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Aix-Marseille Univ, Université de Toulon, CNRS, France and
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Abstract

In this paper, a geometrical and thermodynamical analysis of the global properties of the poten-

tial energy landscape of a minimalistic model of a polypeptide is presented. The global geometry

of the potential energy landscape is supposed to contain relevant information about the properties

of a given sequence of amino acids, that is, to discriminate between a random heteropolymer and a

protein. By considering the SH3 and PYP protein-sequences and their randomized versions it turns

out that in addition to the standard signatures of the folding transition - discriminating between

protein sequences of amino acids and random heteropolymer sequences - also peculiar geometric

signatures of the equipotential hypersurfaces in configuration space can discriminate between pro-

teins and random heteropolymers. Interestingly, these geometric signatures are the ”shadows” of

deeper topological changes that take place in correspondence with the protein folding transition.

The protein folding transition takes place in systems with a small number of degrees of freedom

(very far from the Avogadro number) and in the absence of a symmetry-breaking phenomenon.

Nevertheless, seen from the deepest level of topology changes of equipotential submanifolds of

phase space, the protein folding transition fully qualifies as a phase transition.
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I. INTRODUCTION

The study of the Hamiltonian dynamical counterpart of phase transitions combined with

the geometrization of Hamiltonian dynamics (where the natural motions are identified with

geodesics of suitable Riemannian manifolds) has led to find that at the roots of the phase

transitions phenomena there are some peculiar changes of the topology of certain submani-

folds of phase space. More precisely, the relevant mathematical objects [1] are the potential

level sets ΣVN
v := {VN(q1, . . . , qN) = v ∈ R} in configuration space, and, equivalently, the

balls {MVN
v = V −1

N ((−∞, v])}v∈R bounded by the ΣVN
v . Both geometry and topology of these

objects can affect microscopic dynamics and macroscopic thermodynamics of the modelled

physical system. In fact, when the ball MVN
v=E = {(q1, . . . , qN) ∈ R|VN(q1, . . . , qN) < E} is

endowed with the metric tensor gJ = 2[E−V (q)]dqi⊗dqk then its geodesics are the natural

motions given by q̈i = −∇iV (q), and the geometry of the manifold (MVN
E , gJ) determines

the properties of order and chaos of the microscopic dynamics [1, 2].

On the other hand, a relationship also exists between macroscopic thermodynamics and

the topology of the same objects, MVN
v , which is expressed by [1]

SN(v) = (kB/N) log

[∫
M

VN
v

dNq

]
=
kB
N

log

vol[MVN
v \

N (v)⋃
i=1

Γ(x(i)
c )] +

N∑
i=0

wi µi(M
VN
v ) + r(N, v)

 ,
(1)

where S is the configurational entropy, v is the potential energy, and the µi(M
VN
v ) are

the Morse indexes (in one-to-one correspondence with topology) of the manifolds MVN
v=E; in

square brackets: the first term is the result of the excision of certain neighborhoods of the

critical points of the interaction potential from MVN
v ; the second term is a weighed sum of the

Morse indexes, and the third term is a smooth function of N and v. On the basis of Eq.(1)

one can infer that major topology changes with v of the submanifolds MVN
v , associated with

sharp changes of the potential energy pattern of at least some of the µi(M
VN
v ), can affect

the v-dependence of the entropy SN(v) and thus of its derivatives.

Therefore, at least for a broad class of physical systems, it has been hypothesized that

phase transitions stem from a suitable change of the topology of the potential level sets ΣVN
v

and, equivalently, of the manifolds MVN
v , when v, playing the role of the control parameter,

takes a critical value vc. This hypothesis is at the ground of a theoretical framework com-

posed of exactly solvable models [1, 3] and two theorems [4–6] stating that an equilibrium
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phase transitions are necessarily induced by suitable topological transitions in configuration

space. Apart from its purely theoretical meaning, this topological approach has been proved

interesting to investigate the origin of phase transitions in the absence of a symmetry break-

ing mechanism, thus in the absence of an order parameter, as is the case of a gauge model

[7] and of the Kosterlitz-Thouless transition in the 2D-XY model [8].

