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Introduction

The Riemann zeta function is the function of the complex variable s, defined in the half-plane 1 psq ą 1 by the absolutely convergent series ζpsq " 8 ÿ n"1 1 n s and in the whole complex C by analytic continuation.

The function ζpsq has zeros at the negative even integers, ´2, ´4, ´6, . . . and one refers to them as the trivial zeros. The Riemann Hypothesis concerns precisely these zeros and in particular:

Riemann Hypothesis: T he non´trivial zeros of ζpsq have real part equal to 1 2 In 1984 G. Robin [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF] has proved some important propositions: Proposition 1.1 (Robin). If the Riemann hypothesis is true, then Proof. See Proposition 3 of Robin [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF].

Before enunciating Robin's second proposition we must define the Superabundant and the Colossally abundant numbers Definition 1.2. The Superabundant numbers are those positive integers n such that

σpkq k ă σpnq n 1 ď k ď n ´1
The Colossally abundant numbers are those numbers n for which there is a positive exponent such that

σpkq k 1` ď σpnq n 1` @k ě 1
As shown in [START_REF] Alaoglu | On Highly Composite and Similar Numbers[END_REF] and [START_REF] Erdös | Rpartition des nombres superabondants[END_REF], every Colossally abundant numbers are Superabundant.

Proposition 1.3 (Robin). If the Riemann hypothesis is false, then @n colossally abundant there exists the constant b such that:

(1.2) σpnq n log log n " e γ p1 `Ω˘p plogpnqq b q where 1 ´θ ă b ă 1 2 and θ being the upper bound of the real parts of zeros of the ζpnq.

Proof. The proof is described in the Proposition 1 of Section 4 of Robin [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF].

Both of the preceding propositions allow Robin to state the following theorem Theorem 1.4 (Robin). The Riemann Hypothesis is equivalent to σpnq ă e γ n log log n @n ě 5041

In this article it will be proved that Theorem 1.5. @n ě 5041,

(1.3) σpnq ă e γ n log log n 2. Prove the theorem 1.5

First of all, we prove some useful Lemma involving superabundant and colossally abundant numbers Lemma 2.1. Let n a positive integer, and 2 ď n 1 ď n ď n 2 , with n 1 and n 2 two integers superabundant numbers consecutive. Then σpn 1 q ă e γ n 1 log log n 1 ñ σpnq ă e γ n log log n Proof. From the hypotheses we can affirm that (2.1) σpnq n ă σpn 1 q n 1 in fact if it were not true, then the superabundant number subsequent to n 1 would be n and not n 2 . But this contradicts the hypothesis. Now we assume that the following is true σpn 1 q ă e γ n 1 log log n 1 and we divide both members by n 1 Proof. Trivially if exist m ě 5041 not a colossally abundant number such that σpmq ě e γ m log log m, then if we take n equal to the maximum colossally abundant number less than m would result σpnq ě e γ n log log n ñ σpmq ě e γ m log log m but this contradicts the lemma 2.1.

σpn 1 q n 1 ă e γ log
As consequence of the lemma 2.2, we can prove the theorem 1.5 for the colossally abundant numbers only.

Another useful result obtained by Alaoglu-Erdös [START_REF] Alaoglu | On Highly Composite and Similar Numbers[END_REF] is the following theorem

Theorem 2.3. Let n a superabundant number. If n " 2 k2 3 k3 ¨¨¨p kp then k 2 ě k 3 ě . . . ě k p
Now we add another very useful lemma.

Lemma 2.4. Let n a superabundant number and p the maximum prime factor of n. Then all primes less than p divide n.

Proof. Reductio ad absurdum. Let q a prime less than p such that q ffl n. We know from Alaoglu-Erdös [START_REF] Alaoglu | On Highly Composite and Similar Numbers[END_REF] that k p " 1. We define n 1 as

n 1 " nq p ă n
Since n by hypothesis, is a superabundant number we can write σpn 1 q n 1 ă σpnq n considering that q|n 1 , p ffl n 1 q ffl n, p|n after the simplification we get σpqq q ă σppq p pq `1q q ă pp `1q p q ą p and this contradicts the hypothesis of the Reductio ad absurdum.

As a consequence of the theorem 2.3 and lemma 2.4, we can write n in two ways. The first way is the normal one using prime factors.

(2.2)

n " p a1 1 p a2 2 ¨¨¨p as s

The second way use the primorials. We take the set of exponents of the prime factors of n, each considered only once.

A " tα 1 , α 2 , . . . , α r u where: α 1 " 1

So we can rewrite n as product of primorials (2.3) n " pq 1 #q α1 pq 2 #q α2 ¨¨¨pq r #q αr where q i " maxtp : p ai | nu.

We will use n in the first form to study the left side of the (1.3) and we will use the second form to study the right side.

We calculate the divisor function of n in first form.

