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Abstract

Stem cell-based therapeutic products could be the key to treat the deadliest current pathologies, ranging
from neuro-degenerative to respiratory diseases. However, in order to bring these innovative therapeutics to
a commercialization stage, reproducible manufacturing of high quality cell products is required. Although
advances in cell culture techniques have led to more robust production processes and dramatically accelerated
the development of early-phase clinical studies, challenges remain before regulatory approval, particularly to
define and implement science-based quality standards (essential pre-requisites for national health agencies).
In this regard, using new methodologies, such as Quality By Design (QBD), to build the production process
around drug quality, could significantly reduce the chance of product rejection. This review-based work aims
to perform a QBD approach to Mesenchymal Stem Cell (MSC) manufacturing in standard two-dimensional
flasks, using published studies which have determined the impact of individual process parameters on de-
fined Critical Quality Attributes (CQA). Along with this bibliographic analysis, parameter criticality was
determined during the two main manufacturing stages (cell extraction and cell amplification) along with an
overall classification in view of identifying the Critical Process Parameters (CPP). The analysis was per-
formed in view of an improved standardization between research teams, and should contribute to reduce the
gap towards compliant Good Manufacturing Practice (cGMP) manufacturing.
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Introduction1

Advanced Therapy Medicinal Products (ATMP’s) are a class of bio-pharmaceuticals comprised of in-2

novative therapeutics such as gene therapies, tissue engineered products or cell therapies. Notably, the3

development of genetically engineered T-cells (CAR-T) and stem cell products have triggered a recent wave4

of applications. For example, over twice as many clinical trials using Mesenchymal Stem Cells (MSC) were5

registered by the US National Library of Medicine between 2011 and 2015. These cutting-edge products6

were shown to address a wide range of indications such as bone/cartilage, heart, neuro-degenerative, im-7

mune / autoimmune diseases Trounson and McDonald [2015]. More recently, MSC-based products have been8

shown to be efficient in cases of acute respiratory distress syndrome (ARDS) for example for the treatment9

of COVID-19 patients Metcalfe [2020], Moll et al. [2020]. However, the distribution of these products by10

phase was shown not to evolve, indicating the products were not moving out of the clinical pipeline (only11

7% of clinical trials passed onto phase 3) Trounson and McDonald [2015], Trounson et al. [2011]. A rapid12

search of the NIH database (https://clinicaltrials.gov/) for MSC-based clinical trials in 2020 seems13

to indicate a similar distribution, possibly due to incomplete quality standards during early development14

phases. For example, 73% of interviewed companies producing ATMP’s have faced manufacturing and qual-15

ity assurance issues which may be related to inconsistencies between the laboratory and scale-up phase or16

issues with quality standard definitions Ten Ham et al. [2018]. Although great progress has been made since17

2011 to understand and develop MSC therapies, several lead trials have either undergone early termination18

or failed to meet the requirements for phase progression Parekkadan and Milwid [2010]. Thus, it seems that19

important bottlenecks still remain to produce high quality MSC’s and pass onto commercial development of20

these therapies. In this regard, using new tools and methodologies, such as the Quality By Design (QBD)21

approach, may be an essential foundation to help products achieve commercialization.22
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1. Defining a quality-based approach for cGMP manufacturing23

1.1. The Quality By Design approach24

QBD is a scientific and risk-based approach to product development which is currently flourishing in the25

pharmaceutical industry Rathore and Winkle [2009]. Using this methodology brings the definition of quality26

standards early in the process development stages. In this mindset, the QBD method begins by defining the27

desired product characteristics from a patient and clinical perspective : the Quality Target Product Profile28

(QTPP) (Figure 1). These requirements are then used to define Critical Quality Attributes (CQA’s) which29

will be necessary and sufficient to guarantee product efficacy and safety. Each CQA should be routinely30

tested (with rapid, sensitive and reliable procedures Gad [2008]) and stability should be maintained within31

a defined range Yu et al. [2014]. Once the quality attributes are defined, it is important to understand how32

the production process will impact these quality attributes. In this regard, the Critical Process Parameters33

(CPP’s) will be determined as well as their defined ranges. Working within these ranges ( i.e. the design34

space) should ensure consistent product quality regardless of the set of parameters used. During routine35

manufacturing, Ongoing Process Verification (OPV) should then be put in place according to a defined36

control strategy of these CPP’s in order to easily detect shifts or abnormalities which may impact the37

quality of the final drug product.38

1.2. Identifying Critical Process Parameters39

In order to define and compare the criticality of process parameters, an approach inspired by the Risk40

Priority Number (RPN) was proposed. The method has typically been used for Failure Mode and Effect41

Analysis (FMEA) Xiao et al. [2011], Sellappan N [2013], Certa et al. [2017], Khandagade et al. [2013], Harms42

et al. [2008], Seely and Haury [2005] in order to prioritize potential failures based on their Severity (S),43

