
HAL Id: hal-03504863
https://hal.science/hal-03504863v1

Preprint submitted on 29 Dec 2021 (v1), last revised 22 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIM-SITU: A Framework for the Faithful Simulation of
in-situ Workflows

Valentin Honoré, Tu Mai Anh Do, Loïc Pottier, Rafael Ferreira da Silva, Ewa
Deelman, Frédéric Suter

To cite this version:
Valentin Honoré, Tu Mai Anh Do, Loïc Pottier, Rafael Ferreira da Silva, Ewa Deelman, et al.. SIM-
SITU: A Framework for the Faithful Simulation of in-situ Workflows. 2021. �hal-03504863v1�

https://hal.science/hal-03504863v1
https://hal.archives-ouvertes.fr

Sim-Situ: A Framework for the Faithful Simulation of in-situ

Workflows

Valentin Honoré1, Tu Mai Anh Do2, Löıc Pottier2,
Rafael Ferreira da Silva3, Ewa Deelman2, Frédéric Suter1

1IN2P3 Computing Center / CNRS, Lyon - Villeurbanne, France
valentin.honore@cc.in2p3.fr, fsuter@cc.in2p3.fr

2USC Information Sciences Institute, Marina del Rey, CA, USA
tudo@isi.edu, lpottier@isi.edu, deelman@isi.edu

3Oak Ridge National Laboratory, Oak Ridge, TN, USA

silvarf@ornl.gov

Abstract

The amount of data generated by numerical simulations in various scientific domains such as
molecular dynamics, climate modeling, biology, or astrophysics, led to a fundamental redesign of
application workflows. The throughput and the capacity of storage subsystems have not evolved
as fast as the computing power in extreme-scale supercomputers. As a result, the classical post-
hoc analysis of simulation outputs became highly inefficient. In-situ workflows have then emerged
as a solution in which simulation and data analytics are intertwined through shared computing
resources, thus lower latencies.

Determining the best allocation, i.e., how many resources to allocate to each component of
an in-situ workflow; and mapping, i.e., where and at which frequency to run the data analytics
component, is a complex task whose performance assessment is crucial to the efficient execution
of in-situ workflows. However, such a performance evaluation of different allocation and mapping
strategies usually relies either on directly running them on the targeted execution environments,
which can rapidly become extremely time- and resource-consuming, or on resorting to the simu-
lation of simplified models of the components of an in-situ workflow, which can lack of realism.
In both cases, the validity of the performance evaluation is limited.

To address this issue, we introduce Sim-Situ, a framework for the faithful simulation of in-
situ workflows. This framework builds on the SimGrid toolkit and benefits of several important
features of this versatile simulation tool. We designed Sim-Situ to reflect the typical structure
of in-situ workflows and thanks to its modular design, Sim-Situ has the necessary flexibility to
easily and faithfully evaluate the behavior and performance of various allocation and mapping
strategies for in-situ workflows. We illustrate the simulation capabilities of Sim-Situ on a Molec-
ular Dynamics use case. We study the impact of different allocation and mapping strategies on
performance and show how users can leverage Sim-Situ to determine interesting tradeoffs when
designing their in-situ workflow.

1 Introduction

The tremendous volumes of data generated by numerical simulations in various scientific domains such
as molecular dynamics, climate modeling, biology, or astrophysics, led to a fundamental redesign of
application workflows. Due to the growing discrepancy between storage subsystems performance and
computing power in extreme-scale supercomputers, moving large volumes of data from computational
resources to disks may have a dramatic impact on performance [1]. This makes the classical post-hoc
analysis of simulation outputs highly inefficient. To overcome these issues, in-situ workflows intertwine
simulation and data analytics within shared computing resources. The objective is to take advantage
of data locality by consuming partial simulation results to periodically run the data analysis. Then,
the final outcome of the workflow execution will only be the result of the data analytics phase, which
is usually much smaller than the entire simulation data.