In the present work we aim at applying the topological approach to the phase transition

occurring in systems with a constitutively small number of degrees of freedom, that is, much

smaller than the Avogadro number. In fact, the physical phenomenon of phase transitions

is observed also in nanoscopic and mesoscopic systems, that is, also at very small numbers

of degrees of freedom; this circumstance is at odds with the thermodynamic limit dogma

stemming from the Yang-Lee theory [9]. The transition phenomenon tackled in what follows

is the protein folding transition.

Protein folding is a very important and challenging open question in molecular biology.

In fact, it is well-known that the sequence of amino acids uniquely determines the native

state (i.e., the compact configuration the protein assumes in physiological conditions) and

understanding how the information contained in the sequence is translated into the three-

dimensional native structure is the core of the protein folding problem. All the naturally

selected proteins generally fold to a uniquely determined native state, but a generic polypep-

tide does not, and is considered a random heteropolymer.

Following the line of [10, 11], instead of linking the folding properties to the energy

landscape by locating the minima of the landscape and the saddles joining them, or by

undertaking the folding funnel approach [12], we focus on global property of the energy

landscape which can be easily numerically computed through time averages along dynamical

trajectories.

II. DEFINITION OF THE MODEL AND MD CALCULATIONS

For both the proteins studied in this system (SH3 and PYP) we generated a Cα-based Gō-

model [13] via the SMOG2 [14] implementation, starting from the experimental structures

obtained from the Protein Data Bank (1FMK [15] for SH3 and 3PHY [16] for PYP). In this

model, only the Cα atom of every amino acid is considered and the potential is defined as:
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U(Γ,Γ0) =
∑
bonds

Kr(r − r0)2 +
∑

angles

Kθ(θ − θ0)2 +
∑

dihedrals

K(n)
ϕ (1 + cos(n(ϕ− ϕ0)))+

+
∑
i<j−3

εnative
ij

[
5

(
σij
rij

)12

− 6

(
σij
rij

)10
]

+
∑
i<j

εn-nat

(
σnn
rij

)12

(2)

where Γ0 is the initial experimental structure, and Γ is the current system conformation;

similarly, r0, θ0, and ϕ0 are the reference values for all the bonds, angle and dihedrals in

the model, while r, θ, and ϕ are their value in the conformation Γ. In our implementation

the dihedral potential is a sum of 2 terms for every 4 adjacent Cα atoms, with periods

n = 1 and n = 3. The force constants for bonded interactions in our implementation are

Kr = 200ε/Å2, Kθ = 40ε/rad2, Kϕ = ε, and ε = 1 kJ/mol. In non-bonded interaction,

native contacts are defined as all the Cα pairs that have a mutual distance smaller than a

threshold (here defined as 10 Å) in the reference configuration Γ0, and a distance along the

chain of 3 amino acids. All the pairs that do not satisfy these conditions are considered

as non-native contacts and their interaction is given only by a repulsive term (last term in

Eq.2). σij is chosen so that the minimum of the potential is at the distance rij measured

in the reference conformation Γ0, while σnn = 4Å. Energy terms for non-bonded interaction

are εnative
ij = ε and εn-nat = ε.

To compare this protein-like model with a polymer model that does not have a well-

defined folding minimum, we generated 2 random heteropolymer models starting from the

initial Gō models. We removed from the original potential almost all the bonded interaction

(keeping only the bonds between the residues), and we scrambled the non-bonded interaction

matrices, namely

URMD(Γ,Γ0) =
∑
bonds

Kr(r − r0)2 +
∑
i<j−3

ε̃native
ij

[
5

(
σij
rij

)12

− 6

(
σij
rij

)10
]

+
∑
i<j

εn-nat

(
σnn
rij

)12

(3)

where ε̃native
ij is the scrambled interaction matrix.

We named the 2 systems obtained from the initial SH3 and PYP models RMDa and

RMDb, respectively.

All the molecular dynamics simulations were then performed using GROMACS [17] ver-

sion 2019.6 (compiled in double precision), with a Langevin integrator, with γ = 1 ps-1,
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and a time step of 0.5 fs. We initially performed a short equilibration run (10 ns) to re-

lax and thermalize the structure at the target temperature. After this initial equilibration,

we performed a 100 ns-long simulation with the same parameters. To exhaustively explore

the folding curve, we performed a large number of simulations at different temperatures

(note that in a Gō model energy units, and consequently temperature units, are arbitrary),

namely:

• For SH3 we performed 1 simulation every 0.25 K between 135 and 161 K; every 1 K

between 75 K and 135 K and from 161 to 200 K; and every 2 K from 200 K to 250 K

for a total of 229 simulations.

