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Abstract In the last few decades, phytoplankton biomass has been commonly studied from space.
However, satellite analysis of non-algal particles (NAPs), including heterotrophic bacteria and viruses, is
relatively recent. In this work, we estimate the backscattering coefficient associated with the NAP fraction
that does not covary with chlorophyll based on satellite particulate backscattering coefficient and chlorophyll
(bbpNAP). bbpNAP is computed at 100-km resolution using 19 years of monthly satellite data. We find clear
differences in bbpNAP between northern and southern oceans. High bbpNAP values are found in the Arctic
and Southern Oceans, the North Atlantic area influenced by the Gulf Stream current, as well as shelf regions
(i.e., Patagonian shelf) affected by upwelling regimes. Low correlation between chlorophyll and
backscattering prevents precise bbpNAP estimations in oligotrophic areas (e.g., subtropical gyres). These
bbpNAP estimations lead to a reduction to half in satellite-based phytoplankton biomass estimates respect to
previously published results.

Plain Language Summary In the ocean, there are different seawater constituents that contribute
to the inherent optical properties: Phytoplankton is a major constituent and one of the most studied in the
last decade. Other important constituents are the colored dissolved organic matter and non-algal particles
(NAPs). NAP includes (i) heterotrophic organisms such as bacteria, micrograzers, and viruses; (ii) detrital
organic particles such as fecal pellets and cell debris; and (iii) mineral particles of both biogenic (e.g., calcite
liths and shells) and terrestrial origin (e.g., clays and sand). This study is the first attempt to define the NAP
from space, and its spatial variability, and how it contributes to refine the phytoplankton carbon biomass
estimation. We estimate the backscattering coefficient associated with the NAP fraction that does not covary
with chlorophyll from the satellite particulate backscattering coefficient and chlorophyll (bbpNAP). Our main
results evidence a geographical variability of bbpNAP from northern to southern oceans with two distinct
regimes: one associated with the productive areas in which bbpNAP and biomass are anticorrelated and
another in which bbpNAP high values are in regions dominated by inorganic origin. We demonstrate that the
spatial variability of bbpNAP should not be ignored.

1. Introduction

In the ocean, there are different seawater constituents that contribute to the inherent optical properties.
Phytoplankton is a major constituent and one of the most studied in the last decade (e.g., its space-temporal
variability, physiology, and ecology; Siegel et al., 2013; Halsey & Jones, 2015). Other important constituents
are colored dissolved organic matter (CDOM) and non-algal particles (NAPs). NAP includes (i) heterotrophic
organisms such as bacteria, micrograzers, and viruses; (ii) detrital organic particles such as fecal pellets and
cell debris; and (iii) mineral particles of both biogenic (e.g., calcite liths and shells) and terrestrial origin
(e.g., clays and sand; Sosik, 2008, and references therein). While phytoplankton and CDOM are quite well stu-
died at global scale, the optical properties of these particles are not well known. In particular, the total NAP
absorption spectrum tends to monotonically increase with decreasing wavelengths, similar to that observed
for CDOM (e.g., Iturriaga & Siegel, 1989; Nelson et al., 1998; Roesler et al., 1989; Sosik & Mitchell, 1995). Several
studies have investigated the absorption of NAP (Bricaud et al., 2010; Sosik, 2008, and reference therein), but
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patterns of NAP backscattering in the surface ocean are not fully studied (Cho & Azam, 1990; Stramski &
Kiefer, 1991) because direct measurements of fractionated bbp in the field are not possible using current
technology. However, we can gain some insight into the constituents of particulate backscattering bbp by
separating the fraction that covaries with phytoplankton from the fraction that does not covary.