A common challenge to the many software frameworks that have been developed to efficiently
process in-situ workflows is to decide what is the best allocation, i.e., how many resources to allocate
to each component of an in-situ workflow, and mapping—where and at which frequency run the data
analytics component. This is a complex task whose performance assessment is crucial to the efficient
execution of in-situ workflows. However, such a performance evaluation of different allocation and
mapping strategies usually relies either on directly running them on the targeted execution environ-
ments or on resorting to the simulation of simplistic models of the components of an in-situ workflow.
The former requires access to clusters and an important time to tune the framework with regard to
the hardware and software available on the target machine and thus can rapidly become extremely
time- and resource-consuming, while the latter can lack of realism. In both cases, the validity of the
performance evaluation is usually limited to a narrow set of configurations.

In this paper, we present Sim-Situ, a framework for the faithful simulation of in-situ workflows.
Sim-Situ builds on the popular SimGrid toolkit [2] and benefits of several key features of this versatile
simulation framework. Indeed, SimGrid enables the simulation of large-scale distributed applications
in a way that is accurate (via validated simulation models), scalable (ability to run large scale simula-
tions on a single computer with low compute, memory, and energy footprints), and expressive (ability
to simulate arbitrary platform, application, and execution scenarios). We designed Sim-Situ to reflect
the typical structure of in-situ workflows with three distinct modules that respectively, (i) simulate
the unmodified simulation component of an in-situ workflow; (ii) mimic the behavior of an underlying
Data Transport Layer (DTL); and (iii) abstract the data analytics processing.

Thanks to this modular design, Sim-Situ has the necessary flexibility to easily and faithfully
evaluate the behavior and performance of various allocation policies for in-situ workflows. We illustrate
the simulation capabilities of Sim-Situ on a Molecular Dynamics use case. We study the impact of
different allocation and mapping strategies on performance and show how users can leverage Sim-Situ
to determine interesting tradeoffs when designing their in-situ workflow.

The remaining of this paper is organized as follows. Section 2 presents the related work. In
Section 3, we describe the architecture of the Sim-Situ framework and detail its different features
and advantages. In Section 4, we describe how we used Sim-Situ to simulate a Molecular Dynamics
(MD) in-situ workflow. Thanks to this implementation, we evaluate different in-situ allocation and
mapping strategies in Section 5. Finally, Section 6 summarizes our contributions and presents some
future research directions.

2 Related Work

The evaluation of the performance of the execution of in-situ workflows, and in particular that of
different allocation and mapping strategies for both the simulation and data analytics components,
is a complex and multi-parametric problem. Different approaches have been proposed in the liter-
ature to ascertain the performance gains brought by an in-situ (or in-transit) execution of a given
scientific workflow application and determine the best configuration deployment of its components on

1

a given target platform. We distinguish these approaches depending on whether they rely on actual
experiments [3–7] or resort to simulation [8–10] to evaluate the performance of in-situ workflows. The
former is intrinsically time- and resource-consuming while the latter may suffer from simplification
biases when the abstract versions of the in-situ workflow components are developed.

To limit the cost of the experiments required to perform performance evaluations, some works
focused on a particular component of the in-situ workflow–the Data Transport Layer (DTL) that
connects the simulation and the analysis. In such cases, series of experiments are conducted either
using the real application [3] or by leveraging data access traces to mimic an application behavior [6,7].
Another approach consisted in reducing the experimental configuration space to a selected set of
promising configurations. For instance, Malakar et al. tackled the allocation and mapping of an
in-situ workflow as an optimization problem expressed as a Mixed-Integer Linear Program [4, 5].
Solving this optimization problem results on a set of feasible in-situ analyses whose performance has
been assessed through experimentation in an actual platform. Lorhmann et al. leveraged surrogate
models (i.e., proxy-applications) of expensive numerical simulation codes [8] to abstract application
models. While this approach substantially reduces the cost of the experiments, it still captures the
most important features of the considered application.

