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1 A Brief History of Space

Space is a central notion in both mathematics and physics and has always been
at the heart of their interactions. From Greek geometry to Galileo experiences,
mathematics and physics have been rooted in constructions performed in the
same ambient physical space. But both mathematics and physics have eventu-
ally left the safe experience of this common ground for more abstract notions
of space.

The 17th century witnessed the development of projective geometry and the
strange, yet effective, idea of points at infinity. This century witnessed also the
advent of analytic geometry (with its use of coordinates) with Descartes and of
differential calculus with Newton and Leibniz. Both have led to an approach
of geometry fundamentally based on the manipulation of algebraic formulas.
The capacity to manipulate spaces without relying on a spatial intuition has
laid the foundations for one of the most important revolutions in geometry:
the conception of spaces of arbitrary dimension. During the same time, the
successful geometrization of astronomy, optics, and mechanics anchored physics
to the paradigm of a differential Euclidean space.

The 18th century essentially develops differential calculus for spaces of high
dimensions. Analytic geometry and physics converge into analytical mechanics.
This is a revolution that introduces abstract spaces in physics (like the six-
dimensional spaces of trajectories) and reduces the actual physical space to be
a mere starting point out of which other relevant spaces can be constructed. In
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mathematics, the invention of complex numbers laid the groundwork for the fu-
ture algebraic geometry. In turn, the contradictions of logarithm theory and the
study of polyhedra and graphs planted the seeds of algebraic topology. More-
over, analytical methods forecast a new notion of space: the infinite dimensional
spaces of functions.

In the 19th century, geometry exploded of diversity. The use of local co-
ordinates in analytical mechanics gave rise to the intrinsic theory of manifolds
and the fundamental local–global dialectic. The points at infinity, the points
with complex coordinates, and the multiple points of intersection theory are all
unified in the framework of algebraic geometry. The geometric study of linear
equations led to the notion of vector space. The development of Lie group theory
created a completely new branch of geometry centered on the characterization
of the symmetries of spaces. The construction of models for non-Euclidean ge-
ometry revived the old synthetic/axiomatic geometry, and the development of
analysis prepares the notions of metric spaces. In physics, thermodynamics and
electromagnetism are successfully developed within the framework of the differ-
ential calculus of Rn. The latter entangles space with time in an unusual way,
but the geometric paradigm of classical mechanics remains well secured.

The mathematics of the 20th century started with the successful definition
of topological spaces. At the heart of the notion of space are now the set of
its points, the open subsets, and the continuous-discontinuous dialectic. From
function spaces to manifolds and unseparated spaces, topological spaces are
powerful enough to unify many kinds of spaces. Lie groups and the paradigm
of symmetry are also everywhere, from differential equations to manifolds and
linear algebra. Another major revolution was the discovery that the spaces of
high dimensions have specific shapes and can be different from each other. This
qualitative study of spaces gave birth to algebraic topology and its two branches
of homotopy and homology theories. With higher-dimensional spaces and alge-
braic topology, figures have essentially disappeared from geometry books and
geometry has become the study of spaces that cannot be “seen” anymore.

In physics, the contradictions raised by the constancy of the speed of light
and the spectrum of the black body were the source of a schism on the role of
space. Relativity grounded the geometry of physics in the new dynamical ob-
ject that is spacetime and successfully formalized gravity in purely geometrico-
differential terms. Yang-Mills theories extended this program to the other (elec-
tromagnetic and nuclear) fundamental interactions. On the other side, the for-
malism of quantum mechanics required abandoning geometric intuition and,
rather, focusing on algebras of operators. Despite the fundamental role played
by symmetries and Lie group theory in both theories, the geometric unity of
physics was to a certain extent broken.

By the middle of the 20th century, mathematics and physics are much better
structured than they were at the beginning. The notions of sets, topological
spaces, manifolds (Riemannian or not), algebraic varieties and vector spaces
organize the geography of mathematical spaces. General relativity, classical
mechanics, and quantum mechanics divide the physical space in three scales,
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each with its own geometric formalism. The situation is summarized in Tables 1
and 2. All things seems to fall into place and, for our purposes in this book, we
shall refer to this situation as the classical paradigm of space. The conceptual
categories that organize this paradigm on the mathematical side are points,
open and closed subsets, coordinates and functions, local/global, measure of
distances, continuity/discontinuity, infinitesimal variations, and approximation.
On the physical side, the classical paradigm relies on a differentiable spacetime,
trajectories and fields, infinitesimal equations, and symmetries and covariance.
The intuition of space as been pushed far away from the original intuition of
the ambient physical space, but in a clear continuity.

The evolution of the notion of space in mathematics and physics has con-
tinued until now. However, the results of these developments are less univer-
sally known in the mathematical and physical communities where the common
background stays, even nowadays, the classical paradigm. It is the purpose of
this book and its companion [3] to illustrate and explain some of these “post-
classical” developments.

