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The Capra-subdifferential of the `0 pseudonorm

Adrien Le Franc∗ Jean-Philippe Chancelier∗ Michel De Lara∗

December 30, 2021

Abstract

The `0 pseudonorm counts the nonzero coordinates of a vector. It is often used in
optimization problems to enforce the sparsity of the solution. However, this function
is nonconvex and noncontinuous, and optimization problems formulated with `0 in
the objective function or in the constraints are hard to solve in general. Recently,
a new family of coupling functions — called Capra (constant along primal rays) —
has proved to induce relevant generalized Fenchel-Moreau conjugacies to handle the `0
pseudonorm. In particular, under a suitable choice of source norm on Rd — used in the
definition of the Capra coupling — the function `0 is Capra-subdifferentiable, hence is
Capra-convex. In this article, we give explicit formulations for the Capra subdifferential
of `0, when the source norm is a `p norm with p ∈ [1,∞]. We illustrate our results
with graphical visualizations of the Capra subdifferential of `0 for the Euclidean source
norm.

Keywords Generalized subdifferential; `0 pseudonorm; Sparsity

1 Introduction

The `0 pseudonorm is a function which counts the number of nonzero elements of a vector.
This function appears in numerous optimization problems to enforce the sparsity of the
solution. As this function is nonconvex and noncontinuous, the powerful framework of convex
analysis is unadapted to address such problems, unless considering a convex relaxation of
the function `0. In a recent series of works [2, 3, 1], it was shown that conjugacies induced
by the so-called Capra (constant along primal rays) coupling are well-suited to handle the `0

pseudonorm. In particular, the authors show in [1] that for a large class of source norms (that
encompasses the `p norms for p ∈]1,∞[) employed in the definition of the Capra coupling,
the `0 pseudonorm is equal to its Capra-biconjugate, meaning that it is a Capra-convex
function. They also provide formulae for the Capra-subdifferential of `0 in [3], and prove
that this subdifferential is nonempty for the same class of source norms that guarantee the
Capra-convexity of `0 in [1].
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The formulation of the Capra-subdifferential of the `0 pseudonorm in [3] involves the
so-called coordinate-k and dual coordinate-k norms, defined by variational expressions, and
is not readily computable. The main contribution of this article is to derive explicit formu-
lations to compute the Capra-subdifferential of the `0 pseudonorm for all `p source norms
with p ∈ [1,∞]. Subsequently, we comment on the domain of these subdifferentials, and
extend previous results by showing that when p ∈ {1,∞}, the `0 pseudonorm is not Capra-
convex. We also illustrate the Capra-subdifferential of `0 that we find, and compare it with
other notions of generalized subdifferentials for `0 found in [5]. We argue that the Capra
subdifferential is a is well-suited notion of generalized subdifferential to handle `0, since it is
based on a conjugacy. To illustrate the subsequent opportunities allowed by conjugacies, we
show how to derive polyhedral-like lower bounds on `0, based on the knowledge of its Capra
subdifferential.

The article is organized as follows. First, we recall background notions on the Capra
coupling in §2. Second, we derive explicit formulations for the Capra-subdifferential of
`0 in §3. Finally, we provide illustrative visualizations and discuss the positioning of the
Capra-subdifferential of `0 with respect to other notions of subdifferentials in §4.

2 Background on the Capra coupling and the `0 pseudonorm

For any pair of integers i ≤ j, we denote Ji, jK = {i, i+ 1, . . . , j − 1, j}. We work on the
Euclidean space Rd, where d ∈ N∗, equipped with the canonical scalar product 〈·, ·〉, and
with a norm |||·||| that we call the source norm. We stress the point that |||·||| can be any
norm, and is not required to be the Euclidean norm. We denote the unit sphere and the
unit ball of the norm |||·||| by, respectively,

S =
{
x ∈ Rd

∣∣ |||x||| = 1
}

and B =
{
x ∈ Rd

∣∣ |||x||| ≤ 1
}
, (1)

or, more explicitly, by S|||·||| and B|||·||| when needed.
First, we recall the definition of the so-called Capra coupling and of the resulting Capra

conjugacies in §2.1. Second, we review the main results relating Capra conjugacies and the
`0 pseudonorm in §2.2.

2.1 Capra conjugacies

We start by recalling the definition of the Capra coupling.

Definition 1 ([3], Definition 4.1) Let |||·||| be a norm on Rd. We define the coupling ¢ :
Rd × Rd → R between Rd and Rd, that we call the Capra coupling, by

∀y ∈ Rd , ¢(x, y) =

{
〈x, y〉
|||x||| , if x 6= 0 ,

0 , if x = 0 .
(2)
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A coupling function such as the Capra coupling ¢ given in Definition 1 gives rise to
generalized Fenchel-Moreau conjugacies [9, 6], that we briefly recall. Let us introduce the
extended real line R = R∪ {+∞,−∞} and consider a function f : Rd → R. The ¢-Fenchel-

Moreau conjugate of f is the function f¢ : Rd → R defined by

f¢(y) = sup
x∈Rd

(
¢(x, y)− f(x)

)
, ∀y ∈ Rd , (3a)

and the ¢-Fenchel-Moreau biconjugate of f is the function f¢¢
′
: Rd → R defined by

f¢¢
′

(x) = sup
y∈Rd

(
¢(x, y)− f¢(y)

)
, ∀x ∈ Rd . (3b)

Moreover, we have the inequality

f¢¢
′

(x) ≤ f(x) , ∀x ∈ Rd , (3c)

and following [6], we say that the function f is Capra-convex iff we have an equality in (3c).
Lastly, Capra conjugacies also induce a notion of Capra subdifferential. The Capra subdif-
ferential of f is the set-valued mapping ∂¢f : Rd ⇒ Rd defined by

y ∈ ∂¢f(x) ⇐⇒ f¢(y) = ¢(x, y)− f(x) . (4)

Observe that if we replace the Capra coupling ¢ with the scalar product 〈·, ·〉 in (3) and
(4), we retrieve well-known notions of standard convex analysis. We refer to [3] for a more
complete introduction to Capra conjugacies.

