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Abstract 

We present our agent-based architecture focusing on occupant behavior for energy consumption simulations in the residential 
sector. Based on cognitive ergonomics work, it is aiming at a holistic modelling of human activity, considered as the driver of 
energy consumption. In our simulations, each household’s occupant decides its own actions thanks to a decisional process that 
puts multiple aspects of human activity in balance and is focused on the interactions between individuals and their material 
and social environment. This decisional process and this interaction with the environment are guided by the individual’s 
knowledge, preferences and goals, giving the occupants the ability to react and adapt themselves to changes such as electricity 
price, new appliances or special events. To illustrate the aggregative ambition of the architecture, we present how mobility and 
actions related to the charging of electric vehicles (EV) were naturally added to the architecture. This new model, centered on 
both EV use and charging behaviors, aims at assessing the impact of EV on the residential consumption and the electricity 
distribution network. Finally, the validation processes of our architecture as well as the preliminary validation of the EV 
model are presented. 

1. Introduction 
Societal, political and individual choices related to energy 
are evolving worldwide towards the reduction of carbon 
emissions. A visible consequence of this change is the 
increasing interest in individual electric vehicles (EV) and 
its impact on local, city or country-scale energy 
consumption. It is also largely acknowledged that in the 
residential sector, occupant behavior (OB) has a major 
influence on energy consumption and has to be included in 
residential load forecasting studies [1]. Given the notable 
impact of the acquisition of an EV on a household’s load 
curve, as well as the challenges of a massive development 
of EV fleets for the grid, a residential energy consumption 
model can no longer undertake prospective studies without 
taking EV use into account, both at a local and aggregated 
scale. The modelling of EV, combined with a residential 
energy simulation, allows to assess if EV charging loads 
will generate congestion at bottlenecks in the distribution 
network, and to evaluate the effectiveness of demand side 
management or demand response in shaping EV charging 
load profiles. 

Nevertheless, to achieve these goals, the occupant 
behavior models (OBM) should exhibit some crucial 
features. In the next section, we will study the main 
scientific issues identified in both OB and EV fields. We 
will then present our holistic approach to OBM and 
residential energy consumption assessment, and how it is 
extended to electric mobility. In the same time, we will 
discuss how this approach brings answers to the identified 
limits of previous models. In section 3, we will give a 
complete overview of our model’s general architecture and 
its application to the Metropolitan French residential 
sector. Before concluding, section 4 will detail the several 
validation approaches that were carried out.  

2. State of the art 

2.1. Occupant Behavior Models 
The OBM field has recently become a research subject 
receiving close review and intense research effort [2], [3]. 
The published review papers specify various issues that 
still need to be tackled. Particularly, [1] call for an OBM 
that incorporates social, and psychological science to 
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reveal the intrinsic causes of OB. Similarly, [4] advocate 
for OBM that integrate domain experts and modeling 
methods from building science, social science and 
psychology to simulate the root cause of occupant 
behavior on energy consumption. Despite their thorough 
OBM review, [5] still find a lack in the literature for OBM 
able to explain and predict occupants’ behavior and their 
interactions with their environment based on multiple 
aspects of human activity (e.g. conjointly considering 
activities at home, travels, comfort and thermostat 
adjustment, appliance use, etc.). Similarly, according to 
[6], most approaches usually treat each aspect of behavior 
separately, and individuals of a same household are 
usually considered independent of each other. We believe 
that such hypotheses limit the realism and variability of 
OBM and limits its capacity to react and adapt. To tackle 
these issues, agent-based models have been identified as 
good candidates, based on their capacity to integrate 
knowledge from social and psychological sciences, and to 
simulate variable, reactive and adaptive behaviors [6]. 