Table 1: The “classical” kinds of mathematical spaces

Basic
structures

Topology
Differential

geometry
Linear
spaces

Algebraic
geometry

Sets
Topological

spaces

Differential
manifolds,
Lie groups

Vector
spaces,

function
spaces,

modules
over rings

Algebraic
varieties,
algebraic
groups

Pre-orders,
equivalence

relations

Metric
spaces

Riemannian
manifolds

Banach,
Fréchet,
Hilbert
spaces

2 Contemporary Mathematical Spaces

2.1 Algebraic Topology

One of the most important geometric achievements of the postclassical period is
the revisitation of algebraic topology (homotopy and homology theory) in terms
of higher category theory. Homotopy theory evolved from the definition of the
fundamental group of a space (and its applications to classify covering spaces
and to explain the multiple values of analytic continuations) to a general study
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Table 2: The “classical” kinds of physical spaces

General
relativity

Mechanics and
thermodynamics

Quantum
mechanics

(large scale) (medium scale) (small scale)

Ambient space
and time

Lorentzian
4-manifold

Galilean
spacetime
R× R3

Galilean or
Poincaré Lie

group

Phase spaces

Spaces with
action of the

local Poincaré
group

Manifolds with
action of the

Galilean group

Representations
of various Lie

groups in
Hilbert spaces

of continuous maps and spaces up to continuous deformations (homotopies and
homotopy equivalences) [28, 46]. The central object ended up to be that of
the homotopy type of a space, that is, the equivalent classes of this space up
to homotopy equivalence. Homological algebra evolved from a computation of
numbers and groups to a calculus of resolutions of modules over a ring (or
sheaves of such) [18, 66]. The notion of abelian category put some order in this
calculus [14, 39], but it is only with triangulated categories that a central object
emerged: chain complexes up to quasi-isomorphisms [26, 97]. In a separated
approach, the axiomatisation of homology theories in terms of functors had also
led to a new kind of object: spectra, of which chain complexes are a particular
instance [1, 60, 81]. Any space defines both a homotopy type and a spectrum
(its stable homotopy type) but until the 1970s, the nature of these two objects
was somehow elusive.

The development in the 1970s of homotopical algebra (i.e. , model cate-
gory theory) provided for the first time a unified framework for both homotopy
and homology theories [34, 76]. But even with this unification, the theory was
still highly technical and, many times, ad hoc. The concepts that revealed the
meaning of these constructions were only found in the 1980s, when higher cat-
egory theory emerged [12, 31, 41, 75]. The main progress was to understand
that homotopy types of spaces were the same thing as ∞-groupoids, that is, a
particular kind higher category in which all morphisms are invertible (see Chap-
ter 5). By viewing homotopy types as ∞-groupoids, it was possible to revisit
homotopical algebra from the standpoint provided by the whole conceptual ap-
paratus of higher category theory. This has provided conceptual simplification
of many of the homotopical constructions, but this story lies beyond the scope
of this book (see [20, 64]). We have limited our study to the the utilization of
∞-groupoids in geometry, namely, in topos theory (Chapter 4), in stack theory
(Chapter 8), and in the theory of derived schemes (Chapter 9). We have also
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included a chapter explaining how ∞-groupoids have permitted us to revisit
the foundations of mathematics (Chapter 6). Moreover, Chapters 4 and 5 of
the companion volume, New Spaces in Physics [3], show how ∞-groupoids are
useful in symplectic geometry and physics.

2.2 Algebraic Geometry

The field of geometry that has undergone the deepest postclassical transforma-
tion is algebraic geometry. From the 1950s to the 1980s, Grothendieck’s school
brought many definitions and improvements for the objects of algebraic geome-
try. The definition of Zariski spectra and schemes as ringed spaces permitted for
the first time the unification of all the notions of algebraic varieties. Moreover,
the notion of affine scheme provided a perfect duality between some geomet-
ric objects and arbitrary commutative rings of coordinates [42]. An important
difference that schemes have with manifolds is the fact that they can accom-
modate singular points. This singular structure is encoded algebraically by the
existence of nilpotent elements in the ring of local coordinates, a feature that
is possible only if arbitrary rings are considered. Nilpotent elements provide
an efficient infinitesimal calculus, which is one of the nicest achievements of
algebraic geometry (see [24] and volume IV of [42]).1

The theory of ringed spaces was efficient to define general schemes by pasting
of affine schemes. However, motivated by the study of algebraic groups and the
construction of moduli spaces, schemes were almost immediately redefined as
functors, making the previous construction somehow superfluous (see Chapter
7 on the functor of points and [27, 40]). Later on, the definition of étale spectra
of rings (which was needed to define cohomology theories with étale descent)
came back to a definition in terms of ringed spaces with the difference that the
base space was now a topos (see Chapter 4 and [6, 26, 67]). The functorial point
of view continued to be used simultaneously.2

The definitive approach to construct moduli spaces (e.g. , the space of curves
or bundles on a given space) was eventually found with stacks, which are a
variation on the notion of sheaf (see Chapter 8 and [4, 25, 36, 41, 58, 85]).
Essentially, stacks provide a notion of space where the set of points is enhanced
into a groupoid of points. This feature makes them perfectly suited to classifying
objects (such as curves or bundles) together with their symmetries. From a
geometric point of view, stack theory is a formalism intended to deal properly
with the possible singularities created by taking a quotient (see Chapter 9).

The most recent development has been derived algebraic geometry. This
formalism enhances the theory of stacks in order also to tame the singular-
ities created by nontransverse intersections (see Chapter 9 and [65, 90, 91]).

