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Abstract 
Simulating the actions and decisions of occupants in 
buildings is necessary to evaluate energy performance and 
understand its causes in a more reliable manner. While 
various models exist, all recent state-of-the-art reviews on 
occupant behavior models identified unresolved scientific 
issues. Here, these issues are classified, and we present 
the SMACH multi-agent model of human activity in 
buildings (based on cognitive ergonomics) and its 
application to assessing residential load curves and energy 
consumption. We show how the model can be used to 
address each of the unresolved scientific questions and 
present the validation process that we carried out. 
Key Innovations 
This work presents: (i) a condensed summary of currently 
unresolved scientific issues regarding occupant behavior 
modeling, (ii) a multi-agent architecture to provide a 
holistic modeling approach of human activity in 
buildings, and (iii) a demonstration of how the model can 
be used to address the scientific issues identified in (i). 
Practical Implications 
Occupant activities affect building energy consumptions. 
It is possible to use multi-agent systems in an effective 
way to generate more realistic annual consumption data. 
Simulating realistic activity can help sizing systems by 
understanding the coincidence of local energy generation 
and demand. 
Introduction 
According to the International Energy Agency (IEA), in 
2018 the residential sector amounted to 21% of 
worldwide energy consumption. A better understanding 
and control of residential electricity consumption is a 
major challenge. Local and global load and demand 
forecasting are pivotal for both utility companies and grid 
operators, especially with the development of new trends 
such as energy self-consumption and local energy 
communities. Researchers studying these issues require 
models capable of reproducing observed data, and 
estimating load curves of future scenarios, both at the 
individual and aggregated scales (district, city, state, etc.). 
Electricity consumption is greatly impacted by daily life 
activities of humans (Janda 2011). However, occupant 
behavior (OB) is often inadequately accounted for in 

buildings energy simulations (BES) (Happle et al. 2018). 
Occupant behavior models (OBMs) are often overly 
simplistic  using static, schedule-based, or predetermined 
inputs which introduces significant discrepancies 
between the simulated and observed energy consumptions 
(Li et al. 2019). Many BES require knowledge of various 
aspects of OB (e.g., presence/absence, clothing and 
thermostat adjustment, appliance use, etc.) (Carlucci et al. 
2020) and appliance use (heating, domestic hot water 
(DHW), specific consumption, etc.) (Berger et al. 2020). 
Furthermore, an increasing amount of occupant-centric 
data is becoming available through the spread of urban 
sensing, Internet of Things (IoT), big data and population 
censuses and surveys (Salim et al. 2020). They offer new 
insights into OB which improves the associated models 
and their estimates of how OB impacts energy 
consumption. 
In the next section, we present a summary of the state-of-
the-art of OBM and what have been identified in the 
literature as unresolved issues. We then present our agent-
based model of OB and demonstrate how it can be used 
to address these unresolved issues. The model is validated 
and applied to load curves and energy use assessment, 
before presenting our overall conclusions and future 
perspectives. 
State of the art  
OBMs and unresolved scientific issues  
Over the past years, the field of OBM research has gained 
a strong interest resulting in numerous publications from 
the building energy simulation community, particularly in 
the IEA Energy in Buildings and Communities Annex 79 
“Occupant-Centric Building Design and Operation” 
(O’Brien et al. 2020a, 2020b). Several studies have 
identified specific issues that still need to be addressed to 
achieve further progress in the field. 
For example Li et al. (2019) called for an OBM that 
incorporates aspects from both social and psychological 
sciences to reveal the underlying motivations behind OB. 
Henceforth, we will refer to this as the “social and 
psychological science issue”. The same authors also 
called for the use of data from large-scale surveys and 
long-term data measurement (henceforth referred to as the 
“data issue”). 