Occurrence (O) and ease of Detection (D). For this, scores between 1 and 10 are defined according to a44

predefined scale suggested by the IEC 60812 for each factor (S, O and D) and are multiplied to obtain the45

RPN number. Issues with the highest RPN value are therefore the most critical and should be addressed46

first.47

Using this basis, an ”impact score” was determined to evaluate the expected impact of each process48

parameter on each CQA. A similar strategy has been proposed by the CMC Biotech working group using49

a five-level scale to evaluate the impact of CQA’s in a monoclonal antibody production process case study50

Group [2009]. Although the attribution of a given impact score was based on available literature and51

scientific knowledge, it remains, by nature, a subjective quantification. In this study, the scale proposed52

was reduced to three risk levels for an easier and less subjective assessment (Table 1). Admittedly, three-53

level hierarchies are common in literature for criticality evaluations Mitchell [2014]. When no literature was54

available, an impact score of 1.1 was set to account for uncertainty, considering a low parameter impact if55

little literature exists. Based on RPN calculations in FMEA’s, a RPN number for each QTPP attribute was56

calculated by the product of its factors. However, since not all QTPP attributes were defined by the same57

number of parameters, a correction factor was applied on all RPN calculations for a better comparability58

between results. Lastly, an overall RPN calculation was defined, calculated through the average of the RPN59

calculations of all QTPP attributes in order to define the most critical parameters for the overall quality of60

cells and to present an overview of the production process as a whole.61

2. Using Quality By Design for Mesenchymal Stem Cell Manufacturing62

2.1. Defining the Quality Target Product Profile (QTPP)63

In order to understand their therapeutic potential, two categories of cell-based medicinal products using64

MSC’s will be described, on the basis of existing reviews Sharma et al. [2014], Lipsitz et al. [2016] and similar65

QBD examples Rathore [2009] (Table 2). To begin with, MSC’s exhibit tropism for sites of tissue damage66

Spaeth et al. [2008] and generate local regenerative environments (secretion of anti-inflammatory factors67

Eggenhofer and Hoogduijn [2012], stimulation of local cell-mediated repair processes Caplan and Correa68

[2011]). In addition, MSC’s have interesting immunomodulatory properties by activating and/or modulating69

the maturation of various immune cells including T-Lymphocytes Di Nicola et al. [2002], B lymphocytes70

Corcione et al. [2006], Natural Killer (NK) cells Spaggiari et al. [2006] and dendritic cells Zangi et al. [2009].71

However, evidence suggests that these properties may intrinsically depend on the micro environment in which72

the cells are grafted Han et al. [2019]. For example, excess cytokine production (growth factors, chemokines73

etc.) or an uncontrolled immunosuppressive effect can stimulate tumor growth Amariglio et al. [2009] or74

favour an inflammatory response Li et al. [2012]. As a result, sufficient purity and quality of these products75

will be required for their successful development. In addition, their properties should be preserved as well76

as their capacity to adapt in-vivo to avoid adverse effects.77
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On the other hand, MSC’s are able to differentiate into different tissues of mesodermal lineages such78

as bone, cartilage, tendon, muscle or fat cells Caplan and Correa [2011]. It has also been suggested that79

MSC’s can differentiate into ectodermal lineage cells such as neurons or epithelium cells, but also endodermal80

lineage cells such as hepatocytes Han et al. [2019]. As a result, cells can be used for ex-vivo tissue engineering81

using adapted scaffolds such as extracellular matrix scaffolds Agmon and Christman [2016], or on polymeric82

scaffolds Caplan [2007]. In this case, the specific and controllable differentiation potential needs to be83

maintained. The differentiation may also be of interest in-vivo, although MSC differentiation in the acute84

phase of injury is unlikely and regeneration is most-likely mediated by their trophic function or cell-cell85

contact rather than differentiation.86

2.2. Defining Critical Quality Attributes (CQA’s)87

Building upon previous quality-based approaches for MSC manufacturing Martin et al. [2017], the at-88

tributes which affect the QTPP defined in Table 2 are proposed as well as suggested acceptance criteria for89

these parameters, mandatory per FDA’s Code of Federal Regulations (21-CFR) (Table 3). The acceptance90

criteria proposed are based on literature data but should, without any doubt, be adapted to individual91

applications.92

2.2.1. Dosage Strength93

A generalized optimal dose without adverse side-effects is not expected since likely depends on disease,94

route of administration, frequency and other parameters Sharma et al. [2014]. It is therefore likely that the95

number of cells required at the end of the expansion process will vary and, ideally, the process should keep96

flexibility in this regard. The dosage strength will depend, from a process perspective, on cell quantity and97

