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1 New Spaces in Physics

Two fundamental scientific revolutions took place in physics during the first
decades of the 20th century: Einstein’s geometric description of the gravita-
tional interaction by means of the general theory of relativity and the devel-
opment of quantum mechanics. These two revolutions radically modified our
understanding of the laws that rule the physical phenomena taking place at
opposite (astrophysical and microscopic) spatiotemporal scales.

On the one hand, general relativity introduced into physics essential geo-
metric ideas and tools mainly developed during the 19th century in pure math-
ematics, notably differential geometry, Riemannian geometry, and tensor calcu-
lus. Moreover, general relativity provided the motivating example of the general
program – launched by H. Weyl around 1918 – intended to provide similar ge-
ometric descriptions of the other fundamental (electromagnetic and nuclear)
interactions. This “geometrization program” was finally achieved in the 1950s
in the framework of the Yang-Mills theories and acquired a solid mathematical
foundation and geometric interpretation with the theory of Cartan (for general
relativity) and Ehresmann (for Yang-Mills theories) connections on principal
fiber bundles.1 Both general relativity and Yang-Mills theories define the so-
called gauge theories of fundamental interactions, where the term gauge refers to
the fact that these theories are endowed with a local symmetry associated to the
possibility to choose different coordinate systems (“gauges”) at each spatiotem-
poral location. Moreover, this geometrization of the fundamental interactions

∗M. Anel and G. Catren, eds., Cambridge University Press, 2021.
1For a history of the path that led from general relativity to Yang-Mills theories (and a

collection of some of the corresponding seminal papers), see [31].
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provided the cornerstone of the so-called standard model of elementary par-
ticles and the associated attempts to unify the four fundamental interactions
(where the most celebrated success of this program up to now was the Glashow-
Weinberg-Salam unification of the electromagnetic and weak interactions).

On the other hand, quantum mechanics – with its utilization of noncommu-
tative operator algebras on Hilbert spaces – has a strong algebraic flavor that
has obstructed to a certain extent the construction of a conceptual interpreta-
tion based on a geometric intuition. The main obstacle to the comprehension of
quantum mechanics in geometric terms is given by the non-commutative char-
acter of the algebras of quantum observables. Indeed, this central feature of
the quantum formalism has as a consequence that – differently from the com-
mutative algebras of classical observables – the quantum observables cannot be
understood as functions on an “ordinary” space. This essential feature of quan-
tum mechanics introduces a sort of discontinuity between this theory on the one
hand and both classical mechanics (which relies on a solid geometric intuition)
and the gauge theories of the fundamental interactions on the other.

Roughly speaking, the main lines of research leading to new notions of space
in physics after the quantum and the relativistic revolutions can be understood
as attempts to understand quantum mechanics in more geometric terms on the
one hand and to quantize general relativity on the other. Let us consider first
the “geometrization” of quantum mechanics. Is it possible to construct non-
commutative quantum algebras out of geometric structures? What would it
be gained by doing so? First, it is worth stressing that quantum mechanics is
a formalism that – up to now – could not be endowed with an unanimously
accepted conceptual interpretation, being the landscape of competing interpre-
tations populated with radically different conceptual schemes. Now, casting
quantum mechanics in more geometric terms redounds in a gain of a concep-
tual and more intuitive understanding that might pave the road for solving this
interpretative conundrum. For instance, the geometric quantization formalism
developed by Kirillov, Kostant, and Souriau presents quantum mechanics in the
same geometric formalism – the theory of connections on fiber bundles – used in
gauge theories (see [7, 21, 22, 36]). Now, since gauge theories are better under-
stood than quantum mechanics from a conceptual standpoint, geometric quan-
tization provides a useful bridge to transport this conceptual clarity to quantum
mechanics. Second, since classical mechanics relies on a clear geometric basis,
the geometrization of quantum mechanics might improve the comprehension of
the relationship between quantum mechanics and classical mechanics.

Among the different ways according to which mathematicians can construct
non-commutative algebras from geometry, three constructions became relevant
in physics, namely

• the deformation of a ring of functions (giving rise in particular to the
deformation quantization of a Poisson manifold; see for instance [37] and
references therein),
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• the endomorphisms of a fiber bundle (giving rise in particular to the geo-
metric quantization of a symplectic manifold [7, 21, 22, 36]).

