Algorithm for the Network Alignment Problem with Application to Binary Diffing

Keywords: Network Alignment, Graph Matching, Belief Propagation, Binary Diffing, Binary Code Analysis

 and includes several modifications designed to significantly speed up the message updates as well as to enforce their convergence. Experiments show that our proposed model outperforms other state-of-the-art solvers. Finally, we propose an application of our method in order to address the Binary Diffing problem. We show that our solution provides better assignment than the reference differs in almost all submitted instances and outline the importance of leveraging the graphical structure of binary programs.

Introduction

The problem of finding a relevant one-to-one correspondence between the nodes of two graphs may be known as the Network Alignment problem (NAP). It has a wide variety of applications such as image recognition [START_REF] Zaslavskiy | A Path Following Algorithm for the Graph Matching Problem[END_REF][START_REF] Horaud | Rigid and Articulated Point Registration with Expectation Conditional Maximization[END_REF][START_REF] Zhou | Factorized graph matching[END_REF], ontology alignment [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF], social network analysis [START_REF] Zhang | FINAL: Fast Attributed Network Alignment[END_REF][START_REF] Kollias | Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment[END_REF] or protein interaction analysis [START_REF] Klau | A new graph-based method for pairwise global network alignment[END_REF][START_REF] El-Kebir | Lagrangian relaxation applied to sparse global network alignment[END_REF]. Multiple formal definitions have been proposed. For instance, one may only consider the node content and aim at finding the mapping with maximum overall similarity score. Such formulation reduces to the Maximum Weight Matching problem (MWM) [START_REF] Bayati | Maximum weight matching via max-product belief propagation[END_REF]. On the contrary, one may only focus on the graph topologies and search for the alignment with maximum induced overlapping edges. In this case, the problem is known as the Maximum Common Edge Subgraph problem (MCS) [START_REF] Bahiense | The maximum common edge subgraph problem: A polyhedral investigation[END_REF]. In this paper, we propose a mixed formulation: given any two directed attributed graphs A and B, and two measures of similarity on both nodes and edges, find the one-to-one mapping that maximizes the sum of similarity of both matched nodes and induced edges. In other words, we are seeking the assignment that maximizes a linear combination of MWM and MCS.

Several methods have been proposed to address this problem. Among them, NetAlign [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] introduces a complete message passing framework based on max-product belief propagation. In the present paper, we propose several modifications to this algorithm in order to significantly speed up the computation and to control the messages convergence. We show that these modifications provide better assignments than the original model as well as other state-of-the-art solvers in most problem instances. Finally, we show that our method could be used to efficiently retrieve the differences between two binary executables.

The rest of this paper is organized as follows. Section 2 introduces in more details the network alignment problem and reviews some existing solutions. The original model of NetAlign as well as our proposed optimizations are described in Section 3. Finally, Section 4 is dedicated to the experimental evaluation of our method.

Problem formulation

Let us consider any two directed attributed graphs A = (V A , E A) and B = (V B , E B), where V A = {1, . . . , n} are the vertices of A (resp. V B = {1 , . . . , m } for B) and E A = {(i, j)|i, j ∈ V 2 A , i j} are the edges of A (resp.

E B = {(i , j)|i , j ∈ V 2
B , i j } for B). Without loss of generality, we assume that none of the graph includes self-loops (they can be considered as node attributes if necessary).

We assume given two arbitrary non-negative measures of similarity on both nodes and edges, σ

V : i, i ∈ V A × V B → R + and σ E : (i, j), (i , j) ∈ E A × E B → R + .
Using these measures, we may encode all pairwise node similarity scores into a flatten vector p ∈ R |V A |×|V B | + such that p ii = σ V (i, i), as well as the similarity of all potential induced edges into matrix

Q ∈ R |V A | 2 ×|V B | 2 + such that Q ii j j = σ E ((i, j), (i , j)) if and only if (i, j) ∈ E A and (i , j) ∈ E B ,
and 0 otherwise. Finally, we describe any one-to-one node mapping through a binary vector x ∈ {0,