cell viability throughout the process.98

Cell Quantity (Qua.) Final cell quantity can be directly obtained by viable cell counting of the detached99

cells after expansion. During the expansion process, this parameter is intrinsically linked to the different step100

yields (from initial cell extraction to final detachment phase) as well as the final concentration. Although101

it would be interesting to perform the cell culture process in concentrated conditions to reduce equipment102

volume, it should be kept in mind that an increased concentration may cause the aggregation of cells or an103

increased viscosity which may impact the lot-to-lot homogeneity of the final product or cause needle clogging104

during patient administration Amer et al. [2017].105

Cell Viability (Via.) Viability can easily be determined after cell detachment using exclusion staining106

such as trypan blue or flow cytometry techniques. In order to achieve robust and cost-effective large-scale107

manufacturing, it is important to maintain a high level of viability, typically greater than 90 % all throughout108

the process. In certain exceptional cases, a lower limit of 70 % can be acceptable for the finished product109

Gad [2008].110

2.2.2. Therapeutic Potency111

Potency is the specific ability of a product to effect a given result when administered according to defined112

posology. This characteristic is influenced by 3 target attributes: identity, differentiation capacity and in-vivo113

effect for which testing should comply with 21CFR section 600.3 recommendations.114

Identity (Id.) The cells produced during and after expansion must have maintained the characteristics of115

MSC’s, at the risk of expanding the wrong cell type. In 2006, the International Society for Cellular Therapy116

(ISCT) proposed a list of cell markers which can identify MSC’s Dominici et al. [2006] and which continues to117

be used. It should be noted that there are debates concerning the robustness of ISCT cell markers for MSC118

characterization Martin et al. [2017] and that additional RNA’s or proteins could be used to complete the119

criteria proposed Billing et al. [2016], Mindaye et al. [2013]. In this mindset, the review of the 20 most-used120

production markers in 66 MSC-based product submissions to the FDA calls for caution regarding the need121

for further characterization, especially for non-bone marrow derived MSC’s Mendicino et al. [2014]. It is122

likely that the definition proposed is neither exhaustive nor universal.123

In-vitro differentiation capacity (Dif.) MSC differentiation capacity was separated from identity mark-124

ers for clarity in the analysis. Although some quantitative descriptions have been proposed for MSC differen-125

tiation Vishnubalaji et al. [2012], they globally remain rare. Most articles qualitatively evaluate the capacity126

of a sample to undergo differentiation and the proportion of cells which have the tri-lineage differentiation127

capacity is, in most cases unknown. However, since routine testing of clonal populations would require long128

analysis and delay product release, this CQA has been evaluated in a qualitative manner (ie, sub-populations129

of the final cell culture sample must be able to differentiate into the three lineages and variations between130

conditions may be visually defined).131

Expected in-vivo effect (Viv.) The last quality attribute impacting potency is the capacity of the cells132

to exert their appropriate in-vivo effect. Functionality assays are typically measured through in-vitro co-133
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cultures with T-cells, for example, but tests should ultimately depend on the target therapy Gad [2008].134

Although this attribute is rarely measured, information was included when possible.135

2.2.3. Product quality136

In order to keep a homogeneous nomenclature between sections, the term drug quality will be used accord-137

ing to its use in ICH Q8 guidelines (i.e. characteristics required to avoid adverse effects after administration138

such as sterility, purity and stability of the product).139

Genetic stability (Gen.) Many studies have shown an increased senescent state after an ex-vivo culture of140

MSC’s, for which replication is limited by the Hayflick limit and telomere length Hayflick [1964]. Generally,141

senescent cells display a characteristic large, flattened morphology and are characterized by an irreversible G1142

growth arrest involving the repression of genes that drive cell cycle progression and the up-regulation of cell143

inhibitors like p53/p21 (primarily due to telomere dysfunction and DNA damage) and p16/RB (oncogenes,144

chromatin disruption and various stresses Sethe et al. [2006]). Senescent cells secrete factors that are pro-145

inflammatory Kletsas et al. [2004], stimulate tissue aging and tumorigenesis Krtolica and Campisi [2003],146

Han et al. [2019]. Although data suggests a higher genetic stability of MSC’s compared to other cell sources147

such as Embryonic Stem Cells (ESC) or induced Pluripotent Stem Cells (iPSC) Kim and Park [2017], more148

routine and thorough genetic phenotyping would be required to further understand these possibly critical149

effects. It is still unclear, however, how such data would be interpreted, and what level of genetic abnormality150

would be required to disqualify a cell line for clinical use Vazin and Freed [2010]. For simplification, these151

problematics have been regrouped into a qualitative attribute called genetic stability.152

Cell Purity (Pur.) The last quality attribute concerns the absence of contamination during the process.153