• For PYP we performed 1 simulation every 0.25 K between 145 and 160 K; every 1 K

between 75 K and 145 K and from 160 to 200 K; and every 2 K from 200 K to 250 K

for a total of 196 simulations.

• For the 2 random energy models, we performed 1 simulation every 5 K from 75 K to

250 K, for a total of 36 simulations.

From these production runs we computed the gyration radius using PLUMED 2.5 [18, 19],

and all the other observables needed using the GROMACS suite. From the potential ener-

gies at different temperatures we computed the system heat capacity (Cv) with a multiple

histogram method [20].

III. OBSERVABLES AND METHODOLOGY

We sample the value of the characteristic observables along the dynamical trajectories at

fixed temperatures of the minimalistic model defined in [21]. Minimalistic models are those

where the polymer is described at a coarse-grained level as a chain of N beads, where N

is the number of amino acids; no explicit water molecules are considered and the solvent is

taken into account only by means of effective interactions among the monomers.

The thermodynamic and geometrical observables are evaluated along the trajectories run

at fixed temperatures. Indicating with 〈...〉 the time average along the trajectories, we

analyze: (i) the radius of gyration Rgyr in function of the temperature T ; (ii) the specific
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heat at constant volume

CV =
〈E2

tot〉 − 〈Etot〉2

K̃BT 2
, (4)

in function of the temperature, where Etot is the total energy and K̃B is the normalized

Boltzmann constant defined as K̃B = NNAKB (being NA the Avogadro constant and KB

the Boltzmann constant); (iii) the dimensionless variance of the Ricci-scalar curvature R(q)

as a function of the temperature

σR =

√
(〈R2〉 − 〈R〉2)/N

〈R〉/N
, (5)

where

R(q) =
Lap V

‖∇V ‖2
− Tr[(Hess V )2]

‖∇V ‖2
+ 2
‖Hess V∇V ‖2

‖∇V ‖4
− 2
〈∇V,Hess V∇V 〉

‖∇V ‖4
. (6)

(iv) the temperature T in function of the canonical ensemble energy defines as

ε = K̃BT/2 + 〈V 〉/N , (7)

where we recall that V is the total potential filed; (v) the entropy of the system evaluated

using

S =

∫
2

K̃BT (ε)
dε , (8)

The units are the standard GROMACS ones, i.e., [T ] =K, [Etot] = [V ] =kJ/mol,

[Rgyr] =nm and [K̃B] =kJ/mol K.

We analyze the src-Src homology 3 protein domain (SH3, PDB code ) (see left-hand panel

of FIG.1), of 57 amino acids; 2 random sequences of the same 57 amino acids (RDMa,b);

and the photoactive yellow protein (PYP) (see right-hand panel of FIG.1) composed by

125 amino acids. We stress how the simulations are run for several random sequences

outlining similar results and we here report only two of them for the sake of simplicity. The

randomization is implemented using the SH3 coarse grained potential described in [21] and

randomly permuting the parameters involved in the model: this way, we can get a sort of

random heteropolymer starting from the good folding sequence of SH3.

The simulation are performed using the GROMACS software [22–27] and each trajectory

is run until 1µs with 0.01ps temporal steps. Averages and fluctuations are evaluated over

1000 outputs for each fixed temperature simulation. The run temperatures are taken, after

some tests, in the folding range with an interval of 5K between each trajectory.
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FIG. 1. Cartoon representation of SH3 (left-hand panel) and PYP (right-hand panel).

IV. GEOMETRICAL SIGNATURES OF TOPOLOGICAL CHANGES

Let us associate to the protein a configuration space, M , which coincides with the Eu-

clidean space R3N where N is the number of the system particles. Thus, by setting n = 3N ,

we have M = R3N and, therefore, M can be equipped with the Euclidean metric tensor, gΓ.