• the convolution algebra of a groupoid (giving rise to non-commutative
methods [8]),

Now, both deformation quantization and geometric quantization strongly
rely on the symplectic formulation of classical mechanics. Here a main player
for the development of physical geometry during the 20th century enters the
scene, symplectic geometry. Thanks to the work of mathematiciens like Arnold,
Maslov, Souriau, and Weinstein, among others, the explosion of research in sym-
plectic geometry during the 20th century led to a deep transformation of our
comprehension of classical mechanics (see for instance [1, 4, 12, 24, 25, 36]). In
the framework of this symplectic geometrization of classical mechanics, funda-
mental new notions and theories were introduced, such as for instance Souriau’s
moment map [28, 36], the Marsden-Weinstein’s symplectic reduction [26], and
Weinstein’s symplectic “category” and Lagrangian correspondences [38]. In the
wake of this symplectic refoundation of classical mechanics, it is also worth
mentioning the development of the theory of variational calculus on jet bun-
dles and the development of multisymplectic geometry launched by De Donder,
Weyl and continued – more recently – by Kijowski among others. In this ex-
tended context, important new notions were introduced, such as the covariant
phase space, the Peierls bracket, and the variational bicomplex (see for instance
[9, 10, 20, 29, 36, 40]).

From a conceptual standpoint, the great importance of symplectic (and Pois-
son) geometry is that it encodes what we could call the classical seeds of quan-
tum mechanics. By doing so, the development of symplectic geometry allowed
to significantly reduce the gap between classical and quantum mechanics. It
could even be argued that symplectic geometry opened the path to the compre-
hension of quantum mechanics as a continuous extension of classical mechanics
and no longer as a sort of “new paradigm” discontinuously separated from the
classical one (see Schreiber’s contribution in Chapter 5). For instance, both
in deformation quantization and in geometric quantization, classical structures
(namely, the Poisson structure and the symplectic structure respectively) en-
code fundamental quantum features. While in deformation quantization the
Poisson structure provides the first term of the “quantum” deformation (in the
formal parameter ~) of the commutative algebra of functions on a phase space,
in geometric quantization the symplectic structure defines the curvature (on
the prequantization fiber bundle) that explains the noncommutativity of quan-
tum operators.2 Moreover, one of the central facts of symplectic geometry is
the existence of a correspondence defined by the symplectic structure between
observables (functions on a phase space) and what could be called classical op-
erators (Hamiltonian vector fields). In this way, the fundamental role played

2It is worth noting that this is in complete analogy to the fact that in general relativity and
Yang-Mills theories, the noncommutativity of parallel transports results from the presence of
a nontrivial curvature.
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by operators in mechanics – far from being a quantum innovation – is already
a central feature of classical mechanics.3 It is also worth mentioning that the
category-theoretic “points“ of a symplectic manifold are given by its Lagrangian
submanifolds.4 According to Guillemin and Sternberg, the notion of Lagrangian
submanifold encodes the classical seeds of the quantum indeterminacies: “The
Heisenberg uncertainty principle says that it is impossible to determine simul-
taneously the position and momentum of a quantum-mechanical particle. This
can be rephrased as follows: the smallest subsets of classical phase space in
which the presence of a quantum-mechanical particle can be detected are its La-
grangian submanifolds. For this reason it makes sense to regard the Lagrangian
submanifolds of phase space [rather than its set-theoretic points] as being its
true ‘points’.” [13] In this way, it could be argued that if the notion of localiza-
tion in phase space (in the sense of “being at a certain point” of phase space)
is not defined with respect to its set-theoretic points but rather with respect
to the Lagrangian “points”, then Heisenberg indeterminacy principle does not
forbid a localization of a quantum particle in phase space. All in all, these
different insights brought forward by the development of symplectic geometry
are permitting us to progressively sublate the simplistic opposition between the
supposedly stable and well-understood realm of classical mechanics and the still-
unsolved conceptual problems posited by quantum mechanics. By pushing this
line of thought to its limit, it could even be argued that the missing insights
permitting us to construct a satisfactory conceptual interpretation of quantum
mechanics might stem from a better comprehension of classical mechanics and
its symplectic foundations. In this sense, the explosion of research in symplectic
geometry is pulling back the problem of interpreting quantum mechanics to an
unexpected problem: the problem of reinterpreting classical mechanics.

Another direct repercussion on geometry elicited by the development of
quantum mechanics is given by the study of hypothetical “spaces” support-
ing (or dual to) noncommutative “algebras of functions”. The new branch of
geometry known as noncommutative geometry might have been inspired by the
capacity to generate new notions of space associated to the geometry-algebra du-
alities, that is, to the dualities between spaces and the algebras of “functions”
on them (like for instance the duality between affine schemes and commutative
rings or the Gelfand-Naimark duality between compact Hausdorff topological
spaces and commutative unital C∗-algebras). Indeed, the geometry-algebra du-
alities naturally lead to the introduction of new spaces by means of the following
pattern: given a particular instantiation of a geometry-algebra duality, one can
generalize the corresponding algebra of functions – by passing for instance to

3In the framework of geometric quantization, quantum operators are in fact defined by
means of a vertical extension (where vertical means in the direction of the fibers of the
corresponding prequantization fiber bundle) of these classical operators (see for instance [7]).