1This calculus is also at the core of synthetic differential geometry; see Chapter 2.
2For example, the notion of a connection on a singular scheme X was successfully defined

by means of the de Rham shape of X, which is the quotient of X by the equivalence relation
identifying two infinitesimally closed points. The result of such a quotient is not a scheme,
but it can be described nicely as a sheaf on schemes (see Chapters 4 and 5 of New Spaces in
Physics [15, 79] and [24, 84]).
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At the end of the story, derived algebraic geometry provides by far the most
sophisticated notion of space ever invented.3 Derived stacks have become a
powerful archetype for a new paradigm of geometric spaces (see chapter 9and
[51, 61, 73, 88, 92]). However, so many turns in only 60 years have been hard to
follow, and the community of algebraic geometers is largely spread out between
different technologies and viewpoints on its objects.

An important field related to algebraic geometry is complex geometry. In
comparison with their differential analogs, complex manifolds have the problem
that they admit too few globally defined holomorphic functions. This has deeply
grounded the field in sheaf theory and cohomological methods and kept it close
to algebraic geometry, where the same methods were used for similar reasons
[37, 47, 83, 98]. Nonetheless, complex manifolds have not really evolve into
more sophisticated types of spaces (incorporating singularities and points with
symmetries). The recent rise of derived analytic geometry might change this
[62, 73, 74].

Algebraic geometry depends on the existence of a well-defined dictionary
between the geometric features of affine schemes and the algebraic features of
commutative rings. This successful translation has led to several attempts to
generalize it for other kinds of algebraic structures. The most famous attempt
is given by the geometry of noncommutative rings. The attempts to build an
actual topological space (a spectrum) from a noncommutative rings have not
been entirely satisfactory [77, 95]4, but the dual attempt to characterize geo-
metric features in noncommutative terms has had more successes (see Chapters
10 and Chapter 1 of the companion volume [21], and references therein). How-
ever, some important geometric notions are absent from both these approaches
(e.g., open subsets, étale maps, the local/global dialectic), preventing a geomet-
ric intuition of noncommutative features in classical terms. Other offsprings of
algebraic geometry have been relative geometry, which develops a geometry for
various contexts of commutative monoids (see Chapter 7 and [92]), the geom-
etry of Berkovich spaces dual to non-Archimedean fields [10, 13], the tropical
geometry dual to tropical semirings [38, 69], and the conjectural geometry over
the field with one element [22, 30, 86].

2.3 Topology

The notion of topological space has been robust enough to successfully deal
with some of the new spaces invented in the second half of the 20th century
such as fractals, strange attractors, and nonseparated spaces (such as the Zariski
spectrum of a commutative ring). Even the study of topological spaces by means
of rings of continuous functions (motivated by Stone and Gelfand dualities) has
not introduced new objects [35].

3Algebraic geometry was able to deal successfully with “multiple points with complex
coordinates at infinity”; derived algebraic geometry added to these features the possibility to
work with quotients by nonfree group actions and self-intersection of such points.

4Mostly by lack of functoriality of the spectra.
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Nonetheless, new spaces have been invented for the needs of topology. For
example, the close relationship between topology and intuitionist logic à la Heyt-
ing has led to locale theory, a variation on topological spaces well suited to define
interpretations of logical theories (see Chapter 4 and [48, 96]). Also, in algebraic
geometry, the remarkable analogy between the Galois theory of fields and the
theory of covering spaces [29] has motivated the search for a functor associating
a topological space to a commutative ring (a spectrum) which could transport,
so to speak, the former theory into the latter. The Zariski spectrum fails to
satisfy this, and the proper answer was found with the étale spectrum. How-
ever, étale spectra could no longer be defined as topological spaces anymore but
rather were defined as topoi [6, 26]. Essentially, a topos is a new kind of space
defined by its category of sheaves instead of its poset of open subspaces. This
broader definition led to many new topological objects that are not topological
spaces (see Chapter 4 and [49, 67]).

Another motivation for enhancing the notion of topological space was the
study of badly separated spaces [2], for example, spaces that have many points
but a trivial topology, such as the irrational torus Tα := R/(Z ⊕ αZ) (α 6∈ Q),
the leaf spaces of foliations with dense leaves, or even bizarre quotients such as
R/Rdis (the continuous R quotiented by the discrete R). The theory of topoi
turned out to be well suited to studying these spaces.5 But other methods
have been developed, like topological sheaves and stacks (inspired by algebraic
geometry) [11, 19, 23] or noncommutative geometry à la Connes (see Chapter 1
of the companion volume [21], and references therein), diffeologies (see Chapter
1, and references therein), or orbifolds and Lie groupoids [59, 70, 78, 94].

2.4 Differential geometry

Differential geometry has not escaped the development of new types of spaces,
but the size of the field has perhaps kept most of it within the classical paradigm.
From Riemannian geometry to knot theory, the basic notion is still that of man-
ifold. Overall, the field does not seem to be in a hurry to incorporate the deve-
lopments of algebraic geometry (e.g., duality algebra/geometry, singular spaces,
functorial approach to moduli spaces and infinite dimensions, relativization with
respect to a base space, tangent complexes). Many attempts have been made to
improve manifolds, but none of them seems to have become central. An exam-
ple is diffeology theory, which provides a nice framework to deal with infinite-
dimensional spaces as well as quotients (see Chapter 1, and references therein).
Another one is synthetic differential geometry, which enhances the notion of
manifold by authorizing singular points and nilpotent coordinates (see Chapter
2, and references therein).6 Related approaches have tried to ground differential
geometry in the algebraic notion of C∞-ring [51, 71, 72]. The most successful
new notion of differentiable space is perhaps that of orbifolds, motivated among
other things by Thurston’s geometrization program [78, 89]. Orbifolds have

5They are called étendues in topos theory, see [6, 49].
6Synthetic differential geometry, as its name suggests, also promulgates an axiomatic ap-

proach to geometry.

