

$\gamma\mbox{'-V}$ 2 O 5 Polymorph: A Genuine Zn Intercalation Material for Nonaqueous Rechargeable Batteries

Ankush Bhatia, Jiahui Xu, Jean-Pierre Pereira-Ramos, Gwenaelle Rousse,

Rita Baddour- Hadjean

► To cite this version:

Ankush Bhatia, Jiahui Xu, Jean-Pierre Pereira-Ramos, Gwenaelle Rousse, Rita Baddour- Hadjean. γ '-V 2 O 5 Polymorph: A Genuine Zn Intercalation Material for Nonaqueous Rechargeable Batteries. Chemistry of Materials, 2021, 10.1021/acs.chemmater.1c03739. hal-03504877

HAL Id: hal-03504877 https://hal.science/hal-03504877

Submitted on 30 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

The γ' -V₂O₅ Polymorph: a Genuine Zn Intercalation Material for Non-Aqueous Rechargeable Batteries

Journal:	Chemistry of Materials
Manuscript ID	cm-2021-03739n.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Bhatia, Ankush; Institut de Chimie et des Matériaux Paris-Est, Xu, Jiahui; Institut de Chimie et des Matériaux Paris-Est Pereira-Ramos, Jean-Pierre; Institut de Chimie et des Materiaux Paris- Est, Institut de Chimie et des Materiaux Paris Est Rousse, Gwenaëlle; College de France, UMR8260 Baddour-Hadjean, Rita; Institut de Chimie et des Matériaux Paris-Est,

SCH	OLARONE"	ł
M	lanuscripts	

1	
2	
2	
л Л	
-+ 5	
с С	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 223 24 25 26 27 28 29 30 31 32 33	
20	
21	
27	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
31 32 33 34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57 58	
59	
60	

The γ '-V₂O₅ Polymorph: a Genuine Zn Intercalation Material for Non-Aqueous Rechargeable Batteries

Ankush Bhatia¹, Jiahui Xu¹, Jean-Pierre Pereira-Ramos¹, Gwenaelle Rousse², Rita Baddour-

Hadjean*1

¹ Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR 7182 CNRS-Université Paris Est

Créteil (UPEC), 2, rue Henri Dunant, F-94320, Thiais, France

² Chimie du Solide-Energie, UMR 8260 CNRS-Sorbonne Université, Collège de France 75231

Paris, France

*corresponding author: <u>baddour@icmpe.cnrs.fr</u>

Abstract

The electrochemical properties of the puckered layered γ' -V₂O₅ polymorph as cathode material in a non-aqueous Zn-metal cell using acetonitrile-Zn(CF₃SO₃)₂ electrolyte are investigated here for the first time. The typical galvanostatic profile in the 2 V- 0.3 V vs. Zn²⁺/Zn voltage range shows a sloping discharge curve involving a capacity of 130 mAh g⁻¹ at C/20 in one single step centered

at 0.9 V vs. Zn^{2+}/Zn . The structural response of $\gamma' \cdot V_2O_5$ during the discharge-charge cycle is investigated by *ex-situ* X-ray diffraction (XRD) and Raman spectroscopy. Up to 0.41 Zn mol⁻¹ can be accommodated between the $\gamma' \cdot V_2O_5$ layers, inducing only a moderate interlayer expansion of +6.4%, comparable to that found for Li⁺ insertion. Remarkably, the insertion process is fully reversible in spite of the high charge density of Zn²⁺. Good cycle life can be achieved at moderate rate, with a stable capacity of nearly 130 mAh g⁻¹ available at 0.9 V vs Zn²⁺/Zn over at least 60 cycles. The peculiar structural features of the new electroformed Zn_{0.41}V₂O₅ bronze highlight the interest of the $\gamma' \cdot V_2O_5$ polymorph to mitigate the expected large deformation upon electrochemical divalent Zn²⁺ incorporation.

1. Introduction

Lithium Ion Batteries (LIBs) dominate the energy market of portable electronics due to their high energy density and long cycle life. However, their high costs, toxicity, the scarcity of lithium and safety issues are strong drawbacks that impede the use of LIBs for large-scale applications such as electric transportations and grid-scale energy storage. In search of alternative batteries,

Chemistry of Materials

aqueous rechargeable Zn-based batteries (ARZB) are quite attractive owing to the high volumetric

and gravimetric capacities delivered by the Zn metal anode (5851 mAh mL⁻¹; 820 mAh g⁻¹), their low cost, safety and moderate toxicity¹⁻⁴. The major problems of ARZBs are the limited energy density due to the narrow electrochemical window (1.2 V) as well as the spontaneous dissolution of MnO₂- and V₂O₅-based cathodes in aqueous electrolytes⁴. The use of non-aqueous electrolytes would overcome these issues, providing a higher operating voltage of Zn-ion battery and avoiding dissolution. Various non-aqueous Zn-based electrolytes have recently been reported to work in a wide electrochemical window (3.8 V vs. Zn²⁺/Zn) such as acetonitrile (AN)-Zn(TFSI)₂, AN-Zn(CF₃SO₃)₂, and propylene carbonate (PC)-Zn(TFSI)₂ electrolytes⁵. The challenge is to find cathode materials affording a high working voltage combined with a high-specific capacity.

While many papers are devoted to cathode materials for ARZBs such as Prussian blue and analogues, manganese oxides and vanadium-based compound^{6,7}, only a few candidates are reported for non-aqueous rechargeable Zn batteries (NARZBs)^{8–17}. From a pioneering work, the electrochemical Zn intercalation in Chevrel-type molybdenum cluster chalcogenides Mo_6X_8 (X = S, Se) was found to occur at 0.5 V-0.3 V, using zinc perchlorate in PC or AN electrolyte⁸. In 2000, the reversible Zn intercalation in β-ZrNCl and related compounds was reported in 0.2 M solution

of $Zn(CF_3SO_3)_2$ in a mixture of dimethylsulfoxide (DMSO) and (PC) in a 1:4 volume ratio⁹. More recently, a Zn/PANi (polyaniline) cell was cycled in a non-aqueous PC-Zn(TFSI)₂ electrolyte¹⁰. Spinel cathodes ZnAl_xCo_{2-x}O₄ and ZnNi_xMn_xCo_{2-2x}O₄ investigated in AN-Zn(CF₃SO₃)₂^{11,12} were shown to operate near 1.7-1.8 V, involving attractive capacities of 140-170 mAh g⁻¹. The reversible Zn insertion has been demonstrated near 1 V in a nanostructured hydrated layered-type birnessite δ-MnO₂, leading to a capacity of 100 mAh g⁻¹ without formation of ZnMn₂O₄ spinel upon cycling¹³. In spite of the richness of their chemical composition and structure, vanadium oxidesbased compounds have been little investigated in NARZBs^{14–17}. The hydrated layered forms V₃O₇H₂O and V₂O₅0.67H₂O have been reported to deliver interesting stable capacities in the range 150-200 mAh g⁻¹ at 0.65 V in AN-Zn(CF₃SO₃) $_{2}^{15}$ and 0.9 V in AN-Zn(TFSI) $_{2}^{14}$, respectively. A freestanding vanadium oxide $V_2O_5 \cdot 0.14H_2O$ -carbon nanotube film has been recently explored with higher capacity values ($\approx 300 \text{ mAh g}^{-1}$) but working at a low potential, near $0.6 V^{16}$. Indeed, water-containing structures constitute one strategy to promote reversible Zn^{2+} storage¹⁵. The water molecules provide expanded interlayer spacing and are thought to buffer the charge density of inserted Zn^{2+} cations. Finally, the most common and stable V₂O₅ polymorph, α V_2O_5 has been also reported, using a nanosizing strategy. Porous architectures made of 3D V_2O_5

Chemistry of Materials

nanorods offer also a high reversible capacity of $\approx 300 \text{ mAh g}^{-1}$ near 0.7 V¹⁷. However, except the study devoted to V₃O₇ ·H₂O¹⁵, the structural analysis of the cathode material upon discharge-charge is overlooked or absent.