Salim et al. (2020) pointed out how many OBMs typically 
neglect any impact from physical, biological, 
psychological and social factors. They advocate for an 
OBM that integrates experts and modeling methods from 
the field of building science, social science and 
psychology to better identify the causes of OB (social and 
psychological science issue). They also identified the 
problem of upscaling from individual buildings to the 
urban scale and suggest that it could be addressed using 
so-called level-of-detail techniques to explore the relation 
between OBM complexity and accuracy (the “scaling-up 
issue”). 
Despite their thorough OBM review, Carlucci et al. 
(2020) were unable to find OBMs capable of both 
explaining and accurately predicting occupant behaviors 
and their interactions with their environment based on 
combined actions (i.e., simultaneously considering 
several factors such as presence, movement, window 
operation, shading operation, lighting operation, 
thermostat and clothing adjustment, and appliance use). 
As all these behavioral aspects are interlinked and they 
need to be taken into account in their entirety to obtain a 
wider, more comprehensive and more precise view of 
human behavior. Consequently, the impact of OB on 
energy consumption and the understanding of human 
comfort would be more accurate. We will refer to this as 
the “coupling of non-independent behaviors issue”. 
The literature offers a broad spectrum of different 
modeling techniques; a selection will be briefly 
summarized in the following section. 
Choice of modeling technique 
With regards to the “emergence and variability issue”, 
deterministic and rule-based models were considered 
outdated for a long time as they could not adequately 
account for variability in OB (Happle et al. 2018). Li et 
al. (2019) consider statistical models as inefficient to 
dynamically simulate OB variability (“adaptive and 
dynamic issue”). Furthermore, according to Happle et al. 
(2018), stochastic/probabilistic models (typically Markov 
chain models) usually treat each aspect of OB separately 
(e.g. presence at home, window opening, thermostat 
adjustment, etc.) through independent ad-hoc 
parametrizations (which refers again to the coupling of 
non-independent behaviors issue). In addition, such 
models consider individuals of a same household to act 
independently of each other. We believe that such 
hypotheses have several flaws which limits the realism 
and variability of such an OBM, e.g. it cannot model 
collective self-organization within a household (Happle et 
al. 2018) (collectively preparing and sharing meals, 
shared use of the bathroom, taking care of children, etc.) 
and thus fail to address this “collective behavior issue”. 
Happle et al. (2018) believed that Agent-based models 
(ABM) were relevant for OBM modeling and they called 
for an urban-scale OBM (scaling-up issue) capable of 
incorporating demographic changes, changes in behavior 
over time, and occupants’ adaptation to economic or 
environmental changes (adaptive and dynamic issue). 

Berger et al. (2020), in a recent review on agent-based 
modeling of OB, underlined the ability of ABMs to 
capture the flexibility, complexity, dynamics, and 
emergent characteristics of individual and group behavior 
(emergence and variability issue, as well as adaptive and 
dynamic issue) as a result of learning and adaptation 
processes. The flexibility of these models allows them to 
be applied to system-, building-, and city levels (scaling-
up issue). Moreover, these models facilitate the 
integration of social and psychological factors, and are 
therefore well-suited for examining the social and 
psychological impacts on OB (Li et al. 2019) (social and 
psychological science issue). 
ABMs are thus good candidates to perform OB modeling 
although weaknesses present in classical ABM 
approaches need to be overcome. 
Limits of ABM 
Carlucci et al. (2020) reminded us that the OBMs need to 
be data-driven (data issue) which was confirmed by 
Berger et al. (2020) who reproached ABMs for them 
frequently lacking detailed information about agent 
behaviors and their interactions. Berger et al. (2020) also 
found it difficult to judge the fidelity of insufficiently 
documented agent profiles given the emergent complexity 
of ABM application results. Furthermore, the scope and 
complexity of ABM applications can grow rapidly, 
resulting not only in extensive computational costs 
(“computational load issue”) but also in a certain degree 
of opacity in the computational results (“black-box 
issue”). Finally, they found results difficult to replicate 
(“reproducibility issue”). 
Li et al. (2019) state that the real-time communication 
between ABMs and building energy simulation programs 
made them more difficult to use since these programs 
typically use custom coding languages and protocols 
(“real-time communication issue”). Finally, they state that 
the addition of granularity of occupant diversity in ABMs 
would significantly increase the computational cost, 
which in turn makes the models more difficult to scale 
(i.e., the computational load issue impacts the scaling-up 
issue). 
In this paper, we present the ABM-based SMACH 
platform (“Simulation of Activity and Consumption in the 
Home”) and show how this model can be used to address 
the previously identified scientific issues. 
SMACH: an Agent-Based Model for a 
Holistic Approach to Occupant Behavior 
General presentation 
SMACH is an AI-based multi-agent simulation platform 
of human activity that has been developed since 2010 as 
a collaboration between EDF’s R&D and several 
academic research laboratories. Over time, developments 
of this ongoing research project have been described in 
artificial intelligence scientific conferences (Reynaud et 
al. 2017). In this paper, we focus on its application to 
model OB addressing the unresolved scientific issues 
mentioned above in order to obtain better estimates of 
residential electricity consumption. Our model attempts to 