4Considered from the standpoint of category theory, the Lagrangian submanifolds of a sym-
plectic manifold (M,ω) are the (∗, 0)-points of M in Weinstein’s symplectic “category” (where
(∗, 0) is the trivial symplectic manifold), that is the morphisms (Lagrangian correspondences)
(∗, 0)→ (M,ω).
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noncommutative algebras – and try to interpret the new algebra as an “al-
gebra of functions” on a generalized space. However, it is not clear to what
extent the noncommutative approaches to geometry do really produce “non-
commutative spaces” dual to the corresponding algebras. An alternative way
to understand noncommutative geometry could be the following. Given “ordi-
nary” (commutative) spaces one can define non-commutative invariants. These
invariants do not always allow us to reconstruct the space, but they encode
nonetheless certain important geometric aspects like properness or smoothness
(see, for instance, Kontsevich’s chapter in the companion volume New Spaces in
Mathematics [17]). The important fact is that these noncommutative invariants
endowed with a geometric meaning permit us to introduce certain geometric
concepts and intuitions into the realm of noncommutative algebra.

The formulation of quantum mechanics and general relativity naturally leads
to the quantum gravity program, that is, to the different research programs in-
tended to quantize general relativity (like for instance superstring theory, loop
quantum gravity, semiclassical quantum gravity, causal sets, dynamical trian-
gulations, lattice quantum gravity, and the asymptotic safety program among
others5). The general expression quantize general relativity denotes here both
the application of standard quantization methods (e.g. canonical quantization,
path integral, etc.) to general relativity in its Lagrangian or Hamiltonian for-
mulation and the direct construction of a theory out of which general relativity
and the continuum description of spacetime is supposed to emerge in some
“classical” approximation.

The supposed necessity to quantize general relativity can be justified on
different grounds, like for instance

• the idea that quantum gravity is required to deal with spacetime singu-
larities taking place at very high energies and very small scales (such as
the Big Bang and black hole singularities);

• the fact that while general relativity describes (by means of the Einstein
field equations) the coupling between classical matter and the geometry of
spacetime, all matter is currently described in the framework of quantum
field theory;

• the idea that the unification between gravity and the other quantum gauge
fields carrying the electromagnetic and nuclear interactions requires us also
to describe gravity in quantum terms – by taking into account that the
nongravitational interactions are mediated by the so-called gauge bosons
(like the photon for the electromagnetic interaction), this argumentative
line led (mainly in the framework of perturbative string theory) to the
postulation of a hypothetical massless spin-2 particle that mediates the

5For an overview of different approaches to quantum gravity see for instance [27] and
references therein.
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gravitational interaction, the graviton;6

• the arguments based on the finite character of black hole entropy (see for
instance [34]).

Besides these particulars motivations, a more straightforward argument is
the following. Since

a) general relativity is already a classical theory in the sense that it can be
cast in the terms of classical (Hamiltonian or Lagrangian) mechanics (e.g.
ADM formalism, Einstein-Hilbert action); and

b) classical mechanics has been superseded by (or extended to) quantum
mechanics,

then general relativity has to be recast in quantum-mechanical terms.
Despite the still highly speculative nature of the field, research in quantum

gravity has already had a significant impact on mathematical geometry. First,
string theory already had important repercussions on research in pure geometry
(e.g. mirror symmetry, Gromov-Witten invariants and enumerative geometry,
etc.; see for instance [5, 18, 19]). Second, research in quantum gravity opened
the field of quantum geometry, that is, the study of different geometric struc-
tures, out of which the classical and continuum spacetime geometry described
by general relativity can be reobtained in some form of “classical” limit. In very
general terms the field of quantum geometry explores ideas such as

• a fundamental discretization of spacetime (an idea that goes back to Rie-
mann [32] and reappears in almost every approach to quantum gravity);

• spaces described by noncommutative coordinates (e.g. noncommutative
geometry);

• quantum indeterminacies and fluctuations of geometric quantities;

• linear superpositions of geometries.

For instance (as Mariño explains in Chapter 9), string theory addresses differ-
ent forms of deformation (stringy, quantum) of classical Riemannian geometry
resulting from the quantum description of dynamical extended objects (strings
and eventually p-branes). In turn, loop quantum gravity studies certain geo-
metric structures – the canonical spin networks and the covariant spin foams –
arising from a more or less direct quantization of general relativity (see Han’s
contribution in Chapter 8). Other approaches explore the possibility of under-
standing the classical and continuum description of spacetime geometry – as
well as geometric notions like dimension and locality – as an emergent descrip-
tion arising from nongeometric or pregeometric (a term introduced by Wheeler

6It is worth noting that a straightforward application of the perturbative methods of quan-
tum field theory to the gravitational interaction leads to a perturbative nonrenormalizability.
This obstacle has been the main motivation for the development of nonperturbative approaches
to quantum gravity.
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[39]) degrees of freedom. Examples of these supposed pre-geometric structures
are the causal sets – i.e. sets representing spacetime events endowed with an or-
der relation encoding the causal structure – [11, 35] or combinatorial structures
like simplicial objects and graphs (e.g. quantum graphity [16]). However, the
characterization of these structures as non- or pregeometric is problematic (do
they really “break loose at the start from all mention of geometry and distance?”
[39]) and it might seem more appropriate to state that the different “pregeo-
metric“ scenarios proposed thus far remove certain geometric features of the
classical and continuum description of spacetime conveyed by general relativity
(e.g. continuity, differential structure, distance, dimensionality or locality).