More precisely, by introducing an orthonormal basis {∂qi}ni=1 ⊂M whose dual basis {dqi}ni=1

is defined by the relation dqi(∂qj) = δij, the Euclidean metric tensor is:

gM := δij dq
i ⊗ dqj. (9)

Given a regular Hamiltonian function V : M −→ R, one defines the potential level sets to

be the following collection of sets:

ΣV̄ :=
{
q ∈M |V (q) = V̄

}
. (10)

Therefore, the metric tensor on M takes the form:

g̃M = dV̄ ⊗ dV̄ + (gΣV̄
)ij dy

idyj (11)

so that M can be reordered as follows:

M =
⋃
V̄

ΣV̄ , (12)

where the symbol
⋃

is meant as the formal union on all possible level sets and {y1, . . . , y3N−1}ΣV̄

is the frame of coordinates on the potential level set ΣV̄ .
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In order to study the geometry of the level set ΣV̄ , we introduce the unit normal vector to

ΣV̄ :

ν :=
∇gMV

‖∇gMV ‖gM
(13)

where ∇gM := (∂q1 , . . . , ∂qn) and ‖·‖gM are, respectively, the gradient operator and the norm

with respect to the metric tensor given in Eq. (9) and, from now on, we will omit to specify

the metric unless necessary.

Thus, the curvature properties of the level sets can be analyzed through the introduction of

the Weingarten operator [8]:

Wν(X) := −∇Xν, ∀X ∈ TxΣV̄ (14)

where TxΣV̄ is the tangent space to the level set ΣV̄ on the point x ∈ Γ.

The geometric observables to which we are interested in since they can be directly connected

to the topology properties of ΣV̄ are the dispersion of the principal curvatures σ(ki)
2 and

the scalar curvature of the potential level sets.

The dispersion of principal curvature σ(ki)
2 is defined by [8]:

σ(ki)
2 :=

Tr[W2
ν ]

n− 1
− (Tr[Wν ])2

(n− 1)2
(15)

whereas the scalar curvature of ΣV̄ is [28]:

RΣV̄
:= Tr[Wν ]2 − Tr[W2

ν ] (16)

In order to have an expression for such observables we need to explicitly compute the traces

of the Weingarten operator and of its squared.

For what concerned the trace, we have:

Tr[Wν ] =
Lap V

‖∇V ‖
− 〈∇V,Hess V ∇V 〉

‖∇V ‖3
(17)

where Lap V and Hess V are, respectively, the Laplacian and the Hessian of the potential

function V with respect to gM . We note that we treat the Hessian as a linear application

Hess V : Rn −→ Rn.

The trace of the squared of the Weingarten operator is [8]:

Tr[W2
ν ] =

Tr[(Hess V )2]

‖∇V ‖2
+
〈∇V,Hess V ∇V 〉2

‖∇V ‖6
− 2
‖Hess V ∇V ‖2

‖∇V ‖4
(18)
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Thus, by means of the Pinkall’s theorem [29], we can connect the dispersion of principal

curvatures to the topology [8]:

〈σ2(ki)〉µ :=

∫
ΣV̄

σ2(ki) dµ∫
ΣV̄

dµ

=

[∫
ΣV̄

(σ2(ki))
n/2 dη

]2/n

− r(ΣV̄ )

=

[
V ol(Sn)

n∑
i=1

(
i

n− i

)n/2−i
bi(ΣV̄ )

]2/n

− r(ΣV̄ )

(19)

where dη is the normalized Riemannian measure on the level set ΣV̄ defined by

dη :=
dµ∫

ΣV̄

dµ

, (20)

and V ol(Sn) is the volume of the unit n-sphere, r(ΣV̄ ) is a small correction and bi(ΣV̄ ) are

the Betti numbers.