7



brought to the field some tools from higher category theory like stacks [59, 70]
and equivariant homotopy theory [80].

Another domain using such methods is microlocal analysis, where sheaves
and their derived categories are of great help for dealing with the problem of
extending local solutions of differential equations (see Chapter 3, and references
therein).

The most impressive display of postclassical methods in differential geometry
can be found in symplectic geometry (together with the related fields of Poisson
and contact geometries). Symplectic geometry is a contemporary descendent of
analytical mechanics. The notions of symplectic manifold and their Lagrangian
submanifolds have given a new geometrical meaning to many constructions of
mechanics (e.g., extremal principles and generating functions, covariant phase
spaces, Nœther symmetries and reduction [43, 53, 87]) A central operation in
the theory is symplectic reduction, which combines the restriction to a subspace
of a symplectic manifold with a group quotient [68]. Since these two operations
might create singularities, symplectic geometry has been forced to deal with
both nontransverse intersections and quotients of nonfree group actions. These
issues have led to the use of new formalisms, such as cohomological methods
[44, 57], Lie groupoids and stacks [99, 100], and, eventually, derived geometry
(see Chapter 4 of the companion volume and [16, 93]). Also, the application
of symplectic geometry to physics has imported many methods from higher
category theory: cohomological methods in deformation quantization [17, 56],
Fukaya categories in mirror symmetry [55, 82], and, more recently a whole
new interpretation of gauge theory in terms of stacks (see Chapter 5 of the
companion volume, and references therein). In fact, more than a simpler user
of higher categories and derived algebraic geometry, symplectic geometry has
been an important catalyzer in the development of these theories.

Another important innovation with respect to the notion of manifold has
been the interpretation of manifolds with boundaries and cobordisms in terms
of higher categories with duals, a viewpoint that was inspired by topological
field theories in physics [7, 8, 63]. In the same way that homotopy theory
has transformed topological spaces into tools that can be used to work with
∞-groupoids, this view on cobordisms does not address manifolds as an object
on its own but rather as a tool to encode the combinatorial structure of some
higher categories.

2.5 Conclusion

We have referred to the understanding of the notion of space in the middle of the
20th century as the “classical paradigm”. This raises the question of whether
the many evolutions undergone by the notion of space since then qualify as a
new paradigm. As the previous presentation and Table 3 illustrate, the classical
geography of mathematical spaces is still pertinent today. The conceptual cate-
gories organizing the intuition of space have not fundamentally changed (points,
functions, local/global dialectic, etc.) If something radical has changed, it will
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not be found there.
In our opinion, the most important postclassical change has in fact not con-

cerned spaces directly – although it had a tremendous impact of them – but
sets. If there has been a paradigm shift in mathematics, it has been the enhance-
ment of set theory in category theory (in which we include higher categories).
Category theory is responsible for most of the new spatial features:

1. The most important change has been that sets of points have been en-
hanced in categories of points (in particular, points can have symmetries).

2. The definition of a space by means of a poset of open subsets has been
enhanced in a definition by means of categories of sheaves (topoi, dg-
categories, stable categories, etc.).

3. Functions with values in set-based objects (numbers, manifolds, etc.) have
been enhanced by functions with values in category-based objects (stacks,
moduli spaces, etc.).

4. Many spaces are defined as functors (schemes, moduli spaces, stacks, dif-
feologies, etc.).

5. Homotopy types are now seen as ∞-groupoids.

6. Also, the relation with logic and axiomatization is made by means of
categorical semantics for logical theories.

In the classical paradigm, sets can be thought as the most primitive notion of
space – collecting things together in a minimalist way – from which other notions
of space are formally derived. In the new paradigm, categories, and particularly
higher categories, are the new primitive spatial notion from which the others
are derived. Nowadays, categories are everywhere in topology and geometry,
from the definition of the basic objects to the problems and methods of study.
The reader will realize that category theory is central in all the chapters of this
volume.
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Table 3: Classical and “new” kinds of mathematical spaces
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3 Summaries of the Chapters

3.1 Differential Geometry

3.1.1 An Introduction to Diffeology (Patrick Iglesias-Zemmour)

The theory of diffeologies – started by the French mathematician J.-M. Souriau
in the early 1980s – provides a formal setting in which the main tools of differ-
ential calculus can be extended to infinite-dimensional spaces (such as spaces
of functions between manifolds or symmetry group of manifolds). Recall that
a manifold M of dimension n can be described by the data given by all dif-
ferentiable maps Rn → M which are open immersions. A diffeology X will
be similarly described by the data of all differentiable maps Rn → M (called
plots), but without the assumption that the maps Rn → X have to be open
immersions, and without the restriction that n has to be fixed. For example, if
E is an infinite-dimensional topological vector space, the corresponding diffeol-
ogy is defined by the data given by all (nonlinear) differentiable maps Rn → E
for all Rn. In analogy with the fact that an infinite set is always the union
of its finite subsets, a diffeology can be understood as the “union” of all its
finite-dimensional plots.7