Let us consider now in some detail the different chapters of this volume.

2 Summaries of the Chapters

1 Noncommutative and Supercommutative Geometries

1.1 Noncommutative Geometry, the Spectral Standpoint (Alain Connes) The
construction of quotients of spaces has been an important source of definitions
of new notions of space. The space of leaves of a dense foliation does not have
enough open subsets to be described as a manifold or even as a topological space.
The spaces of orbits of group actions that are not free have singularities that a
topology or a differential structure cannot encode. Several methods have been
invented to work with these objects, some using category theory (e.g. sheaves
and stacks, topoi, diffeologies), others algebra. The non-commutative geometry
of A. Connes belongs to this later class. The basic idea is to replace the com-
mutative ring of observable functions on the quotient by the noncommutative
convolution algebra of the foliation or the group action. This construction is
justified by the fact that, when the quotient exists, the categories of modules
over the function ring or over the convolution algebra coincide.7 However the
latter construction is better behaved than the former.

From a more conceptual standpoint, the basic principle of Connes’ non-
commutative geometry is to substitute the equivalence relation associated to
a quotient operation by the corresponding action groupoid of identifications.
The main difference between an equivalence relation and a groupoid is that the
latter keeps track of the fact that different points might be identified in many
different ways (which includes a fortiori the particular case of possible non-
trivial stabilizers). In this sense, an equivalence relation can be understood as a
truncated groupoid where the possibly multiple concrete identifications between
two elements are collapsed to the abstract fact that they are equivalent. This
transition from equivalence relations to groupoids leads to the consideration of a
particular noncommutative algebraic structure, namely the convolution algebra
on the action groupoid (where the noncommutativity is a direct consequence
of the noncommutativity of compositions in the groupoid). As it was stressed
by Connes in Ref.[8, §1.1, pp.40-45] this kind of noncommutative algebras was

7Technically, they are Morita-equivalent algebras.
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implicitly discovered by Heisenberg in the seminal 1925 article in which he pro-
posed the matrix formulation of quantum mechanics [14].8

Noncommutative geometry consists in defining a certain number of geometric
notions (infinitesimal calculus, integration and measure theory, metric, etc.) in
terms of algebras which are not necessarily commutative. The central notion
is that of spectral triplets (A,H, D) encoding a “space” with a metric and a
measure theory.9 The commutative algebra of functions on a Riemanian (spinc)
manifold is reinterpreted by Connes as an algebra of operators acting on a
Hilbert space of spinors, and the inverse line element of the Riemanian structure
is encoded (in Connes’ distance formula) by the corresponding Dirac operator.
Now, the central insight is that this setting remains valid when we substitute
the commutative algebra functions by a noncommutative algebra of operators
acting on a Hilbert space.

It is also worth noting that Connes’ version of noncommutative geometry
is also motivated by the problem of quantizing gravity and unifying the four
fundamental interactions. The inverse line element defined by the Dirac oper-
ator D encodes not only the gravitational interaction (associated as usual to
the metric), but also the electromagnetic, and nuclear – weak and strong – in-
teractions (which are associated to the inner fluctuations of the metric). This
results in a successful derivation of the Lagrangian of the standard model from
a Lorentzian spacetime crossed with a specific finite noncommutative space.
Interestingly enough, the different physical forces are unified by means of the
metric structure of the noncommutative space, thereby giving rise to a sort of
generalized gravity theory.

1.2 The Logic of Quantum Mechanics (Revisited) (Klaas Landsman) Lands-
man’s contribution can be inscribed among the attempts to generalize the clas-
sical notions of space by using the framework provided by the geometry-algebra
duality. Starting with

• the (constructive versions of the) Gelfand-Naimark duality between com-
mutative unital C∗-algebras and compact Hausdorff topological spaces;
and

• the Stone duality between the category of boolean lattices (with homomor-
phisms of orthocomplemented lattices as arrows) and totally disconnected
compact Hausdorff spaces (Stone spaces),

8In Heisenberg’s matrix formulation, the relations between physical quantities is governed
by the noncommutative algebra of matrices that represent these quantities. Connes argued
that the Ritz-Rydberg combination principle that models the experimental results provided by
atomic spectroscopy (which were incompatible with the classical predictions) can be encoded
in a groupoid of frequencies whose convolution algebra is nothing but the algebra of matrices
discovered by Heisenberg.