2.2 Capra-convexity and Capra-subdifferentiability of the `0 pseudonorm

We define the support of a vector x ∈ Rd by supp(x) =
{
j ∈ {1, . . . , d}

∣∣xj 6= 0
}

. The
`0 pseudonorm is the function `0 : Rd → {0, 1, . . . , d} defined by

`0(x) =
∣∣supp(x)

∣∣ , ∀x ∈ Rd , (5)

where |K| denotes the cardinality of a subset K ⊆ {1, . . . , d}. We recall the main results
relating the Capra coupling ¢ of Definition 1 and the `0 pseudonorm. To ease the reading,
we gather the required background notions on norms in Appendix A.

First, we recall, that under a judicious choice of source norm, the `0 pseudonorm is
Capra-subdifferentiable everywhere on Rd, hence is a Capra-convex function.

Theorem 2 (from [1], Theorem 8 and Proposition 7) Let |||·||| be the source norm em-
ployed for the Capra coupling ¢ in Definition 1. If both the norm |||·||| and the dual norm
|||·|||? are orthant-strictly monotonic (see Definition 12), then we have that

∂¢`0(x) 6= ∅ , ∀x ∈ Rd . (6)

As a consequence, we have that

`
¢¢′
0 = `0 . (7)
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Second, a generic formula for the Capra-subdifferential of `0 is given in [3]. To state this
last result, we introduce the sets

Yl =
{
y ∈ Rd

∣∣ l ∈ arg max
j∈J0,dK

(
|||y|||R(j),? − j

)}
, ∀l ∈ J0, dK , (8)

where {|||·|||R(j),?}j∈J1:dK are the dual coordinate-k norms associated with the source norm |||·|||,
whose expressions are given in Definition 14. Also, for a nonempty closed convex set C ⊆ Rd

and x ∈ Rd, we denote by NC(x) the normal cone of C at x, whose definition (37) and
properties are recalled in Appendix A.

Proposition 3 (from [3], Proposition 4.7 and [1], Proposition 6) Let |||·||| be the source
norm employed for the Capra coupling ¢ in Definition 1. Let {|||·|||R(j)}j∈J1:dK and {|||·|||R(j),?}j∈J1:dK

be the associated sequences of coordinate-k and dual coordinate-k norms, as in Definition 14,
and let {BR(j)}j∈J1:dK and {BR(j),?}j∈J1:dK be the corresponding sequences of unit balls for these
norms. The Capra-subdifferential of the function `0 is the closed convex set given by,

• if x = 0,

∂¢`0(0) =
⋂

j∈J1,dK

jBR(j),? , (9a)

• if x 6= 0 and `0(x) = l,

∂¢`0(x) = NBR
(l)

(
x

|||x|||R(l)
) ∩ Yl . (9b)

3 Capra-subdifferential of `0 for the `p source norms

The main contribution of this article is the following Theorem 4. It provides explicit formulas
for the Capra-subdifferential of the `0 pseudonorm, as introduced in (4) and as characterized
in Theorem 2 for the `p source norms |||·||| = ‖·‖p, when p ∈ [1,∞].

We need to introduce the following norms. For y ∈ Rd, if ν is a permutation of J1, dK
such that |yν(1)| ≥ . . . ≥ |yν(d)|, the top (k, q)-norm ‖·‖tn

(k,q) is given by

‖y‖tn
(k,q) =

( k∑
i=1

|yν(i)|q
) 1
q
, if q ∈ [1,∞[ , and ‖y‖tn

(k,∞) = ‖y‖∞ , (10)

and the (p, k)-support norm ‖·‖sn
(p,k) is the dual norm of the top (k, q)-norm ‖·‖tn

(k,q), as defined

in [7, §8.1]. Besides, for any x ∈ Rd and subset K ⊆ {1, . . . , d}, we denote by xK ∈ Rd the
vector which coincides with x, except for the components outside of K that vanish: xK is
the orthogonal projection of x onto the subspace1

RK = RK × {0}−K =
{
x ∈ Rd

∣∣xj = 0 , ∀j 6∈ K
}
⊆ Rd , (11)

where R∅ = {0}.
1Here, following notation from Game Theory, we have denoted by −K the complementary subset of K

in {1, . . . , d}: K ∪ (−K) = {1, . . . , d} and K ∩ (−K) = ∅.
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Theorem 4 Let the source norm |||·||| = ‖·‖p, where p ∈ [1,∞].

• If p = 1, the `0 pseudonorm is not Capra-convex, and only Capra-subdifferentiable at
x = 0. Its Capra-subdifferential is given by

∂¢`0(0) = B‖·‖∞ and ∂¢`0(x) = ∅ , ∀x ∈ Rd \ {0} , (12)

and its Capra-biconjugate is

`
¢¢′
0 : x 7→

{
0 , if u = 0 ,

1 , if u 6= 0 .
(13)

• If p ∈]1,∞[, the `0 pseudonorm is Capra-convex and Capra-subdifferentiable everywhere
on Rd. Its Capra-subdifferential is given by

∂¢`0(0) = B‖·‖∞ , (14a)

and at x 6= 0, denoting l = `0(x), L = supp(x), and q ∈ [1,∞] such that 1
p

+ 1
q

= 1, by

y ∈ ∂¢`0(x) ⇐⇒


yL ∈ NB‖·‖p

( x
‖x‖p

) ,

|yj| ≤ mini∈L|yi| , ∀j /∈ L ,
|yν(k+1)|q ≥

(
‖y‖tn

(k,q) + 1
)q − (‖y‖tn

(k,q)