This definition permits the definition of fiber bundles, differential forms, de
Rham cohomology, and other classical notions of manifold theory. The methods
to do so are very close to the sheaf theoretic methods of Chapter 7 but with
a more classical flavor. Diffeologies provide an efficient setting extending the
classical notion of manifolds at a rather low technical cost. Despite their original
application to infinite-dimensional spaces, they have proved also to be well suited
to defining the differentiable structure of some “bad quotients” (such as the
irrational torus Tα = R/(Z ⊕ αZ) for α 6∈ Q or other leaf spaces of dense
foliations) and of manifolds with boundaries.

3.1.2 New Methods for Old Spaces: Synthetic Differential Geometry
(Anders Kock)

Synthetic differential geometry (SDG in what follows) started with Lawvere’s
work on continuum mechanics in the 1960s and relies on two main ideas. First,
SDG provides a synthetic – or axiomatic – framework for differential geometry.
In the same way that points and lines are just assumed and not constructed
in Euclidean geometry, manifolds are just assumed collectively as primitive ob-
jects in SDG. This idea is opposed to the analytic description of manifolds
individually in terms of coordinates. The central object of SDG is a ring object
R playing the role of the field R of real numbers. The axioms are chosen so
that the theory recovers all classical constructions (tangent vectors, differential
forms, connections) and more.

7This point of view becomes clearer when diffeologies are defined as sheaves over the
category of manifolds [9]. In this framework, the notion of “union” is given by the categorical
notion of colimit. By Yoneda lemma, any sheaf on a category C is always a colimit of objects
of C. A diffeology is then a colimit of Rns.
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The second idea is to provide a setting encompassing manifolds with sin-
gularities (like the cusp {(x, y)|x2 = y3}). The definition of singular objects
is inspired from algebraic geometry, where singular points can be defined by
the property to have local coordinates that are nilpotent. Having nilpotent
elements is the main difference between R and R in SDG. The entire differen-
tial calculus can be deployed from these elements. For example, the subspace
D1 = {x ∈ R|x2 = 0} of elements of square zero plays the role of the first-order
infinitesimal neighborhood of 0 in R. Then a tangent vector of a manifold M is
simply a map D1 → M . The space D1 has a canonical point, which is 0, and
the base point of the vector is simply the image of 0.8

The classical construction of R does not allow nilpotent elements, and the
requirement of SDG may seem strange.9 But the definition of tangent vectors
shows that their introduction simplifies classical constructions. Other examples
are given by the pleasant definition of differential forms and affine connections
(see the chapter).

3.1.3 Microlocal Analysis and Beyond (Pierre Schapira)

An important problem with differential equations is to know if a solution over
a domain U can be extended over a bigger domain V , and this problem can
naturally be formulated in terms of sheaves. Recall that the notion of a sheaf
on a space X encodes the data of local functions defined on X. Let U be an
open domain, σ a section of a sheaf F on U , and x a point of the boundary of
U . The problem at stake can be locally formulated as follows: is it possible to
find a neighborhood of x and an extension of σ in this neighborhood?

By developing the work of Sato and Hormander from the 1970s, Kashiwara
and Schapira’s microlocal analysis tackles this question on manifolds. The dif-
ferentiable structure of a manifold M provides tools to answer the problem. If
U has a smooth boundary, the tangent hyperplane at x is always the kernel of a
differential form p that is negative on U and positive outside (sometimes called
the codirection of the hyperplane). The question about the propagation of sec-
tions can then be formulated in terms of p and no longer U . The microsupport
of a sheaf F is the set of points (x, p) of T ∗M through which the sections of
F cannot be extended uniquely. In other terms, microlocal analysis introduces
a notion of locality that refers not only to the points of the manifold (classical
locality) but also to the codirections around that point (microlocality).

A remarkable result is that the microsupport of a sheaf F is within the zero
section of T ∗M if and only if F is a locally constant sheaf. This is analogous
to the fact that the graph of the differential df of a function f : M → R is in
the zero section of T ∗M if and only if f is a locally constant function. This fact
suggests that the microsupport can be understood as a sort of “derivative” of

8Recall that in classical differential calculus, a vector is defined as an equivalence classes of
paths having the same 1-jet. But this definition cannot work at singular points, since singular
points are precisely points with 1-jets not integrable into actual paths.

9It might help to look at the explicit model, closer the classical analytical approach, given
in terms of sheaves in [71].
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the sheaf F . From this perspective, microlocal analysis may be the beginning
of a differential calculus for sheaves on manifolds.

3.2 Topology and Algebraic Topology

3.2.1 Topo-logie (Mathieu Anel and André Joyal)

This chapter is about the two evolutions of the notion of topological space,
which are locales and topoi. The theory of locales – also known as point-free
topology – is rooted in the close relationship between topology and intuitionist
logic. The main idea in defining a locale is to forget the underlying set of points
of a topological space (hence the name of the field) and to define locales directly
by their frames of open subsets, which are a commutative ring-like structures.
The category of locales is then formally defined as the opposite of that of frames.
The theory is then based on a dictionary between geometric features of locales
and their translation in algebraic features of frames, very much as in algebraic
geometry. Locales have some new features compared to topological spaces. For
example, any intersection of dense subspaces is always dense, and there exist
nontrivial locales with an empty set of points.10 Overall, locales provide a nicer
topological setting than topological spaces, but the two notions are too close,
and the latter is too well established for the former to pretend to replace it.