Such capacity values prompted us to explore the interest of other V_2O_5 polymorphs as cathode material in NARZB, especially the metastable 2D γ '-V₂O₅, that is the charge product of the γ -LiV₂O₅ bronze formed upon electrochemical lithiation of α -V₂O₅ at 2.3 V vs. Li⁺/Li¹⁸. This open intercalation host with larger interlayer spacing (≈ 5 Å vs. 4.37 Å for α -V₂O₅) and highly puckered V_2O_5 stacked layers provides a vast abundance of interlayer interstitial sites. Furthermore, DFT studies have predicted lower diffusion barriers and higher operating voltage for such cation-free metastable phases^{19,20}. Indeed, recent experimental studies in our group have demonstrated the superior electrochemical performance of γ' -V₂O₅ toward Li^{+21,22}, Na⁺²³⁻²⁶ and K⁺²⁷ insertion compared to α -V₂O₅²⁷⁻²⁹. The lithium insertion mechanism in γ '-V₂O₅ was found to involve reversible and mitigated structural changes consisting in wide solid solution domains²¹ which stand in contrast to the successive phase transitions required to accommodate Li-ions in the thermodynamically stable α -V₂O₅ polymorph³⁰. Also, γ '-V₂O₅ was reported to insert almost 1

Na^{+23–26} and 0.78 K⁺ per mole of oxide²⁷, remarkably at close working voltage to that observed for Li⁺ insertion (3.3 V vs. Na⁺/Na and 3.1 V vs K⁺/K, respectively).

These attractive results encouraged us to enrich the study of γ' -V₂O₅ intercalation chemistry to the case of Zn²⁺ insertion in a non-aqueous electrolyte. Han et al investigated a range of nonaqueous electrolytes and clearly indicated AN-Zn(CF₃SO₃)₂ as one of the most suitable for reversible cycling of Zn metal anode, providing a wide electrochemical window up to 3.6 V vs. Zn²⁺/Zn⁵. In addition, the low viscosity (0.37 mPa s) of AN combined to a dielectric constant of 36.6 afford fast ionic mobility and high conductivity (17 mS cm⁻¹).

Herein, we investigate for the first time the electrochemical properties of the γ' -V₂O₅ polymorph in the 2.0 V – 0.3 V voltage range in a Zn-metal cell using AN-Zn(CF₃SO₃)₂ (Zn(OTf)₂) electrolyte. The cycling and rate capability properties are reported and the structural response of γ' -V₂O₅ upon discharge and charge is explored using *ex-situ* X-ray diffraction (XRD) and Raman spectroscopy. We show that γ' -V₂O₅ behaves as a genuine Zn intercalation compound, with the electrochemical formation of a new layered γ -type Zn_{0.41}V₂O₅ bronze and a fully reversible extraction accompanied by the complete restoration of the pristine oxide structure.

2. Experimental

 γ' -V₂O₅ was obtained by the chemical oxidation of γ -LiV₂O₅ synthesized from the chemical lithiation of a fine powder of a α -V₂O₅ precursor prepared by the polyol method³¹. Lithiation of α -V₂O₅ is performed using an excess of lithium iodide in AN to obtain the intermediate δ -LiV₂O₅ phase. A heat treatment at 300°C for 2 h under dynamic primary vacuum in a Büchi® furnace allows the phase transition toward γ -LiV₂O₅. The last step consists in quantitatively extracting Li from γ -LiV₂O₅ by oxidation in a NO₂BF₄ solution (solid Alfa Aesar 96%) in AN (V₂O₅/NO₂BF₄ molar ratio 1/4) under stirring for 24 h at room temperature. After washing with AN and vacuum drying at 70°C for 24 h, the orange γ' -V₂O₅ powder is obtained. Electrochemical titration using galvanostatic oxidation and chemical redox titration confirmed the 5+ oxidation state of vanadium in γ' -V₂O₅.

The pristine powder and the electrodes were characterized by scanning electron microscopy (SEM), (Zeiss, Merlin-type microscope). The elemental compositions were determined from electron dispersive X- ray spectroscopy (EDS) analysis together with SEM using an accelerating voltage of 10 - 15 kV.

Crystal structures were characterized by XRD and Raman spectroscopy. XRD experiments were performed in Bragg-Brentano geometry using a Panalytical XPert pro apparatus equipped with a X'Celerator detector and Co K α radiation ($\lambda_{K\alpha 1}$ =1.78901 Å, $\lambda_{K\alpha 2}$ = 1.79290 Å). The recorded patterns were refined using the Rietveld method as implemented in the FullProf program^{32,33}.

The Raman spectra were recorded with a LaBRAM HR 800 (Jobin-Yvon, Horiba) Raman microspectrometer including edge filters and equipped for signal detection with a back illuminated charge-coupled device detector (Spex CCD) cooled by the Peltier effect to 200 K. A He-Ne laser (632.8 nm) was used as the excitation source. The spectra were measured in back-scattering geometry. To avoid local heating of the sample, the power of the laser beam was adjusted to 0.2 -0.5 mW with neutral filters of various optical densities. The resolution was about 0.5 cm⁻¹. A 100× objective was used to focus the laser light on the sample surface to a spot size of 1 μ m².

Electrochemical experiments were carried out at 20°C using 2032 coin-type cells, which are assembled in an argon-filled inert atmosphere glovebox (<0.5 ppm of H₂O and <0.5 ppm of O₂). The positive electrode was prepared by mixing 80 wt % of active material (about 8 mg) with 7.5 wt % of acetylene black, 7.5 wt % graphite and 5 wt % of PTFE as the binder. Zn metal foil (Alfa Aesar, > 99% purity) was used as the negative electrode. The Zn metal surface was polished by

using 600-grit sand paper followed by washing with ethanol to remove the surface oxide layer.

The two electrodes are separated by a Whatmann glass fiber separator soaked in the non-aqueous AN- $Zn(OTf)_2 0.3$ M electrolyte (AN from Sigma Aldrich > 99.8% purity). The $Zn(OTf)_2$ powder was dried overnight at 100°C under vacuum and the AN was dried by keeping it over regenerated molecular sieves before use. Galvanostatic cycling measurements were performed using a VMP3 Biologic apparatus in the 0.3 V-2 V vs. Zn^{2+}/Zn voltage window at room temperature at different current densities (147 mA g⁻¹ corresponds to 1C).

The structural investigation was carried out using two electrodes coin cells. The cells were discharged at C/20 rate up to different x composition in $Zn_xV_2O_5$ ($0 \le x \le 0.41$). The highest Zn content (x = 0.41) was attained on fifth discharge at C/20. After 2 h relaxation time, the cells were disassembled in the glove box. The positive electrodes were rinsed 3 times with AN in order to remove any electrolyte residue and placed in appropriate airtight sample holders to be further analyzed by XRD and Raman spectroscopy. Raman spectra were recorded on 10 different spots of each electrode. Very similar spectra were obtained, regardless of the illuminated spot, indicating a homogeneous electrochemical reaction in the chosen experimental conditions.

ACS Paragon Plus Environment

3. Results and discussion

3.1. Structural characterization

The solution technique carried out to synthesize $\gamma' \cdot V_2O_5$ leads to a nanosized powder composed of platelets of 500 nm long maximum and ~ 200 nm wide (**Figure 1**). The Rietveld refinement of the XRD pattern (**Figure 2a**) is performed with an initial structural model reported by J. M. Cocciantelli³⁴, and all atoms were freely refined. The final refinement shown in **Figure 2a** indicates that $\gamma' \cdot V_2O_5$ crystallizes in an orthorhombic unit cell (*Pnma* space group) with lattice parameter *a* = 9.94387(9) Å, *b* = 3.58389(3) Å, *c* = 10.03601(9) Å in good agreement with previous studies^{18,21,23,26,34}. The structural parameters, including a bond-valence-sum (BVS) analysis³⁵ and V-O bond lengths are gathered in **Tables S1** and **S2**.

The structure of γ' -V₂O₅ (insert in **Figure 2a**) consists of infinite ribbons parallel to the *b* axis made of VO₅ edges-sharing distorted pyramids oriented alternatively up and down, leading to two non-equivalent vanadium environments. These chains are linked to each other along the *a*-direction by one pyramid corner oxygen, forming puckered layers perpendicular to the *c*-axis. The mean crystallite size estimated from diffraction peaks width is 90 – 100 nm.