)q
, ∀k ∈ J0, l − 1K ,

|yν(l+1)|q ≤
(
‖y‖tn

(l,q) + 1
)q − (‖y‖tn

(l,q)

)q
,

(14b)

where, for any y ∈ Rd, ν denotes a permutation of J1, dK such that |yν(1)| ≥ . . . ≥ |yν(d)|.
• If p = ∞, the `0 pseudonorm is not Capra-convex, and not Capra-subdifferentiable
everywhere on Rd. Its Capra-subdifferential is given by

∂¢`0(0) = B‖·‖∞ , (15a)

and at x 6= 0, denoting l = `0(x), L = supp(x), by

y ∈ ∂¢`0(x) ⇐⇒


yL ∈ NB‖·‖∞

( x
‖x‖∞

) ,

|yj| ≤ mini∈L|yi| , ∀j /∈ L ,
|yν(k+1)| ≥ 1 , ∀k ∈ J0, l − 1K ,
|yν(l+1)| ≤ 1 ,

(15b)

where, for any y ∈ Rd, ν denotes a permutation of J1, dK such that |yν(1)| ≥ . . . ≥ |yν(d)|, and
its Capra-biconjugate is

`
¢¢′
0 : x 7→

{
0 , if u = 0 ,
‖x‖1
‖x‖∞

, if u 6= 0 .
(16)
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We proceed in four steps to prove Theorem 4, starting from the generic formulation of
the Capra-subdifferential of `0 in (9). First, in §3.1, we provide an explicit formulation for
the set Yl in (9b), defined in (8). Second, in §3.2, we provide an explicit formulation for
the normal cone NBR

(l)
in (9b). Third, in §3.3 we gather both results to provide an explicit

formulation of the Capra-subdifferential of the `0 pseudonorm. In addition, we comment on
the Capra-convexity of `0 for the `p source norms, when p ∈ {1,∞}. Finally, in §3.4, we
wrap up the proof Theorem 4.

We will need the following properties of the coordinate-k and dual coordinate-k norms
of Definition 14.

Proposition 5 (from [3], Table 1) Let the source norm |||·||| be a `p norm with p ∈ [1,∞],
and let q ∈ [1,∞] such that 1

p
+ 1

q
= 1. The coordinate-k and dual coordinate-k norms in

Definition 14 are given, for k ∈ J1, dK, by

|||·|||R(k),? = ‖·‖tn
(k,q) and |||·|||R(k) = ‖·‖sn

(p,k) , (17)

3.1 Explicit formulation of the sets Yl

We derive explicit formulations of the sets Yl in (8) for the `p source norms |||·||| = ‖·‖p,
when p ∈ [1,∞]. We start with two preliminary results on the top (k, q)-norm ‖·‖tn

(k,q), whose
expression is given in (10). We state our first preliminary result in Lemma 6.

Lemma 6 Let y ∈ Rd, q ∈ [1,∞[ and k ∈ J0, d− 1K. We have that

‖y‖tn
(k+1,q) − ‖y‖

tn
(k,q) ≤ 1 =⇒ ‖y‖tn

(k+j,q) − ‖y‖
tn
(k,q) ≤ j , ∀j ∈ J1, d− kK . (18)

Moreover, the same result holds if inequalities are strict in (18).

Proof. Let y ∈ Rd and ν denote a permutation of J1, dK such that |yν(1)| ≥ . . . ≥ |yν(d)|, let be
q ∈ [1,∞[, k ∈ J0, d− 1K and j ∈ J1, d− kK. We denote

yΣ
k,q =

k∑
i=1

|yν(i)|q , (19)

so that, from Proposition 5, we have that ‖y‖tn(k,q) =
(
yΣ
k,q

) 1
q .

First, we prove the inequality(
yΣ
k,q + j|yν(k+1)|q

) 1
q −

(
yΣ
k,q

) 1
q ≤ j

[(
yΣ
k,q + |yν(k+1)|q

) 1
q −

(
yΣ
k,q

) 1
q

]
. (20)

Indeed, we have that

1

j

(
yΣ
k,q + j|yν(k+1)|q

) 1
q +

(
1− 1

j

)(
yΣ
k,q

) 1
q ≤

(1

j

(
yΣ
k,q + j|yν(k+1)|q

)
+
(
1− 1

j

)
yΣ
k,q

) 1
q
,
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by concavity of the function x 7→ x
1
q (as q ≥ 1),

=⇒
(
yΣ
k,q + j|yν(k+1)|q

) 1
q +

(
j − 1

)(
yΣ
k,q

) 1
q ≤ j

(
yΣ
k,q + |yν(k+1)|q

) 1
q
,

=⇒
(
yΣ
k,q + j|yν(k+1)|q

) 1
q −

(
yΣ
k,q

) 1
q ≤ j

[(
yΣ
k,q + |yν(k+1)|q

) 1
q −

(
yΣ
k,q

) 1
q

]
.

Second, we prove the implication in (18) in its nonstrict inequality version. Let us assume that
‖y‖tn(k+1,q) − ‖y‖

tn
(k,q) ≤ 1. Then, we have that

‖y‖tn(k+j,q) − ‖y‖
tn
(k,q) ≤

(
yΣ
k,q + j|yν(k+1)|q

) 1
q −

(
yΣ
k,q

) 1
q ,

(from (19) and |yν(k+1)| ≥ |yν(k+2)| ≥ . . . ≥ |yν(k+j)|)

≤ j
[(
yΣ
k,q + |yν(k+1)|q

) 1
q −

(
yΣ
k,q

) 1
q

]
, (from (20))

= j
[
‖y‖tn(k+1,q) − ‖y‖

tn
(k,q)

]
,

from the expression of ‖·‖tn(k,q) in (10) and by (19)

≤ j . (by assumption ‖y‖tn(k+1,q) − ‖y‖
tn
(k,q) ≤ 1)

The proof of the strict inequality version of (18) is analogous. 2

We state our second preliminary result in Lemma 7.