1} |V A |×|V B | for which x ii = 1 if and only if node i in A is matched with node i in B.
Given these definitions, the network alignment problem consists in solving the following constrained quadratic program:

x * = arg max x αx T p + (1 -α)x T Qx subject to ∀i ∈ V A , j ∈V B x i j ≤ 1 and ∀i ∈ V B , j∈V A x ji ≤ 1, (NAP)
where α ∈ [0, 1] is an arbitrary constant that determines the trade-off between node and edge similarity. This problem is a generalization of the Quadratic Assignment problem and, as such, is known to be NP-complete and even APX-hard [START_REF] Sahni | P-Complete Approximation Problems[END_REF]. Though exact algorithms exist, they rapidly become intractable as the number of vertices rises [START_REF] Burkard | The Quadratic Assignment Problem[END_REF]. In practice, the computation of the NAP for graphs of more than a hundred nodes must be approximated. In the rest of this section, we review some of the existing approaches proposed to address the problem.

Related work

Amongst the first approaches to approximate the NAP are the spectral methods that can be distinguished into two main categories. On one hand, spectral matching approaches are based on the idea that similar graphs share a similar spectrum [START_REF] Umeyama | An Eigendecomposition Approach to Weighted Graph Matching Problems[END_REF]. Thus, they aim at best aligning the (leading) eigenvectors of the two affinity matrices (or Laplacians) [START_REF] Horaud | Rigid and Articulated Point Registration with Expectation Conditional Maximization[END_REF][START_REF] Patro | Global network alignment using multiscale spectral signatures[END_REF]. On the other hand, PageRank methods approximates the NAP through an eigenvalue problem over the matrix Q [START_REF] Singh | Global alignment of multiple protein interaction networks with application to functional orthology detection[END_REF]. The idea consists in computing the principal eigenvectors of Q, and to use it as a similarity score of every possible correspondences. The resulting assignment can then be computed using conventional MWM solvers. Over the years, several improvements have been proposed to enhance the procedure [START_REF] Kollias | Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment[END_REF][START_REF] Nassar | Low Rank Spectral Network Alignment[END_REF][START_REF] Feizi | Spectral Alignment of Graphs[END_REF][START_REF] Zhang | FINAL: Fast Attributed Network Alignment[END_REF].

Other common approaches propose to directly address the quadratic program by means of relaxations. The most common convex relaxation consists in extending the solution set to the set of doubly stochastic matrices. The relaxed problem can then be exactly solved using convex-optimization solvers, and is finally projected into the set of permutation matrices to provide an integral assignment. However, when the solution of the convex program is far from the optimal permutation matrix, the final projection may result in an incorrect mapping [START_REF] Lyzinski | Graph Matching: Relax at Your Own Risk[END_REF]. Other approaches make use of a concave [START_REF] Zaslavskiy | A Path Following Algorithm for the Graph Matching Problem[END_REF] or indefinite [START_REF] Vogelstein | Fast Approximate Quadratic Programming for Large (Brain) Graph Matching[END_REF] relaxations. The induced programs are generally much harder to solve but yield better results when properly initialized. Note that most methods use a combination of both relaxations [START_REF] Zhou | Factorized graph matching[END_REF][START_REF] Zhang | KerGM: Kernelized Graph Matching[END_REF].

Several other methods are based on a linearization of the NAP objective function. The idea is to reformulate the quadratic program into an equivalent linear program, and to solve it using conventional (mixed-integer) linear programming solvers. However, this reformulation usually requires the introduction of many new variables and constraints, and computing the exact solutions of the linear program may become prohibitively expensive. In most cases, relaxations must also be introduced. A successful method, based on Adams and Johnson linearization and using a Lagrangian dual relaxation have been proposed by Klau [START_REF] Klau | A new graph-based method for pairwise global network alignment[END_REF] and later improved by El-Kebir et al. [START_REF] El-Kebir | Lagrangian relaxation applied to sparse global network alignment[END_REF].