Chemistry of Materials

From the local structure point of view, the Raman spectrum of $\gamma' \cdot V_2O_5$ (Figure 2b) is composed of 21 peaks in the 90-1050 cm⁻¹ wavenumber range, as previously reported^{36,37}. The projection of the $\gamma' \cdot V_2O_5$ structure along the *b*-crystallographic direction showing all the V–O contacts in the two vanadium environments (V_a, V_b) is shown in insert of Figure 2b. All the vibrations of the chains can be identified: the stretching of the two shortest V_a-O_{1a} and V_b-O_{1b} bonds at 1037, 1021, and 1003 cm⁻¹, the bond stretching vibrations localized within the V_a-O₃--V_b bridges at 752 and 603 cm⁻¹, and those of the V_a-O_{2a}--V_a and V_b-O_{2b}--V_b bridges forming the rails of the ladders at 722 and 694 cm⁻¹. Modes involving the longest V-O₂ inter-chains ladder step bonds are observed at 532 and 500 cm⁻¹, while lower-frequency modes located at 91, 126, 138, 153, 171, 190, 238,

266, 282, 299, 349, and 390 cm^{-1} are related to the complex distortions of the ladders³⁶.

3.2. Electrochemical study

Figure 3a shows the cyclic voltammogram (CV) of γ' -V₂O₅ recorded in the 0.3 V- 2 V vs. Zn²⁺/Zn voltage range at 0.1 mV s⁻¹. The CV curves show one well-resolved broad cathodic peak centered at ca. 0.96 V while a main peak appears at 1.43 V in oxidation, preceded by a small contribution around 1 V. The same coulombic charge of 0.64 e⁻ mol⁻¹ is involved during reduction and oxidation, showing the high reversibility of the electrochemical process. The shape of the CV

curves remains the same on cycling but the efficiency of the electrochemical reaction progressively improves during the first cycles to reach a maximum value of $\approx 0.8 \text{ e}^{-1} \text{ mol}^{-1}$ after 10 cycles.

The galvanostatic study of γ' -V₂O₅ has been performed at C/20 rate ($\approx 8 \text{ mA g}^{-1}$) in the same 0.3

V- 2 V vs. Zn^{2+}/Zn voltage range. As shown in **Figure 3b**, the working potential gradually decreases during the first discharge, from 1.37 V down to 0.75 V and then in a steeper way in the last third of the discharge, involving a total faradaic yield of 0.64 F mol⁻¹ (specific capacity of 95 mAh g⁻¹).

Upon subsequent charge of the cell, the potential increases abruptly to stabilize around 1.20 V, and then significantly increases from the mid-charge up to 2 V. The slightly higher capacity value recovered in charge is probably due to slight electrolyte decomposition^{12,13} that might be promoted when using acetylene black-graphite mixture in the composite electrode. Indeed, using another carbon matrix as carbon nanotubes (CNTs), we have checked this overcharge can be completely suppressed (**Figure S1**). From cycle 1 to cycle 5 (**Figure 3b**), the capacity continuously increases from 95 to 130 mAh g⁻¹ without any change in the discharge profile. Such electrochemical phenomenon has already been described elsewhere. It could be attributed to a decrease in the charge transfer resistance at the negative electrode because of progressive electrochemical

Page 13 of 47

Chemistry of Materials

polishing of the Zn surface^{14,15} and/or gradual utilization of active material¹⁷. From the complete charged state, i.e. from 2 V, the voltage rapidly falls down to ~1.2 V upon discharge, then gives rise to a smooth slope involving the total charge capacity. After this short activation process of a few cycles, following charge-discharge curves completely superimpose, showing a moderate sloppy profile with a mid-discharge potential of 0.9 V (**Figure 3c**). Cycling experiments point to a remarkable retention of the capacity at C/20 over at least 60 cycles at a value of around 120 mAh g⁻¹ combined with a 100% coulombic efficiency (**Figure 3d**). At 1C, the capacity moderately decreases by 10%, from 90 to 80 mAh g⁻¹ after 100 cycles (insert of **Figure 3d**).

The maximum capacity of 130 mAh g⁻¹ here achieved for γ' -V₂O₅ is lower than that reported for the hydrated bilayered V₂O₅·0.67H₂O electrodeposited on carbon foam substrate, with \approx 200 and 160 mAh g⁻¹ at C/10 and 1C, respectively in 0.5 M Zn(TFSI)₂-AN electrolyte¹⁴. Zn intercalation into BL(bilayered)-V₂O₅ takes place practically at a slightly lower mid-discharge voltage (\approx 0.8 V). Such reaction seems to be more difficult in the hydrated V₃O₇·H₂O oxide investigated in the same AN-Zn(CF₃SO₃)₂ 0.25 M electrolyte¹⁵. Indeed, this material delivers about the same capacity value of 150 mAh g⁻¹ at near 0.65 V, but after at least 30 cycles at C/20, and the first discharge never exceeds 50 mAh g⁻¹. Remarkable values are exhibited by a freestanding hydrated V₂O₅-CNT

electrode at 0.7C with \approx 300 mAh g⁻¹ in 1M Zn(ClO₄)₂-ethylene carbonate (EC)/ethyl methyl carbonate (EMC) electrolyte¹⁶. However, this composite electrode rather consists in a model electrode since the carbon matrix is very large (33.7 wt % CNTs). In addition, in the absence of Zn perchlorate salt heat-treatment, huge capacities might be ascribed to the presence of residual water molecules in the electrolyte promoting Zn or Zn-proton insertion. A two-electron process is outlined in the case of 3D nanorods architectures of V₂O₅¹⁷ after a quite long activation process of 80 cycles at C/3 leading to a capacity of 300 mAh g⁻¹. The authors claim this kind of α -type nanosized vanadium pentoxide operates as a Zn intercalation compound, which seems doubtful according to the huge capacitive contribution as high as 30-60% observed in the coulombic charge. The C-rate dependence on the galvanostatic cycles (Figure 4a) and the discharge capacity (Figure 4b) of γ' -V₂O₅ have been investigated in the C/20-2C range. At C/20, the capacity stabilizes near 130 mAh g⁻¹ after 5 cycles, indicating the maximum amount of Zn ions insertionextraction is close to 0.45 per mol of oxide. Increasing the C rate to C/10, C/5 and C/2 leads to a progressive capacity decrease to 113, 92 and 85 mAh g⁻¹, respectively, which corresponds to 87%, 71% and 65% of the maximum value, respectively. At 1C and 2C, the capacity nearly does not decline, with 80 mAh g⁻¹ still available at 2C. The present rate capability performance is slightly

Chemistry of Materials

lower than that reported for the hydrated bilayered BL-V₂O₅ cathode in 0.5 M Zn(TFSI)₂-AN electrolyte with still 80% and 70% of the maximum capacity available at 1C and 5C, respectively¹⁴. However, as shown in **Figure 4b**, the cell completely recovers the initial capacity of 120 mAh g⁻¹ when subsequently operated at C/20, which indicates the structure of the cathode has not been damaged by applying 2C rate. Finally, a high reversibility of the discharge-charge process and excellent capacity stability are achieved, regardless of the applied C rate.

The electrochemical behavior at room temperature of the conventional α -V₂O₅ polymorph has been also investigated in the same AN-Zn(CF₃SO₃)₂0.3 M electrolyte for comparison. **Figure S2a** shows the cyclic voltammetric curves achieved for the two polymorphs. The coulombic charge involved in the case of α -V₂O₅ is only \approx 20% that achieved for γ' -V₂O₅. From galvanostatic curves obtained at C/20 (**Figure S2b**), Zn insertion in α -V₂O₅ takes place around 0.7 V vs. Zn²⁺/Zn V, i. e. 200 mV lower than γ' -V₂O₅, which indicates a much more difficult reaction. The major distinctive feature lies in a greatly lower capacity for α -V₂O₅, rapidly stabilizing around only 30 mAh g⁻¹ (**Figures S2b-S2c**). The superior working voltage and higher capacity found for γ' -V₂O₅ illustrate once again the advantage of this open structure toward Zn²⁺ intercalation, as previously demonstrated in the case of monovalent alkali ions insertion^{21,23,27}.

3.3. Structural changes during the electrochemical process

In order to get insight into the Zn reaction mechanism, several γ' -V₂O₅ electrodes have been prepared at various depths of discharge and charge (0.12 to 0.82 F mol⁻¹) at C/20 rate and further analyzed by XRD and Raman spectroscopy. **Table 3** summarizes the electrodes history and results of EDS analysis. Zn element is systematically detected by EDS, with a good accord between the expected Zn content and the faradaic yield, assuming the following intercalation process:

$$V'-V_2O_5 + 2 \times e^- + \times Zn^{2+} \Rightarrow Zn_xV_2O_5$$

Indeed, the Zn content in V_2O_5 evaluated from EDS fits remarkably that calculated from coulombic charge (see **Table 3**). The negligible Zn amount of 0.02 achieved after the first charge is probably due to residual Zn traces in spite of the rinsing procedure.