capture the complexity of human activity, the dynamics 
of daily life, household self-organization, and cooperation 
between individuals. To address the social and 
psychological science issue, the approach is based on 
cognitive ergonomics research on human activity which 
has shown that multi-agent systems are suitable to model 
human activity realistically (Haradji et al 2012). SMACH 
applies a holistic approach that aims to consider human 
actions and decisions as the main causative factors of 
energy consumption (Amouroux et al. 2013). We use the 
terminology “human activity” (rather than “behavior”) to 
account for actions that take place in a specific situation, 
consisting of interactions based on determinants that are 
cognitive, social and physiological. These actions are 
linked to an individual or collective story and to the 
environment in which it unfolds. The challenge of such a 
simulation is to devise a model that employs an adequate 
reduction of human activity that does not focus on a 
specific dimension (e.g., solely on the motivational 
dimension). We use an approach known as “situated 
cognition”.  
Applied to the assessment of energy consumption, 
SMACH produces forecasts of electrical loads and energy 
demand in the residential sector based on the modeling of 
intelligent and autonomous agents: the humans that 
consume electricity. A household’s electrical load curve 
is estimated by accounting for the use of electrical 
appliances and interactions between household members, 
and of each member with their environment. This model 
is co-simulated with a building energy model presented in 
the following sections. The SMACH architecture 
generates virtual populations that are representative of 
targeted populations (cities, states, countries, etc.). 
Individual households are simulated using a multi-agent 
engine. Each virtual household member can make 
individual decisions that affect their actions, taking into 
account their individual preferences, goals, and the state 
of the environment. We simulate the daily activities of 
household member using a 1 min time step, which was 
chosen in accordance with previous cognitive ergonomics 
studies (Amouroux et al. 2013). 
To address the data issue, SMACH uses large-scale data 
sets like time-use surveys (TUS), population censuses and 
specific surveys  to provide a calibrated framework for the 
simulated actions of individuals (Reynaud et al. 2017; 
2018). This data is used for generating virtual populations 
with individual characteristics, housings and households, 
and for calibrating actions taken by the virtual individuals. 
Population Generation 
To address the scaling-up issue, it is necessary to 
precisely simulate both individual households and entire 
populations. This is achieved by generating a virtual 
population that is statistically representative of the studied 
population based on a population synthesis approach 
(Müller et al. 2011). The specific population generation 
process used in SMACH is based on Auld et al. (2010). 
The generated populations are statistically representative 
of the target population in terms of households types and 
sizes (couples, families, etc.), age, gender, socio-