Finally, a message passing framework has shown promising results [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF]. It is directly derived from a previous model that provided important results on solving the MWM using max-product belief propagation [START_REF] Bayati | Maximum weight matching via max-product belief propagation[END_REF]. In our work, we chose to apply this model to our use case.

Note that an important limitation to the NAP is the size of the matrix Q that grows quartically with the size of the graphs. This memory requirement may become prohibitive for relatively large graphs encountered in many real-world problems. It is mainly due to the intrinsic nature of the problem which requires that every potential correspondence is evaluated with regards to other candidates, in order to take into account its topological consistency. In practice, most methods are designed to efficiently exploit the potential sparseness of the matrix Q. Therefore, they generally apply to sparse graphs only. Moreover, several approaches propose to also restrain the number of potential candidates [START_REF] El-Kebir | Lagrangian relaxation applied to sparse global network alignment[END_REF][START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] and thus the problem complexity. This pre-selection may rely on prior knowledge or on arbitrary decision rules. It mostly aims at preventing the algorithm to compute the assignment score of highly improbable correspondences. The framework we introduce in the next section make use of this interesting feature.

Network alignment via Max-Product Belief Propagation

In this section, we first recall the original model of Bayati et al. [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] and then introduce our proposed improvements. More details about the complete framework and practical implementation of NetAlign can be found in [START_REF] Bayati | Message-Passing Algorithms for Sparse Network Alignment[END_REF].

Original model

The most common reformulation of a constrained optimization program into probabilistic graphical models usually requires the introduction of a factor-graph which assigns maximum probability to the solution of the program. For more details about factor-graph graphical models, we refer the reader to Kschischang et al. [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. In order to design such graphical model, we must encode both the objective function and the constraints of NAP into an equivalent probability distribution. This encoding is done through the factorization of several functions (function nodes) over the different variables of the program (variable nodes). In this form, the mode of the distribution, can be efficiently computed (at least approximated) using the max-product algorithm. In the following, we introduce the factor-graph designed to address NAP.

The factor-graph

We first define the set of variable nodes

X = {X ii ∈ {0, 1}, ii ∈ V A × V B }.
These variables record the correspondences belonging to the current mapping. We then introduce the different function nodes of our graphical model. We distinguish factors providing the energy to the objective function from factors encoding the program constraints.

On one hand, the objective function is encoded via two sets of function nodes c ii : {0, 1} → R + and c ii j j : {0,

1} 2 → R + , such that ∀ii ∈ V A × V B , c ii (x ii) = e αx ii p ii , and ∀ii , j j ∈ (V A × V B) 2 , c ii j j (x ii , x j j) = e (1-α)x ii Q ii j j x j j
On the other hand, the hard-constraints of NAP are encoded using {0, 1} Dirac measures f i : {0, 1} |∂ f i | → {0, 1}, and similarly for g i , such that:

∀i ∈ V A , f i (x ∂ f i) =        1, if j ∈V B x i j ≤ 1. 0, otherwise. ∀i ∈ V B , g i (x ∂g i) =        1, if j∈V A x ji ≤ 1. 0, otherwise.
where we denote x ∂ f i = {x i j ∈ x, j ∈ V B }, and similarly,

x ∂g i = {x ji ∈ x, j ∈ V A }.
By factorizing all the function nodes, we obtain the probability distribution of our factor-graph:

p X (x) = 1 Z         n i=1 f i (x ∂ f i) m j=1 g j (x ∂g j)         e αx T p+(1-α)x T Qx , (1)
where the normalization constant Z denotes the partition function of the model. It is clear that the support of our model distribution (1) is equivalent to the set of feasible solutions in NAP. Furthermore, the vector x with maximum probability corresponds to the optimal solution of the NAP.