9More precisely, a general spectral triplet (A,H, D) is given by a ∗-algebra A endowed with
a representation by bounded operators on a Hilbert space H and an unbounded self-adjoint
Dirac operator D acting on H and encoding a generalized notion of distance that extends the
Riemannian notion of distance to the noncommutative realm.
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Landsman moves forward to the intuitionistic/noncommutative realm by ad-
dressing

• the Priestley duality between bounded distributive lattices and Priestley
spaces; and

• the Esakia duality between Heyting algebras and Esakia spaces.

The ultimate goal of this progression is a conjectured duality between arbi-
trary unital C∗-algebras and some Heyting algebras. The result of this work in
progress would be the construction of a model of an intuitionistic quantum logic
that has the opposite features than the Birkhoff and von Neumann’s quantum
logic [6]. This means that such an intuitionistic quantum logic is distributive
(which paves the way to an interpretation of the logical operations ∧ and ∨
as a disjunction and a conjunction, respectively), but does not keep the law of
the excluded middle (which, according to Landsman, matches quantum features
such as Schrödinger cat situations).

Interestingly enough this construction of an intuitionistic quantum logic can
be related to topos theory. Briefly, we can associate to any unital C∗-algebra A
the topos of covariant functors C(A)→ Set on the posetal category C(A) of all
unital commutative subalgebras of A.

1.3 Supergeometry in Mathematics and Physics (Mikhail Kapranov) Kapra-
nov’s contribution addresses the quandaries of supergeometry in mathematics
and supersymmetry in physics from an original homotopical perspective. Ac-
cording to Kapranov, the challenge posited by supergeometry and supersym-
metry is to understand the formal and conceptual structures underlying the
± sign rules that govern the supercommutation structures in both mathemat-
ics and physics. These structures involve vector spaces with a Z/2Z-grading
together with a monoidal structure involving Koszul’s sign rule. Now, an im-
portant caveat is here necessary: the similarities between formalisms discovered
by physicists and mathematicians might sometimes be misleading. According
to Kapranov, an instance of this danger is provided by these supercommutative
structures. Indeed, a careful comparative study of supercommutative structures
in mathematics and physics leads Kapranov to conclude that the formal simi-
larity should not lead to an identification: the Z/2Z of mathematicians is not
the same as the Z/2Z of physicists.

From a mathematical standpoint, supergeometry is the study of geometric
objects whose rings of functions are commutative superalgebras A = A0 ⊕ A1

composed of even and odd elements subjected to the corresponding supercom-
mutation rules. In this way, supergeometry can be added to the list of new
geometries (along noncommutative spaces, topoi, and so forth) associated to
the attempts to generalize the standard commutative algebras of functions of
the geometry-algebra dualities. What Kapranov calls the principle of naturality
of supers states that supercommutative algebras – rather than being a non-
commutative generalization – can be understood as a natural “super” extension
of commutative algebra itself (which is implicit in the term super -commutative
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rather than non-commutative).10 From a physical standpoint, Kapranov under-
stands supersymmetry as a particular case of the heuristic principle of square
roots according to which certain quantities of “immediate physical interest”
(e.g., real quantities like the probability density in quantum mechanics) are bi-
linear combinations of more fundamental quantities (e.g., complex quantities
like the wave function in quantum mechanics).

The original idea addressed by Kapranov in his contribution is that su-
percommutative structures are nothing but the tip of an homotopical iceberg
associated to the first level of the sphere spectrum S (where the group {±} as-
sociated to the sign rules is the first homotopy group of S). To explain this,
M. Kapranov proposes to push further the comprehension of the group of inte-
gers. Classically, Z is the free commutative group on one generator. However,
this is no longer the case in a homotopical or higher categorical context. If sets
are replaced by∞-groupoids (see Chapters 5, 6 and 9 of the companion volume
New Spaces in Mathematics [2, 30, 33]), the free commutative group on one
generator is no longer Z but the sphere spectrum S.11 As Kapranov writes in the
wake of Grothendieck, the sphere spectrum – being the homotopic version of
the ring Z of entire numbers – “is the most fundamental commutative object”,
that is (we could say) the “supercommutative” object. By doing so, Kapranov
establishes an unexpected link between supercommutative structures in math-
ematics and physics on the one hand and the homotopical reconceptualization
of the abstract notion of identity in terms of concrete (and possibly multiple)
identifications on the other hand.

The sphere spectrum is a nontrivial homotopy type, whose homotopy in-
variants are the so-called stable homotopy groups of spheres. The π0 of this
homotopy type recovers Z, but its π1 and π2 are both Z/2Z. This last feature
of the sphere spectrum allows Kapranov to explain the similarity between the
supercommutative structures of mathematicians and physicists. Both are work-
ing with a sign rule, but these are controlled by different levels of the homotopy
of the sphere spectrum (the 1-truncation for mathematicians and 2-truncation
for physicists). Kapranov conclusion is that the practice of mathematicians and
physicists can be unified by considering the new notion of vector spaces graded
by S (rather than Z), a notion which does not yet formally exists and would
“open a fantastic possibility of higher super-mathematics” (sic). The chapter
finishes by a sketch of what this theory could be.