A further information is given by the scalar curvature of the potential level sets. In fact,

the scalar curvature is the sum of all the sectional curvatures and, therefore, the fluctuations

of the scalar curvature can be related to the fluctuations of scalar curvature and one can

exploit Overholt theorem [30]:

∆(sectional) >

[
vol(SN1 )

∑N
k=0 bk(ΣV̄ )

2 vol(ΣV̄ )

]2/N

(21)

The variance of the scalar curvature R(ΣV̄ ) is

∆2(scal) =
〈R2(ΣV̄ )〉 − 〈R(ΣV̄ )〉2

N(N − 1)
' ∆(sectional) (22)

and

〈Rn(ΣV̄ )〉 =

∫
Σv̄

Rn(ΣV̄ )
dµ

‖∇V ‖∫
Σv̄

dµ

‖∇V ‖

, (23)

V. AVERAGES OF GEOMETRIC OBSERVABLES

We now discuss how we extrapolated information about the topology associated to the

potential landscape of the studied systems from the MD data.
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Hence, our aim is that to understand how the phase transition, i.e., the protein folding, is

guided by a change of topology of the potential level sets. Therefore, we have to connect the

topological properties, namely, average of observables with respect to the geometric measure,

with thermodynamic properties, namely, average of observable with respect to a statistical

ensemble.

Let us start, then, noticing that the MD simulation have been performed in the canonical

ensemble, this implies that the all the thermodynamics average has to be done with respect to

the canonical partition function. Thus, we introduce the configurational canonical partition

function:

Z(n, T ) :=

∫
M

e−V (q)/T dq. (24)

where the Boltzmann constant KB has been equated to one.

The foliation introduced in Eq. (12) allows to rewrite the integral above as follows:

Z(n, T ) = n

∫ ∞
0

e−nv̄/T
(∫

Σv̄

dµ

‖∇V ‖

)
dv̄, (25)

where dµ is the induced metric on the potential level set Σv̄, V̄ = nv̄, i.e., v̄ is the value of

the potential per degrees of freedom.

Thus, the canonical average, 〈·〉C of a generic (geometric) observable, A : M −→ R is

〈A〉C(n, T ) :=
1

Z(n, T )

∫ ∞
0

n e−nv̄/T
(∫

Σv̄

A(Σv̄)

‖∇V ‖
dµΣv̄

)
dv̄, (26)

The MD simulation that we performed allows to sample any observable along trajectories,

therefore, the canonical average can be equivalently measured along the dynamics [33]:

〈A〉C(n, T ) =
1

t
lim
t→∞

∫ t

0

A(τ) dτ. (27)

Let us now go back to the the Pinkall theorem (19) that we recall below:

〈σ2(ki)〉geo :=

∫
Σv̄

σ2(ki) dµ∫
Σv̄

dµ

(28)

In this case, we should average the dispersion of the principal curvature with respect to a

geometric measure but, because of the canonical average, we cannot achieve this expression

at a finite number of degrees of freedom. Nevertheless, it is possible to get as closer as

possible proceeding as follows.
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Let us denote by Λ2 the dispersion of the principal curvature obtained evaluating Eq. (15)

along the trajectory, namely, the data obtained from the right-hand side of Eq. (27). The-

oretically, they are associated to the canonical average, thus, the best approximation of the

numerator in Eq. (28) is given by:

〈‖∇V ‖ Λ2〉C =
1

Z(n, T )

∫ ∞
0

n e−nv̄/T
(∫

Σv̄

Λ2 dµ

)
dv̄, (29)

whereas for the denominator, we have:

〈‖∇V ‖〉C =
1

Z(n, T )

∫ ∞
0

n e−nv̄/T
(∫

Σv̄

dµ

)
dv̄, (30)

Now, by dividing Eq. (29) by (30), we get:

〈‖∇V ‖ Λ2〉C
〈‖∇V ‖〉C

=

∫ ∞
0

n e−nv̄/T
(∫

Σv̄

Λ2 dµ

)
dv̄∫ ∞

0

n e−nv̄/T
(∫

Σv̄

dµ

)
dv̄

, (31)

At this step, it is worth noting that, for large values of n, the canonical measure narrows

around the potential level set Σv̄(T ), where v̄(T ) is the average potential function per degree

of freedom and so the largest contribution to the canonical partition function is given by

Σv̄(T ) which is nothing but the equivalence of ensembles.