Lemma 7 Let y ∈ Rd, q ∈ [1,∞[ and k ∈ J0, d− 1K. We have that

‖y‖tn
(k+1,q) − 1 ≤ ‖y‖tn

(k,q) ⇐⇒ |yν(k+1)|q ≤
(
‖y‖tn

(k,q) + 1
)q − (‖y‖tn

(k,q)

)q
. (21)

Moreover, the same result holds if inequalities are strict or replaced with equalities in (21).

Proof. For y ∈ Rd and k ∈ J0, d− 1K, we have that

‖y‖tn(k+1,q) − 1 ≤ ‖y‖tn(k,q) ⇐⇒
( k∑
i=1

|yν(i)|q + |yν(k+1)|q
) 1
q − 1 ≤ ‖y‖tn(k,q) ,

(from the expression of ‖·‖tn(k,q) in (10))

⇐⇒
k∑
i=1

|yν(i)|q + |yν(k+1)|q ≤
(
‖y‖tn(k,q) + 1

)q
,

(as the function x 7→ xq is nondecreasing on R+)

so that finally, by definition (10) of ‖·‖tn(k,q), we get

‖y‖tn(k+1,q) − 1 ≤ ‖y‖tn(k,q) ⇐⇒ |yν(k+1)|q ≤
(
‖y‖tn(k,q) + 1

)q − (‖y‖tn(k,q))q .
The proof of the strict inequality and equality versions of (18) is analogous. 2

We now provide explicit formulations of the sets Yl in (8) for the `p source norms |||·||| =
‖·‖p, when p ∈ [1,∞].
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Proposition 8 Let the source norm be the `p norm |||·||| = ‖·‖p, where p ∈ [1,∞], and let

q ∈ [1,∞] be such that 1
p

+ 1
q

= 1. For l ∈ J0, dK, let the set Yl be as in (8). We have that

• if p = 1,

Yl =

{
Rd if l = 0 ,

∅ else,
(22a)

• if p ∈]1,∞], for y ∈ Rd and ν a permutation of J1, dK such that |yν(1)| ≥ . . . ≥ |yν(d)|,

y ∈ Yl ⇐⇒

{
|yν(k+1)|q ≥

(
‖y‖tn

(k,q) + 1
)q − (‖y‖tn

(k,q)

)q
, ∀k ∈ J0, l − 1K ,

|yν(l+1)|q ≤
(
‖y‖tn

(l,q) + 1
)q − (‖y‖tn

(l,q)

)q
.

(22b)

Proof. We consider the case p = 1. When the source norm is |||·||| = ‖·‖1, we have, for k ∈ J1, dK,
|||·|||R(k),? = ‖·‖∞ [3, Table 1]. Therefore, from the expression of Yl in (8), we get that

Yl =
{
y ∈ Rd

∣∣ l ∈ arg max
j∈J0,dK

(
‖y‖∞ − j

)}
=

{
Rd if l = 0 ,

∅ else,

hence (22a).
Next, we consider p ∈]1,∞], and proceed in two steps to prove the equivalence in (22b).
In the first step (⇐= ), we take y ∈ Rd and we consider the two following cases.

• If |yν(k+1)|q ≥
(
‖y‖tn(k,q) + 1

)q − (‖y‖tn(k,q))q , ∀k ∈ J0, l − 1K ,

then, we get that

‖y‖tn(k+1,q) − 1 ≥ ‖y‖tn(k,q) , ∀k ∈ J0, l − 1K , (from (21))

=⇒ ‖y‖tn(k+1,q) − (k + 1) ≥ ‖y‖tn(k,q) − k , ∀k ∈ J0, l − 1K ,

=⇒ l ∈ arg max
j∈J0,lK

(
‖y‖tn(j,q) − j

)
.

• If |yν(l+1)|q ≤
(
‖y‖tn(l,q) + 1

)q − (‖y‖tn(l,q))q ,
then, we get that

‖y‖tn(l+1,q) − 1 ≤ ‖y‖tn(l,q) , (from (21))

=⇒ ‖y‖tn(l+j,q) − j ≤ ‖y‖
tn
(l,q) , ∀j ∈ J1, d− lK , (from (18))

=⇒ ‖y‖tn(l+j,q) − (l + j) ≤ ‖y‖tn(l,q) − l , ∀j ∈ J1, d− lK ,

=⇒ l ∈ arg max
j∈Jl,dK

(
‖y‖tn(j,q) − j

)
.

Therefore, y ∈ Yl , which concludes the first step.
In the second step ( =⇒ ), we proceed by contraposition, assuming that either one of the two

assumptions above is not satisfied.
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• If ∃k ∈ J0, l − 1K , |yν(k+1)|q <
(
‖y‖tn(k,q) + 1

)q − (‖y‖tn(k,q))q ,
then, we get that

∃k ∈ J0, l − 1K , ‖y‖tn(k+1,q) − 1 < ‖y‖tn(k,q) , (from (21))

=⇒ ∃k ∈ J0, l − 1K , ‖y‖tn(k+1,q) − (k + j) < ‖y‖tn(k,q) − k , ∀j ∈ J1, d− kK , (from (18))

=⇒ l /∈ arg max
j∈J0,lK

(
‖y‖tn(j,q) − j

)
;

• If |yν(l+1)|q >
(
‖y‖tn(l,q) + 1

)q − (‖y‖tn(l,q))q ,
then, we get that

‖y‖tn(l+1,q) − 1 > ‖y‖tn(l,q) , (from (21))

=⇒ ‖y‖tn(l+1,q) − (l + 1) > ‖y‖tn(l,q) − l ,

=⇒ l /∈ arg max
j∈Jl,dK

(
‖y‖tn(j,q) − j

)
.

In either case, y /∈ Yl, which concludes the second step, and finally proves the equivalence in (22b).