professional categories, professional situation of 
individuals, housing situation (e.g., type, surface and 
thermal performance), weather data (e.g., outside 
temperatures and solar radiation), type of heating and 
DHW, type of electricity tariff and geographical location 
(region/county/district, type of urban area, etc.). 
Whenever the information is available, we also include 
probabilities for the presence and number of certain 
electrical appliances present in each dwelling, as well as 
their main technical characteristics (e.g., power and 
energy class of refrigerators; power, temperature, 
capacity and efficiency of DHW tanks, type of washing 
machine cycles used, etc.).  
For now, we have only applied our architecture to 
mainland France (cities like Paris or Lyon, French 
departments, and the country as a whole). Most of the data 
used for the population generation comes from the French 
national institute of statistics and economic studies 
(INSEE): the population census data, housing surveys, 
and household equipment censuses. Nevertheless, the 
model can be applied to any other country as long as the 
necessary data is available. 
A hybrid data-based agent model 
Real activity data from the latest French TUS (2009-2010, 
produced by INSEE) was used to model the activities of 
individual agents in SMACH. TUS are daily surveys in 
which respondents describe their day as a series of 
episodes. Many statistical methods in the field of energy 
simulation use TUS to simulate human activity and 
calibrate their models at a macroscopic level. Conversely, 
we use this data at a microscopic level to generate a 
weekly provisional activity schedule for each individual 
(i.e. a list of activities to perform). Based on the TUS data, 
each action has an estimated duration and a preferential 
time of the day to be carried out.  
SMACH uses a hybrid reactive and cognitive agent model 
where each individual is modeled as an intelligent agent 
with goals (based on their individual provisional schedule 
described above), knowledge (other agents’ activities, 
price of energy, etc.) and preferences (e.g., whether one’s 
preferred indoor temperature is based more on economic 
or personal comfort considerations – using both 
quantitative and qualitative surveys). Each agent has an 
individual decision module that will determine the actions 
that are actually performed. The action selection process 
uses priority levels that vary dynamically for each action, 
depending on the agent's knowledge, preferences and 
context. The agent model is described in more detail in 
(Reynaud et al. 2018). Furthermore, each activity is 
performed in a specific location inside or outside the 
building which determines building occupancy. 
Each action also has a “collectivity level” indicating how 
the individuals organize themselves to carry it out (alone 
or rather in a group, etc.) taking into account their 
personal schedule and situation. Some activities (e.g. 
“taking the children to school”) can obviously only take 
place involving several people and a strong degree of 
coordination. Hence, our agents are able to modify their 
actions according to the actions taken by others (e.g. “My 



regular schedule is to take my shower first and then to 
have lunch, but the shower is currently occupied so I take 
my breakfast first.”). This capability of the model can be 
used to address the collective behaviors issue. 
According to the energy policy of the household (e.g., 
“comfort-oriented household” or “money-saving 
household”), each agent can modify its actions based on 
current energy prices (e.g., "I was supposed to use the 
washing machine in the morning, but since the price will 
be lower tonight I postpone it."). Agents can also modify 
their actions depending on specific events (e.g. "A friend 
rings the doorbell while I was watching TV, so I interrupt 
my activity, open the door, and start a discussion”) or 
weather conditions (e.g. “It is freezing outside, I increase 
the temperature on the thermostat”).  This model allows 
agents to exhibit emerging, reactive and adaptive human 
activities that addresses both the emergence and 
variability and adaptive and dynamic issues.  
All agent decisions are recorded by the model, allowing 
the model operator to review them, adding a high level of 
transparency and explanatory capacity that prevents any 
black-box issues. Each individual is driven by a unique 
decision-making process that essentially puts all the 
modeled aspects of human activity in competition, 
addressing the coupling of non-independent behaviors 
issue. These types of decisions processes are configurable 
and allow the creation of a single model that is capable to 
integrate heterogeneous data (as a way to address the data 
issue) from various sources (censuses, surveys, field or 
simulation studies, etc.), contexts (countries, building 
types, etc.), and research foci (human activity, energy 
consumption, thermal performance, etc.), which also 
contributes to overcome the social and psychological 
science issue. For the results shown in this study, we 
always preferentially used real survey data rather than ad-
hoc models. Furthermore, the model outputs all individual 
characteristics as well as the random number generation 
seed allowing any simulation to be reproduced, either 
with  identical or modified parameter settings (addressing 
the reproducibility issue). Also, the types of human 
activities and actions to be included in the model can be 
chosen, based on the available activities in the TUS, 
allowing to adapt the model complexity in accordance to 
the available data.  
Application to the assessment of residential 
load curves and energy use 
The assessment of household load curves is currently one 
of the main applications of SMACH. A household's global 
energy consumption is calculated based on the interaction 
of the household’s individuals with their environment 
where the energy consumption is driven by their actions 
and decisions related to comfort and consideration of 
energy prices. 
SMACH simulates electricity consumption by four 
categories of appliances: controlled (including heating, 
cooling and DHW), programmed (e.g. a dishwasher 
programmed to start at a specific time), directly associated 
with an activity (e.g. a TV for the activity ‘watching TV’), 
and constant use (e.g. an internet router). The power 