Hence, this means that, heuristically, in the thermodynamic limit, the partition function

reduces to

Z(n, T ) ≈ n e−nv̄(T )/T

∫
Σv̄(T )

dµΣv̄(T )

‖∇V ‖
, (32)

and the average in Eq. (31) reads:

〈‖∇V ‖ Λ2〉C
〈‖∇V ‖〉C

n→∞−→

∫
Σv̄(T )

Λ2 dµΣv̄(T )∫
Σv̄(T )

dµΣv̄(T )

≈ 〈σ2(ki)〉geo, (33)

By looking at Eq. (31), we conclude that, at relatively low number of degrees of freedom,

there exists a collection of potential level sets which contribute to the canonical measure

and the exponential function e−nv̄/T weights all these level sets. The resulting effect is a

dispersion of the points of the representative curve of σ2(ki) which is evident in the SH3

protein since its degrees of freedom are nSH3 = 171. As soon as n increases, such a dispersion

shrinks as one can perceive by comparing the plots of σ2(ki) associated to SH3 with that
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of PYP (nPY P = 375) in Figs. [?]. A further contribution to such a dispersion can be

attributed to the presence of the quantity 〈‖∇V ‖〉C .

For what concerned the measure of the scalar curvature in Eq. (23), this can be directly

achieved by applying the definition (26), that is:

〈R〉C(n, T ) =

∫ ∞
0

n e−nv̄/T
(∫

Σv̄

R
‖∇V ‖

dµ

)
dv̄∫ ∞

0

n e−nv̄/T
(∫

Σv̄

dµ

‖∇V ‖

)
dv̄

, (34)

and for a large number of particles, we have:

〈R〉C(n, T )
n�1−→

∫
Σv̄

R
‖∇V ‖

dµ∫
Σv̄

dµ

‖∇V ‖

≈ 〈R〉 (35)

For such an observable the dispersion of the representative points does not appear and, as

anticipated above, this is due to the fact that we do not divide the average of the scalar

curvature by 〈‖∇V ‖〉C .

VI. RESULTS

In Figure 2 the radius of gyration is reported for the different sequences of the SH3 and

PYP proteins, respectively. It is evident that only the sequences of the good folders SH3 and

PYP exhibit the bifurcation pattern typical of the folding transition. In Figure 3 the specific

heat and the caloric curve are reported for the SH3 protein and display the typical patterns

of a phase transition. In particular the inflection point of the caloric curve is typical of a

second order phase transition [31, 32]. In Figure 4 the specific heat and the caloric curve

are reported for the PYP protein and also in this case display the typical patterns of a

phase transition. However, the pattern of the caloric curve - in concordance with the sharp

drop of the gyration radius shown by Figure 2 - could be compatible with a first order

phase transition [31, 32]. Remarkably, the thermodynamic signatures of a phase transition,

independently of its order, are lost in the case of the randomized sequences of amino acids

as shown in the same figures.

In Figure 5 the total scalar curvature and the total variance of the scalar curvature of the

equipotential level sets in configuration space are reported as functions of the temperature,
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normalized to the folding transition temperature, for the SH3 protein. Both quantities

show a kink in correspondence to the folding transition which disappears in the randomized

sequence. The same phenomenology is shown in Figure 6 for the PYP protein.

Finally, in Figures 7 and 8 the dispersions of principal curvatures of the equipotential

level sets in configuration space are reported for the SH3 and PYP proteins, respectively, and

for the randomized sequences. This quantity displays well evident peculiar patterns when

plotted as a function of the potential energy value per degree of freedom. These patterns

are less clear when plotted against temperature, even though the presence of cusps can be

guessed by means of different polynomial fittings of the points below and above the folding

transition temperature, respectively.

In order to understand what do we learn from the patterns of the geometrical quantities

reported as functions of the potential energy and of temperature, let us first consider that the

shape of the specific heat depends on the shape of the entropy according to the relation Cv =

−(∂S/∂E)2(∂2S/∂E2)−1 stemming from Cv = (∂T (E)/∂E)−1 with T (E) = (∂S/∂E)−1.

Then, related with the formula reported in Eq.(1), we also have [1]

SN(E) =
kB

N
log

∫
ΣN

E

dµ

‖∇H‖
(36)

' kB

N
log

[
vol(SN−1

1 )
N∑
i=0

bi(Σ
N
E ) + r1(E)

]
+ r2(E) ,

where r1(E), and r2(E) are smooth functions, bi(Σ
N
E ) are the Betti numbers of the energy

level sets, dµ is the measure on the level set, and SN−1
1 stands for a hypersphere of unit

radius. From this formula it can be understood that some ”abrupt” change in the topology

of the energy level sets can affect both the shape of the caloric curve T = T (E) and of the

specific heat through the energy variation of SN(E). Now, the scalar curvature is the sum

of sectional curvatures so that its variance contains the variance of the sectional curvatures