The notion of topos is similarly defined as dual to an algebraic structure that
the authors call a logos. A logos is intuitively a category of sheaves on a space,
and it is equipped with operations that make it look like a commutative ring.
As for locales, the theory of topoi provides a dictionary between geometric and
algebraic features. Every topological space or locale defines a topos, but there
are much more topoi than topological spaces. A big difference between topoi
and classical spaces is that the former can have a category of points instead of
a mere set. In particular, there exists a topos A whose category of points is
the category of sets. This topos plays a central role in the theory since one can
describe the logos Sh(X) of sheaves on a topos X as the category of morphisms
of topoi X → A. In other words, a topos is the object dual to an algebra of
functions with values in the “space of sets”.

The theory of topoi has mostly been popular in logic, where it turned out
to be well suited to providing interpretations of higher-order theories. The
topological aspects of topos theory are less known. Nevertheless, the theory
of topoi is also quite useful in topology, where it can encode badly separated
spaces, such as foliation spaces11 or some moduli spaces. It also provides a nice
setting where the homotopy and homology theories of spaces can be defined.

3.2.2 Spaces as Infinity-Groupoids (Timothy Porter)

The homotopy theory of topological spaces grew from the study of the fun-
damental group π1(X) of a connected space X to the definition of a whole

10For this reason, it is a pun to refer to point-free topology as “pointless” topology [50].
11See the notion of étendue in [6, 49].
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collection of homotopy groups πn(X) indexed by natural numbers. For this
reason, homotopy types of spaces (i.e., topological spaces up to weak homotopy
equivalence) were first understood as an algebraic structure akin to groups. As
Porter explains in his chapter, the quest for this structure has led to many defi-
nitions, but they were never able to encompass all homotopy types. Significant
progress was made when it was understood that the notion of algebraic struc-
ture based on functional relations (such as the composition law) and conditions
written as equations (such as associativity) was too strict. Another kind of
algebra was needed to capture the features of homotopy theory: functions had
to be multivalued (correspondences), and equations had to be replaced by the
existence of paths.

The problem starts when one tries to define the composition of paths in a
space: not only are there many ways to define such a composition but none
of them are associative. The classical solution is to look at paths up to ho-
motopy for which the composition becomes uniquely defined and associative.
However, this strategy truncates the higher homotopical structure and only
captures π1(X). The insight was to recognize that the existence of multiple
compositions for paths was not a problem but a feature of the theory. The
composition does not exists uniquely, but between two choices of compositions,
there always exists a homotopy; moreover, between any two such homotopies,
there always exists a higher homotopy, and so on. In other words, the regular
structure was found when all the possible compositions were considered together
and not individually: the composition becomes “unique” because the space of
compositions is contractible. The same idea can be used to deal with associativ-
ity.12 The existence of homotopies is formally encoded by lifting conditions, for
example, those defining Kan complexes, which are one of the best definitions of
∞-groupoids.

Another important step forward was made when it was understood that
homotopy types of spaces were a particular kind of higher category called
∞-groupoids. Even if this equivalence does not entail a simplification of the
definition of homotopy types/∞-groupoids, it has permitted us to understand
many constructions of homotopy theory in the light of concepts coming from
higher category theory.

3.2.3 Homotopy Type Theory: The Logic of Space (Michael Shul-
man)

The most unexpected consequence of the idea that homotopy types are∞-groupoids
has been in foundations of mathematics. The development of ∞-groupoids in
algebraic topology and algebraic geometry has produced algebraic objects such
as groups or rings with an underlying ∞-groupoid instead of an underlying set.
This has led topologists and geometers to the idea that∞-groupoids are objects
as fundamental as sets and could be used as a primitive notion (or “background
structure” in Shulman’s terms) to build other mathematical objects.

12This idea has been promoted to an important working philosophy: whenever some choice
has to be made, the good choice is to consider all choices together.
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A similar idea was found in logic when Martin-Löf’s theory of dependent
types with identity types – which has been designed as a language for set theory
– was given a successful interpretation in terms of ∞-groupoids by Awodey–
Warren [5] and Voevodsky [52, 45]. More precisely, the homotopical idea that
the paths between two elements a and b of a space X are the elements of the
path space Ωa,bX turned out to be perfectly suited to encoding the logical idea
that proofs of equality between two terms a and b of a type X should be the
terms of an identity type a =X b. Homotopy type theory is the offspring of
homotopy theory and type theory based on this idea.

From a logical perspective, this homotopical interpretation has provided a
completely new understanding of types and their axioms. In particular, thinking
the proofs of an equality a =X b as paths has explained why such a proof need
not be unique (not all paths are homotopic).13 For the mathematician, the
homotopic semantic of type theory has offered the luxury of a formal langage to
work with homotopy types, which is an alternative to higher category theory,
independent of set theory and implementable on proof assistants.