demand of each appliance can be constant, cyclic, or the 
consequence of a dynamic thermal model. Several 
appliances can be associated with the same activity, 
depending on the activity model and the available 
appliances in the studied household. For instance the 
‘cooking’ activity can involve the use of an electric stove, 
an extractor hood and/or a microwave oven. The 
‘watching TV’ activity can involve the use of a TV, a 
DVD-player, a game console, etc. 
Thermal comfort and feedback on activity  
The simulated individuals have a preferred temperature 
setting (both for heating and cooling appliances) and 
individual sensitivities to heat and cold. Their dynamic 
comfort attribute is derived from the predicted mean vote 
(PMV) and predicted percentage of dissatisfied (PPD) 
indices (Ekici 2013). The comfort temperature is the 
temperature at which an individual at rest and lightly 
dressed (shirt/trousers) is in a state of thermal comfort 
(neither too hot nor too cold). The comfort level is also 
impacted by the physical effort associated with an 
individual’s activity. For instance, ‘cleaning the room’ 
involves a greater physical effort than ‘watching TV’. 
Thermal discomfort can lead to several reactions. 
Individuals can decide to change their clothing level, 
thermostat setting, or close/open windows and blinds. The 
priority attached to each of these actions depends on the 
individual’s comfort policy and attention to energy prices. 
For instance, an individual whose policy is exclusively 
based on personal comfort would tend to adjust the 
thermostat setting, while an individual who finds 
themselves in a status of “energy insecurity” will prefer a 
less costly alternative like changing their clothing.  
The set thermostat temperature is calculated as the mean 
of the comfort temperatures of all household members. As 
part of the collective decision mechanisms in SMACH, 
other approaches can also be implemented such as 
negotiations between household members that result in an 
accepted temperature setting that is kept for a given 
duration. 
Heating, cooling and ventilation consumptions  
In order to calculate the energy consumption associated 
with heating, cooling and ventilation (HVAC), SMACH 
implements a co-simulation between the activity model 
and a building energy model (Figure 1). 
The co-simulation is performed according to version 2 of 
the functional mock-up interface (FMIv2) interoperability 
standard for co-simulation (Blockwitz et al. 2012). 
SMACH uses the JavaFMI wrapper (Galtier et al. 2017) 
to act as the Master in the co-simulation and control the 
building energy model (Plessis et al 2014a). In this co-
simulation loop, the building model calculates the room 
temperatures which are sent to the occupants to update 
their comfort attribute which in turn may provoke a 
reaction in case of thermal discomfort (e.g., changing the 
thermostat set point temperature or adjusting the 
windows/blinds). 
Internal heat gains due to occupants are derived from their 
occupancy in each room, while the ambient interior air 