[7], thus the quantity

∆(sec) >

[
vol(SN1 )

∑N
k=0 bk(ΣE)

2 vol(ΣE)

]2/N

(37)

in strict analogy with Eqs.(21) and (22), detects topology changes of the energy level sets in

phase space. Therefore, the jumps in the patterns of the total scalar curvature and the total

variance of the scalar curvature reported in Figures 5 and 6 just probe some kind of ”abrupt”

change in the topology of the energy level sets. Similarly, and complementary to this, the

14



potential energy patterns of the dispersion of the principal curvatures of the equipotential

level sets reported in Figures 7 and 8 probe some kind of ”abrupt” change in the topology

of these submanifolds of configuration space, and thus also of phase space, after Pinkall’s

theorem relating the dispersion of the principal curvatures of a manifold with a weighted

sum of its Betti numbers as given in Eq.(19).

VII. DISCUSSION

By considering a minimalistic model of the SH3 and PYP proteins, besides the standard

signatures of the folding transition, the computation of suitable geometric quantities of the

equipotential hypersurfaces in configuration space and of the energy hypersurfaces in phase

space of these molecules, respectively, allows to probe topological changes of both families

of hypersurfaces. The computation of the same geometric quantities for randomized ver-

sions of the correct sequences of the SH3 and PYP proteins yielded monotonic patterns as

functions of the potential energy density, or of the total energy density, manifestly discrim-

inating between proteins and random heteropolymers. Remarkably, the peculiar geometric

signatures found in correspondence with the protein folding transition are the ”shadows” of

some peculiar and sharp topological change of the mentioned submanifolds of configuration

space and of phase space. The protein folding transition takes place in systems with a small

number of degrees of freedom (very far from the Avogadro number) and in the absence of a

symmetry-breaking phenomenon, however, considered from this topological perspective, the

protein folding transition fully qualifies as a phase transition.

The global geometry/topology of both total energy and potential energy landscapes is

found to contain relevant information about the properties of a given sequence of amino

acids, that is, to discriminate between a random heteropolymer and a protein.
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FIG. 2. Plots of the gyration radius for the different sequences. It is evident how only the good

folders SH3 and PYP exhibit a temperature dependence typical of the folding transition (upper

panels) which are lost for the randomized sequences (lower panels). TfSH3
and TfPY P

identify the

folding transition of the SH3 and PYP proteins, respectively.
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FIG. 3. The specific heat and the caloric curve for the SH3 protein show patterns typical of a

phase transition (upper panels). These features are lost in the case of the randomized version of

the correct sequence of the SH3 protein (lower panels).

17



��� ��� ��� ��� ��� ���
�

��

��

��

��

���

�/� ����

�
�

[�
�/
�
�
��
]

���

-� � � � �
���

���

���

���

���

���

���

ϵ

�
/�

� �
�
�

���

��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

�/� ����

�
�

[�
�/
�
�
��
]

����

��� ��� ��� ��� ��� ����
���

���

���

���

���

���

���

ϵ

�
/�

� �
�
�

����

FIG. 4. The specific heat and the caloric curve for the PYP protein show patterns typical of a

phase transition (upper panels). These features are lost in the case of the randomized version of

the correct sequence of the PYP protein (lower panels).
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FIG. 5. The total scalar curvature and its variance, of equipotential level sets, are reported as

functions of temperature for the SH3 protein (upper panels) and for its randomized sequence of

amino acids (lower panels).
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FIG. 6. The total scalar curvature and its variance, of equipotential level sets, are reported as

functions of temperature for the PYP protein (upper panels) and for its randomized sequence of

amino acids (lower panels).
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FIG. 7. The variance of the principal curvatures of the equipotential level sets is reported as a

function of temperature (left panel) and of the potential energy per degree of freedom v for both

the SH3 protein (upper panels), and for its randomized version(lower panels).
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FIG. 8. The variance of the principal curvatures of the equipotential level sets is reported as a

function of temperature (left panel) and of the potential energy per degree of freedom v for both

the PYP protein (upper panels), and for its randomized version(lower panels).
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