2

3.2 Explicit formulation of the normal cone NBsn
(p,l)

We turn to the explicit formulation of the normal cone NBsn
(p,l)

in (9b) for the `p source norms

|||·||| = ‖·‖p, when p ∈ [1,∞]. We start with the following Lemma 9.

Lemma 9 Let the source norm be the `p norm |||·||| = ‖·‖p, where p ∈ [1,∞]. Let x ∈ Rd,
l = `0(x), L = supp(x). If l ∈ J1, dK, we have that x′ = x

‖x‖sn(p,l)
satisfies

‖x′‖p = 1 , (23a)

y ∈ NBsn
(p,l)

(x′) ⇐⇒ ‖y‖tn
(l,q) = 〈x′, yL〉 , (23b)

y ∈ NBsn
(p,l)

(x′) =⇒ ‖y‖tn
(l,q) ≤ ‖yL‖q . (23c)

Proof. Let q ∈ [1,∞] be such that 1
p + 1

q = 1.

First, we prove (23a). From [3, Proposition 3.5], l ≥ 1 and `0(x′) = l give that |||x′||| = |||x′|||R(l).
Thus, from Proposition 5 we deduce that ‖x′‖p = ‖x′‖sn(p,l) = 1.

Second, we prove (23b). We have the equivalence

y ∈ NBsn
(p,l)

(x′) ⇐⇒
∥∥x′∥∥sn

(p,l)
‖y‖tn(l,q) =

〈
x′, y

〉
(by definition (37) of the normal cone)

⇐⇒ ‖y‖tn(l,q) =
〈
x′, yL

〉
. (from ‖x′‖sn(p,l) = 1 and L = supp(x′))

Third, we prove (23c). We have that

y ∈ NBsn
(p,l)

(x′) ⇐⇒ ‖y‖tn(l,q) =
〈
x′, yL

〉
Rl , (from (23b))

=⇒ ‖y‖tn(l,q) ≤ ‖yL‖q . (from the Hölder inequality and (23a))
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We now provide an explicit expression of the normal cone in (9b) for the `p source norms
|||·||| = ‖·‖p, when p ∈ [1,∞].

Proposition 10 Let the source norm be the `p norm |||·||| = ‖·‖p, where p ∈ [1,∞]. Let

x ∈ Rd, l = `0(x) and L = supp(x). If l ∈ J1, dK, we have that

y ∈ NBsn
(p,l)

( x

‖x‖sn
(p,l)

)
⇐⇒

{
yL ∈ NB‖·‖p

( x
‖x‖p

) ,

|yj| ≤ mini∈L|yi| , ∀j /∈ L .
(24)

Proof. Let q ∈ [1,∞] be such that 1
p + 1

q = 1. Let x ∈ Rd, l = `0(x) and L = supp(x), and let us

set x′ = x
‖x‖sn(p,l)

. Let y ∈ Rd, and let us set I = supp(y).

First, we prove that
y ∈ NBsn

(p,l)
(x′) =⇒ ‖y‖tn(l,q) = ‖yL‖q . (25)

We consider two cases. In the first case, we assume |I| = |supp(y)| ≤ |supp(x)| = |L| = l. Since y
has at most l nonzero coordinates, from the expression (10) of ‖·‖tn(l,q), we get that ‖y‖tn(l,q) = ‖yI‖q.
It follows that

y ∈ NBsn
(p,l)

(x′) =⇒ ‖yI‖q ≤ ‖yL‖q , (from (23c))

=⇒ ‖yL‖q = ‖yI‖q = ‖y‖tn(l,q) .
(from ‖yL‖q ≤ ‖y‖q = ‖yI‖q, because |I| = |supp(y)|)

In the second case, we assume that |I| = |supp(y)| > |supp(x)| = |L| = l. Since y has more than
l nonzero coordinates, from the expression (10) of ‖·‖tn(l,q), we get that ‖y‖tn(l,q) ≥ ‖yL‖q. Combined

with (23c), we have that y ∈ NBsn
(p,l)

(x′) =⇒ ‖y‖tn(l,q) = ‖yL‖q. Gathering the conclusions of both

cases, we obtain (25).
Second, we prove (24). Observing that ‖x′‖p = 1 from (23a), we have that

y ∈ NBsn
(p,l)

(x′) ⇐⇒

{
‖x′‖p ‖yL‖q = 〈x′, yL〉 ,
‖y‖tn(l,q) = ‖yL‖q ,

( =⇒ from (23b), (25); ⇐= from (23b))

⇐⇒

{
yL ∈ NB‖·‖p

( x
‖x‖p

) ,

|yj | ≤ mini∈L|yi| , ∀j /∈ L ,

by definition (37) of the normal cone, observing that x′ = x
‖x‖p

from (23a), and by the expression

of of ‖·‖tn(l,q) in Proposition 5. This ends the proof. 2

10



3.3 Capra-subdifferential and Capra-convexity of the pseudonorm `0

We gather the explicit expressions of the Capra-subdifferential of the pseudonorm `0, for the
`p source norms |||·||| = ‖·‖p, when p ∈ [1,∞].

Proposition 11 Let the source norm |||·||| = ‖·‖p, where p ∈ [1,∞], let q ∈ [1,∞] such that
1
p

+ 1
q

= 1, and let the associated Capra coupling ¢ be as in Definition 1.

• If p = 1, dom
(
∂¢`0

)
= {0} and ∂¢`0 is given by (12).

• If p ∈]1,∞[, dom
(
∂¢`0

)
= Rd, and ∂¢`0 is given by (14a)–(14b).

• If p =∞, {0} ( dom
(
∂¢`0

)
( Rd, and ∂¢`0 is given by (15a)–(15b).