The *ex-situ* XRD patterns of the $Zn_xV_2O_5$ discharged electrodes (x = 0.06, 0.13, 0.19, 0.25, 0.32 and 0.41) are gathered in **Figure 5a**. Upon Zn insertion, the γ '- V_2O_5 peaks progressively decrease in intensity and shift toward lower angle peaks, indicating that Zn insertion occurs through a solid solution region in the whole $0 \le x \le 0.41$ composition range, in good agreement with the electrochemical profile showing a characteristic sloping curve (**Figure 3b**). The diffraction pattern of the $Zn_{0.41}V_2O_5$ phase can be indexed with the same *Pnma* space group of the γ' - V_2O_5 pristine

Chemistry of Materials

material, with unit cell parameters of a = 9.9053(7) Å, b = 3.60501(20)Å, c = 10.6822(9) Å indicating an expansion of the *c* lattice parameter, which suggests Zn²⁺ cations are likely placed between the γ' -V₂O₅ layers.

The *ex-situ* Raman spectra of the discharged $Zn_xV_2O_5$ electrodes (x = 0.06, 0.13, 0.19, 0.25, 0.32 and 0.41) are gathered in **Figure 5b**. One can see that the Raman spectra keep the original features of the pristine material, but with a loss of intensity and band broadening indicating the emergence of some disorder in the plane of the V₂O₅ chains upon Zn insertion. In the high wavenumber range, the shift of the apical V=O stretching modes toward frequencies lower than 1000 cm⁻¹ suggests a lengthening of these bonds upon V⁵⁺ to V⁴⁺ reduction. For the most reduced electrodes (x = 0.32 and 0.41), a new broad band at ≈884 cm⁻¹ is observed, which can be assigned to the symmetric stretching vibration of the VO₃ group, as commonly reported for many vanadate minerals³⁸. Hence, the main effect of Zn intercalation in γ '-V₂O₅ consists in an interlayer expansion by 6.4% (from 10.04 Å to 10.68 Å) while the *a* and *b* in-plane parameters undergo negligible changes. As

a result, the unit cell volume increases by the same 6.4% factor, from 358 Å³ for the pristine oxide to 381 Å³ for the electroformed $Zn_{0.41}V_2O_5$ bronze (**Figure 6**). The moderate interlayer dilation of

6.4% induced by Zn accommodation is comparable to that observed upon Li⁺ insertion (6%, see

Table 2)²¹, probably because of the small size of Zn²⁺ (ionic radius of 0.74 Å vs. 0.76 Å for Li⁺). Differently, sodium insertion in γ '-V₂O₅ was proved to induce a huge dilation of 18% ^{23,24} while only a 10% expansion was reported for K⁺ insertion²⁷ due to the important polarizability of potassium. Hence, it appears the size and polarizability of the guest cation in γ '-V₂O₅ control the magnitude of the interlayer expansion. The V₂O₅ layers puckering along the *a* axis is very limited in the case of Zn insertion (0.4%) compared to lithiation (2.6%)²¹ and sodiation (1.7%)²³, suggesting that the charge of the guest cation would mitigate the puckering effect. Finally, the *b* parameter increases by 0.5%, which is in good accord with the previous evolution of 0.5% and 1% found for lithiation and sodiation, respectively. It is also consistent with a diffusion of Zn ions along the *b* direction.

The structural reversibility upon charge and cycling experiments has been examined by XRD and Raman spectroscopy. Comparison of the fingerprints of the pristine electrode and that after one cycle (**Figure 7**) clearly shows the typical XRD pattern and Raman spectrum of $\gamma' - V_2O_5$ are recovered, indicating that highly reversible structural change takes place upon oxidation. After 60 cycles, the initial structure is recovered with however some intensity decrease and peaks broadening pointing to some disordering process.

3.4. Characterization of the electroformed $Zn_{0.41}V_2O_5$ bronze

The formation of the Zn_{0.41}V₂O₅ bronze from electrochemical reduction of γ' -V₂O₅ at room temperature is reported here for the first time. Indeed, high temperature reaction of Zn on α -V₂O₅ at 630°C leads to the poor Zn containing bronze Zn_{0·03}V₂O₅ whose structure is close to the parent oxide α -V₂O₅.Another vanadium bronze with a higher Zn content, ξ -Zn_{0·26·0.29}V₂O₅, has been reported without any structural determination^{39,40}. The thermal treatment of an appropriate nitratesucrose mixture lead to the formation of a layered nanostructured Zn_{0.29}V₂O₅⁴¹. The latter is also indicated as a discharge product of V₂O₅ nanosheets on hierarchical TiN nanowire arrays in an aqueous rechargeable Zn-ion battery⁴². For higher Zn/V ratio values, for instance 0.5, 1 and 1.5, ZnV₂O₆, Zn₂V₂O₇ and Zn₃V₂O₈ vanadates with structural features very far from those found for

the present $Zn_{0.41}V_2O_5$ bronze have been reported⁴³.

The Rietveld refinement of the XRD pattern of $Zn_{0.41}V_2O_5$ is reported in **Figure 8a**, for which soft M-O (M = V, Zn) distance restraints were imposed. Crystallographic data and atomic positions of $Zn_{0.41}V_2O_5$ are gathered in **Tables 1** and **2**, respectively. Even if caution should be taken regarding the accuracy of atomic positions due to the mean quality of the data obtained on composite electrodes, it is clear that Zn is placed in the interlayer space, in the same *4c* position as

> Na in γ -Na_{0.96}V₂O₅²⁶ and Li in γ -LiV₂O₅⁴⁴. In Zn_{0.41}V₂O₅, Zn is characterized by a distorted octahedral coordination with an average Zn-O distance of 2.238(3)Å. This is in agreement with the expected environment for CN 6 and mean bond length of 2.11 Å⁴⁵. The deconvolution of the Raman spectrum (Figure 8b) clearly shows the apical V=O stretching modes are seen at lower frequencies (957/993 cm⁻¹) as a result of the lengthening of these bonds in the Zn bronze, as reported in Table 2. In the electroformed zinc bronze, the ZnO₆ octahedra share edges to form chains running along the [010] direction (Figure 9). The valence states of the vanadium ions have been estimated using the bond valence sum (BVS) method³⁵ (Table 1). The obtained values point to different oxidation states between the two inequivalent vanadium sites. Indeed, V_a site is filled by V⁺⁵ ions (BVS value = 4.97) while V_b site accommodates V⁺⁴ species (BVS value = 4.00), which suggests that the V_b site is the redox center. This result reveals a localized character of electron, comparable to that also observed in vanadium bronzes with γ -type puckered layer structure such as γ -LiV₂O₅ and γ -Na_{0.96}V₂O₅²⁶ (see also values reported in Table 2).