In this context, a first attempt to define the backscattering due to NAP from space was suggested by
Behrenfeld et al. (2005), who proposed an equation for phytoplankton carbon biomass estimation from
satellite, based on a linear relationship between particulate backscattering coefficient (bbp) and chloro-
phyll (Chl). In their model, the bbpNAP coefficient, which is defined as the fraction of backscattering
due to non-algal particles (e.g., stable heterotrophic and detrital components of the surface particle popula-
tion in open ocean) that does not covary with Chl, is assumed constant in space and time (Behrenfeld et al.,
2005; for more details on the bbpNAP computation see paragraph 2.2.). Behrenfeld’s method has been
applied in many recent works: Westberry et al. (2008), Siegel et al. (2013), Mignot et al. (2014), Behrenfeld
et al. (2016), Westberry et al. (2016), Thomalla et al. (2017), among others.

This method has been used to estimate phytoplankton carbon biomass in terms of mg C m�3 and the Chl:C
ratio in photoacclimation studies (Behrenfeld et al., 2016; Bellacicco et al., 2016; Halsey & Jones, 2015;
MacIntyre et al., 2002) and applied in phytoplankton physiology studies from space as well as
biogeochemical models (Arteaga et al., 2014; Bellacicco et al., 2016; Halsey & Jones, 2015; Siegel et al., 2013).

Recently, Bellacicco et al. (2016) computed bbpNAP in a 3-month window in predefined bioregions of the
Mediterranean Sea (Lavigne et al., 2013) and found both marked seasonal and regional bbpNAP variabilities.
Their results supported in situ observations in the Mediterranean Sea (Siokou-Frangou et al., 2010),
suggesting that the heterotrophic and detrital components of the surface particle pool are neither negligible
(Morel, 1988) nor stable, but highly dynamic in both space and time. In Bellacicco et al. (2016) the Chl-bbp
relationship was found to be highly dependent on the season and on the biogeochemistry of the area,
similarly as in Antoine et al. (2011, their Figure 10). These findings suggest that the use of the global
bbpNAP constant coefficient (Behrenfeld et al., 2005) can result in an overestimation of phytoplankton
biomass, in the Mediterranean Sea.

High covariability between Chl and bbp is expected because phytoplankton cells contain Chl and also act as
light scatterers. In addition, the unpigmented NAP also contributes to the bbp signal and is known to exhibit
patterns of variability similar to that of phytoplankton biomass (Bellacicco et al., 2016). The degree of
covariability between Chl and bbp provides a means for assessing the role that the physiological state of
phytoplankton cells plays in modulating the biomass concentration and how it is perceived from remote
sensing observations (Bellacicco et al., 2016, and references therein). High Chl-bbp covariability is a clear
indication that particles (and biomass) covary also with phytoplankton abundance, with the physiological
photoacclimation process playing a negligible role in the Chl detection from space. On the other hand, when
the range of variability of bbp is narrower than that of Chl, covariability is low and Chl detected from space is
dominated by the photoacclimation process (Barbieux et al., 2018; Behrenfeld et al., 2005; Bellacicco et al.,
2016; Halsey & Jones, 2015).

There can be a number of reasons for which the Chl-bbp relationship will vary both in space and time. These
include the ratio of NAP to phytoplankton biomass, variability in phytoplankton carbon-to-Chl ratio
(Bellacicco et al., 2016), and the species composition and diversity (e.g., size and shape) of phytoplankton cells
and nature of the NAP itself (Dall’Olmo et al., 2009, 2012; Stramski et al., 2004).

When this intrinsic variability dominates over the variability in biomass, null or negative correlations can be
obtained violating the assumptions for the calculation of bbpNAP (i.e., in the ultraoligotrophic oceanic areas).