Ideally, sterility testing should be performed after each critical manipulation step during cell culture in154

order to detect fungal, bacterial or mycoplasma contamination of the cells. The presence of contaminations155

compromises the safety of therapeutic products. Furthermore, the final cell product should be free of other156

cell contaminants which could have adverse effects in-vivo. For example, the presence of 25-50% of non-MSC157

cells within the cell population causes a dose-dependant diminution of differentiation potential in-vivo and158

in-vitro Caplan [2007]. Although this amount of contamination may seem high, and purity is expected to159

be higher than 75% at the end of cell culture, it should be kept in mind that, after clinical applications, the160

injected MSC’s will be diluted with host connective tissue, at a factor which is difficult to predict.161

2.3. Defining Critical Process Parameters (CPP’s)162

Maintaining high quality standards within a production facility requires a rigorous understanding of the163

interaction between process parameters and the impact of their potential deviation on product quality (i.e.164

defined CQA’s). In the case of MSC culture, the most common manufacturing technique is composed of two165

main stages, each with a set of co-dependent parameters.166

2.3.1. Cell Extraction167

To begin with, MSC’s are extracted from a suitable donor and an appropriate tissue source. Although the168

majority of clinical trials have used cells isolated from Bone Marrow aspirations (BM), extraction protocols169

remain invasive and painful. Alternative tissue sources include discarded Umbilical Cords (UC) Margossian170

et al. [2012] or lipoaspirate-derived Adipose Tissue (AT) Aust et al. [2004] which offer an easily accessible,171

low cost and pain-free source of MSC’s. Independently of tissue source, the extracted cell population has172

typically been composed of only a small proportion of MSC’s (less than 0.05% in the case of BM Guo et al.173

[2006]). As a result, cells need to be carefully selected to obtain a homogeneous initial population of MSC’s174

Han et al. [2019], Tong et al. [2011], Sharma et al. [2014], Oedayrajsingh-Varma et al. [2006], Guo et al.175

[2006], Gentry et al. [2007]. The question of which tissue source or extraction method might be optimal176

for any given clinical situation is, however, not yet clearly understood due to important quality variations177

reported in literature Han et al. [2019], Sharma et al. [2014], De Ugarte et al. [2003], Vishnubalaji et al.178

[2012], Yang et al. [2014], Planat-Benard V. et al. [2004]. Lastly, the extraction phase typically ends with a179

cryopreservation step for logistic purposes (expansion of the cells is rarely performed at the site of extraction)180

Ikebe and Suzuki [2014]. Studies generally tend to show that cryopreservation has little impact on CQA’s181

and that traditional cryopreservation techniques can be considered robust for pre-clinical trials Steigman182

et al. [2008].183

Overall, the most noteworthy characteristic, at this stage, is the considerable donor-to-donor and intra-184

population heterogeneity Christ et al. [2017], Phinney [2012], Vangsness et al. [2015] which is particularly185

critical for allogenic therapies since each donor brings a ”one to many” associated risk in case of un-detected186

infection or functional abnormality Group [2014]. In this regard, donor age seems to be the most important187

factor Baker et al. [2015], for example through a decreased quantity of cells extracted was generally lower188

in older patients Yang et al. [2014] possibly due to a reduced plastic attachment Kretlow et al. [2008] or to189

a lower initial titer of MSC’s Caplan [2007] (see Table 4). Evidence also suggested that expression levels190
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of MSC markers may vary upon age Stolzing et al. [2008] as well as an altered differentiation potential191

(’adipogenic switch’ described in most studies Sethe et al. [2006], Meunier et al. [1971]). In addition, age192

seemed to reduce cell growth Baxter et al. [2004], increase doubling times Yang et al. [2014], Choudhery193

et al. [2014], reduce replicative lifespan Zaim et al. [2012], Baxter et al. [2004] and increase genetic instability194

Baxter et al. [2004], Stolzing et al. [2008]. Since donor age is the only parameter which scored a RPN value195

greater than 9 (see Figure 2), it can be considered as the only CPP at this stage. However, the combination of196

parameters as a whole, for example patient illness such as diabetes Pierdomenico [2011] or obesity Tencerova197

et al. [2019], make it difficult to predict, at a large scale, how many cells can initially be extracted for each198

donor and whether the quality and purity of these cells will meet the requirements for clinical applications.199

2.3.2. Cell Amplification200

After the initial extraction phase, cells undergo an amplification phase using mono-layer flasks (tissue201

flasks) of different sizes Ikebe and Suzuki [2014] in order to expand the initial cells to a reproducible target202

concentration for administration. This method of expansion is well documented in literature Chen et al.203