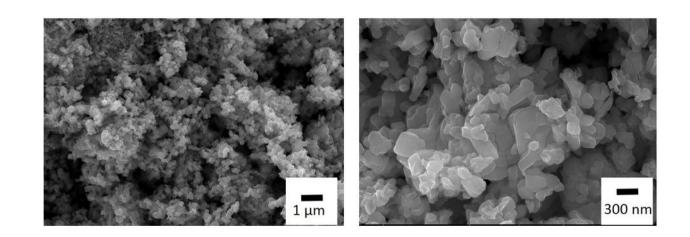
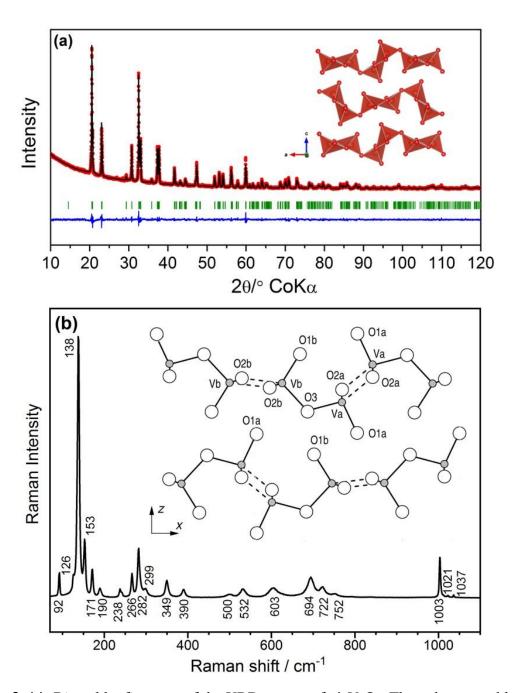
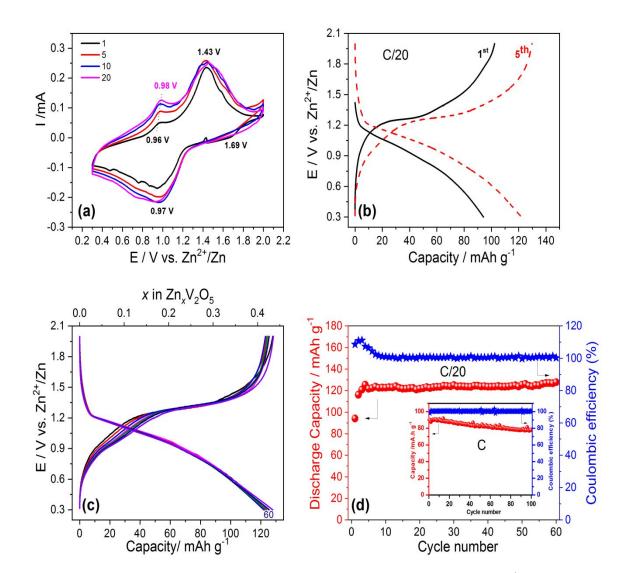
4. Conclusions

In this work, the electrochemical properties of the γ' -V₂O₅ polymorph as a cathode material for a rechargeable non-aqueous Zn-ion battery are reported for the first time. We demonstrate that despite its high charge density, Zn²⁺ ions can be electrochemically accommodated in the γ' -V₂O₅ host lattice through a solid solution process in line with the sloping discharge profile centered near 0.9 V vs Zn²⁺/Zn.

Page 21 of 47

Chemistry of Materials

The discharge product corresponds to a new zinc vanadate bronze with composition $Zn_{0.41}V_2O_5$, whose refined structure reveals only modest structural changes. The present results highlight the flexibility of the puckered layered γ' - V_2O_5 structure undergoing a limited interlayer expansion (6.4%) on Zn insertion, similar to that induced upon lithiation, along with minor impacts in the V_2O_5 planes. A highly reversible extraction of Zn^{2+} ions accompanied by a complete structural restoration of the pristine oxide during the charge process is found, revealing γ' - V_2O_5 behaves as a genuine Zn intercalation compound. Such properties enable a long cycle life at moderate rate, with stable capacities around 130 mAh g⁻¹ available at 0.9 V over at least 60 cycles. The unique intercalation properties offered by γ' - V_2O_5 are definitively illustrated by two major remarkable findings. First, the peculiar γ' - V_2O_5 structure promotes Zn insertion in comparison with the difficult insertion reaction found in α - V_2O_5 , occurring at lower potential and involving a poor capacity limited to one quarter that of γ' - V_2O_5 . More importantly is the astonishing high working voltage of 0.9 V vs Zn^{2+}/Zn (≈ 3.18 V vs Li^+/Li) exhibited by γ' - V_2O_5 . Indeed, this potential value very close to that obtained for Li⁺, Na⁺ and K⁺ makes γ' - V_2O_5 a unique host material in the field of intercalation chemistry with promising features as cathode material for "beyond Li" batteries.

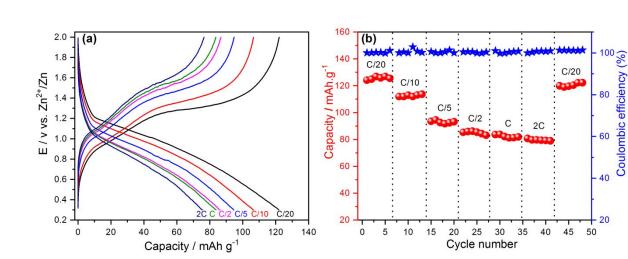
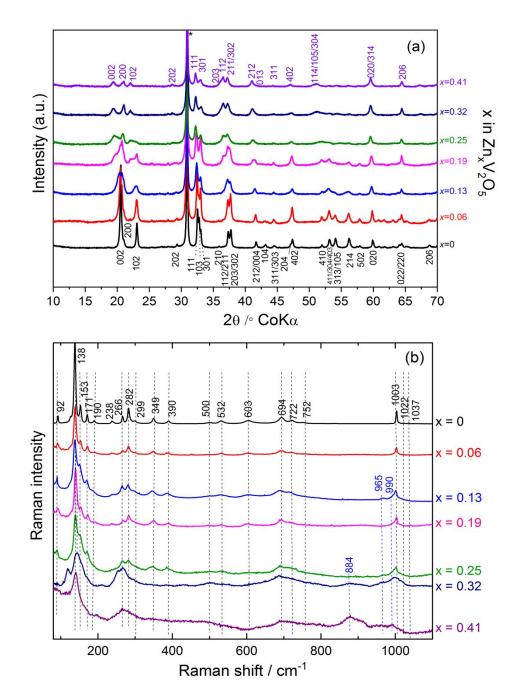

Figure 1. SEM micrographs of the as-prepared γ '-V₂O₅ powder.

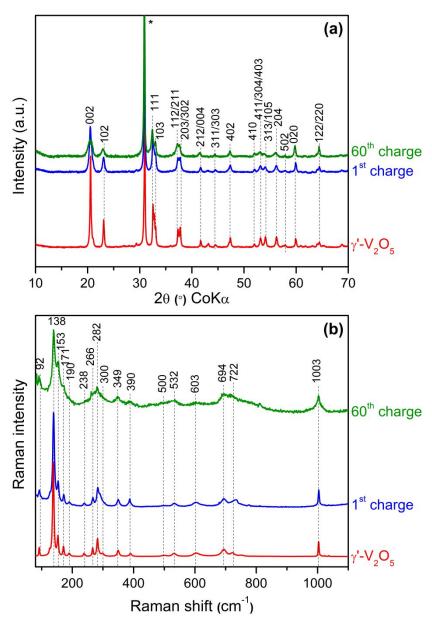
Figure 2. (a): Rietveld refinement of the XRD pattern of $\gamma' \cdot V_2O_5$. The red crosses, black line, and green line represent the observed, calculated and difference patterns, respectively. The positions of the Bragg reflections are shown as vertical blue bars. Inset: crystal structure of $\gamma' \cdot V_2O_5$ (b) Raman spectrum of $\gamma' \cdot V_2O_5$. Inset: projection of the structure of $\gamma' \cdot V_2O_5$ along the *b*-crystallographic direction showing all the V–O contacts. Dashed lines show V–O inter-chain ladder-step bonds.

Figure 3. Electrochemical performance of γ '-V₂O₅ (a) CV curves at 0.1 mV s⁻¹; (b) First and 5th discharge-charge cycles at C/20 rate (c) Discharge-charge cycles from cycle 6 to 60 (d) Evolution of the specific capacity with cycles at C/20 and 1C rate; 2 V – 0.3 V voltage window. Electrolyte 0.3 M Zn(OTf)₂ in AN.

Figure 4. Rate capability study of γ '-V₂O₅ in the 2 V – 0.3 V voltage window. Electrolyte 0.3 M Zn(OTf)₂ in AN.

ACS Paragon Plus Environment





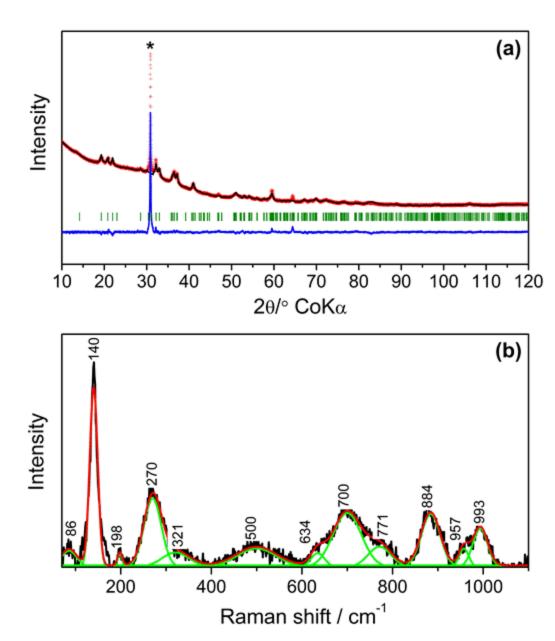

Figure 5. (a) XRD patterns and (b) Raman spectra of reduced $Zn_xV_2O_5$ electrodes ($0 \le x \le 0.41$). *: Graphite reflection.