10For instance, given a supercommutative algebra A = A0 ⊕ A1, the even part A0 defines

an ordinary affine scheme Spec(A0) and the odd part (being nilpotent) enriches this scheme
by adding an “infinitesimal neighborhood” to it.

11Intuitively, the difference is that the products ab and ba are equal in Z, whereas they
are only homotopic in S. It follows that a square a2 inherits a non-trivial loop in the space
S. In this regard, Z is constructed from the space S by contracting these loops into trivial
loops. But by doing so, Z is no longer described as a free object, but rather as an object with
relations.
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2 Symplectic Geometry

2.1 Derived Stacks in Symplectic Geometry (Damien Calaque) An important
recent development in the history of the relations between symplectic geometry
and mechanics is provided by the “derived” enhancement of symplectic geometry
discussed in Chapter 4.

The reformulation of mechanics in terms of symplectic geometry led to a
number of problems related to the limitations of the notion of manifold. For
example, a fundamental operation in symplectic geometry is the symplectic re-
duction of a Hamiltonian group action on a symplectic manifold. This process
combines a restriction to a subspace of phase space and a projection to a quo-
tient space (called, in the physics jargon, constraint surface and reduced phase
space, respectively) [15, 26]. Now, these two operations might produce singulari-
ties. The result of this symplectic reduction is again a symplectic manifold when
there are no singularities, but the definition of a symplectic structure around a
singular point becomes problematic when singularities are present.

The recent development of derived geometry (see Chapter 9 of New Spaces
in Mathematics) has succeeded in defining a general notion of singular sym-
plectic space in the context of algebraic geometry.12 The introduction of these
new symplectic spaces allowed us to regularize important features of the theory:
Lagrangian correspondances (i.e., the morphisms in Weinstein’s symplectic cat-
egory) can always be composed, symplectic reductions are always symplectic,
and the symplectic structure built from the transgression construction always
exists. The “derivation” of symplectic geometry has also led to some new fea-
tures. First, the extension of the notion of symplectic structure to the notion of
shifted symplectic structure allowed us to realize that certain important spaces
(like the intersection of any two Lagrangian correspondences, the quotient stack
g∗//G of a coadjoint action, and the classifying space BG = ∗//G) are in fact
endowed with shifted symplectic structures. Moreover, Lagrangian correspon-
dences are no longer given by subspaces, but rather by general maps which are
not necessarily injective.13

2.2 Higher Prequantum Geometry (Urs Schreiber) As we have said before,
the standard (and too simplistic) demarcation line between a supposedly well-
understood realm of classical mechanics and the quandaries of quantum physics
has been blurred by both the explosion in the second half of the 20th century

12It is worth noting that methods developed for dealing with constrained Hamiltonian sys-
tems (like the BRST cohomological reformulation of symplectic reduction or the BV formalism
[15, 23]) already implicitly encode ideas coming from the domain of “derived mathematics”.
In the framework of derived geometry, the ad hoc (co)homological methods used in physics
are interpreted as a way to deal with singular points: degenerated systems of constraint equa-
tions produce nontransverse intersections and degenerated symmetries produce nonfree group
actions and singular quotients. The (co)homological structure generated by the so-called
ghosts and anti-ghosts of the BRST formalism serves to regularize these possible pathological
situations.

13Interestingly enough, moment maps are particular instances of these generalized La-
grangians correspondences.
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of research on symplectic and Poisson geometries and the development of quan-
tization formalisms that strongly rely on this geometric description of classical
mechanics, notably, geometric quantization and deformation quantization.

Schreiber’s Chapter 5 moves forward in the direction of sublating the oppo-
sition between classical and quantum mechanics

• by showing that the prequantization construction in geometric quantiza-
tion (i.e., the definition of a linear fiber bundle on the phase space with
a connection whose curvature is defined by the symplectic form) can be
understood as a global lifting of local data; and

• by developing this understanding of prequantum geometry for covariant
field theories, that is, for theories that are local in spacetime M rather
than in space.

Briefly, the main idea is to generalize the definition of the Lagrangian (of a
theory that describes physical fields given by sections of a bundle ϕ : E → M
over spacetime) from globally defined Lagrangian to families of local Lagrangians
endowed with gluing data. Technically, this amounts to define a Lagrangian as
a function on E with values in the moduli space of Čech-Deligne cocycles, which
classify gerbes with connections. Roughly speaking, a gerbe is a generalization of
a G-principal fiber bundle where the fibers are not isomorphic to G but rather
to the classifying spaces BnG for some n. Geometrically, this means that the
topological twists are not introduced at the level of the identifications between
the fibers (given by G-valued transition functions on the twofold intersections
Ui1 ∩ Ui2 , where Uin are open sets of a covering) but rather at the level of the
higher cocycle consistency conditions defined on the higher n-fold intersections
Ui1 ∩ ... ∩ Uin .