The message passing framework

The main interest of the factor-graph (1) is the ability to efficiently compute an approximation of its mode using the max-product algorithm. Following the message passing framework proposed by Pearl [START_REF] Pearl | Reverend bayes on inference engines: a distributed hierarchical approach[END_REF], and denoting by m (t) the value of the message m after t iterations, we may apply the following updates [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] :

µ (t+1) X ii → f i (x ii) = λ (t) c ii →X ii (x ii)λ (t) g i →X ii (x ii) j j λ (t) c ii j j →X ii (x ii) µ (t+1) X ii →g i (x ii) = λ (t) c ii →X ii (x ii)λ (t) f i →X ii (x ii) j j λ (t) c ii j j →X ii (x ii) µ (t+1) X ii →c ii j j (x ii , x j j) = λ (t) c ii →X ii (x ii)λ (t) f i →X ii (x ii)λ (t) g i →X ii (x ii) kk j j λ (t) c ii kk →X ii (x ii) λ (t) f i →X ii (x ii) = max x ∂ f i \{ii } f i (x ∂ f i) j i µ (t) X i j → f i (x i j), λ (t) c ii →X ii (x ii) = c ii (x ii) λ (t) g i →X ii (x ii) = max x ∂g i \{ii } g i (x ∂g i) j i µ (t) X ji →g i (x ji) λ (t) c ii j j →X ii (x ii) = max
x j j c ii j j (x ii , x j j)µ (t) X j j →c ii j j (x j j) Since x ii are binary valued, computing any message λ a→b (x ii) for x ii = 0 and x ii = 1 is redundant. Therefore, we may halve the computation cost, by only considering its log-ratio m a→b = log λ a→b (1) λ a→b (0) . Following this notation, it can be shown [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] that the messages from the variable nodes to the function nodes introduced above simplify to:

m (t) f i →X ii = -max k i m (t) X ik → f i + , m (t) c ii →X ii = αp ii m (t) g i →X ii = -max k i m (t) X ki →g i + , m (t) c ii j j →X ii = (1 -α)Q ii j j + m (t) X j j →c ii j j + -m (t) X j j →c ii j j +
where we use the notations: x + = max(0, x). Consequently, the message-passing framework reduces to the following updates:

m (t+1) X ii → f i = m (t) c ii →X ii + m (t) g i →X ii + j j m (t) c ii j j →X ii (2)
m (t+1) X ii →g i = m (t) c ii →X ii + m (t) f i →X ii + j j m (t) c ii j j →X ii (3)
m (t+1) X ii →c ii j j = m (t) c ii →X ii + m (t) f i →X ii + m (t) g i →X ii + kk j j m (t) c ii kk →X ii (4)

Proposed modifications

Solution assignment

After each message-passing iteration, the algorithm must compute the current best solution based on the updated messages. In their work, Bayati et al. [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] proposed several mechanisms, called "rounding strategies". Unfortunately, all of them require to address an instance of the MWM problem. Even worse, according to the authors, the best rounding strategy requires to solve exactly two MWM problems. Though this can be done in reasonable time, proceeding to this computational step after each iteration seriously slows down the algorithm.

To overcome this issue, we propose another simple assignment procedure based on the current estimated "maxmarginals". In fact, following the notation introduced in Section 3.1, and referring to the computation rules of Pearl [START_REF] Pearl | Reverend bayes on inference engines: a distributed hierarchical approach[END_REF], we may estimate the max-marginal distribution of each variable node such that:

p(t) X ii (x ii) ∝ λ (t) c ii →X ii (x ii)λ (t) f i →X ii (x ii)λ (t) g i →X ii (x ii) j j λ (t) c ii j j →X ii (x ii)
After t iterations, we may deduce the current best assignment from the sign of each max-marginal log-ratios log

p(t) X ii (1) p(t)
X ii (0) :

Xii = argmax x∈{0,1} p(t) X ii (x ii) = sign         m (t) c ii →X ii + m (t) f i →X ii + m (t) g i →X ii + j j m (t) c ii j j →X ii        
Note that this mechanism may result in a partial mapping. Therefore, after the last iteration, i.e. when the updates converge or reach the maximum number of iterations, we propose to enhance the resulting assignment with less confident matches by solving a MWM problem on the estimated max-marginal log-ratio of each unmatched node Xii .