Filling the knowledge gap about the global scale bbpNAP variability can surely improve our understanding of
its main components and enhancing the estimation of the phytoplankton carbon from space. Heterotrophic
bacteria, part of bbpNAP, are the crucial connection among detritus, dissolved organic matter, and higher
trophic levels (Bellacicco et al., 2016; Siokou-Frangou et al., 2010). Similarly, the ecological role of calcifying
phytoplankton has been widely documented in certain oceanic regions (e.g., Southern Ocean; Balch, 2018;
Balch et al., 2016, and references therein) where the impact of their calcium carbonate coccoliths, also part
of bbpNAP, may be assessed via space-born observations of the backscattering coefficient (Balch et al.,
1999). Open research questions on bbpNAP estimates from space are as follows:
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i Does bbpNAP vary in space on a global scale?
ii Does bbpNAP spatial variability impact phytoplankton carbon biomass estimation?
In this paper, we aim to answer these questions by extending the Behrenfeld et al. (2005) and Bellacicco et al.
(2016) methodologies to develop a global map of mean bbpNAP along with a first evaluation of its potential
impact on phytoplankton carbon biomass estimation.

2. Data and Methods
2.1. Satellite Data

The full European Space Agency (ESA) Ocean Color-Climate Change Initiative version 3 monthly Chl (mg m�3)
and bbp (m

�1; 443 nm) data time series at 4-km resolution for the period 1997–2015 over the global ocean was
downloaded from the ESA-CCI website (http://www.esa-oceancolour-cci.org/). ESA-CCI products are the results
of the merging between Sea-Viewing Wide Field-of-View Sensor, Medium-Resolution Imaging Spectrometer,
Moderate Resolution Imaging Spectroradiometer-Aqua, and Visible Infrared Imaging Radiometer Suite time ser-
ies (Brewin et al., 2015; Mélin & Sclep, 2015; Mélin et al., 2017; Sathyendranath et al., 2017). Chl was estimated
with a blending of the OCI (as implemented byNASA, itself a combination of CI andOC4), the OC5 (NASA, 2010),
and the OC3 algorithms (http://www.esa-oceancolour-cci.org/?q=webfm_send/684). The Quasi Analytical
Algorithm was used to compute bbp (Lee, 2014; Lee et al., 2002). The accuracy of the Quasi Analytical
Algorithm was demonstrated in Brewin et al. (2015), and also by Pitarch et al. (2016) and Bellacicco et al.
(2016), and previous works of Mélin et al. (2005, 2011). A thorough analysis on the uncertainties of both
parameters is available on the ESAOC-CCI website or on the Product User Guide. Both data sets were remapped
at 100-km resolution, enough to resolve the broader oceanographic scales of variability.

2.2. bbpNAP Computation

The bbpNAPmodel is based upon the approach of Behrenfeld et al. (2005), who estimated global bbpNAP as the
intercept of the least square linear regression fit between Chl and bbp; that is, bbpNAP is bbp when Chl is zero.
They estimated a unique constant value (0.00035m�1; their Figure 1) using the entiremultiyear global data set.

In this work, the technique developed by Bellacicco et al. (2016) is extended to compute bbpNAP at the scale
of the satellite pixel, rather than using predefined bioregions, allowing the analysis of its spatial variability
along the entire global ocean. The proposed equation for bbpNAP is

bbpNAP ¼ bbp � k Chl (1)

with k being the slope of the least square regression fit between Chl and bbp single-pixel time series. bbp, Chl,
and hence bbpNAP are resolved at pixel scale. The term kChl is the fraction of bbp that covaries with Chl. The
bbpNAP was computed using a broader 3 × 3 pixel spatial window to increase statistical robustness of the
regression fit. A quality control was applied to the data before computing the fit, and the outliers were dis-
carded using three standard deviation confidence limit.

The bbpNAP pixel-based estimations (Figure S1 in the supporting information), obtained from a regression
between Chl and bbp on a pixel scale with a statistical significance (S) less than 0.95 (computed through the
Student t test), were not considered in the analysis and were masked out. In addition, pixels in which the
Pearson correlation coefficient, r, was lower than 0 were not considered in the computation of bbpNAP and
bbpNAP:bbp ratio (hereafter bbpNAP~). σbbpNAP is estimated as the standard deviation of the intercept for each
regression. The coefficient of variation is then CV = σbbpNAP/bbpNAP at pixel scale to show the relative uncer-
tainty of the bbpNAP estimates. Figure S2 shows the robustness of bbpNAP estimate at 99% confidence level.