2.2. Electric Vehicles models  
Electric vehicle are a relatively new in the mobility 
landscape, but there are already a variety of approaches in 
the electric vehicles literature. “Vehicule Ownership and 
Annual Mileage Models” (VOAMM) are specifically 
designed to generate EV penetration scenarios, analyze the 
relations between households’ feature and EV presence, as 
well as between households’ features and annual mileage. 
However, they are not suited for the study of charging 
patterns in time nor the impact of charging demand peaks 
on power grids [7]. 
Within “daily pattern models”, activity-based approaches 
seem to be the more promising ones thanks to their 
flexibility and their high variability [7]. They consider 
consistent daily activity-travel schedules to model EV 
daily use and charging patterns.  They are divided in 2 
categories: Direct Use of Observed Activity-Travel 
Schedule (DUOATS) and Activity-Based Models (ABM). 
In DUOATS, use patterns of cars are used to simulate EV 
use patterns. Their major limit is their inherent rigidity 
because of the use of fixed EV travel schedules and pre-
determined charging behavior scenarios.  
[7] advocate for ABM as the most attractive methods 
because they capture inter-dependence between activity 
and mobility patterns. They can also model the response to 
new charging electricity tariffs, and their bottom up 
structure allows more flexibility and patterns variability 
than the other approaches. Yet, ABM still have limits to 
overcome [7]: charging behaviors are rarely explicitly 
modelled, but usually fixed by scenario. The most 
common scenario being “uncontrolled charging”: the 
charging operation starts as soon as vehicles reach 
locations with charging opportunities and is carried out 
until the vehicle is fully charged or leaves. In other 
scenarios such as the “delayed or night charging” 
scenarios, the charging start in the evening, to ensure 
minimized electricity costs. This use of fixed charging 

behavior scenarios (mainly due to the lack of available 
data about real charging behaviors) instead of explicit 
models is a strong limitation, because it implies pre-
determined outcomes of demand management policies and 
prevents the modelling of adaptive charging behaviors. 

2.3. Our proposal to overcome these limits  
Our goal is to develop a single model able to overcome the 
limits stated in 2.1 and 2.2. In our opinion, the best option 
is to develop an ABM, based on cognitive ergonomics 
work focused on human activity, and calibrated with real 
data. We defend a holistic vision of human activity (i.e. 
actions and interactions performed by people over time), 
where all actions are dependent from each other, each of 
them depicting a part of the global human activity. A 
single decisional process dynamically attributes weights to 
every possible action to put them in balance. This decision 
process has an aggregative goal, since it aims at combining 
as many different aspects of human activity as possible. 
This makes it  possible to add new actions or models to 
this architecture to describe new aspects of human activity: 
for instance electric mobility and charging behaviors. 
Furthermore, since individual preferences, local 
environment, tariff policies and non-price-related 
incentives are considered in the decisional process, it 
allows the EV charging behaviors to emerge and adapt 
from each particular situation. 

3. The SMACH model  
SMACH (Simulation of Activity and energy Consumption 
in Households) is an AI-based multi-agent simulation 
platform of human activity, applied to the assessment of 
residential electrical consumption. SMACH considers 
human activity as the determining factor of energy 
consumption [8].  

3.1. Population Generation 
First, we use a classical population synthesis methodology 
[11] to generate households that are statistically 
representative of the targeted population’s characteristics. 
These include: family structure; age, gender, socio-
professional category, professional situation of individuals; 
type, surface and thermal performance of buildings; type 
and energy of heating and domestic hot water; electricity 
tariff; geography (location, type of urban area, etc.) and 
weather data. Appliances and their technical characteristics 
are distributed according to the available data. Currently, 
the data used is taken from the French national institute of 
statistics and economic studies (INSEE), as well as 
specific field surveys. 

3.2. Agent Model 
Each person of the households is modeled as an intelligent 
agent with goals (its “provisional activity schedule” as 
described below), knowledge (e.g. the other agents’ 
activities, the price of energy and the state of his local 
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environment) and preferences (e.g. comfort temperatures 
based on quantitative surveys, energy policy oriented 
towards economy or comfort based on qualitative surveys). 
For each simulated individual, we use the data from the 
latest French TUS produced in 2009-2010 by the INSEE to 
generate a weekly “provisional activity schedule”. It is a 
list of activities to perform, with an estimated duration and 
a preferential period of the day for carrying them out.  
Then, during the simulation, each agent has an individual 
decision module that will lead to the action that is actually 
performed. Agents decide themselves the action to perform 
by pondering his goals, knowledge and preferences, with a 
1-minute time step (please refer to [9], [10] for a complete 
presentation of the agent model and its decision module). 
Our agents are thereby able to modify their actions, for 
instance according to the actions of others (e.g. “My 
regular schedule is to take my shower first and then to 
have lunch, but the shower is currently occupied so I take 
my breakfast first”), or according to other factors such as 
the price of energy or the weather conditions.  