The resulting higher prequantum geometry allows us to prequantize local
field theory in an explicitly local (or covariant) and gauge-invariant manner. It
is a major conceptual step for the comprehension of mechanics to understand
the prequantization construction (which yields the noncommutative algebra of
quantum operators) in terms of what we could characterize as global classical
mechanics. A related important feature of Schreiber’s formalism is that the
global degrees of freedom given by the topology of the bundle (e.g., the instan-
ton sector) – rather than being fixed in an ad hoc manner – are incorporated
in the definition of the generalized Lagrangians as functions with values in a
classifying space. In this sense, Schreiber’s formalism gives a further step to-
ward fulfilling the heuristic principle of “background independence”, that is, the
principle according to which physical theories have to be as free as possible from
the presupposition of ad hoc geometric background structures.

3 Spacetime

3.1 Struggles with the Continuum (John C. Baez) An important motivation
for constructing a mathematical description of physical nature is given by the
possibility of making predictions of future states by means of computations.
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In general, such computations requires to introduce idealizations or approxi-
mations (for instance, it is easier to represent planets as points rather than
3-dimensional objects). In particular, the representation of spacetime by means
of the continuum of real numbers seems to be one of these idealizations. Even
if spacetime might well be discrete at small scales, it is helpful to assume that
it is continuous in almost all branches of physics. In particular, this assumption
permits us to use differential calculus and approximations by series expansions.
Now, while making idealizations is an essential component of scientific activity,
idealizations might lead to inconsistencies when pushed beyond its limits (e.g.,
forces or speeds can become infinite, series expansion can diverge) or become
an obstruction to the construction of a rigorous formulation of the theories at
stake.

In Chapter 6, Baez analyzes a number of problems posited in different
branches of physics by the assumption of spacetime continuity, for instance,
the problems related to the collision and noncollision singularities in Newtonian
point particles interacting gravitationally, the problem of self-forces in electro-
magnetic theory (exerted by the field created by a particle on itself), the renor-
malization of infinities in quantum field theory, and the questions and problems
posited by (black hole and cosmological) singularities in general relativity. All
of these problems are related to the possibility of having arbitrarily small or
large real numbers (typically, small distances creating infinite forces).

Overall, Baez’s chapter shows that the interactions between mathematical
theories, physical theories, and reality are more complex than what is commonly
assumed. Theories can be incomplete, be inconsistent, or fail to make predic-
tions in certain regimes, even if they are in agreement (at least to a certain
extent) with experiments. Some of the problems posited by the assumption of
continuity have led to important solutions (e.g., the discretization of energy in
quantum mechanics), but most of them are still open. While in pure mathe-
matics certain research programs address the problems posited by the mathe-
matical continuum (e.g., nonstandard analysis, synthetic differential geometry,
constructivism, finistim, ultrafinitism), Baez and many physicists believe that
a successful theory of quantum gravity might shed new light on the problems
associated to the assumption of spacetime continuity.

3.2 Twistor Theory: a Geometric Perspective for Describing the Physical World
(Roger Penrose) Penrose’s twistor theory provides a new approach to funda-
mental physics in which quantum mechanics and relativity theory are combined
in an original way that departs from the more established quantum gravity ap-
proaches. Rather than combining them by applying (for instance) quantization
techniques to general relativity, the communicating vessel between the two the-
ories is surprisingly provided by complex analysis and holomorphic geometry.

Twistor theory provides a framework in which spacetime is a derived notion
with respect to an underlying arena provided by complex twistor geometry. One
of the central intuitions of twistor theory is that ray-lights (endowed with an an-
gular momentum twist) should be considered more fundamental than spacetime
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points. In a sense, this amounts to take seriously the fact that spacetime events
connected by a ray-light are “separated” by a null spatiotemporal interval. In
turn, this projective stance amounts to ascribe a more fundamental importance
to the physics of massless particles and the corresponding conformal invariance.

A central feature of twistor theory is that it is specifically adapted to the
fact that the physical spacetime “that macroscopically presents to us” has 3 + 1
dimensions. This feature of the theory contrasts both with approaches like
string theory that requiere extra space dimensions and with the mathematical
drive toward full generality. In particular, the central role played by complex
numbers in quantum mechanics is directly related by Penrose to the fact that
physical space is of dimension 3. In turn, the Riemann sphere that provides
this relation also shows up in a relativistic context, now as the celestial sphere
surrounding an observer. Twistor theory is based on the intuition according
to which this dual role played by the Riemann sphere – far from being a mere
coincidence – provides an essential hint toward a unification of both theories
based on 2-spinor calculus.