Auction based -complementary slackness

A well known problem of the Max-Product algorithm when running on loopy graphical models is that it is not guaranteed to converge. In fact, it may fall into infinite loops and oscillate between few states [START_REF] Murphy | Loopy belief propagation for approximate inference: an empirical study[END_REF]. Therefore, most implementations include a mechanism that enforces convergence [START_REF] Braunstein | Learning by Message Passing in Networks of Discrete Synapses[END_REF][START_REF] Frey | Clustering by Passing Messages Between Data Points[END_REF]. In their work, Bayati et al. [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF] propose a damping factor to mitigate the updates over iterations. Once this damping is sufficiently low, the message updates become insignificant, and the algorithm converges.

In our work, we propose another mechanism based on the concept of -complementary slackness [START_REF] Bertsekas | Auction algorithms for network flow problems: A tutorial introduction[END_REF]. This relaxation has been originally proposed for the Auction algorithm to address MWM instances that admit multiple optimal solutions. The idea is to prevent the saturation of the complementary slackness with a small constant margin. This scheme not only breaks ties and ensures the convergence but also provably finds to the optimal solution for an small enough [START_REF] Bertsekas | Auction algorithms for network flow problems: A tutorial introduction[END_REF]. Furthermore, for larger values, it shows to generally provide near-optimal assignments in much less computation time. Though very similar in its MWM version (α = 1), our model is quite different from an Auction algorithm in the general case. In order to adapt the idea of -complementary slackness to our message-passing scheme, we propose the following modifications of updates (2) and (3):

m (t) f i →X ii = -max k i m (t) X ik → f i + -1 m (t) X ii → f i max k m (t) X ik → f i m (t) g i →X ii = -max k i m (t) X ki →g i + -1 m (t) X ii →g i max k m (t)
X ki →g i

In our experiments, this mechanism shows to strongly favor the messages convergence and thus reduce the number of required running iterations. More importantly, this scheme tends to improve the overall final assignment score in many cases. However, this relaxation suffers from an important drawback: the value of the introduced must be chosen carefully. If set too small, the mechanism cannot fully play its part and the algorithm may reach a maximum number of iterations before converging. On the contrary, if is too high, the algorithm tends to converge too quickly to a poor local optimum. In their work, Bertsekas [START_REF] Bertsekas | Auction algorithms for network flow problems: A tutorial introduction[END_REF] propose an iterative method, called -scaling, to properly setup the relaxation. The idea consists in repeatedly decreasing after the messages converged, until it reaches a small enough value, known to provide an optimal solution. In our work, we suggest the opposite scheme. The model starts with a rather small that helps to softly break local ties. Then, as the algorithm iterates, we propose to rise the relaxation value each time the messages have not improved the current objective function for few iterations. As rises, the messages are more and more likely to escape their local optimum and to fall into another better one. As soon as the current assignment improves, is set back to its original value, such that the new local solutions can be carefully explored.

Evaluation

The proposed evaluation of our method, named QBinDiff, is twofold. We first analyze its performances as a NAP solver. To do so, we submit the exact same problems to several state of the art solvers, and compare the computed alignment scores, without any consideration about the underlying purpose of the problem instance. Then, we evaluate the relevance of our solution in order to address the binary diffing problem. Therefore, we compare the resulting mappings to ground truth assignments and evaluate each matching method with respect to accuracy metrics. In all our experiments, we ran our method with default parameters: = 0.5, and within a maximum number of 1000 iterations.

Benchmark experiments

We compare our method to four state-of-the-art NAP solvers and their associated benchmarks (see Table 1): PATH [START_REF] Zaslavskiy | A Path Following Algorithm for the Graph Matching Problem[END_REF], NetAlign [START_REF] Bayati | Algorithms for Large, Sparse Network Alignment Problems[END_REF], Natalie 2.0 [START_REF] El-Kebir | Natalie 2.0: Sparse Global Network Alignment as a Special Case of Quadratic Assignment[END_REF], and Final [START_REF] Zhang | FINAL: Fast Attributed Network Alignment[END_REF]. All these solvers have been configured with their default parameters. In order to analyze the ability of each solver to provide proper solutions both in terms of node similarity and edge overlaps, we tested different values of the trade-off parameter α. Notice that some problems include a similarity score matrix with several zero entries. In some models (ours, NetAlign, Natalie), those entries are considered as unfeasable matches whereas they are legal correspondences in others. These models would thus optimize the problem on a subset of all possible one-to-one mappings.