The bbpNAP pixel-based estimates are then used to compute phytoplankton carbon biomass (mg C m�3;
Figure 3a) following Behrenfeld et al. (2005, see their paragraph 3.1) and Bellacicco et al. (2016, see their equa-
tion (1)), but using the bbpNAP spatially resolved (Figure 2a) instead of a single constant value (0.00035 m�1):

Carbon ¼ bbp � bbpNAP
� ��SF (2)

where SF is the scaling factor chosen for satellite Chl:C ratio values to be consistent with laboratory results,
and for the average contribution of phytoplankton to total particulate organic carbon to be consistent with
field estimate: It is equal to 13,000 mg C m�2 (Behrenfeld et al., 2005).
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Finally, we calculate the relative percentage difference (RPD) between phytoplankton carbon computed with
single bbpNAP coefficient (Behrenfeld et al., 2005) and the carbon as computed in equation (2):

RPD ¼ 100� CarbonsinglebbpNAP � Carbon
� �

Carbon
(3)

2.3. The Chl-bbp Relationship for bbpNAP Estimation

Here to guide the interpretation of the bbpNAP distribution, the biogeochemical implications of the Chl-bbp
relationship (equations (1) and (2)) are presented. Figures 1a and 1b show the climatological maps of bbp and
Chl, respectively. The bbp and Chl patterns of variability are coherent in the productive areas like the polar
regions, the coastal upwelling, and along the equatorial belts of the Atlantic and Pacific oceans. There are
areas in which the Chl and bbp maps show differences: In the equatorial Atlantic between 10°S and 10°N,
Chl shows high values, but bbp does not. North and south of this belt, the Chl map clearly displays the pre-
sence of the subtropical gyres, while the bbp map presents a uniform area of low values which extends from
the equator to 30°N/S. The oligotrophic pattern of the South Pacific Subtropical Gyre shows different spatial
extent when observed through Chl and bbp. Figure 1b shows that South Pacific Subtropical Gyre extends
more to the south toward the Antarctic Circumpolar Current than shown by Figure 1a. Similarly, in the
Pacific Equatorial upwelling system, high Chl extends more to the west than bbp, resulting in the latitudinal
thickness of the Chl pattern to be more pronounced than bbp. Globally, Chl and bbp vary over more than 3
orders of magnitude, also showing similar geographical patterns (Figures 1a and 1b).

Figure 1c shows the Pearson coefficient (r) between Chl and bbp time series obtained using 19 years of satel-
lite data. Two main considerations emerge: Nearly the entire global ocean presents significant positive corre-
lation, and in most areas, this correlation is high, meaning that either bbp or Chl can be used for determining
the phytoplankton dynamics and distribution, as expected in case I waters. This type of relationship is the
underpinning basis for the estimation of bbpNAP. However, this Chl-bbp relationship falls short in the subtro-
pical gyres, where r shows null or negative values. Two main reasons can contribute to this poor relationship:
First, the photoacclimation process, known to be dominant in such areas (e.g., Barbieux et al., 2018; Siegel
et al., 2013), introduces variability in Chl that is uncoupled with biomass, and second, ocean color can only
sample the few upper meters of the water column, under the deep chlorophyll maximum conditions
(Volpe et al., 2012), and thus, the phytoplankton vertical distribution is such that most of the algal biomass
is out of the satellite detection. This in part explains the extremely oligotrophic character that these areas dis-
play when sampled through ocean color remote sensing (Volpe et al., 2007).