Figure 6. Variation of the unit cell volume as a function of x in $Zn_xV_2O_5$ electrodes ($0 \le x \le 0.41$).

Figure 7. (a) XRD patterns and (b) Raman spectra of initial electrode, after 1^{st} charge at C/20 and after 60 cycles at C/10. 2.0 V – 0.3 V voltage window. *: Graphite reflection

Figure 8. (a) Rietveld refinement of the X-Ray diffraction pattern of $Zn_{0.41}V_2O_5$. The red crosses, black line, and blue line represent the observed, calculated and difference patterns, respectively. The positions of the Bragg reflections are shown as vertical green bars. (b) Raman spectrum of $Zn_{0.41}V_2O_5$ with the band deconvolution shown below (in green). *: Graphite reflection.

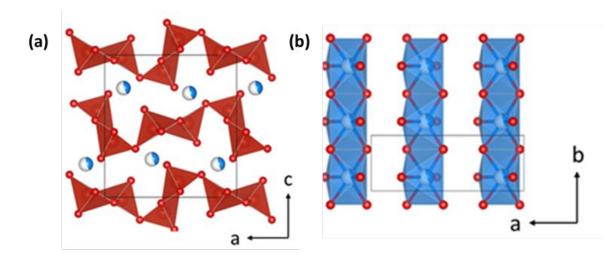


Figure 9. (a) Structure of $Zn_{0.41}V_2O_5$ phase. VO₅ pyramids are red, and blue/white spheres represent Zn atoms and vacancies, respectively (b) ZnO_6 octahedra sharing edges to form chains running along the [010] direction

ASSOCIATED CONTENT

Supporting Information

This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>. Crystallographic data and atomic positions of $\gamma' \cdot V_2O_5$ deduced from the Rietveld refinement of its X-ray powder diffraction pattern, V-O bond lengths (in Å) extracted from the Rietveld refinement of $\gamma' \cdot V_2O_5$; Compared electrochemical properties of $\gamma' \cdot V_2O_5$ as conventional composite electrode and composite electrode with CNTs; Compared electrochemical properties of $\gamma' \cdot V_2O_5$ and $\alpha \cdot V_2O_5 - CV$, 1st galvanostatic cycle at C/20, evolution of the discharge capacity upon cycling at C/20 rate.

AUTHOR INFORMATION

Corresponding Author

*Rita Baddour-Hadjean (baddour@icmpe.cnrs.fr)

Author Contributions

The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript

Funding Sources

French ANR project "CASSIOPES" Nº 17-CE09-0016-03

Notes

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENT

One of the author wishes to thank the French ANR project "CASSIOPES" N°17-CE09 0016-03 for its financial support. All the authors would like to thank Rémy Pires Brazuna (ICMPE-

CNRS) for his valuable contribution in SEM-EDS analysis.

TABLES

Space g	group P n m	ı a	$R_{Bragg} = 10$	5.1 %				
			$\chi^2 = 3.32$					
$V = 381.45(8) \text{ Å}^3$			<i>a</i> = 9.9053(7) Å, <i>b</i> = 3.60501(20) Å, <i>c</i> = 10.6822(9) Å					
			$\alpha = \beta = \gamma$	= 90°				
Atom	Wyckoff	x/c	l l	y/b	z/c	Occupancy	BVS	
	position							
Va	4 <i>c</i>	0.0)54950(8)	1/4	0.607459(8)	1	4.970(10)	
V _b	4 <i>c</i>	0.3	375842(9)	1/4	0.519349(7)	1	4.005(3)	
O _{1a}	4 <i>c</i>	0.4	17209(5)	1/4	0.77325(3)	1	2.404(3)	
O _{1b}	4 <i>c</i>	0.3	3009(10)	1/4	0.3828(5)	1	1.583(3)	
O _{2a}	4 <i>c</i>	0.4	42863(3)	1/4	0.04110(2)	1	1.922(2)	
O _{2b}	4 <i>c</i>	0.5	571213(18)	1/4	0.46258(5)	1	2.139(2)	
O ₃	4 <i>c</i>	0.2	2336(3)	1/4	0.6589(10)	1	1.515(15)	
Zn	4 <i>c</i>	0.1	422(8)	1/4	0.2323(7)	0.41*	1.436(11)	
L								

Table 1. Crystallographic data and atomic positions of γ -Zn_{0.41}V₂O₅ deduced from the Rietveld refinement of its X-ray powder diffraction pattern. Results from Bond Valence Sum (BVS) analyses are listed in the last columns. * : not refined

Chemistry of Materials

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

Phases		γ'-V ₂ O ₅ (<i>Pnma</i>)	γ -LiV ₂ O ₅ (<i>Pnma</i>)	γ -Zn _{0.41} V ₂ O ₅ (<i>Pnma</i>)
Unit cell parameters and volume		<i>a</i> = 9.94387(9) Å	<i>a</i> = 9.6947(2) Å	a = 9.9053(7) Å
		b = 3.58389(3) Å	b = 3.6062(1) Å	b = 3.60501(20) Å
		c = 10.03601(9) Å	c = 10.6780(2) Å	c = 10.6822(9) Å
		$V = 357.661(6) Å^3$	$V = 373.32(2) \text{ Å}^3$	$V = 381.45(8) Å^3$
(V _a)O ₅	V _a -O _{1a}	1.580(5)	1.595	1.5157(4)
	V _a -O ₃	1.763(6)	1.737	1.853(4)

	V_a - $O_{2a}(x2)$	1.891(2)	1.892	1.9437(1)
	(V _a -O _{2a})LS	1.960(5)	1.975	2.0209(3)
Average V _a -O		1.8172(19)	1.818	1.8554(4)
BVS V _a		+5.29	+5.15	+4.97
(V _b)O ₅	V _b -O _{1b}	1.567(5)	1.576	1.637(7)
	V _b -O ₃	1.809(6)	1.961	2.051(8)
	$V_{b}-O_{2b}(x2)$	1.877(2)	1.937	1.8871(1)
	(V _b -O _{2b})LS	2.027(4)	1.967	2.0280(2)
Average V _b -O		1.8315(18)	1.876	1.8980(21)
BVS V _b		+4.99	+4.30	+4.00
(Li, Zn)O ₆	(M)-O _{2b}		2.047	2.197(7)
	(M)-O _{1b}		2.044	2.248(11)
	(M)-O ₃ (x2)		2.226	2.319(6)
	(M)-O _{1a} (x2)		2.357	2.173(5)
Average			2.2095	2.2383(29)
(Li, Zn)-O				

Table 2. V-O and Zn-O bond lengths in $Zn_{0.41}V_2O_5$ deduced from Rietveld refinement of its X-ray powder diffraction pattern. V-O bond lengths values in γ '-V₂O₅ and γ -LiV₂O₅ (from [25]) are also reported for comparison. LS: V-O inter-chain ladder-step bonds, indicated by dashed lines in insert of Fig. 2b.

Electrode history	F mol ⁻¹	$x \text{ in } Zn_xV_2O_5$	Zn/V	x in $Zn_xV_2O_5$
		(EC)	(EDS)	(EDS)
1 st partial discharge (2.25 h at C/20)	0.12	0.06	0.025	0.050
1 st partial discharge (5 h at C/20)	0.25	0.13	0.062	0.124
1st partial discharge (10 h at C/20)	0.50	0.25	0.119	0.238
1 st complete discharge at C/20	0.64	0.32	0.150	0.300
5 th complete discharge at C/20	0.82	0.41	0.200	0.400
After the first complete discharge-charge	0	0	0.010	0.020
cycle at C/20				

Table 3. Zn/V ratios in different electrodes from EDS analysis and electrochemistry (EC).

REFERENCES

(1) Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode.

Nat. Energy 2016, 110, 1(10), 1–8, DOI:10.1038/nenergy.2016.119.