[2013] but labour intensive due to the required manual passaging of cells between different containers. Fur-204

thermore, the risk of contamination increases with the number of container systems and the required number205

of passages. This risk can be reduced by limiting the number of containers (through cell stack systems for206

example Fekete et al. [2012]), using fully automated processes Thomas et al. [2007] or developing fully closed207

production systems Hanley et al. [2014], Zanini et al. [2020], although these options are not yet fully ex-208

plored in clinical facilities. Furthermore, in most clinical trials, cells were expanded using defined basal cell209

culture media, composed of all the elements required for cell growth such as an energy source (glucose often210

supplemented with L-glutamine), essential amino-acids and specific ions (calcium, magnesium, potassium,211

sodium etc.) Ikebe and Suzuki [2014]. In addition, these chemically defined media were, in most studies,212

completed with 5 to 20% bovine serum or xeno-free alternatives such as Human Platelet Lysate (HPL) Gad213

[2008], which provides complementary factors such as hormones, substrate-attachment molecules or binding214

proteins Caterson et al. [2002], Schallmoser et al. [2007]. Notably, the choice of supplementation type and215

concentration has been shown to impact bone formation capacity Kuznetsov et al. [2000] and immunomod-216

ulatory effects Abdelrazik et al. [2011], Bernardo [2010], Nasef et al. [2007]. In parallel, seeding density has217

been at the center of various studies Ikebe and Suzuki [2014] but results remain controversial, leading to low218

overall RPN scores. The only parameters which scored RPN ratings over 9 (and may therefore be considered219

as critical) seem to be the amount of population doublings that cells undergo and the oxygen concentration220

used during cell culture (see Figure 2).221

Cell culture duration can typically be calculated using either the number of passages (usually performed222

using enzymatic detachment such as trypsination) or the number of population doublings (PD) that the223

cells undergo. The population doublings, rather than the amount of passages, should be considered when224

comparing studies due to high variability between research teams in seeding densities and confluence before225

harvest. This renders the comparison between cells at a same passage difficult Wagner et al. [2010]. In this226

regard, the number of population doublings will determine the maximum amount of cells that can be obtained227

through cell culture since proliferation typically remains within the Hayflick limit of around 20-60 population228

doublings Wagner et al. [2009], Rombouts and Ploemacher [2003], Schallmoser et al. [2010], Charbord et al.229

[2011], Bonab et al. [2006], Noer et al. [2007], Kim et al. [2009]. The most described reason for senescence230

during cell culture is a reduced telomere length throughout culture (50 - 100 bp/PD) Sethe et al. [2006],231

Bonab et al. [2006], Baxter et al. [2004] associated with very low levels of telomerase activity indicating232

cells are not ”repairing” the shortened telomeres Kim et al. [2009]. It can be noted that the shift towards233

senescence may be gradual over time (possibly though the progressive regulation of genes Schallmoser et al.234

[2010], Wagner et al. [2009, 2008] and early signs of senescence (for example through change in morphology235

or an increased doubling time) have been observed as early as a few days after culture Banfi et al. [2000],236

Larson et al. [2008]. In addition, increase of population doublings has also been associated with a loss of237

multipotency Kim et al. [2009], Wagner et al. [2010] as early as 18-20 population doublings Banfi et al. [2000]238

as well as reduced immunosuppressive capacities Nasef et al. [2007] or an increased tumorgenicity Kim et al.239

[2009].240

MSC’s are naturally present in tissues for which dO2 concentrations can vary between 1 and 7 % of241

O2 saturation depending on the host tissue and tissue vasuclarization Chow et al. [2001], Fehrer et al.242

[2007]. The most common belief is that ex-vivo expansion should be performed in conditions close to the243

physiological environment from which the cells were extracted, since the amount of oxygen available for cells244

will have an impact on cell metabolism. For example, an increased growth has been observed in hypoxic245

conditions (1% v/v O2 in the head-space) Hung et al. [2012] as well as an increased lifespan (3% v/v O2 in246

the head-space) Estrada et al. [2012], Fehrer et al. [2007] compared to normoxic conditions. Some authors247

propose that cells have a higher susceptibility to cell death at elevated O2 concentrations for which viability248

is reduced Fehrer et al. [2007]. In addition, the differentiation potential seems to be impacted Hung et al.249
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[2012], Zhou et al. [2005], Fehrer et al. [2007] as well as the cell secretome Fehrer et al. [2007] and genetic250

aberrations Estrada et al. [2012], Li and Marbán [2010]. These studies tend to show the quality of cells251

produced in normoxic conditions may not meet the requirements for clinical use and this parameter should252

be continuously monitored. Furthermore, it should be kept in mind that, in the case of culture in T-flasks,253

the oxygen concentration available for the cells is difficult to predict as depends on medium height, density254

of cells, oxygen consumption, and the incubator characteristics and the concentration is also influenced by255

the multiple re-perfusion of room air oxygen concentrations during medium changes, passaging or other256