3. Results and Discussion
3.1. The Spatial Distribution of bbpNAP and CV

The pattern of bbpNAP (Figure 2a) generally disagrees with the Chl geographical distribution, with lowest
values in the most productive regions. For example, in the eastern portion of the productive subpolar
North Atlantic, bbpNAP is low relative to the area just south influenced by the Gulf Stream current. High
bbpNAP values are found in several hotspots around the globe, many with moderate or variable Chl, such
as the north border of the North Atlantic subtropical gyre, in several bands across the Southern Ocean, the
southeast coast of Australia, and the southwest tip of South America. Other bbpNAP hotspots, however, do
coincide with high Chl, including the eastern continental shelf of North America, the northern Benguela
upwelling region, and the Barents and North Seas.

The median bbpNAP value computed using all the valid pixels of the global ocean is 9.5 10�4 m�1, very close
to the median value found for the Mediterranean Sea (0.001 m�1; Bellacicco et al., 2016). The coefficient of
3.5 10�4 m�1 found by Behrenfeld et al. (2005) for bbpNAP is much lower than this value and falls in the sec-
ond percentile of the bbpNAP frequency distribution (see histogram on Figure 2a; vertical white line). Despite
the various possible sources of discrepancy between the two methods (ocean color algorithms and proces-
sing, length of data time series, and averaging aggregation methods), the distribution of the 99% bbpNAP
confidence interval (Figure S2) evidences that most of the bbpNAP values computed here vary only ~5%.
The bbpNAP found here spans over more than 1 order of magnitude and is in line with the range of
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Figure 1. Annual climatology of (a) bbp, (b) Chl, and (c) Pearson coefficient between Chl and bbp. In case of the subtropical
gyres, the Pearson coefficient is ≤0, while in case of other areas of the global ocean, the coefficient is always>0 and close to
1. The frequency distribution histogram is overlaid in the three color bars.
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Figure 2. Maps of (a) bbpNAP, (b) CV, and (c) bbpNAP~. The frequency distribution histogram is overlaid in the three color
bars in order to show the recurrence of high values of each parameter. Pixels in which the Pearson coefficient (r) was ≤0 and
statistical significance (S) was less than 0.95 were not considered in the analysis (gray areas).
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variability found by Brewin et al. (2012, their Table 3] from NOMAD, equatorial Pacific, and North Atlantic data
set (3.6–7.2 10�4 m�1) and Graff et al. (2015, their Table 2 and Figure 3) from a data set in the equatorial
Pacific and AMT cruises (3.9–10.8 10�4 m�1), but readers must be aware of the different temporal and
spatial scales used to derive the former bbpNAP estimates.

bbpNAP CV presents low values at low midlatitudes and higher values at high latitudes (Figure 2b). CV rarely
exceeds 25% with the most frequent value below 5% in correspondence of the margins of the main ocean
gyres. These areas are characterized both by high bbpNAP and lower covariability in the Chl-bbp relationship.
On the other hand, CV is higher at the high latitudes, which is due partly to higher variability in the Chl-bbp
relationship (southern hemisphere) and partly to very low bbpNAP (esp. in the North Atlantic). Figure S1 is a
graphical representation of the method for the bbpNAP determination, which is supported by statistical ana-
lysis of the Chl-bbp relationship.

Figure 3. (a) Map of phytoplankton carbon biomass computed using the bbpNAP spatially resolved at pixel scale; RPDmap
between phytoplankton carbon biomass using the bbpNAP, as computed in this work, and a single bbpNAP coefficient.
Pixels in which the Pearson coefficient (r) was ≤0 and statistical significance (S) was less than 0.95 were not considered in
the analysis (gray areas). The frequency distribution histogram is overlaid in the two color bars in order to show the
recurrence of high values of parameters. Note that RPD over 150 occurred at the boarder of the gyres and thus has to be
interpreted with caution (see also the paragraph on spatial distribution of bbpNAP~).
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One could argue that the bbpNAP computation and assessment should be limited to the midrange of Chl
values, avoiding the clear-water conditions (already limited by our criteria), and very high Chl values typical
of the coastal waters. In this latter case, the relationship between Chl and bbp tends again to flatten out, and
consequently, the correlation is expected to be low, so our flagging criteria based on correlation value avoid
bbpNAP computation in coastal areas. In any case, the coastal pixels do not significantly contribute to the
distribution, since our spatial resolution is low (100 km). This is also confirmed by the frequency distribution
of bbpNAP (see Figure 2a). The pixels referred to open ocean represented the main domain (>70%).