- (2) Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions. *Nat. Energy* 2016, 15, 1(5), 1–7, DOI:10.1038/nenergy.2016.39.
- (3) Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers. *Nat. Commun.* 2018, 91, 9(1), 1–11, DOI:10.1038/s41467-018-04060-8.
- Konarov, A.; Voronina, N.; Jo, J. H.; Bakenov, Z.; Sun, Y.-K.; Myung, S.-T. Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Lett. 2018, 3(10), 2620–2640, DOI:10.1021/acsenergylett.8b01552.
- (5) Han, S.-D.; Rajput, N. N.; Qu, X.; Pan, B.; He, M.; Ferrandon, M. S.; Liao, C.; Persson, K.

A.; Burrell, A. K. Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes. ACS Appl. Mater. Interfaces 2016, 8 (5), 3021–3031, DOI:10.1021/acsami.5b10024.

- Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Zinc-Ion Batteries: Materials, Mechanisms, and Applications. *Mater. Sci. Eng. R Reports* 2019, *135*, 58–84, DOI:10.1016/j.mser.2018.10.002.
- (7) Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent Advances in Aqueous Zinc-Ion Batteries. ACS
 Energy Lett. 2018, *3* (10), 2480–2501, DOI:10.1021/ acsenergylett.8b01426.
- (8) Gocke, E.; Schramm, W.; Dolscheid, P.; Schöllhorn, R. Molybdenum Cluster Chalcogenides Mo₆X₈: Electrochemical Intercalation of Closed Shell Ions Zn²⁺, Cd²⁺, and Na. *J. Solid State Chem.* **1987**, *70*(1), 71–81, DOI:10.1016/0022-4596(87)90179-4.
- (9) Arroyo y de Dompablo, M. E; Morán, E ; Alario-Franco, M. Á. ; Drymiotis, F.; Bianchi, A.
 D.; Fisk, Z. Novel superconductors obtained by electrochemical Zn intercalation of β ZrNCl and related compounds, *Int. J. Inorg. Mater.* 2000, *2*, 581–588, DOI:10.1016/s1466 6049(00)00087-8

2		
3		
4		
5		
6 7		
8		
9		
10		
11		
12		
13 14		
14		
16		
17		
18		
19 20		
20 21		
22		
23		
24		
25		
26		
27 28		
20 29		
30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40 41		
41		
43		
44		
45		
46		
47 48		
48 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

(10) Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.;
Vijh, A.; Zaghib, K. High Cycling Stability of Zinc-Anode/Conducting Polymer
Rechargeable Battery with Non-Aqueous Electrolyte. *J. Power Sources* 2014, *248*, 1099–1104, DOI:10.1016/j.jpowsour.2013.09.082.

- (11) Pan, C.; Nuzzo, R. G.; Gewirth, A. A. $ZnAl_xCo_{2-x}O_4$ Spinels as Cathode Materials for Non-Aqueous Zn Batteries with an Open Circuit Voltage of ≤ 2 V. *Chem. Mater.* 2017, *29* (21), 9351–9359, DOI:10.1021/acs.chemmater.7b03340.
- (12) Pan, C.; Zhang, R.; Nuzzo, R. G.; Gewirth, A. A. ZnNi_xMn_xCo_{2-2x}O₄ Spinel as a High-Voltage and High-Capacity Cathode Material for Nonaqueous Zn-Ion Batteries. *Adv. Energy Mater.* 2018, *8* (22), 1800589, DOI:10.1002/aenm.201800589.
- (13) Han, S.-D.; Kim, S.; Li, D.; Petkov, V.; Yoo, H. D.; Phillips, P. J.; Wang, H.; Kim, J. J.; More, K. L.; Key, B.; Klie, R. F.; Cabana, J.; Stamenkovic, V. R.; Fister, T. T.; Markovic, N. M.; Burrell, A. K.; Tepavcevic, S.; Vaughey, J. T. Mechanism of Zn Insertion into Nanostructured δ-MnO₂: A Nonaqueous Rechargeable Zn Metal Battery. *Chem. Mater.* 2017, *29*(11), 4874–4884, DOI:10.1021/acs.chemmater.7b00852.

(14) Senguttuvan, P.; Han, S.-D.; Kim, S.; Lipson, A. L.; Tepavcevic, S.; Fister, T. T.; Bloom,

I. D.; Burrell, A. K.; Johnson, C. S. A High Power Rechargeable Nonaqueous Multivalent

 Zn/V_2O_5 Battery. Adv. Energy Mater. 2016, 6 (24), 1600826,

DOI:10.1002/aenm.201600826.

- Kundu, D.; Vajargah, S. H.; Wan, L.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs.
 Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface.
 Energy Environ. Sci. 2018, *11* (4), 881–892, DOI:10.1039/c8ee00378e.
- (16) Huang, J.-Q.; Guo, X.; Lin, X.; Zhu, Y.; Zhang, B. Hybrid Aqueous/Organic Electrolytes
 Enable the High-Performance Zn-Ion Batteries. *Research* 2019, 2019, 1–10,
 DOI:10.34133/2019/2635310.
- (17) Chen, D.; Rui, X.; Zhang, Q.; Geng, H.; Gan, L.; Zhang, W.; Li, C.; Huang, S.; Yu, Y.
 Persistent Zinc-Ion Storage in Mass-Produced V₂O₅ Architectures. *Nano Energy* 2019, *60*, 171–178, DOI:10.1016/j.nanoen.2019.03.034.
- (18) Cocciantelli, J. M.; Doumerc, J. P.; Pouchard, M.; Broussely, M.; Labat, J. Crystal Chemistry of Electrochemically Inserted Li_xV₂O₅. *J. Power Sources* **1991**, *34*(2), 103–111,

DOI:10.1016/0378-7753(91)85029-v.

- (19) Parija, A.; Prendergast, D.; Banerjee, S. Evaluation of Multivalent Cation Insertion in Single- and Double-Layered Polymorphs of V₂O₅. *ACS Appl. Mater. Interfaces* 2017, *9* (28), 23756–23765, DOI:10.1021/acsami.7b05556.
- (20) Parija, A.; Liang, Y.; Andrews, J. L.; Jesus, L. R. De; Prendergast, D.; Banerjee, S. Topochemically De-Intercalated Phases of V₂O₅ as Cathode Materials for Multivalent Intercalation Batteries: A First-Principles Evaluation. *Chem. Mater.* 2016, *28* (16), 5611–5620, DOI:10.1021/acs.chemmater.6b01006.
- (21) Baddour-Hadjean, R.; Safrany Renard, M.; Pereira-Ramos, J. P. Unraveling the Structural Mechanism of Li Insertion in γ'-V₂O₅ and Its Effect on Cycling Properties. *Acta Mater.* 2019, *165*, 183–191, DOI:10.1016/j.actamat.2018.11.043.
- (22) Baddour-Hadjean, R.; Renard, M. S.; Pereira-Ramos, J. P. Kinetic Insight into the Electrochemical Lithium Insertion Process in the Puckered-Layer γ'-V₂O₅ Polymorph. *J. Electrochem. Soc.* **2019**, *166* (14), A3474, DOI:10.1149/2.1211914jes.
- (23) Renard, M. S.; Emery, N.; Baddour-Hadjean, R.; Pereira-Ramos, J. P. γ'-V₂O₅: A New

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10 11 12 13 14 15 16 17 18 19
20
21
21 22 22
23
24
25
25
26
27
28
29
30
31
32
22
33 34 35
34
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

High Voltage Cathode Material for Sodium-Ion Battery. *Electrochim. Acta* **2017**, *252*, 4–11, DOI:10.1016/j.electacta.2017.08.175.

(24) Safrany Renard, M.; Baddour-Hadjean, R.; Pereira-Ramos, J. P. Kinetic Insight into the Electrochemical Sodium Insertion-Extraction Mechanism of the Puckered γ'-V₂O₅ Polymorph. *Electrochim. Acta* **2019**, *322*, 134670, DOI:10.1016/j. electacta.2019.134670.

(25) Baddour-Hadjean, R.; Safrany Renard, M.; Pereira-Ramos, J. P. Enhanced Electrochemical Properties of Ball-Milled γ'-V₂O₅ as Cathode Material for Na-Ion Batteries: A Structural and Kinetic Investigation. *J. Power Sources* 2021, 482, 229017, DOI:10.1016/j.jpowsour.2020.229017.