Our results show that our approach outperforms or nearly ties the other existing methods on every problems (see Table 2). It appears to provide better results on sparse graphs, while it may compute slightly suboptimal assignments on the densest one (1EWK-1U19). It also seems to be the best fitted to perform diffing at different arbitrary setting of the trade-off parameter α, even in the degenerated MCS case (α = 0), unlike most other evaluated methods.

In terms of computing time, as expected, QBinDiff takes much less time to approximate the NAP than NetAlign. Regarding other solvers, both Natalie and Final run within comparable time while Path tends to be very expensive, and may become prohibitive for larger problem instances. Note that it was not able to provide a solution to the Flickr-Lastm problem when α = 0.25 within 8 days, and was considered timed-out. Of course these timings depends on the quality of the implementation and should only be considered with respect to their order of magnitude. We used the implementations provided by the authors of other methods.

Binary Diffing experiments

In a second set of experiments, we propose to evaluate the relevance of our model in order to address the Binary Diffing problem. Given two binary executables A and B, this problem consists in retrieving the correspondence between the functions of A and those of B that best describes their semantic differences. This problem can be reduced to a network alignment problem over the call graphs of A and B.

The results of the alignment should be compared to some ground truth. We computed it as follows. We first downloaded the official repository of a program, then compiled the different available versions using GCC v7.5 for x86-64 target architecture and with -O3 optimization level. Once extracted, each binary was stripped to remove all symbols, then disassembled using IDA Pro v7.2 1 , and finally exported into a readable file with the help of BinExport2 . During the problem statement, only plain text functions determined during the disassembly process are considered. For each program, assuming that this extraction protocol provided us with n different versions, we propose to evaluate our method in diffing all the n(n-1) 2 possible pairs of different binaries. For all these diffing instances, we finally had to extract the ground truth assignments. We proceed in two steps. We first manually determine what we think to be the function mapping that best describes the modifications between two successive program versions. This is done considering the binary symbols, as well as the explicit commit descriptions. Then, we deduce all the remaining pairwise diffing assignments by extrapolating the mappings from version to versions. Formally, if we encode the mapping between A 1 and A 2 into a boolean matrix M A 1 →A 2 such that M A 1 →A 2 ii = 1 if and only if function i in A 1 is paired with function i in A 2 , then, our extrapolating scheme simply consists in computing the diffing correspondence between A k and A n as follows:

M A k →A n = n-1 i=k M A i →A i+1 .
We applied this extraction protocol to three well known open source programs, namely Zlib3 , Libsodium 4 and OpenSSL5 from which we collected respectively 18, 33 and 17 different binary versions and therefore 153, 528 and 136 diffing instances. Statistics describing our evaluation dataset are given in Table 3.

As a baseline, we chose to compare to the two most common diffing tools: BinDiff and Diaphora. BinDiff uses a matching algorithm close to VF2 [START_REF] Cordella | Subgraph Transformations for the Inexact Matching of Attributed Relational Graphs[END_REF] originally introduced to approximate the MCS whereas Diaphora proposes a different greedy assignment strategy that first matches the most similar functions and then searches for potential correspondences in the remaining ones. This mapping mechanism is known to provide 1 2 -approximate solutions to the MWM problem [START_REF] Duan | Linear-Time Approximation for Maximum Weight Matching[END_REF]. Note that, in order to compare with NAP solvers, and because, in general, binary diffing favors recall over precision, QBinDiff is designed to produce a complete assignment and does not include a mechanism to limit the mapping of very unlikely correspondences during computation.