3.3. Expanding the range of simulated activities: 
the SMACH mobility model 
With this agent model as a basis, we expanded the 
architecture to include individual mobility and EV 
charging. In accordance with [12] demonstrating that an 
EV model built with help of household travel surveys 
(HTS) can accurately reproduce EVs’ driving behaviors, 
we choose the last available French HTS (2010 “National 
Transport and Travel Survey”) to calibrate our EV model. 
Additional French data focused on EV ownership, type of 
driving and recharging behaviors were also used [13]. This 
second set of data allows us to fulfill the first step of the 
model’s expansion to integrate EV, namely adding EV 
ownership parameters in the population generation 
process. These details concern: which individual possesses 
an EV (and its brand and model), its type of driving 
(standard or eco driving), the type of home charging 
station (none, 2, 3.2, 3.7, or 7.4 kW), and the presence of a 
public charging station usable near home. In the EV 
attribution process, the following individual characteristics 
are taken into account: age and gender, type of household 
and size, type of housing, type of urban area. 
We then created a specific mobility model associated with 
SMACH’s activity-centered approach. While TUS data 
describe activities (duration, location, etc.), HTS data 
describe car-traveled distances to go from a location to 
another. Therefore, we coupled these two logics with help 
of a common typology of locations. In the current version 
of our model, we consider five locations (home, work, 
shopping, leisure and “other”) and locate each TUS-related 
activity in one of them (i.e. all the shopping related 
activities take place in the “shopping” location, etc.). 
Then, we use the HTS data to compute, for each “HTS 
individual” (a real respondent in the HTS database), the 
car distance matrix of these five locations, i.e. the average 
distance travelled by car to reach all these locations from 

any other (the averaging allowing to consider all travels, 
even the ones that do not use the car). For each simulated 
individual driving an EV, we assign the car distance matrix 
from a real “HTS individual” sharing the same individual 
characteristics as our “TUS individual”, and thereby 
determine the distance travelled by car each time the 
individual changes location by car. 
Each EV is modelled as an agent with the following 
features: brand and model, maximum and current battery 
capacity, current location, and energy consumption per km 
in urban and rural areas (kWh/km). These consumptions 
per km are constant and computed beforehand using an EV 
consumption model taking their weight, frontal area, drag 
coefficient, efficiencies of the electronics, motor and 
transmission components, brake regeneration, WLTC 
driving cycle, and type of driving into account. The type of 
WLTC used depends on the household’s geographical 
location (see 3.1). 
Our EV model also integrate an explicit charging behavior 
model. Figure 1 from [13], gives an example of charging 
options and statistics in four locations, considering some 
household features such as the type of housing and the 
type of urban area. 

20% 25% 36% 5% 14%
at home

7% 6% 9% 7% 70%
at work

8% 10% 21% 44% 17%
public charging station

5% 8% 9% 37% 42%
motorway charging station

 
Figure 1: Example of charging behaviors distribution 
 
From this data, we implemented a type of charging 
behavior for each location, related to the current EV 
charging trends. However, the charging patterns are not 
fixed, since the charging possibilities depend on the 
vehicle location, which is decided by the human decisional 
process (not related with HTS data, but with TUS data). In 
addition, the current battery capacity affects the people’s 
charging decisions, and the electricity tariffs can also have 
a direct impact, as the home charging stations are often 
linked to off-peak hours or a dedicated tariff. Charging 
times cannot exceed the time that the vehicle spends in a 
given location. Charging power of public charging stations 
was inferred from GIREVE database (www.gireve.com ). 
To sum up, our EV model is composed of a “VOAMM-
like” model used to determine EV ownership details, an 
Agent-Based Model for EV-use based on Household 
Travel Surveys data (HTS), and an explicit charging model 
that combine HTS, TUS and field study data. These three 
models benefit from the emerging and adaptive capacities 
of the architecture. Indeed, EV related actions are placed at 
the same level as every other aspect of human activity, and 
the simulated individuals adapt themselves to changes in 
the environment (tariff, weather, specific events, etc.), 
thanks to their individual decisional process. 
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3.4. Application to the assessment of residential 
load curves and energy use 
We consider energy consumption as a consequence of 
human activity. Thus, SMACH associates human actions 
and decisions with four categories of appliances: 
controlled by a setpoint or a tariff (including heating and 
domestic hot water), programmed (e.g. a dishwasher 
programmed to start at a given time), linked to an activity 
(e.g. a TV for the activity watching TV), and constant use 
(e.g. an internet router). The newly introduced EV 
charging model can fall into the first 3 categories, 
depending on the charging behavior of the user and the 
charging control devices they possess. It is also possible to 
model interaction between energy uses, for instance if a 
household prefers to give precedence to producing enough 
hot water over charging their EV. 
Each appliance has a specific active and reactive power 
demand model, which can be a constant power over time, 
the result of a dynamic thermal model (e.g. for the 
domestic hot water), or a curve based on laboratory 
measurements (e.g. for washing machine cycles). Heating 
and cooling needs are computed by a previously-validated 
dynamic building energy model, built from the 
BuildsysPro Modelica library, and co-simulated with 
SMACH using the FMI interoperability standard [14].   
SMACH continuously meters the use and power load of 
each appliance to calculate the load curve of the 
household. For large scale assessments, a target population 
is generated by SMACH (see 3.1), and the global 
residential load curve is obtained by simulating each 
individual household and aggregating the individual 
results. 