manipulations Csete [2005].257

Furthermore, it can be noted that there are vast controversies in the published data when evaluating258

the impact of these parameters independently. The review of existing data seems to suggest that there are259

important interactions between parameters (for example oxygen concentration and nutrient requirements,260

or cell age and the impact of population doublings) which are still difficult to predict or analyze, but may261

have a critical impact on the quality of the MSC products.262

2.3.3. Overview of the cell culture process263

Overall process parameter criticality during MSC cell culture was evaluated to identify the most critical264

parameters throughout the process (see Figure 3). The data suggests that the most critical parameters (as265

a whole, and assuming an identical weight for all of the CQA’s) are cell source, donor age, supplementation266

type, oxygen concentration and the amount of population doublings that the cells undergo during this phase.267

These parameters all exceed the global average RPN limit of 4. In order to meet requirements for quality268

specifications, these parameters should typically be controlled during the expansion phase, have science-269

based specifications, and their impact should clearly be defined. It is noteworthy, however, that it is difficult270

to predict how various independent parameters interact during MSC production processes, in particular with271

regard to deviation accumulations. As a result, using additional tools such as Design Of Experiments (DOE)272

to detect and understand these interactions may be required to further define the design space of quality273

based MSC manufacturing.274

3. Future Challenges275

Although great progress has been made to understand and develop cell expansion in two dimensional276

flasks, these manufacturing processes are not economically viable to supply the predicted requirements for277

clinical research of cell therapies and tissue engineering products Rowley [2018]. For larger scale manu-278

facturing, new automated technologies Thomas et al. [2007] with greater yields per lot and which reduce279

equipment occupation space within production facilities, will be required Merten [2015]. In this regard,280

trends are shifting towards 3D cultures using scalable bioreactors Godara et al. [2008], Hoch and Leach281

[2014] which are already extensively used in the pharmaceutical industry and are generally well known (on-282

line monitoring, maintenance procedures, cleaning validation, etc.). In order to do so, the adherent MSCs283

are no longer cultured in planar conditions but using new scaffolds such as microcarriers, hollow fibre or284

packed bed systems. In addition, the possibility of a fully closed system significantly reduces contamination285

risks, equipment volume, and will ultimately reduce costs of GMP production Zanini et al. [2020]. We should286

however note that data concerning MSC cell culture in bioreactors still remains scarce and fine-tuning of pro-287

cess parameters to increase quality and yield is still in early stages of research. Only one clinical trial using288

bioreactor-based expansion of MSCs seems to have been published (NCT00919958 Prather et al. [2009], key289

words ”Mesenchymal Stem Cell” and ”Bioreactor” in https://clinicaltrials.gov/). Understanding the290

physical and biological mechanisms as well as their kinetic evolution during the different cell culture stages291

will help unlock current bottlenecks towards quality driven protocols. Using similar QBD methodologies,292

online monitoring data, and modelization techniques (reviewed in Wyrobnik et al. [2020]) during early-phase293

process development could be the key to a successful scale-up process and approved commercialization by294

health authorities.295
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Figure 1: Overview of the Quality By Design process for Mesenchymal Stem Cell manufacturing.
Drug product characteristics are described in the quality target product profile according to patient requirements
in order to identify critical quality attributes which will be sufficient to guarantee product safety and efficacy. The
identification of critical process parameters and their impact on the defined CQA’s leads to the definition of the design
space within which manufacturing processes can be performed without altering product quality. The definition of
a control strategy and ongoing process verifications are then required to monitor the process and detect potential
deviations during the process.
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Figure 2: Impact of cell extraction and amplification parameters on the Quality Target Product Profile
attributes. All parameters in the inner zone have a Risk Priority Number rating below 4 (possible impact on two
Critical quality Attributes). All parameters outside the exterior zone have Risk Priority Number ratings above 9
(proven impact on two Critical Quality Attributes).
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Figure 3: Impact of process parameters throughout MSC manufacturing. All parameters in the inner zone
have a global Risk Priority Number rating below 4 (low criticality). All parameters outside the exterior zone have
Risk Priority Number ratings above 9 (high criticality).

Table 1: Impact score used for Risk Priority Number calculations.

Impact Criteria
Score

Low No discernable effect on CQA, homogeneous results published in literature 1

Low No results published in literature 1.1

Medium Unknown effect on CQA due to heterogeneous results published in literature 2

High Known effect on CQA, homogeneous results published in literature 3

Table 2: Generic Quality Target Product Profile for Mesenchymal Stem Cell therapy.