Only a few recent attempts has leveraged simulation to enable the exploration of the in-situ
parameter space. Aupy et al. designed a numerical simulator [9] that measures evaluation metrics for
scheduling decisions by solving optimization problems on resource allocation and partitioning for an
in-situ analysis set. The simulator used a predetermined set of simulation parameters to study the
impact of the in-situ analyses that are scheduled on the performance of the entire in-situ execution. In
a previous work [10], we extrapolated benchmarking performance of realistic MD simulation engines
to create a synthetic MD simulation that emulates the behavior of MD simulations while using fewer
computing resources. Our proposed synthetic MD simulation considered computation units as timing
delays without actually performing any computing operations.

To the best of our knowledge, this is the first work that proposes a faithful and scalable simulation
framework that models the behavior of all the components of in-situ workflows.

3 Sim-Situ Architecture

In this paper, we focus on a particular type of in-situ workflows whose structure is depicted in the
top part of Figure 1. These workflows feature the following main components:

• A Simulation component that performs domain-specific computations, generally in an iterative
process. This component periodically, i.e., after a predefined number of iterations, produces
some scientific data;

• A Data Analytics component that consumes the data generated by the simulation component
and applies one or several analysis kernels;

• A Data Transport Layer (DTL), whose complexity depends on the degree of coupling between
the two former components and the resources they are allocated to, is responsible for efficient
data transfers.

To faithfully simulate such in-situ workflows, we introduce the Sim-Situ framework that leverages
several features of the SimGrid toolkit [2]. SimGrid is an open-source versatile framework for devel-
oping simulators of distributed applications that are executed on heterogeneous distributed platform.
One of the key strengths of SimGrid is to not trade accuracy for scalability. Its fast simulation mod-
els have been theoretically and experimentally evaluated and validated [11] and make it possible to
run large-scale simulations on a single machine. The way we simulate the components of an in-situ
workflow is illustrated by the bottom part of Figure 1 and detailed hereafter.

Simulation Component. To maximize the realism of the simulation of a parallel application, such
as the simulation component on an in-situ workflow, an appealing approach is to directly simulate the

2

Simulation Ingester AnalysisRetriever
Data

Transport
Layer

In-situ workflow

Sim-situ architecture

SMPI
Simulation

SimGrid
Plugin

SimGrid
Actorput() get()+ +

Figure 1: Software architectures of a generic in-situ workflow (top) and the Sim-Situ framework
(bottom).

unmodified code of the parallel application itself. This ensures that the simulation not only captures
the computations executed on the different processes but also the exact communication pattern of the
application.

This approach is at the origin of SMPI, a flexible simulator of MPI applications [12] that comes
with the SimGrid distribution. SMPI works seamlessly with unmodified MPI programs written in
C, C++, or FORTRAN. As part of its integration testing effort1 SMPI simulates the execution of
multiple proxy- and full-scale applications and HPC runtimes. The code is compiled using one of the
language specific compilers shipped with SimGrid. For instance, assuming the program is written in
C, one simply compiles it with smpicc, instead of mpicc, and executes it with smpirun, instead of
mpirun. The only difference is that smpirun takes one extra command-line argument, -platform,
which allows the user to describe the hardware platform on which the execution of the MPI program is
to be simulated. This platform description specifies a network topology between compute nodes, where
network links have specified latencies and bandwidths, and compute nodes have specified compute
speeds, and numbers of cores.

The basic principle behind SMPI simulations is as follows. The code of the MPI program is
executed as is, but the MPI ranks actually execute as threads in a single process, and thus share
the same address space. Each time an MPI function is called, control is handed off to SMPI where
network operations are replaced by simulated delays. These delays are computed using the simulation
models at the core of SimGrid [13]. Each block of code in between two MPI calls is benchmarked on
the machine used to execute the simulation. This is possible because, with SMPI, MPI ranks execute
as threads in mutual exclusion. These benchmarked execution times can then be scaled and simulated
as compute delays that correspond to the compute speeds of the nodes in the simulated platform. In
this way, SMPI simulates both communication and computation operations as computed delays.

Data Analytics. The data analytics component of an in-situ workflow is usually specific to a given
scientific study. Moreover, its complexity can vary greatly depending on what knowledge scientists
want to extract from the simulation data. It can range from a simple computation of some performance
metrics to help steer the simulation to a complex visualization of the current state of the simulation.
Then, to simulate this component in Sim-Situ we decide to simply abstract its execution time within
one or several SimGrid actors. A SimGrid actor corresponds to a simulated process that can consume
some simulated resources (e.g., CPU time, network bandwidth, or storage space) by performing some
simulated activities (e.g., executing a computation, doing some I/O, or communicating with another
actor).