3.2. The Spatial Distribution of bbpNAP~

bbpNAP~(Figure 2c; here defined as the fraction of bbpNAP with respect to the total bbp; in percentage)
follows the inverse of the biomass spatial variability as a consequence of the higher relative variability in
bbp versus bbpNAP. Indeed, in the North Atlantic Ocean, characterized by high biomass, bbpNAP is lower than
30% of total bbp, while it reaches values over 60% in the area influenced by the Gulf Stream current (at the
border of the North Atlantic subtropical gyre). This pattern is consistent with expectations if bbp is dominated
by organic matter: In oligotrophic regions, perennial nutrient limitation drives low phytoplankton biomass,
which is rapidly recycled in the surface layer, in turn supporting relatively high bacterial, small heterotrophic,
and detrital biomass (Barbieux et al., 2018, and references therein). Similarly, in the productive North Atlantic,
bbpNAP~ is consistently low with the high biomass values observed during the spring bloom (Alkire et al.,
2014, and references therein).

At the borders of the gyres, bbpNAP exceeds 80% of the total bbp. Here however, Chl-bbp correlation values
are lower than 0.5, suggesting that the theoretical thresholds that we applied (r> 0, S> 95%) should bemore
stringent in excluding or including pixels from the analysis. High bbpNAP~ could be due to high year-round
NAP. Low bbpNAP~ could be either due to low NAP or because NAPs are strongly correlated with Chl.

In the North Atlantic Ocean, bbp appears to be dominated more by particles that covary with phytoplankton
cells, as opposed to the Southern Ocean, in which bbp seems to be dominated more by particles that do not
covary with total phytoplankton biomass. Indeed, bbpNAP ~shows hot spots in the Southern Ocean with
values >70% (e.g., Patagonia shelf and along the Antarctic Circumpolar Current). In that respect, the
bbpNAP measurements, and its order of magnitude, are consistent with the results found by Balch et al.
(2016, their Figure 2: bb0 transect of in situ data) along the entire Southern Ocean. Balch et al. (2016) found
that the bbp associated with particulate inorganic carbon (e.g., coccoliths) ranges between 0 and
1.0 10�3 m�1. Here bbpNAP in the same area ranges between 5 10�4 and 1.5 10�3 m�1, and bbpNAP~ is
around 80%. This suggests coccoliths being the driving signal of bbpNAP in the Southern Ocean. Indeed, coc-
coliths covary with bbp because they scatter light as all other particles have a bbp signal. Thus, the bbpNAP is
reasonably related to the coccolithophorid seasonality (i.e., skeleton compounds of no longer living cells;
bbpNAP is the bbp when Chl is zero). On the other hand, in the North Atlantic Ocean, where bbpNAP~ is less
than 30%, bbp is dominated by the particles that covary with phytoplankton cells (see equation (1)), thus
being more determined by phytoplankton dynamics.