Our experiments show that QBinDiff generally outperforms other matching approaches in both alignment score and recall (see Table 4). In fact, our method appears to perform clearly better at diffing more different programs, whereas it provides comparable solutions on similar binaries. This highlights that the local greedy matching strategies of both BinDiff and Diaphora are able to provide good solutions on simple cases but generalize poorly on more difficult problem instances. This results should be view as promising in the perspective of diffing much more different binaries.

We reproduced our experiments with different trade-off parameters α, in order to estimate which setup should be used such that the optimal assignment meets the ground truth. Our computations suggest that a trade-off around 0.75 is a fair choice though a slightly higher value could provide satisfying assignments as well, especially while diffing OpenSSL programs.

Limitations

Though our method improves the state-of-the-art, some difficulties remain. A first limitation of our approach concerns the design of the network alignment itself. Indeed, the determination of the trade-off parameter α is subject to arbitrary considerations and may have an important impact on the resulting Another difficulty of our approach is the determination of the relaxation parameter . As previously mentioned, its setting controls on a trade-off between the quality of the solution and the speed at which the messages converges. While the proposed solution gives very satisfactory results, other rising schemes could be used to adapt the parameter to the current solution during computation. We leave this investigations to future work.

Finally, our formulation is limited by its memory consumption associated to the use of a quartic memory matrix Q. Though the proposed model enables to significantly reduce the problem size by limiting the solution set to the most probable correspondences, this relaxation inevitably induces information loss, especially for large graphs where the relaxation must rise consequently. In practice, graphs of several thousands of nodes can be handled efficiently. For larger instances, a solution could consists in first partitioning the graphs into smaller consistent subgraphs, and then proceed the matching among them. However such partition is not trivial and might result in important alignment errors.

Conclusion

In this paper, we introduced a new algorithm to address the network alignment problem. It leverages a previous model and includes new mechanism to enforce message convergence as well as speed-up the computation. Moreover, it proved to provide better assignments than the original version in almost all alignment instances.

Our evaluation showed that our approach outperforms state of the art solvers. It also appears to be very well fitted to compute proper solutions for different trade-offs between node similarity and edge overlaps. We finally proposed an application of our method to address the binary diffing problem. Our experiments showed that our algorithm provides better assignments than other existing approaches for most diffing instances. This result suggests that the formulation of the binary diffing problem as a network alignment problem is the correct approach.

Table 1 :

 1 Description of our benchmark dataset.

	Source	A	B	|V A |	|V B |	|E A |	|E B |
	Zaslavskiy et al. [27] 1EWK 1U19	57	59	3192	2974
	El-Kebir et al. [11]	dmela	scere	9459	5696 25635 31261
	Zhang and Tong [28] flickr	lastfm 15436 12974 32638 32298
	Bayati et al. [2]	lcsh	wiki	1919	2000	3130	7808
	Zhang and Tong [28] offline online	1118	3906	3022 16328

Table 2 :

 2 Resulting objective scores of each solver on different benchmark problems. The last column records the average computing time in seconds.