Proof.
First, we prove that ∂¢`0(0) = B‖·‖∞ for all values of p ∈ [1,∞]. Let us recall that, from (9a),

∂¢`0(0) =
⋂
j∈J1,dK jBR(j),?. If p = 1, from (17) we get that |||·|||R(j),? = ‖·‖∞, ∀j ∈ J1, dK. We deduce

that ∂¢`0(0) = B‖·‖∞ . We now assume that p ∈]1,∞]. From (17), we get that |||·|||R(j),? = ‖·‖tn(j,q),
∀j ∈ J1, dK, where q ∈ [1,∞[. For j = 1, from (10), we get that ‖·‖tn(1,q) = ‖·‖∞, hence that

Btn
(1,q) = B‖·‖∞ . Letting j > 1, we prove an inclusion:

y ∈ B‖·‖∞ =⇒ |yν(1)|q ≤ 1 , (where |yν(1)| = ‖y‖∞)

=⇒
j∑
i=1

|yν(1)|q ≤
j∑
i=1

1 = j , (where |yν(1)| ≥ . . . ≥ |yν(d)|)

=⇒
( j∑
i=1

|yν(1)|q
) 1
q ≤ j

1
q ,

=⇒ ‖y‖tn(j,q) ≤ j (by definition of ‖·‖tn(j,q) in (10) and from j ≥ j
1
q )

=⇒ y ∈ jBtn
(j,q) ,

so that B‖·‖∞ ⊆ jBtn
(j,q). We conclude that ∂¢`0(0) =

⋂
j∈J1,dK Btn

(j,q) = B‖·‖∞ ∩
(⋂

j∈J2,dK Btn
(j,q)

)
=

B‖·‖∞ .

Second, we prove the expression of ∂¢`0(x) at x 6= 0 for all values of p ∈ [1,∞]. Let us recall

that, from (9b), ∂¢`0(x) = NBR
(l)

( x
|||x|||R

(l)

) ∩ Yl . If p = 1, from (22a), Yl = ∅, hence ∂¢`0(x) = ∅, as

stated in (12). If p ∈]1,∞], the expressions of ∂¢`0(x) in (14b) and in (15b) are obtained combining
Proposition 10 and Proposition 8.

Third, we prove our claims on dom
(
∂¢`0

)
for all values of p ∈ [1,∞]. The case p = 1 is clear

from (12). If p ∈]1,∞[, the norm ‖·‖p and the dual norm ‖·‖q are orthant-strictly monotonic,

following Definition 12, so that `0 is Capra-subdifferentiable on Rd, from Theorem 2. We now
consider the case p =∞. Let us for example take x ∈ Rd defined, for some i ∈ J1, dK and ε ∈]0, 1[,
by {

xj = 1 , ∀j 6= i ,

xi = ε .
(26)
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We prove that ∂¢`0(x) = ∅, by contradiction. Let y ∈ ∂¢`0(x). From (15b), y ∈ NB‖·‖∞
( x
‖x‖∞

),

so that 〈x′ − x, y〉 ≤ 0 for any x′ ∈ B‖·‖∞ . In particular, for j 6= i, taking x′ = x − ej , where

{ek}k∈J1,dK is the canonical basis of Rd, we obtain that yj ≥ 0. Moreover,

y ∈ NB‖·‖∞
(

x

‖x‖∞
)

=⇒ ‖x‖∞ ‖y‖1 = 〈x, y〉 , (by (38))

=⇒
∑
j 6=i

yj + |yi| =
∑
j 6=i

yj + εyi , (from the definition (26) of x)

=⇒ yi = 0 . (from ε ∈]0, 1[)

However, since `0(x) = d, we deduce from (15b) that we must have yi ≥ 1. We arrive at a

contradiction, and conclude that ∂¢`0(x) = ∅, and therefore that dom
(
∂¢`0

)
( Rd. Finally, if ε = 1

in (26), it is straightforward to check in (15b) that (1, . . . , 1) ∈ ∂¢`0(x), so that {0} ( dom
(
∂¢`0

)
.

This ends the proof. 2

3.4 Proof of Theorem 4

Proof. Results about Capra-subdifferentiability are taken from Proposition 11, and the Capra-
convexity of `0 for p ∈]1,∞[ is taken from Theorem 2. Thus, we only need to prove that `0 is not
Capra-convex for p ∈ {1,∞} by proving the expressions of the ¢-biconjugate in (13) and (16).
To this end, we recall that, from [3, Proposition 4.4] and Proposition 5, if q ∈ {1,∞} is such that
1
p + 1

q = 1, then we get that

`
¢
0 (y) = max

j=1,...,d

(
‖y‖tn(j,q) − j

)+
, ∀y ∈ Rd . (27)

First, we consider p = 1. From (27) and (10), we have that

`
¢
0 (y) = max

j∈J1,dK

(
‖y‖∞ − j

)+
=
(
‖y‖∞ − 1

)+
, ∀y ∈ Rd , and thus,

`
¢¢′
0 (x) = sup

y∈Rd

(〈x, y〉
‖x‖1

−
(
‖y‖∞ − 1

)+)
, ∀x ∈ Rd , (from (3b))

= max
(

sup
‖y‖∞≤1

〈x, y〉
‖x‖1

, 1 + sup
‖y‖∞≥1

〈x, y〉
‖x‖1

− ‖y‖∞
)
, ∀x ∈ Rd ,

= 1 , ∀x ∈ Rd \ {0} ,

since sup‖y‖∞≤1 〈x, y〉 = ‖x‖1, by ‖·‖1 =
(
‖·‖∞

)∗
, and 〈x, y〉 ≤ ‖x‖1 ‖y‖∞, by Hölder’s inequality.