Isolating and abstracting the data analytics component within actors out of the MPI world offers

1https://framagit.org/simgrid/SMPI-proxy-apps

3

https://framagit.org/simgrid/SMPI-proxy-apps

a great flexibility to Sim-Situ and let us envisage multiple scenarios. First, decoupling the simulation
from the analysis in Sim-Situ’s code allows us to easily decide where to map these actors. Indeed, an
actor can be started on any node of the simulated cluster, that execution location being specified at
the creation of the actor, or predefined in the description of an initial static deployment of the different
actors. Second, abstracting the analysis as an activity consuming CPU resources allows us to easily
study various simulation over analysis time ratios and determine what should be the best allocation
and mapping strategy in each scenario. Last, it is also possible to spawn new actors, stop existing
ones, or even migrate them from one node to another while the SimGrid simulation is running. This
would allow Sim-Situ to study complex scenarios where the analysis load evolves along time.

Data Transport Layer. To simulate data exchanges between the simulation and the data analytics
components, we opted for the development of a SimGrid plugin. A SimGrid plugin is a standalone
piece of code that composes some of basic concepts exposed by the SimGrid API to offer a higher level
of abstraction useful in a specific context. In this paper, the proposed plugin relies on data structures
accessed through a Producer-Consumer synchronization mechanism commonly used in actual DTLs
[14, 15]. Using this plugin only requires to include an extra header file in the application code to use
the functions it provides.

Two features of this plugin are especially interesting in the context of Sim-Situ. First, it offers
two different internal implementations of the message queue that allow us to consider three different
communication modes between the main components of an in-situ workflow. The former is a standard
queue (of configurable size). In this case, data exchanges are instantaneous, i.e., do not induce
any advance of the simulated clock, but respect the flow dependencies between the producers and
consumers. This allows us to study scenarios where the analysis component has a direct and seamless
access to the data produced by the simulation component, or to only focus on the computational
element of the in-situ workflow and study the impact of different allocation and mapping schemes on
that element alone.

The latter implementation leverages the concept of mailbox used by SimGrid to implement inter-
process communications. It acts as a rendez-vous point between a sender and a receiver processes.
When both meet on that rendez-vous point, the actual communication starts. SimGrid mailboxes use
a queue to store unmatched communications, i.e., when one side is waiting for the other, which ensures
the respect of flow dependencies. An interesting feature of mailboxes is that depending on where the
processes are located, we can simulate two different ways to exchange data. If the producer and the
consumer are located on the same compute node, and thus sharing a memory space, the simulated
communication will go through the loopback of this node. This allows us to simulate a memory copy
of data between the simulation and data analytics components. Conversely, if the producer and the
consumer are located on different nodes, the communication will go over the interconnection network.
This makes it possible to easily compare in-situ and in-transit scenarios.

The second interesting feature of the proposed plugin is that accesses to the simulated DTL can
be done either in synchronous or asynchronous modes. Again, this offers more flexibility and broaden
the range of scenarios that can be studied with Sim-Situ.

4 Application to MD In-situ Workflows

To assess the accuracy and illustrate the flexibility of the proposed Sim-Situ framework, we consider
the simulation of a Molecular Dynamics (MD) in-situ workflow. MD aims at studying the evolution of
molecular systems at the atomic scale and, is one of the most prominent types of numerical simulations
currently running on extreme-scale systems.