(2.4) σpnq " σpp a1 1 qσpp a2 2 q ¨¨¨σpp as s q we know that From the lemma 2.4 we know that all p ď p s divide n, so we can use the formula in the paragraph (5.4) in Dusart [START_REF] Dusart | Explicit estimates of some functions over primes[END_REF] (2.9)

σpp ai i q " p pi`1 i ´1 p i ´1
ź pďx p pp ´1q ď e γ log x expp η k {k log k x `ηk p1 `1 k`1 q log k`1 x q @x ě x k
where η k and x k can be calculated appropriately. We will choose η k and k such that x k ě 2, so the formula is valid for all prime. Then the (2.8) become

(2.10) logpσpnqq ď log n `γ `log log p s `ηk {k log k p s `ηk p1 `1 k`1 q log k`1 p s ´ÿ pi|n 1 p ai`1 i So after the simplification, to prove the (1.3) we must prove (2.11) log log p s `ηk {k log k p s `ηk p1 `1 k`1 q log k`1 p s ´ÿ pi|n 1 p ai`1 i ă log log log n Now, we take n in the primorial form, then log log log n " log log r ÿ i"1 α i ϑpq i q From (4.2) of Dusart [START_REF] Dusart | Explicit estimates of some functions over primes[END_REF] we know that (2.12) |ϑpxq ´x| ď η k log k x @x ě x k where η k and x k are the same of the (2.9). Hence we can write (2.13) ϑpq i q ą q i ˆ1 ´ηk log k q i ˙@q i ě x k and then

(2.14) log log

r ÿ i"1 q i α i ˆ1 ´ηk log k q i ˙ă log log log n
We introduce the (2.14) in the (2.11) considering that p s " q 1 . So, to prove the (1.3) we must prove (2.15)

log log q 1 `ηk {k log k q 1 `ηk p1 `1 k`1 q log k`1 q 1 ´ÿ pi|n 1 p ai`1 i ă log log r ÿ i"1 q i α i ˆ1 ´ηk log k q i
Ȧt this point we need two more lemmas before continuing with the proof.

Lemma 2.5. Let n a colossally abundant number, p the maximum prime that divide n and 2 α the maximum power of 2 that divide n. Then α ă logpp logp2pqq log 2

Proof. From the proposition 3 of [START_REF] Erdös | Rpartition des nombres superabondants[END_REF] we can define an ε such that

1 log p log p `1 p ă ε ă 1 log p log p ` 1 
p
where p is the successive prime of p. It follows that, must be true also:

ε ă 1 log 2 log ˆ1 `1 2p2 α ´1q
Ṫherefore,

we can get the following upper bound of α.

α ă 1 log 2 log ¨1 `1 2 ˆ´1 `1 p ¯log 2 log p ´1˙‹ ‹ ‹ '
From Taylor expansion we know that: From the Bertrand-Chebyshev Theorem p ă 2p, hence we get α ă logpp logp2pqq log 2

a ă 1 ñ p1 `xq a ą 1 `ax `1 2 pa ´1qax 2 Hence α ă 1 log 2 log ˜1 `
Lemma 2.6. Let n a colossally abundant number with the following primorial form.

n " pq 1 #q α1 pq 2 #q α2 ¨¨¨pq r #q αr

Let q li a lower bound of q i then q li " ´αi c q 1 ¯1 α i where c " 1 `log logpp logp2pqq ´log log 2 log p Proof. Let p " q 1 . As in the lemma 2.6 from the proposition 3 of [START_REF] Erdös | Rpartition des nombres superabondants[END_REF] we can define an ε such that 1 log p log p `1 p ă ε ă

1 log p log p `1 p (2.16)
where p is the successive prime of p. It follows that, must be true also:

ε ă 1 log q i log ˆ1 `qi ´1 q i pq αi i ´1q
(2.17)

Given p, our goal is find a lower bound of q i . So considering that both the right side of the (2.16) and of the (2.17) are decreasing function, we can apply the following inequalities:

1 log p log p `1 p ă 1 p log p ă 1 log qi log ˆ1 `qi ´1 qipq α i i ´1q ˙ă 1 log qi qi ´1 qipq α i i ´1q ă 1 q α i i log qi
Therefore, a lower bound of q i must satisfy the following inequality (2.18) 1 p log p ă 1 q αi i log q i Let q li " `αi c q 1 ˘1 α i . Now we must verify that q li is a lower bound of q i . So the ( c " 1 `log logpp logp2pqq ´log log 2 log p and thus we proved that q li is a lower bound of q i . Now we can return to the proof of the theorem. Using the lemma 2.6 and ignoring the term ř pi|n 1 p a i `1 i because it's too small, to prove the inequality (2.15) we must prove the following:

(2.23) log log q1 `ηk {k log k q1 `ηk p1 `1 k`1 q log k`1 q1 ĺog log ˜q1 ˆ1 ´ηk log k pq1q ˙`r ÿ i"2 ´αi c q1 ¯1 α i αi ˜1 ´ηk α k i log k `αi c q1 ˘¸¸ă 0
Using the theorem (2.3) and considering q 1 big enough, we are sure that the set A contains in addition to α 1 " 1 also α 2 " 2 and α 3 " 3. Therefore, to prove the theorem it is sufficient to prove the (2.23) for r " 3, that is the following:

(2.24) log log q1 `ηk {k log k q1 `ηk p1 `1 k`1 q log k`1 q1 ĺog

log ˜q1 ˆ1 ´ηk log k pq1q ˙`3 ÿ i"2 ´αi c q1 ¯1 α i αi ˜1 ´ηk α k i log k `αi c q1 ˘¸¸ă 0
Based on Dusart [START_REF] Dusart | Explicit estimates of some functions over primes[END_REF] results, we choose k " 2 and η 2 " 3.965. In this way the equation (2.13) and thus the (2.24) is valid for q i ě 2. Now we take the 150th colossally abundant number in the OEIS A004490:

n " 2 11 3 7 5 4 7 3 11 3 13 2 17 2 19 2 23 2 31 2 37 ¨¨¨661

It's easy verify that the inequality (2.24) hold for q 1 ě 661. By computer calculation we tested that the inequality (2.24) hold also @q 1 : 5041 ď q 1 ď 2 11 3 7 5 4 7 3 11 3 13 2 17 2 19 2 23 2 31 2 37 ¨¨¨661

Thus we can say that the thesis is proved.
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