This proves (13).
Second, we consider p =∞. From (27) and (10), for y ∈ Rd and ν a permutation of J1, dK such
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that |yν(1)| ≥ . . . ≥ |yν(d)|, we have that

`
¢
0 (y) = max

j∈J1,dK

( j∑
k=1

|yν(k)| − j
)+

=
d∑

k=1

(|yν(k)| − 1)1|yν(k)|≥1 , ∀y ∈ Rd , and thus,

`
¢¢′
0 (x) = sup

y∈Rd

(〈x, y〉
‖x‖∞

−
d∑

k=1

(|yν(k)| − 1)1|yν(k)|≥1

)
, ∀x ∈ Rd , (from (3b))

=
d∑

k=1

sup
yk∈R

( xkyk
‖x‖∞

− (|yk| − 1)1|yk|≥1

)
, ∀x ∈ Rd ,

=

d∑
k=1

max
(

sup
|yk|≤1

xkyk
‖x‖∞

, 1 + sup
|yk|≥1

xkyk
‖x‖∞

− |yk|
)
, ∀x ∈ Rd ,

=

d∑
k=1

|xk|
‖x‖∞

=
‖x‖1
‖x‖∞

, ∀x ∈ Rd ,

since, using similar arguments as above, sup|yk|≤1 xkyk = |xk|, and 1 + sup|yk|≥1
xkyk
‖x‖∞

− |yk| ≤

1 + sup|yk|≥1
|xkyk|
‖x‖∞

− |yk| = 1 + sup|yk|≥1

( |xk|
‖x‖∞

− 1
)
|yk| = |xk|

‖x‖∞
. This proves (16), and ends the

proof. 2

4 Graphical visualizations and discussion

First, we provide graphical representations of the Capra-subdifferential of the `0 pseudonorm
in §4.1. Second, we compare our expression of ∂¢`0 with other notions of generalized subd-

ifferential for the `0 pseudonorm and illustrate one of its applications in §4.2.

4.1 Visualization with the `2 source norm

We detail the Capra-subdifferential of `0 for the `2 source norm |||·||| = ‖·‖2. According to
Proposition 11, we have that

∂¢`0(0) = B‖·‖∞ , (28a)

and for x 6= 0, y ∈ Rd, denoting l = `0(x), L = supp(x), and ν a permutation of J1, dK such
that |yν(1)| ≥ . . . ≥ |yν(d)|,

y ∈ ∂¢`0(x) ⇐⇒


yL = λx , λ ≥ 0 ,

|yj| ≤ mini∈L|yi| , ∀j /∈ L ,
|yν(k+1)|2 ≥

(
‖y‖tn

(k,2) + 1
)2 −

(
‖y‖tn

(k,2)

)2
, ∀k ∈ J0, l − 1K ,

|yν(l+1)|2 ≤
(
‖y‖tn

(l,2) + 1
)2 −

(
‖y‖tn

(l,2)

)2
.

(28b)
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We illustrate in Figure 1 the Capra-subdifferentials obtained with (28) in the two-
dimensional case where `0 : R2 → {0, 1, 2}. In Figure 1a, we display the Capra-subdifferential
of `0 at three points, covering the three possible cases in R2, with `0(x) = 0 (green color),
`0(x) = 1 (red color), and `0(x) = 2 (blue color). Then, using the same colors, we display in
Figure 1b the Capra-subdifferential of `0 at all points in R2.

4.2 Discussion

First, we compare the Capra-subdifferential of the `0 pseudonorm given in Proposition 11
with other notions of subdifferentials. We recall that for `0, the standard subdifferential of
convex analysis obtained with the Fenchel conjugacy is given by

∂`0(0) = {0} , and ∂`0(x) = ∅ , ∀x ∈ Rd \ {0} , (29)

following [3, Table 3]. We also recall further notions of generalized subdifferentials obtained
for the `0 pseudonorm. We refer to [5] for the definitions of the Fréchet, viscosity, proximal,
Clarke and limiting subdifferentials, where the author establishes that all these notions
coincide for the `0 pseudonorm, and are equal to the set-valued mapping

D : Rd ⇒ Rd , x 7→
{
y ∈ Rd

∣∣ yL = 0
}
, (30)

where L = supp(x), from [5, Theorems 1, 2]. We deduce that the Capra-subdifferential of
the `0 pseudonorm is significantly different form previous notions of generalized subdifferen-
tials of `0, summarized by (30). In particular, whereas

{
y ∈ Rd

∣∣ yL = 0
}

is a vector subspace,
the Capra-subdifferential ∂¢`0(x) is a closed convex set, but not a vector subspace.

Second, we argue that since the `0 pseudonorm displays the Capra-convex properties re-
called in Theorem 4, the Capra-subdifferential is a natural object to deal with the function
`0. As an example, we show how to obtain lower approximations of the `0 pseudonorm from
the knowledge of its Capra-subdifferential. We recall that nonconvex continuous approxima-
tions of the `0 pseudonorm have gained a lot of interest in the field of sparse optimization,
especially due to applications in machine learning [10, 8]. The lower approximation of `0

that we propose next can be seen as a generalization of polyhedral lower approximations
obtained for a proper, lower semicontinuous and convex function. Let the source norm |||·|||
be a `p norm, with p ∈]1,∞[, and let {xi}i∈I and {yi}i∈I be two collections of points such
that for i ∈ I, xi ∈ Rd and yi ∈ ∂¢`0(xi). By definition of the Capra biconjugate in (3b), we

have that

max
i∈I

(
¢(x, yi)− `

¢
0 (yi)

)
≤ sup

y∈Rd

(
¢(x, y)− `¢0 (y)

)
= `

¢¢′
0 (x) , ∀x ∈ Rd . (31)

Therefore, we deduce from (3c) that the function

`0 : Rd → R , x 7→ max
i∈I

(
¢(x, yi)− `

¢
0 (yi)

)
(32)
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x1

x2

(a) ∂¢`0(0, 0) , ∂¢`0(1, 0) , ∂¢`0(−
√

3
2 ,−

1
2)

x1

x2

(b) ∂¢`0(0)
⋃{ ⋃

`0(x)=1

∂¢`0(x)
}⋃{ ⋃

`0(x)=2

∂¢`0(x)
}

Figure 1: Capra-subdifferential of the `0 pseudonorm in R2 with the `2 source norm |||·||| =
‖·‖2, illustrated for three points (Figure 1a) and for all points in R2 (Figure 1b)
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(a) `0 : R2 → {0, 1, 2} (b) `0 : R2 → R in (32) on S ∪ {0}