Besides unfolding the different trends of thought that led to twistor theory,
Penrose also introduces in Chapter 7 a recent attempt (called palatial twistor
theory) intended to overcome the googly problem related to the left-handed (or
anti-self dual) character of the gravitational fields in Penrose’s nonlinear gravi-
ton construction.

3.3 Quantum Geometry of Space (Muxin Han) One possible strategy to con-
struct a quantum theory of gravity is to apply a quantization formalism to the
canonical (constrained) formulation of general relativity (for instance, the ADM
Hamiltonian formalism). Differently from Yang-Mills theories (where the dy-
namical variable is a connection), the fundamental dynamical variable in the
standard Einstein-Hilbert formulation of general relativity is the 3-metric of the
corresponding spatial hypersurfaces of a four-dimensional spacetime manifold
M4 (with respect to a chosen foliation of M4 in three-dimensional hypersur-
faces M t

3). An important step forward intended to overcome the impasses of
the original quantum geometrodynamics program (impasses which are mainly
associated to the nonlinear nature of the corresponding constraints) was given
by Ashtekar’s reformulation of general relativity as a dynamical theory of SU(2)
connections. The main step of this program is the definition of the quantum
configuration space A of gravity as a space of SU(2)-holonomies around spatial
“loops” defined by “generalized” or “distributional connections”.14 This means
that the wave functions of the quantum theory will be given by functions of
these SU(2)-holonomies

ψγ(A) = ψ(he1(A), ..., hen(A)),

14The distributional nature of the connections means that the usual smoothness assumption
on the connections was dropped, that is, the map e 7→ he(A) can be discontinuous, in order
to cope with the problem of defining a diffeomorphism invariant measure on the configuration
space.
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where γ is a graph (or “network”) immersed in M3, (e1, ..., en) are the n edges
of γ, and hei(A) is the holonomy of A along the edge ei. The main advan-
tage of this connection-theoretical reformulation of general relativity is that it
brings Einstein’s theory closer to the Yang-Mills theories that describe the other
fundamental interactions and whose quantization is well understood.

Along these lines, loop quantum gravity was developed – thanks to the ef-
forts of physicists like Ashtekar, Rovelli, Smolin, Thiemann, and Lewandowski,
among others – as a background independent and nonperturbative approach to
quantum gravity out of which a well-defined picture of quantum space and quan-
tum spacetime emerged in the form of the spin networks and spinfoams states,
respectively. Since the spin network states are common eigenvectors of the area
and the volume operators with discrete spectra, loop quantum gravity provides
a concrete description of a discrete quantum geometry obtained by quantizing
a quantum configuration space of distributional SU(2)-connections.

3.4 Stringy Geometry and Emergent Space (Marcos Mariño) The problem of
quantizing gravity has also triggered research in theoretical physics aiming to
extend the physics of fundamental point-particles to higher dimensional objects
such as strings, membranes, and p-branes. In particular, string theory provides a
unified theory of the fundamental interactions with propagating gravitons (and
black hole solutions), that is to say, a unified theory of the four fundamental
interactions including a perturbative theory of quantum gravity. As Mariño
explains in his contribution, this perturbative quantum theory of gravity can
be geometrically understood in terms of a 2-parameter stringy and quantum
deformation of classical Riemannian geometry (where the deformation parame-
ters are the string length ls and the string coupling constant gst, respectively).
In concrete examples, classical Riemannian geometry “emerges” as an effective
description in the limit of a point-particle approximation (ls → 0) of noninter-
acting (gst → 0) strings.

Regarding the stringy deformation, a manifoldX – rather than being “probed”
by points (limit case in which ls → 0) – is endowed with all possible maps from
Riemann surfaces to X, where these maps describe the possible worldsheets
of the string. In the simpler case given by topological string theory, the quan-
tum theory of strings embedded in a Calabi-Yau manifold X gave rise to the
celebrated results in enumerative geometry associated to the Gromov-Witten
invariants.

In the case of a nonzero string coupling constant gst, quantum corrections as-
sociated to Riemann surfaces with a nonzero genus have to be considered. Since
the corresponding genus expansion is divergent, a nonperturbative formulation
of string theory is needed (the formulation of which remains problematic). Now,
it was understood that a nonperturbative formulation of string theory requires
us to consider higher dimensional objects (p-branes) that are “invisible” from
the standpoint of the perturbative theory. One of the most fruitful avenues of
research toward a nonperturbative formulation of string theory is given by the
so-called holographic dualities, notably Maldacena’s AdS/CFT correspondence
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(where AdS/CFT stands for anti-de Sitter/conformal field theory). These are
dualities between string theories (and the corresponding spacetime gravitational
physics) on the one hand and quantum gauge theories in lower dimension on
the other.
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