temperature impacts the heat losses of DHW tanks and 
refrigerators. 
SMACH uses a Modelica-type building model which 
consists of a detailed multi-zone building envelope model 
that accounts for heating, cooling systems and their PI 
control based on three set point temperatures for each 
room (comfort, economy, and absence) (Figure 1). The 
thermal DHW model described below is also included in 
this building model. It has been developed according to 
the modeling principles of the Modelica BuildSysPro 
library (Plessis et al. 2014b). 
As we applied SMACH to the model of French residential 
energy consumption, we incorporated typical building 
typologies for individual houses and apartments based on 
the French “Mozart” and “Matisse” typologies, 
respectively, as defined by the French Scientific and 
Technical Center for Building (CSTB). The building’s 
thermal characteristics are defined according to French 
national regulations in force on the building’s 
construction date. Other parameters such as floor space or 
water tank volume are taken from the same data sets used 
for the population generation. 
The coupling between the SMACH activity model and the 
building energy model is achieved by using a set of 
common inputs and outputs (Figure 1). These can be 
modified in order to incorporate new phenomena or 
appliances (e.g., local energy storage). We set the 
synchronization time step parameter to 10 min. As this co-
simulation is generic, it can be used in combination with 
any building energy model as long as it is compliant with 
the FMI interoperability standard and uses the same 
inputs and outputs. This ability alleviates the real-time 
communication issue. 
Specific electricity and hot water consumption 
SMACH simulates individual appliances from the 
following categories: home appliances (washing machine, 
dryer, dishwasher, and fridge), small/kitchen appliances 
(vacuum cleaner, stove, microwave, oven, and extractor 
hood), lighting (individual light bulbs in each room), 
consumer electronics (TV, DVD-player, game console 
and computer), electric vehicle charging and domestic hot 
water. There is also a “miscellaneous” category that 
includes all appliances that are not explicitly modeled. 

Each appliance has a specific power demand model, 
associated with an “off”, “standby” or “in use” mode. 
Washing machines, dryers and dishwashers are 
programmable and use energy consumption cycles based 
on laboratory measurements. 
The model for DHW is a dynamic thermal model derived 
from the energy balance of water and takes into account 
the quantity of hot water consumed by individuals based 
on their actions (Plessis et al. 2014b). Water consumption 
is calibrated using the French 2016 national survey on hot 
water needs in households. The DHW control is 
associated with the household’s electricity tariff (e.g., in 
peak/off-peak type tariffs, DHW can only be produced 
during off-peak hours). 
Household- and urban scale load curve assessment  
SMACH continuously meters the use, status, and energy 
consumption of each appliance in order to calculate the 
power load curves of the household. Other SMACH 
outputs include activity diagrams of each occupant or the 
appliances’ on/off status.  
For large scale simulations, each household is simulated 
individually and independently, as we consider that there 
are no interactions between households. The individual 
results are then aggregated to calculate the global load 
curve of the population. The simulations can therefore be 
massively parallelized and each household can be 
simulated on a separate processor or cluster core (which 
also contributes to address the scaling-up issue).  
With an i5 2.3 GHz based laptop computer, the population 
generation process for 1000 households requires 30s. The 
activity model without co-simulation takes about 25s to 
perform a one year simulation of a two person household. 
The full co-simulation with the current multi-zone energy 
model takes around 5 minutes. Despite SMACH’s 
bottom-up approach, the computational cost remains 
tractable, addressing the computational load issue, due to 
the relatively simple decision choices performed at each 
simulation time step. Due to this high level of 
parallelization, SMACH proposes to address the scaling-
up issue without simplifying the activity or building 
model (Reynaud et al. 2018) and can simulate human 
activities and energy consumption at both local (one 

Figure 1: Co-simulation diagram between the activity model and building energy model  



household) and population scale (one district, one state, 
etc.) using personal computers or clusters. 
Validation of a human activity-centered 
simulator 
To account for the specificities of an agent-based model 
based on situated cognition, we performed two types of 
validations: (i) at the microscale (household level) and (ii) 
at the macroscale (population level), always considering 
both human activity and energy consumption (Table 1). 