4. Discussion on validations 
To take the specificity of a human-centered agent model 
into account, we devised and performed a dedicated 
validation process at both household and aggregated level, 
considering both human activity and energy consumption. 

4.1. Validation at the individual household scale  
We validated the simulated activity with the 
implementation of a specific cognitive ergonomics 
approach known as 'participatory simulation' [15], carried 
out with 10 families participating in the “OpCo” 
demonstrator in Brittany, France. A dedicated Human-
Computer Interface was developed to allow real people to 
manipulate SMACH and judge themselves the realism of 
their own household simulation. The results proved our 
model to be able to faithfully reproduce human activity at 
an individual level, with its complexity and its own 
internal logic (daily life, interactions, cooperation) [16]. 
The SMACH results were also compared to the metered 
load curves of the OpCo households over 8 to 15 weeks at 
a 30 min time step. The simulated load curves showed to 
be within a satisfying confidence interval compared to the 
OpCo curves, with mean errors on energy consumptions 
ranging between 2% and 14% (Figure 2). 

 
Figure 2: Confidence interval comparison for Tuesdays 

4.2. Validation at the aggregated scale 
We verified that our simulations reproduced relevant 
indicators at the aggregated level when compared to the 
INSEE data, including, for each action, average activities’ 
durations, number of repetitions, preferred realization 
periods, which were adequately close to the statistical data. 
To ensure that the SMACH results agreed on the main 
characteristics of residential consumption, we generated a 
population of 1,000 households representative of 
Metropolitan France and compared the aggregated load 
curve with the annual and weekly profiles used for the 
assessment of injection and withdrawal flows on the public 
distribution network (DSO open data). This data was used 
to validate the dynamics and weekly values of the 
simulated load curves (Figure 3 and Figure 4), and helped 
identify the need to better take the dynamics of heating 
systems such as heat pumps into account.    

 
Figure 3: Load curve for Single-Rate and Off-Peak tariffs 
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Figure 4: Comparison of weekly energy consumptions for 
one year under the “peak/off-peak tariff” for mean 
meteorological data (left) and the cold year 2012 (right) 

4.3. EV model preliminary validation 
As a first validation step, we generated a virtual population 
composed of 10 000 household, and verified that the EV 
ownership details were similar than those in data set (e.g. 
on average 1 EV for 330 households). Then, we simulated 
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this population during one year and compared the EV-use 
with HTS data. We obtained an average 12 700km against 
the 12 900 km in the data. Figure 5 details the average 
distance traveled during weekend in HTS data compared to 
simulations. The low representativeness of high mileage in 
our simulations comes from the current absence of “long 
trips” in the model, which are currently being included. 

%
 d
ist
rib
ut
io
n

 
Figure 5: Distribution of EV trips during weekends 
 
Currently, the validation at the individual level were only 
performed through expert verifications, to ensure that the 
simulated EV-use is consistent with individual HTS data. 

5. Conclusion and perspectives 
We presented a generic agent architecture, aiming at a 
holistic modelling of human activity, based on cognitive 
ergonomics work. This architecture was applied to 
residential energy consumption simulations, allowing the 
generation of coherent load curves at both individual and 
aggregated levels. This model was extended to simulate 
EV use and charging profiles for each EV present in a 
given population. This EV model still lacks validation 
since large and good quality data sets are difficult to 
obtain, but we already verified its ability to reproduce 
aggregated data from an emergent bottom-up perspective.  
Our agent architecture has been in constant enhancement 
for more than 10 years, and the newly added EV module 
has many areas of improvements. The most critical being 
certainly the collective organization inside a household 
around the EV use. Indeed, in the current version, each EV 
is driven only by one human, which oversimplifies the way 
people organize their trips and decide on EV charging. 
Applications to grid issues encompass prospective impact 
studies of EV market penetration on peak loads at a global 
and local level, as well as studies on interactions between 
grid constraints and residential consumption from a V2G 
perspective. For end consumers, this model also supports 
the development and sizing of smart charging solutions, or 
the shaping of new customized electricity tariffs. 
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