In addition to semantics in terms of sets, logical theories and type theories
also have interpretations in terms of topological spaces. When these semantics
are crossed with the homotopical semantics, these give rise to interpretations in
higher topological stacks, that is,∞-groupoids enriched over topological spaces.
Moreover, variations can be defined where stacks are defined in the context of
differential geometry or algebraic geometry. In this way, type theory provides
a common language for a variety of geometric contexts. It is in this sense that
type theory is indeed a “logic of spaces”.

3.3 Algebraic Geometry

3.3.1 Sheaves and Functors of Points (Michel Vaquié)

Locally, a differential manifold looks like Rn, and any manifold can be obtained
by pasting the elementary pieces Rn. Moreover, every manifold can be embed-
ded in some sufficiently large Rn. The situation is not as simple in algebraic
geometry. Only the affine schemes dual to commutative rings can be embedded
in affine spaces An. Also, because schemes can have singularities, it is false that
every scheme is locally like An.14 A general scheme is defined as a pasting of
affine schemes, and, unfortunately, there is no simpler and smaller class of ob-
jects (like the Rns of the handlebodies of Morse theory) that could also generate
all schemes.

This is where the general methods of category theory are helpful. Given the
category Aff of affine schemes, there is a simple description of all possible past-

13When types are interpreted as sets, the type a =X b is either empty or a one-point set;
however, this fact cannot be deduced from the axioms of type theory. This posited a long-
standing puzzle. The homotopical interpretation solved it since it provided a model where
this is not true.

14This is only true for smooth schemes and for the étale topology.
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ings of objects of Aff: they are the presheaves on Aff.15 Presheaves are functors
and this is where the functor of points approach has its roots. Any presheaf is
the pasting of a diagram of affine schemes, but not every presheaf is nice enough
to be considered as a geometric object (for instance, they do not all have tan-
gent spaces). This is why presheaves satisfying extra geometric conditions are
considered. Among these conditions, there is always a sheaf condition, which
guarantees that the embedding of affine schemes into the geometric presheaves
preserves the pastings of affine schemes that are affine. The other conditions
are conditions on the type of pasting producing geometric objects (for example,
the only pastings allowed for schemes are along open subsets).

The framework given by the “functors of points” is efficient enough to provide
a definition of schemes different than the classical presentation by ringed spaces.
This functorial framework turned out to be perfectly suited to study moduli
spaces classifying some structure S (e.g., the Hilbert schemes that classify all
the closed subschemes of a given scheme). By definition, moduli spaces define
almost tautologically a presheaf on Aff: the value of the functor on an affine
scheme X is the set of families of objects with the structure S parameterized by
X (see the next chapter on stacks for an example). Once this presheaf is defined,
the moduli problem is to know whether it is the functor of points of a scheme
(or another kind of geometric object, such as an algebraic space [54]). This
setting has been efficient to construct many moduli spaces: projective spaces,
Grassmannians, flag manifolds, Hilbert schemes, Picard schemes, and so on.

3.3.2 Stacks (Nicole Mestrano and Carlos Simpson)

When a moduli space is intended to classify objects that have symmetries,
the sheaves with values in sets have to be replaced by sheaves with values in
groupoids (stacks), where the morphisms encode the corresponding symmetries.
The paradigmatic example in Mestrano and Simpson’s chapter is given by the
moduli space of curves.16 A family of curves parametrized by an affine scheme
X17 is a bundle E → X whose fibers are curves. Such a family can intuitively
be thought of as a function on X with values in some “space of curves” M .
The moduli problem of curves is to construct this space M . The corresponding
functor of points sends an affine scheme X to the set M(X) of bundles of curves
over X, and the question is whether there exists a scheme M such that M(X)
is in bijection with the set of morphisms X → M . Unfortunately, the answer
is negative. A necessary condition for the functor M to be represented by a
scheme M is that it be a sheaf, but this is not the case. The problem comes

15Presheaves are functors Affop → Set. The category of presheaves on a category C has the
universal property to be the free completion of C for colimits, i.e. , for pasting.

16The problem at stake is really to study Riemann surfaces. They are called curves by
algebraic geometers because such surfaces are in fact of dimension 1 relative to the field of
complex numbers.

17The reader unfamiliar with scheme theory can assume that they are manifolds since the
peculiarities of schemes will not play a role here. Although the chapter presents the moduli
problem of curves in the framework of algebraic geometry, the problem can also be formulated
in differential or complex geometries.
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from the fact the data of bundles on an open cover Ui of X is patched together
into a bundle on the whole of X by using isomorphisms on Ui ∩ Uj . But the
sheaf condition only patches them up to equality on Ui ∩Uj , which is too strict.
This problem can be bypassed by incorporating the data associated to the iso-
morphisms between bundles into the values of the functor M. This means that
M(X) – rather than being a mere set – is now the groupoid of curve bundles
together with their isomorphisms. This new functor does satisfy a sheaf-like
condition: the stack condition (see the chapter). When the identifications be-
tween the objects are unique, the functor is valued in groupoids that are just
sets, and the stack is simply a sheaf.

An important class of stacks are the geometric stacks (e.g., Deligne-Mumford
and Artin stacks). These are the stacks that admit local coordinates (atlases)
and for which it is possible to define tangent spaces, local dimensions, and so
on. The moduli stack of curves is an example of a geometric stack. Stacks have
been defined first in algebraic geometry, but they are a general notion that also
plays a role in differential geometry (orbifolds) and in topology.