ICH Q8 recommendation
Undifferentiated cell
transplantation

In-vitro differentiation

Intended use in clinical setting (e.g.,
route of administration, dosage form,
delivery systems)

Allogenic or autologous MSC
transplant at the site of injury

Transplantation of differentiated
autologous tissues

Dosage strength(s) 1-2 × 106 cells/patient kg
N.A. (as necessary for tissue
constructs)

Container closure system Frozen product for injection Reconstructed in vitro tissue

Therapeutic potency and attributes
affecting pharmacokinetic
characteristics

Immunomodulatory properties through
secreted biomolecules and/or cell-cell
contact after MSC homing mechanisms

Specific and controlled differentiation;
functional in vivo accepted tissue graft

Drug product quality criteria (e.g.,
sterility, purity, stability and drug
release)

Fully sterile ; absence of external
contaminations ; Frozen stability ; high
viability after thawing

Sterility ; In vivo stability ; low tissue
immunogenicity
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Table 3: The definition of Critical Quality Attributes for Mesenchymal Stem Cell therapy based on the defined Quality Target Product Profile.

QTTP CQA In-process parameter Acceptance criteria Ref.

Dosage Strength
Final Cell Quantity
(Qua.)

Individual step yield (>85 %)

Expansion rate As high as possible

Concentration
As high as possible without aggregation or
significantly increasing viscosity

Amer et al. [2017]

Viability (Via.) Cell viability >90 %
Lipsitz et al. [2016], Steigman et al.

[2008], Gad [2008], Belotti et al. [2015]

Therapeutic
Potency

MSC Identity (Id.) Adherence to plastic Yes Dominici et al. [2006]

Specific positive antigen expression > 95% CD105+, CD73+, CD90+

Specific negative antigen expression 6 2%
CD45-, CD34-, CD14- or CD11b-, CD79 α - or
CD19-, HLA-DR-

Multipotent
Differentiation (Dif.)

Osteoblast, Adipocyte and Chondroblast Yes (in-vitro) Dominici et al. [2006]

In Vivo Effect (Viv.) To be defined for each application Not Applicable. Nauta and Fibbe [2007]

Ex: Inhibition of T-Cell growth in co-cultures Gad [2008]

Product Quality
Genetic stability
(Gen.)

Karyotype 23 Pairs of Chromosomes

Human Telomerase Reverse Transcriptase
activity (hTERT) / Telomere length

High expression of hTERT Shi et al. [2002]

in-vivo tumour formation (in mice) Absent Gad [2008]

Morphology small, spindle-form Sethe et al. [2006]

Purity (Pur.) Sterility testing for each lot 6 10 CFU/mL for test organisms Steigman et al. [2008], Gad [2008]

Mycoplasma assay for each lot No detectable Mycoplasma (by PCR)

Endotoxin assay for each lot 6 5.0 EU/mL (Limulus amebocyte lysate LAL) Gad [2008]

Cell purity > 70 % Belotti et al. [2015], Lennon et al. [2000]
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Table 4: Process parameters during cell extraction and cell expansion and their impact on Critical Quality Attributes. For each parameter, an impact score between 1 and 3 was
attributed based on literature and according to Table 1.

Strength Potency Quality
Parameter Range Qua. Via. Id. Dif. Viv. Gen. Pur.

Cell Source
BM, UC,
AD

3 Kern et al. [2006], De Ugarte
et al. [2003]

1 Vishnubalaji et al.
[2012]

1 Wang et al. [2004], Kern
et al. [2006], Aust et al.

[2004], Zaim et al. [2012],
Vishnubalaji et al. [2012]

3 Kern et al. [2006], De Ugarte
et al. [2003], Zuk et al. [2002], Yang
et al. [2014], Bieback et al. [2004],

Vishnubalaji et al. [2012]

1.1 2 De Ugarte et al. [2003],
Kern et al. [2006]

2 Gronthos [2003],
Zuk et al. [2001]

Age
< 10 to >
70

3 Kretlow et al. [2008], Phinney
et al. [1999], Dimitriou et al.

[2008], Choudhery et al. [2014],
Stolzing et al. [2008], Baker et al.

[2015], Sethe et al. [2006]

2 Stolzing et al.
[2008], Choudhery

et al. [2014]

2 Stolzing et al. [2008],
Kretlow et al. [2008],

Dimitriou et al. [2008],
Dimitriou et al. [2008], Baker

et al. [2015]

3 Kretlow et al. [2008], Yang et al.
[2014], Baxter et al. [2004], Stolzing

et al. [2008], Baker et al. [2015],
Wagner et al. [2009]

2 Rauscher Frederick M.
et al. [2003], Dressler et al.
[2005], Bruna et al. [2016]

Golpanian et al. [2015]