Application. More precisely, we relied for our experiments on the ExaMiniMD proxy-application [16,
17] which is part of the Exascale Computing Project Proxy App Suite v4.0 [18]. ExaMiniMD captures
both the computation and communication schemes that are implemented in the classical MD code
LAMMPS [19]. As other proxy-applications, ExaMiniMD shows a good balance between having a

4

compact and manageable code and representing the main performance concerns of MD applications.
ExaMiniMD belongs to the family of the all-atom MD simulations. It computes floating-point in-
tensive pairwise atom-atom unbounded interactions over a certain period of time. The simulated
system corresponds to a set of particles distributed in a 3D volume. The main loop computes the
trajectories of the particles according to a Verlet time integration method and the short-range forces
between particles as a Lennard-Jones potential. The parallelization of this MD problem follows a
typical domain decomposition approach. Each MPI rank manages a sub-volume and a halo to ex-
change with its neighbors periodically. The periodicity of these exchanges can be set to X by adding
neigh_modify every X to the input file. All the data exchanges in the simulation component rely
on point-to-point MPI communications with asynchronous receives.

The data analytics component of ExaMiniMD consists in periodically computing the temperature,
potential energy, and kinetic energy of the system. It is entangled with the simulation code and uses
the same process mapping. Each MPI rank locally computes the different metrics and then enters a
global MPI_Allreduce function that leads to the final value. The periodicity of this analysis is set
by the thermo input parameter. If no value is given, the computation of these values are only done
before and after the main simulation loop.

Experimental Platform. Our set of experiments and simulations were conducted on the dahu cluster
of the Grid’5000 experimental testbed. This cluster consists of 32 nodes that comprise two Intel Xeon
Gold 6130 CPUs with 16 cores each and 192 GiB of memory. These nodes are interconnected through
a 10 Gb/s Ethernet network. We leverage an existing thorough calibration of the SMPI network model
for this same cluster [20] to ensure our simulated results are accurate. This calibration runs a series
of tests on a limited number of nodes to assess the performance of point-to-point communications and
saturate a switch. It can then be used to extrapolate the size of a given cluster beyond its actual
number of nodes.

We used the git version of ExaMiniMD, compiled with g++ v8.3.0 and linked to Kokkos v3.3.01
and OpenMPI v3.1.3. We used the Serial Kokkos device with one MPI rank per core as we observed a
performance degradation with the Pthread and OpenMP devices combined with MPI. For the simulation
of ExaMiniMD, we relied on SimGrid v3.29.

4.1 Simulation Component

In this section, we analyze the performance and accuracy of the simulation with SMPI of the unmodi-
fied code of the ExaMiniMD application. Enabling this simulation only requires minimal modification
to the Makefile file to indicate that the compiler to use is smpicxx.

An additional and optional modification of the code of ExaMiniMD can be made to drastically
reduce the simulation time. SMPI offers to replace time-consuming computational parts of the sim-
ulated application by delays to speedup the simulation. These delays are estimated by sampling the
execution time of a given kernel or loop body either for a predefined number of times or until the
standard deviation of the samples is under a given threshold. All the subsequent calls are then re-
placed by the average execution time of these samples. Finally, this sampling can be done either at a
local scale, i.e., each MPI rank determines its own delay from the samples it executed, or at a global
scale, i.e., the delay is determined from samples executed by all the MPI ranks.

We used this feature of SMPI on the most time-consuming kernel of ExaMiniMD which is the call
to ForceLJNeigh::compute. This particular compute-bound kernel represents 69% of the execution
time of the application [21]. This corresponds to a 1-line modification of the code to call the SMPI
sampling macro with its parameters. We chose to run 150 samples with a standard deviation threshold
of 0.002 in our experiments.

Characterization. Figure 2 compares the time needed to run 8,000 iterations of a 3D Lennard-Jones
melt on a 70× 70× 70 region with ExaMiniMD and the time needed to simulate this execution with
SMPI for different numbers of MPI ranks. Data exchanges among ranks occur every 20 iterations and

5

the analytics phase is triggered every 50 iterations. We map an MPI rank per core and use a single
Kokkos thread per MPI rank.

0

1

2

3

4

1 2 4 8 16 32 64

MPI ranks

T
im

e
 t

o
 S

o
lu

tio
n

 (
in

 c
o

re
 ×

 h
o

u
rs

)

Execution Simulation (No Sampling)

Simulation (Global Sampling) Simulation (Local Sampling)

Figure 2: Time to run or simulate (with or without kernel sampling) the execution of a 3D Lennard-
Jones melt on a 703 region with ExaMiniMD. Each rank runs a single Kokkos thread and is mapped
on a different core.