3.3.3 The geometry of Ambiguity: An Introduction to Derived Ge-
ometry (Mathieu Anel)

Two fundamental geometric operations are intersecting subspaces and taking
quotients. Both these operations can create singular points. Intersection singu-
larities include the multiple points appearing in nontransverse intersections (like
intersecting a circle with one of its tangent line) and the singular points of a
function (like the cusp of x3 = y2). Quotient singularities are typically created
by fixed points of group actions (like the origin in the action of Z/2Z on the
affine line A1 or that of SO(2) on the affine plane A2). The notion of scheme is
able to deal efficiently with multiple points and singular points of functions but
finds a limit when self-intersections are involved.18 Also, the quotients of group
actions do not in general have local coordinates when computed in schemes, but
a solution was found with stacks. Because of the use of groupoids, stacks are
perfectly suited to keeping track of the possible multiple identifications between
the points of a quotient (isotropy groups). This has the consequence that quo-
tients do have local coordinates (atlas) when computed in stacks. This property
has been another incentive for introducing stacks (the quotients A1/(Z/2Z) or
A2/SO(2) are geometric stacks).

Both types of singular points have in common that the tangent space at a
singular point has a dimension which is strictly bigger than the local dimension
of the space around it.19 In practice, these tangent spaces are always computed
as the zeroth homology group of some chain complex whose Euler character-
istic is always the good local dimension. A point is regular if and only if the
homology of this “tangent complex” is concentrated in degree 0. When the

18The “nonschematic” intersections are the ones for which Serre intersection formula, in-
volving the derived tensor product, has been invented.

19This is actually how singular points are defined in algebraic geometry. Intuitively, this is
a way to say that not all 1-jets of paths can be integrated into actual paths.
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point is singular, the positive homology of the tangent complex measures the
“quotient complexity” of the singularity, and the negative homology measure
the “intersection complexity”.

Derived geometry can then be understood as an enhancement of stack theory
(which already deals satisfactorily with quotient singularities) that incorporates
tools permitting us to deal with intersection singularities and justify the com-
putation of tangent complexes. As with stacks, the methods to do so are deeply
rooted in homotopy theory (see the chapter for why and how).

3.3.4 Geometry in dg-Categories (Maxim Kontsevich)

The 20th century has witnessed the rise of many algebraic methods to study
spaces. Beyond the classical correspondence between spaces and rings of func-
tions/coordinates, other algebraic devices have been invented, notably categories
of sheaves. Sheaves of sets are the core of topos theory, sheaves of ∞-groupoids
are the core of higher topos theory and homotopy theory, sheaves of modules
over a ring are widely used in algebraic and complex geometry, and sheaves of
chain complexes are central in homology theory. Beyond sheaves, categories
have also become central in the study of representations of groups and algebras.

Overall, these constructions of categories provide a unity of structure to
topology, geometry, and algebra which has brought M. Kontsevich to an origi-
nal geometric program of unified notions and methods for these three fields. The
common structure is that of a category enriched over chain complexes (differen-
tial graded category or dg-category) that is derived from abelian categories (in
the sense of derived functors and derived categories). The categories produced
from topology or geometry are usually equipped with a monoidal structure (of-
ten commutative), but those from algebra may not. This leads Kontsevich to
make the leap to the noncommutative realm not only by forgetting the com-
mutativity of the monoidal structure but by removing entirely the monoidal
structure. The basic object of the resulting derived noncommutative geometry
is, then, simply a bare dg-category.20

The first part of the chapter presents the main examples in algebraic topol-
ogy, algebraic geometry, and algebra from which Kontsevich draws his inspira-
tion. The second part continues with a list of geometric notions that survive
the removal of the monoidal structure (e.g., smoothness, properness, finiteness,
deformations). The third part continues with new features and methods specif-
ically provided by this new context. The resulting definitions permit the exten-
sion of the notions to nongeometric contexts, thereby enriching the comprehen-
sion of these contexts with a geometric intuition. Dually, the study of actual
geometrical objects without the constraint to preserve the monoidal structure
brings a freedom of operations that is similar to what complex numbers bring
to the study of real numbers.

20Perhaps the name of “nonmonoidal geometry” would be more accurate than “noncom-
mutative geometry”.
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algébrique, I–IV, Publ. Math. l’IHÉS.

[43] Guillemin, V. and Sternberg, S. (1990), Symplectic Techniques in Physics,
Cambridge University Press.

[44] Henneaux, M. and Teitelboim, C. (1992), Quantization of Gauge Systems,
Princeton University Press.

[45] Univalent Foundations Program (2013), Homotopy Type Theory: Univa-
lent Foundations of Mathematics, 1st ed., http://homotopytypetheory.
org/book/, first edition.

[46] Hurewicz, W. (1935-1936) Beiträge zur Topologie der Deformationen,
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[70] Moerdijk, I. and Pronk, D. (1997), Orbifolds, Sheaves and Groupoids, K-
theory, 12, 3-21.

[71] Moerdijk, I. and Reyes, G. (1991), Models for Smooth Infinitesimal Anal-
ysis, Springer.
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