Table 1: Validation strategies and evaluation criteria 
 Microscale Macroscale 

Human 
activity 

Realism of activity. 
Adaptive traits of agents 

Representativeness 
compared to 

statistical data 

Energy 
Comparison of metered 

and simulated 
household load curves 

Global energy 
consumption, load 

curve dynamics 
While each point required a different approach, for the 
sake of brevity, we will only present the microscale 
validation in some detail and will just provide a brief 
outline of the macroscale approaches.  
Model validation at the household level 
Before delving into the quantitative validation, we start 
with the qualitative part that assesses the capacity of 
SMACH to reliably simulate human activity at the 
household level. This is achieved by implementing a 
specific ergonomics approach known as “participatory 
simulation” (Haradji et al 2012) and conducting an 
experiment with the participation 10 real-life families 
from the “OpCo” demonstrator in Brittany, France, an 
experiment with real households aimed at studying 
distributed load shedding. We conducted interviews with 
each family to identify the main characteristics of each 
family’s activities and habits. Then, we set up a specific 
simulation scenario to represent each household and 
asked the participants to judge how well the simulation 
results reflected their real daily lives. We developed a 
dedicated human-computer interface, where the user 
controls an avatar of themselves and is able to observe and 
modify the course of the simulation (Figure 2). 

 
Figure 2: Interface for SMACH participatory simulation 
The feedback of the participants showed that our model 
was able to reproduce human activity at an 
individual/household level with a high degree of 

plausibility, and that such a simulation relating to the 
organization of daily life and its dynamics was well 
understood. The participants considered that the 
formation of collectives and the dynamics of their 
evolution was realistic. In the example illustrated in 
Figure 2, the mother and daughter agents are playing 
together, but will have separate activities or associate with 
other agents later in the simulation. The results of the 
experiment were conclusive as none of the simulation 
mechanisms (autonomous agents, individual and 
collective dynamics, interaction with the environment) 
were called into question. While this study validated the 
fundamental mechanisms of the simulation, we also 
identified methodological limits to this approach. For 
example, we confronted each participant with a week of 
their daily life, but in doing so the participants tended to 
focus on the regularities of daily life rather than its 
variability (Haradji et al. 2018). 
For the quantitative validation of the simulations, we used 
the metered load curves of 8 of the OpCo households over 
8 to 15 weeks at a 30 min time resolution. It should be 
noted that the simulated load curves were intended to 
represent a realistic and “usual” week in each household. 
Therefore, the chosen approach was as follows: for each 
day and 30 min interval, we calculated the 95% 
confidence interval (CI) using 

 ቃ̅ݔ െ 1.96 ఙሺሻ√ ; ݔ̅  1.96 ఙሺሻ√ ቂ (1) 

where X is the distribution of measured points and ݊ ൌ	48 
the number of points per day. We simulated 3 consecutive 
weeks with SMACH and compared the average weekly 
load curve day-by-day to the confidence intervals from 
the metered load curves. The characteristics of electric 
appliances such as DHW tanks or washing machines and 
the global standby power were mostly unknown and were 
calibrated iteratively by performing several simulations 
with different parameters and selecting the result that was 
closest to the measured energy consumption. 
We chose two validation metrics: the percentage of 
simulated points within the 95% CI for each day, and the 
relative deviation between the measured and simulated 
weekly energy consumption (Figure 3).  

 
Figure 3: Comparing CI of measured load curves and 
simulated SMACH results for Household A for Tuesdays 
The results showed that the simulations were able to 
capture the dynamics of energy consumption throughout 
the day for each household (HH). The relative deviation 
between the simulated and measured weekly energy 
consumptions ranged between -26% and 14%, with an 
average of -3.5% (Table 2). Two outliers (C and G) were 



identified and the deviation explained by differences 
related to the timing of laundry and meal preparation, 
which differed between the initial interview and the 
SMACH simulations. When aggregated over all 8 
households, 60 to 77% of all data points were within the 
CI. Thus, SMACH was capable to adequately simulate the 
load curves dynamics associated with the daily lives of 
real families. 