3.3. Implications for Phytoplankton Carbon Biomass From Satellite

Our analysis shows that bbpNAP accounts for between 20 and 80% of the bbp signal (e.g., from North Atlantic
to Southern Oceans). Thus, we recommend taking into account the variability of this term when estimating
phytoplankton carbon from bbp. To estimate the impact of varying bbpNAP on the satellite-derived carbon
estimation, we computed the global map of phytoplankton carbon using the bbpNAP estimated here
(Figures 2a and 3a). The spatial pattern of phytoplankton carbon (Figure 3a) generally agrees with the Chl
geographical distribution (Figure 1b) with high values in the most productive regions such as the polar
regions, the coastal upwelling, and along the equatorial belts of the Atlantic and Pacific oceans. Low values
are located in correspondence of midlatitude areas such as the boundaries of the gyres (Figure 3a). However,
variable bbpNAP estimates have a strong impact on quantitative phytoplankton biomass estimates, yielding a
median value of 8.6 mg C m�3 when considering all the pixels (both open and coastal waters) and
8.07 mg C m�3 considering only pixels in open ocean. When single value estimated by Behrenfeld et al.
(2005) is used instead, we obtain much higher median estimates of 16.6 and 16.19 mg C m�3, respectively
(Figure 3a). The use of spatially varying bbpNAP instead of the single coefficient dramatically impacts the
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phytoplankton carbon estimates from space. Indeed, in the North Atlantic Ocean, bbpNAP does not
significantly deviate from the constant coefficient found by Behrenfeld et al. (2005, Figure 3b; RPD lower than
10%). On the other hand, in regions dominated by bbpNAP of inorganic nature not covarying with Chl, such as
the Southern Ocean, the computation of phytoplankton carbon via bbp exhibits large differences: RPD values
greater than 100% (Figure 3b). The order of magnitude of our phytoplankton carbon biomass is consistent
with the recent estimates of phytoplankton carbon by Arteaga et al. (2016) computed with a biogeochemical
model able to resolve the Chl:C ratio and accounting for the optical acclimation of phytoplankton to nutrient,
light, and temperature. A future challenge concerns to take into account the change of the scaling factor
relating bbp to C, as reported in Kostadinov et al. (2009, 2010, 2016), coupled with the bbpNAP spatial
variability as found in this work. Kostadinov et al. (2016) developed a carbon-based phytoplankton size class
approach from satellite data considering the variation of the particle size distribution that influences the
scaling factor. In this way, the phytoplankton carbon from space should consider both the changes in the
particle size distribution that impact on backscattering per unit C biomass due to different scattering
efficiencies and the bbpNAP coefficient. It should increase the efficiency of phytoplankton carbon biomass
retrieval from ocean color remote sensing data. To date, the impact of the Chl:C ratio, and thus of the SF term,
on phytoplankton carbon computation is still not known. Future studies should be aimed at evaluating
whether the variability induced by the SF term piles up or reduces the one induced by bbpNAP in the
computation of phytoplankton carbon biomass (Arteaga et al., 2016).

4. Conclusions

Pixel-scale estimations showed marked bbpNAP geographical variability. In productive regions, such as the
North Atlantic Ocean, bbpNAP and biomass are anticorrelated. This is presumably because nearly all NAP is
strongly correlated with Chl, while in less productive regions with shallower winter mixed layers, there is a
more constant population of noncovarying bacteria and detritus. In regions containing NAP of inorganic
origin, including some coastal regions and the calcite belt of the Southern Ocean, we find high bbpNAP
values. Within the subtropical gyres, bbpNAP could not be estimated, due to lack of positive correlation
between satellite bbp and Chl estimates, likely driven by photoacclimation. Throughout most of the ocean,
our spatially resolved bbpNAP estimates were higher than the single estimate calculated by Behrenfeld
et al. (2005). These higher bbpNAP estimates had a large impact on estimates of phytoplankton biomass from
satellite bbp. Our median phytoplankton C estimate in the pixels considered (8.6 mg C m�3) was roughly half
of themedian estimate obtained using a single bbpNAP estimate (16.6 mg Cm�3). Although we currently lack
sufficient in situ phytoplankton carbon estimates to validate either estimate at global scale, our results
strongly suggest that spatial variability in bbpNAP should not be ignored.

Future work in this research pathway should (1) focus on comparing existing in situ inherent optical property
data (i.e., BGC-Argo) to satellite products without leaving out the collection of in situ optical and plankton
carbon data, (2) validate the impact of bbpNAP variability on phytoplankton carbon estimation from space,
and (3) give insight on the actual composition of bbpNAP in various zones of the world ocean. Finally, inclu-
sion of the reported relationships into phytoplankton carbon models will help improve their predictions.
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