(26) Emery, N.; Baddour-Hadjean, R.; Batyrbekuly, D.; Laïk, B.; Bakenov, Z.; Pereira-Ramos,
 J.-P. γ-Na_{0.96}V₂O₅: A New Competitive Cathode Material for Sodium-Ion Batteries
 Synthesized by a Soft Chemistry Route. *Chem. Mater.* 2018, *30* (15), 5305–5314,
 DOI:10.1021/acs.chemmater.8b02066.

(27) Bhatia, A.; Pereira-Ramos, J.-P.; Emery, N.; Baddour-Hadjean, R. γ'-V₂O₅ Polymorph as a Promising Host Structure for Potassium Storage: An Electrochemical and Structural Study.

3	
4	
5	
6	
/	
o Q	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
23	
24 25	
25	
27	
28	
29	
30	
31 32	
32	
33 34 35 36 37 38	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55	
56 57	
57 58	
50 59	
60	

Chem. Mater. 2021, 33 (13), 5276–5289, DOI:10.1021/acs.chemmater.1c01390.

(28) Muller-Bouvet, D.; Baddour-Hadjean, R.; Tanabe, M.; Huynh, L. T. N.; Le, M. L. P.; Pereira-Ramos, J. P. Electrochemically Formed α'-NaV₂O₅: A New Sodium Intercalation Compound. *Electrochim. Acta* 2015, *176*, 586–593, DOI:10.1016/ j. electacta.2015.07.030.
(29) Baddour-Hadjean, R.; Safrany Renard, M.; Emery, N.; Huynh, L. T. N.; Le, M. L. P.; Pereira-Ramos, J. P. The Richness of V₂O₅ Polymorphs as Superior Cathode Materials for

Sodium Insertion. *Electrochim. Acta* **2018**, *270*, 129–137, DOI:10.1016/j.electacta.2018.03.062.

- (30) Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J. M.; Ménétrier, M.; Doumerc, J. P. The Li_xV₂O₅ System: An Overview of the Structure Modifications Induced by the Lithium Intercalation. *Solid State Ionics* 1994, *69* (3–4), 257–264, DOI:10.1016/0167-2738(94)90414-6.
- (31) Mjejri, I.; Rougier, A.; Gaudon, M. Low-Cost and Facile Synthesis of the Vanadium Oxides
 V₂O₃, VO₂, and V₂O₅ and Their Magnetic, Thermochromic and Electrochromic Properties.
 Inorg. Chem. 2017, *56* (3), 1734–1741, DOI:10.1021/acs.inorgchem.6b02880.

2
3
4
5
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(32) Rietveld, H. M.; IUCr. A Profile Refinement Method for Nuclear and Magnetic Structures. *urn:issn:0021-8898* **1969**, *2*(2), 65–71, DOI:10.1107/S0021889869006558.

- (33) J. Rodríguez-Carvajal. FullProf Suite Homepage https://www.ill.eu/sites/fullprof/ (accessed 2021 -10 -19).
- (34) Cocciantelli, J. M.; Gravereau, P.; Doumerc, J. P.; Pouchard, M.; Hagenmuller, P. On the Preparation and Characterization of a New Polymorph of V₂O₅. *J. Solid State Chem.* 1991, *93* (2), 497–502, DOI:10.1016/0022-4596(91)90323-A.
- Brown, I. D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. *Acta Crystallogr. Sect. B* 1985, *41* (4), 244–247, DOI:10.1107/S0108768185002063.

(36) Baddour-Hadjean, R.; Smirnov, M. B.; Kazimirov, V. Y.; Smirnov, K. S.; Pereira-Ramos, J.-P. The Raman Spectrum of the γ '-V₂O₅ Polymorph: A Combined Experimental and DFT

Study. J. Raman Spectrosc. 2015, 46 (4), 406–412, DOI:10.1002/jrs.4660.

(37) Smirnov, M. B.; Roginskii, E. M.; Smirnov, K. S.; Baddour-Hadjean, R.; Pereira-Ramos,

J.-P. Unraveling the Structure–Raman Spectra Relationships in V₂O₅ Polymorphs via a

1	
2 3 4	
4 5	
6	
7 8	
9 10	
11 12 13	
14 15	
16 17	
18	
20	
21 22	
23 24	
25	
19 20 21 22 23 24 25 26 27 28	
28 29	
30	
31 32	
33 34	
35 36	
37 38	
39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51	
52 53	
54 55	
56 57	
58	
59 60	

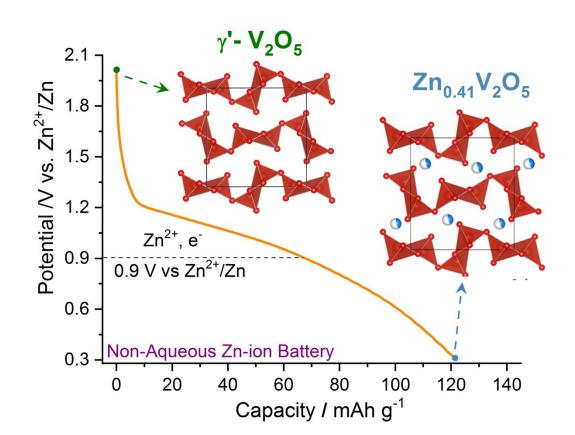
Comprehensive Experimental and DFT Study. *Inorg. Chem.* 2018, *57* (15), 9190–9204, DOI:10.1021/acs.inorgchem.8b01212.

(38) Frost, R. L.; Palmer, S. J.; Čejka, J.; Sejkora, J.; Plášil, J.; Bahfenne, S.; Keeffe, E. C. A Raman Spectroscopic Study of the Different Vanadate Groups in Solid-State Compounds— Model Case: Mineral Phases Vésigniéite [BaCu₃(VO₄)₂(OH)₂] and Volborthite [Cu₃V₂O₇(OH)₂·2H₂O]. *J. Raman Spectrosc.* 2011, 42 (8), 1701–1710,

DOI:10.1002/jrs.2906.

(39) Galy, J. Sur quelques nouvelles familles de composés non-stoechiométriques du vanadium. *Thèse Dr. ès Sci. Phys. , Univ. Bordeaux* 1966.

(40) Hagenmuller, P.; Galy, J.; Pouchard, M.; Casalot, A. Recherches Recentes Sur Les Bronzes de Vanadium II. Elements d'insertion Divalents et Trivalents. *Mater. Res. Bull.* 1966, 1 (2), 95–107, DOI:10.1016/0025-5408(66)90003-1.


(41) Shreenivasa, L.; Yogeeshwari, R. T.; Viswanatha, R.; Sriram, G.; Kalegowda, Y.; Kurkuri,
 M. D.; Ashoka, S. An Introduction of New Nanostructured Zn_{0.29}V₂O₅ Cathode Material for
 Lithium Ion Battery: A Detailed Studies on Synthesis, Characterization and Lithium

Uptake. *Mater. Res. Express* **2019**, *6*(11), 115035, DOI:10.1088/2053-1591/ab4572.

(42) Li, Q.; Zhang, Q.; Liu, C.; Zhou, Z.; Li, C.; He, B.; Man, P.; Wang, X.; Yao, Y. Anchoring V₂O₅ Nanosheets on Hierarchical Titanium Nitride Nanowire Arrays to Form Core–Shell Heterostructures as a Superior Cathode for High-Performance Wearable Aqueous Rechargeable Zinc-Ion Batteries. *J. Mater. Chem. A* 2019, *7* (21), 12997–13006, DOI:10.1039/c9ta03330k.

- (43) Chang, L. L. Y.; Wang, F. Y. Li-(Mg,Zn,Ni) Vanadates. J. Am. Ceram. Soc. 1988, 71 (8), 689–693, DOI:10.1111/j.1151-2916.1988.tb06389.x.
- (44) Galy, J.; Darriet, J.; Hagenmuller, P. Li_xV₂O₅ bronzes: structure of beta'-phase and refinement of gamma-phase structure, *Rev. Chim. Miner.* **1971**, *8*, 509-522.
- (45) Gagné, O. C.; Hawthorne, F. C. Bond-Length Distributions for Ions Bonded to Oxygen: Results for the Transition Metals and Quantification of the Factors Underlying Bond-Length Variation in Inorganic Solids. *urn:issn:2052-2525* 2020, 7 (4), 581–629, DOI:10.1107/S2052252520005928.