Figure 2: The `0 pseudonorm in R2 (blue color, Figure 2a) and a polyhedral-like lower bound
`0 as in (32) represented on S∪{0} (orange color, Figure 2b) obtained for the `2 source norm
|||·||| = ‖·‖2 with points {xi}i∈I sampled on S (black dots, Figure 2b)

gives a lower bound for `0. Moreover, by definition of the Capra subdifferential in (4), we
have that for i ∈ I,

¢(xi, yi)− `
¢
0 (yi) = `0(xi) , (33)

so that this lower bound is exact at the points in {xi}i∈I , in the sense that `0(xi) = `0(xi).
Thus, we can tighten the inequality in (31) by enlarging the collections {xi}i∈I and {yi}i∈I .
We provide an example of such a lower approximation of `0 in Figure 2b, using the `2

source norm |||·||| = ‖·‖2. By definition of `0 in (32) and of the Capra coupling in (3), it is
straightforward to see that `0 is constant along rays, so that we only give its representation
on S ∪ {0} (orange color). Observe that at the sample points {xi}i∈I (black dots), `0 takes
the same values as `0 (blue color, Figure 2a).

5 Conclusion

We have derived explicit formulations for the Capra-subdifferential of the `0 pseudonorm
for the `p source norms with p ∈ [1,∞]. With these formulations, it is now possible to
compute elements in such Capra-subdifferentials, that we have illustrated by a graphical
representation. On top of that, we have extended previous knowledge on `0, establishing
that it is neither Capra-convex nor Capra-subdifferentiable everywhere in the limit cases
where p ∈ {1,∞}.

The formulation that we obtain differs drastically from previous notions of generalized
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subdifferential for the `0 pseudonorm. Whereas most other notions coincide, the Capra-
subdifferential enriches this collection and is an interesting tool to deal with the function `0,
in the spirit of the usual notion of subdifferential for proper lower semicontinuous convex
functions.

A Background on norms

For any norm |||·||| on Rd, we introduce derived norms and some of their properties.

Dual norms and normal cones

The following expression
|||y|||? = sup

|||x|||≤1

〈x, y〉 , ∀y ∈ Rd (34)

defines a norm on Rd, called the dual norm |||·|||?. In line with our notations for the norm |||·|||
in (1), we denote the unit sphere and the unit ball of the dual norm |||·|||? by

S? =
{
y ∈ Rd

∣∣ |||y|||? = 1
}
, (35a)

B? =
{
y ∈ Rd

∣∣ |||y|||? ≤ 1
}
. (35b)

Note that by definition of the dual norm in (34), we have the inequality

〈x, y〉 ≤ |||x||| × |||y|||? , ∀(x, y) ∈ Rd × Rd . (36)

Equality cases in the above inequality can be characterized in term of geometric objects
of convex analysis. For this purpose, we recall that the normal cone NC(x) to the nonempty
closed convex subset C ⊆ Rd at x ∈ C is the closed convex cone defined by [4, Definition 5.2.3]

NC(x) =
{
y ∈ Rd

∣∣ 〈y, x′ − x〉 ≤ 0 , ∀x′ ∈ C
}
. (37)

Now, easy computations show that for any (x, y) ∈ Rd\{0}×Rd\{0}, we have the equivalence

〈x, y〉 = |||x||| × |||y|||? ⇐⇒ y ∈ NB
( x

|||x|||
)
⇐⇒ x ∈ NB?

( y

|||y|||
)
. (38)

Orthant strict monotonicity

For any x ∈ Rd, we denote by |x| the vector of Rd with components |xi|, i = 1, . . . , d.

Definition 12 (from [1], Definition 5) A norm |||·||| on the space Rd is called orthant-
strictly monotonic if, for all x, x′ in Rd, we have(

|x| < |x′| and x ◦ x′ ≥ 0
)

=⇒ |||x||| < |||x′||| , (39)

where |x| < |x′| means that |xi| ≤ |x
′
i| for all i = 1, . . . , d, and that there exists j ∈ {1, . . . , d},

such that |xj| < |x
′
j|; and x ◦ x′ = (x1x

′
1, . . . , xdx

′
d) is the Hadamard (entrywise) product.
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Restriction norms, coordinate-k and dual coordinate-k norms

We start by introducing restriction norms and their dual.

Definition 13 ([3], Definition 3.1) For any norm |||·||| on Rd and any subset K ⊆ {1, . . . , d},
we define two norms on the subspace RK of Rd, as defined in (11), as follows.

• The K-restriction norm |||·|||K is defined by

|||x|||K = |||x||| , ∀x ∈ RK . (40)

• The (K, ?)-norm |||·|||K,? is the norm
(
|||·|||K

)
?
, given by the dual norm (on the sub-

space RK) of the restriction norm |||·|||K to the subspace RK (first restriction, then
dual).

With these norms, we define the coordinate-k and dual coordinate-k norms.

Definition 14 ([3], Definition 3.2) For k ∈ {1, . . . , d}, we call coordinate-k norm the
norm |||·|||R(k) whose dual norm is the dual coordinate-k norm, denoted by |||·|||R(k),?, with ex-
pression

|||y|||R(k),? = sup
|K|≤k
|||yK |||K,? , ∀y ∈ Rd , (41)

where the (K, ?)-norm |||·|||K,? is given in Definition 13, and where the notation sup|K|≤k is
a shorthand for supK⊆{1,...,d},|K|≤k.

Also, following [3, §3.2], we extend the dual coordinate-k norms in Definition 14 with the
convention |||·|||R(0),? = 0, although this is not a norm on Rd but a seminorm.
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