Table 2: Percentage of data points within the 95% CI 
and deviation on energy consumption for each 

household 

HH Min Max Avg. SD Relative deviation 
on weekly energy 

A 44 73 60 9.3 2 % 
B 40 88 63 17.6 - 2 % 
C 44 73 54 9.0 14 % 
D 58 75 70 5.6 - 1 % 
E 48 67 57 6.8 - 11 % 
F 46 71 56 9.0 - 2 % 
G 52 73 63 7.2 - 26 % 
H 54 77 67 9.4 - 2 % 

 
Model validation at the aggregated scale 
In this section, we briefly show the validation at the 
aggregated scale for both activity and energy 
consumption. First, we verified that the emergence 
properties of the simulated actions, while allowing for a 
strong variability, were still consistent with the data at the 
aggregated scale. For each type of activity (e.g., ‘sleep’, 
‘cooking’, etc.), type of individual, and type of day, we 
compared the results of 100 simulated days to the 
statistical data available in the TUS data. The evaluation 
criteria included the average duration, rhythm, number of 
repetitions, preferred periods and sequence of activities 
for each type of action. Figure 4 illustrates this approach 
for the ‘cooking’ activity. The maximum gap between the 
simulated and observed percentage of people performing 
the cooking activity was evaluated at 3 percentage points, 
and the maximum time gap at 20 minutes. Similarly, the 
simulation results were considered sufficiently close to 
the statistical data for all tested activities. 

 
Figure 4: Comparing results of SMACH (simulated) and 

TUS (observed) ‘cooking for dinner’ activity 
To validate the load curve and energy consumption 
results, we generated a population of 1,000 representative 
French households and compared the aggregated load 
curve with the open data profiles used by the French 
distribution system operator (DSO) for the assessment of 

injection and withdrawal flows on the electricity 
distribution network. The aim was to ensure that the 
SMACH results agreed on the main characteristics of 
residential consumption. In France, there are two main 
categories of electricity tariffs: “Base” (single-rate) and 
“Heure Creuse” (off-peak rate). An excerpt of the 
comparison of the load curve profiles and simulated 
results for these two categories are presented in Figure 5.  

 
Figure 5: One week load curve profiles (DSO) and 

simulated (SMACH) for Single-Rate and Off-Peak tariffs 
Each household from the population of 1,000 is associated 
with a specific location and therefore a weather file. 
Weekly energy levels over one year were compared for 
two distinct weather conditions: 20 year average 
(Meteonorm type construction) and the actual weather for 
the year 2012 (including a period of extreme cold) (Figure 
6). By comparing the aggregated data for all tariffs and 
periods of the year, we showed that SMACH was capable 
to reproduce the main values and dynamics of the 
reference load curves. During this validation, we noticed 
that the specific and dynamic efficiency of heating 
systems such as heat pumps need to be taken into account.    

 
Figure 6: Comparison of weekly energy consumption for 
one year under the Peak / Off Peak tariffs for averaged 

meteorological data (left) and the year 2012 (right) 
Conclusion and perspectives 
Based on a review of the literature, we identified eleven 
main scientific issues related to the simulation of 
occupant behavior in buildings. We presented how the 
agent-based SMACH approach, which combines 
ergonomic activity models, building energy simulation, 
statistical data and AI architectures, can be used to address 
each of these issues. Our model is currently used for 
research and industrial applications, e.g. to devise 



strategies for electric vehicles charging, electric network 
sizing, or to study the impact of new electricity tariffs. 
SMACH has been built as a flexible platform that evolves 
constantly by integrating new knowledge and data, 
illustrating its ability to aggregate heterogeneous 
domains. For instance, we recently extended the platform 
for simulating collective self-consumption (Albouys-
Perrois et al. 2019). 
Future works may address issues such as representing the 
temporal evolution of household (new activities or 
equipment, changes in family composition, etc.), the 
seasonality of certain activities, the modeling of demand 
response based on individuals’ reactions to signals or 
incentives, the integration of pollution exposure assessed 
with dedicated indoor air quality models, and sociological 
models for crisis situations. Such models would allow to 
improve this human-centered approach and study the 
impact of these domains on energy consumption. 
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