	Problem	Matcher	α = 0.0 α = 0.25	α = 0.5 α = 0.75	α = 0.9	Time
		QBinDiff 2890.000 2183.366 1473.608	764.758	339.628	22.532
		Final	2874.000 2169.750 1465.500	761.250	338.700	17.944
	1EWK-1U19	Natalie NetAlign 2896.000 2185.750 1474.016 2896.000 2172.496 1448.992	725.488 765.023	291.385 338.700	852.921 1620.431
		Path	2896.000 2169.750 1465.500	761.250	338.700	0.700
		QBinDiff	255.000	347.937	441.554	543.832	616.475	32.784
		Final	112.000	250.953	389.906	528.859	612.230	45.898
	dmela-scere	Natalie NetAlign	174.000 224.000	163.109 332.401	142.558 431.732	126.837 543.442	119.156 615.557	8.677 115.397
		Path	47.000	230.809	376.118	522.177	609.812	17951.033
		QBinDiff 6144.000 6955.018 7775.695 8594.405 9118.512	412.266
		Final	1980.000 3890.405 5800.810 7711.215 8857.458	156.849
	flickr-lastfm	Natalie NetAlign 5830.000 6742.407 7567.495 8427.405 9025.683 434531.487 6012.000 5164.405 4282.425 3417.638 2896.056 94.092
		Path	10.000	NA 4316.110 7403.845 8845.276 387114.102
		QBinDiff	632.000	614.867	612.690	605.062	614.086	36.344
		Final	574.000	585.217	596.435	607.652	614.383	20.302
	lcsh-wiki	Natalie NetAlign	584.000 506.000	496.465 547.398	419.760 552.335	337.640 584.123	287.927 610.774	2.932 52.317
		Path	238.000	385.085	462.935	539.480	594.963	4332.587
		QBinDiff 2608.000 2138.206 1678.450 1103.162	812.036	95.696
		Final	40.000	222.352	404.704	587.055	696.466	22.685
	offline-online	Natalie NetAlign 1772.000 1507.908 1352.685 1002.279 198.000 315.160 327.387 392.081	446.390 756.600	1553.770 27971.596
		Path	244.000	789.614	725.422	690.011	742.723	13881.264

Table 3 :

 3 Description of our binary diffing dataset. The last five columns respectively record the number of different binary versions, the number of resulting diffing instances, the average number of functions and function calls and the average ratio of conserved functions in our manually extracted ground truth.

	Program	Versions Problems	|V]	|E] GT ratio
	Zlib	18	153	153	235	0.96
	Libsodium	33	528	589	701	0.79
	OpenSSL	17	136 3473 18563	0.72

solution. Moreover, this trade-off certainly depends on the density of the graphs since densest graphs mechanically include more potential edge overlaps. Finally, the proposed model is designed to compute complete assignments and therefore does not include any mechanism to optimize the precision. This later could be done in introducing a penalty term ζ to the node similarity scores such p ii = σ V (i, i) -ζ. Correspondences with negative similarity scores would thus belong to the final mapping if they induce enough topological similarity.

Table 4 :

 4 Average normalized resulting scores for each matching method. Computing time in seconds.

	Project	Matcher	Similarity Squares Objective Precision Recall	Time
		QBinDiff 0.929	0.807	0.888	0.955	0.995	0.245
		BinDiff	0.921	0.765	0.869	0.943	0.975	1.239
		Diaphora 0.863	0.655	0.792	0.978	0.940	10.494
	Zlib	Final	0.929	0.784	0.881	0.948	0.986	18.469
		Natalie	0.587	0.812	0.663	0.901	0.603	0.354
		NetAlign 0.929	0.807	0.888	0.955	0.995	21.935
		Path	0.930	0.789	0.883	0.953	0.992	0.589
		QBinDiff 0.706	0.604	0.677	0.722	0.880	6.616
		BinDiff	0.662	0.544	0.628	0.752	0.869	1.278
		Diaphora 0.605	0.470	0.567	0.783	0.831	35.327
	Libsodium	Final	0.710	0.455	0.636	0.686	0.829	30.264
		Natalie	0.424	0.565	0.462	0.596	0.438	36.984
		NetAlign 0.703	0.597	0.673	0.722	0.879	283.130
		Path	0.700	0.519	0.648	0.696	0.836	61.784
		QBinDiff 0.720	0.595	0.643	0.605	0.783	213.252
		BinDiff	0.643	0.501	0.553	0.572	0.681	3.944
		Diaphora 0.543	0.332	0.408	0.577	0.565	228.666
	OpenSSL	Final	0.719	0.355	0.487	0.476	0.627	264.397
		Natalie	0.620	0.589	0.601	0.599	0.668	733.802
		NetAlign 0.682	0.587	0.623	0.625	0.755 15193.922
		Path	0.722	0.521	0.596	0.556	0.715	7667.840

https://www.hex-rays.com/products/ida

https://github.com/google/binexport

https://github.com/madler/zlib

https://github.com/jedisct1/libsodium

https://github.com/openssl/openssl