3 Baxter et al. [2004],
Stolzing et al. [2008],

Stenderup et al. [2001]
1.1

BMI
< 25, 25-30,
> 30

2 Yang et al. [2014], Aust et al.
[2004]

1.1 1 Yang et al. [2014] 2 Yang et al. [2014] 1.1 1.1 1.1

Gender
Man,
Woman

1 Yang et al. [2014] Phinney et al.
[1999]

1.1 1 Yang et al. [2014] 1 Yang et al. [2014] 1.1 1.1 1.1

Extraction
Various
protocols

3 Wan et al. [2006], Caterson et al.
[2002], Sotiropoulou et al. [2006b],

Phinney et al. [1999],
Oedayrajsingh-Varma et al. [2006]

1 Wan et al. [2006] 1.1 1 Wan et al. [2006], Caterson et al.
[2002]

2 Wan et al. [2006] 1.1 3 Pountos et al.
[2007]

Purification
Antigen,
MACS,
FACS

1.1 1.1 1 Gentry et al. [2007]
1 Simmons and Torok-Storb [1991],

Gentry et al. [2007]
1.1 1 Gronthos [2003]

3 Simmons and
Torok-Storb [1991],

Gronthos [2003], Guo
et al. [2006] , Gentry

et al. [2007]

Cryopreser-
vation

Yes, No 1 Kotobuki et al. [2004], Stolzing
et al. [2008]

1 Steigman et al.
[2008], Kotobuki

et al. [2004],
François et al. [2012]

1 Kotobuki et al. [2004] 1 Kotobuki et al. [2004] 1.1 1 François et al. [2012] 1.1

Growth
medium

Various 3 Sotiropoulou et al. [2006a],
Sotiropoulou et al. [2006b]

1 Pera et al. [2000] 1 Sotiropoulou et al. [2006a]
2 Sotiropoulou et al. [2006a], Pera

et al. [2000]
3 Sotiropoulou et al. [2006a],

Sotiropoulou et al. [2006b]
1.1 1.1

Supplemen-
tation
type

FBS, HPL
(etc.)

3 Kuznetsov et al. [2000], Zuk
et al. [2001], Nasef et al. [2007],

Bernardo [2010], Lange et al.
[2007], Schallmoser et al. [2007],

Kong et al. [2019]

2 Kong et al. [2019]

1 Doucet et al. [2005],
Bernardo [2010], Lange et al.

[2007], Schallmoser et al.
[2007], Kong et al. [2019]

2 Caterson et al. [2002], Zuk et al.
[2001], Dimitriou et al. [2008],
Doucet et al. [2005], Bernardo

[2010], Lange et al. [2007],
Schallmoser et al. [2007]

3 Kuznetsov et al. [2000],
Nasef et al. [2007], Doucet

et al. [2005], Bernardo [2010],
Abdelrazik et al. [2011],
Schallmoser et al. [2007]

1 Bernardo [2010], Lange
et al. [2007], Kong et al.

[2019]
1 Bernardo [2010]

Plating
density

10−1 - 105

MSC’s
/cm2

3 Ikebe and Suzuki [2014], Colter
et al. [2000], Sekiya et al. [2002]

1.1 1 Sotiropoulou et al. [2006b]
2 Sekiya et al. [2002], Sotiropoulou

et al. [2006b]
1 Sotiropoulou et al. [2006b] 1.1 1 Colter et al. [2000]

Adhesion
surface

Varied 3 Sotiropoulou et al. [2006b] 1.1 1 Sotiropoulou et al. [2006b] 1 Sotiropoulou et al. [2006b] 1 Sotiropoulou et al. [2006b] 1.1 1.1

Oxygen 2-21% O2
3 Hung et al. [2012], Estrada et al.

[2012], Fehrer et al. [2007]
3 Fehrer et al.

[2007]
1.1

3 Hung et al. [2012], Fehrer et al.
[2007], Fink et al. [2004], Zhou

et al. [2005], Csete [2005]

3 Hung et al. [2012], Fehrer
et al. [2007]

3 Hung et al. [2012],
Estrada et al. [2012], Fehrer
et al. [2007], Li and Marbán

[2010]

1.1

Passages 1 - 15 1 Zuk et al. [2001] 1.1 1 Schallmoser et al. [2010]
1 Zuk et al. [2001], Conget and

Minguell [1999]
1.1

1 Zuk et al. [2001], Conget
and Minguell [1999],

Schallmoser et al. [2010]
1.1

Population
doublings

up to 50 PD 3 1.1
1 Nasef et al. [2007], Bonab

et al. [2006], Kim et al.
[2009], Bork et al. [2010]

3 Colter et al. [2000], Sekiya et al.
[2002], Bonab et al. [2006], Banfi
et al. [2000], Bork et al. [2010]

3 Nasef et al. [2007], Kim
et al. [2009], Banfi et al.

[2000]

3 Bonab et al. [2006],
Baxter et al. [2004], Larson
et al. [2008], Wagner et al.
[2009], Bork et al. [2010]

1.1
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