We can see that the number of core × hours needed to solve this problem instance remains stable
as the number of MPI ranks increases, i.e., the actual execution completes faster with higher rank
counts. The simulation of ExaMiniMD with SMPI runs on a single core and takes the same time to
complete whatever the number of MPI ranks used. This simulation time is commensurate to that of
the actual execution, but uses much less computing resources. Activating the kernel sampling, either
local or global, in the simulation reduces the time to solution by a factor of 5, thus results can be
obtained in about 25-30 minutes instead of 2.5 hours.

Accuracy. Figure 3 shows the accuracy of the simulation of an unmodified version of ExaMiniMD
with SMPI and the impact of kernel sampling on this accuracy. SMPI is able to correctly reflect
the behavior of the simulated application with less variability and a reasonable error. Activating the
kernel sampling, be it local or global, slightly degrades the accuracy of the simulation. However, this
degradation remains stable as the number of ranks increases. Then, it can easily be taken into account
when assessing the performance of a given in-situ scheduling strategy with Sim-Situ.

To assess the quality of our simulation on larger core counts, scaling up to the full size of the target
platform (i.e., 32 nodes and 1,024 cores), we simulated a larger problem instance with a 90× 90× 90
region and 12, 000 iterations. Figure 4 shows that the accuracy of the local sampling version drops
from 512 cores while the global sampling version and the simulation without sampling remain accurate.

4.2 Data Analytics Component

Data analytics is the most versatile component of in-situ workflows. Users can act on many parameters
related to this component when designing and executing their workflows. Depending on what they

6

100

250

500

1000

2500

5000

10000

1 2 4 8 16 32 64

MPI ranks

E
xe

cu
tio

n
 t

im
e

 (
in

 s
e

co
n

d
s) Execution

Simulation (No Sampling)

Simulation (Global Sampling)

Simulation (Local Sampling)

Figure 3: Accuracy of the simulation of 3D Lennard-Jones melt on a 703 region (with or without
kernel sampling) when varying the number of MPI ranks.

30

100

300

1000

32 64 128 256 512 1024

MPI ranks

E
xe

cu
tio

n
 t

im
e

 (
in

 s
e

co
n

d
s) Execution

Simulation (No Sampling)

Simulation (Global Sampling)

Simulation (Local Sampling)

Figure 4: Accuracy of the simulation of 3D Lennard-Jones melt on a 903 region (with or without
kernel sampling) when varying the number of MPI ranks.

7

want to observe or steer during the execution of the simulation component, the compute cost and
complexity of the data analytics function, the volume of data to transfer from simulation to analytics,
and the frequency of the analysis can change from one run to another. Combining these variable
parameters leads to interesting questions such as “Is it more efficient to run frequent but light analyses
or scarce but heavy ones?”. Moreover, opting for a given configuration will have a direct impact on
performance and may benefit of a particular allocation and mapping scheme.

Configuration. To reflect this versality of the data analytics component and help users in determin-
ing the best allocation and mapping for a given configuration, we decided to augment ExaMiniMD
with an extra command line flag (--analysis). This allows us to configure the in-situ version of
ExaMiniMD without having to recompile the application. This flag requires six parameters:

• The number of analytics actors to spawn;

• A file, similar the MPI hostfile, that describes the mapping of the analytics actors;

• The cost per particle of the analytics. The analytics actors then multiply this value by the
number of analyzed particles to determine the amount of work they have to simulate;

• A computing scaling factor. This parameter allows us to artificially increase the analytics cost
to study different what-if scenarios;

• The size per particle of the data transferred from the simulation component to the analytics
component. Similarly, this value is multiplied by the number of analyzed particles;

• A data transfer scaling factor. This parameter allows us to artificially increase the transferred
data size to study different what-if scenarios.

In-situ Analytics. We slightly modified the code of ExaMiniMD to plug the proposed simulated
analytics component. It is implemented as an external shared library that is linked to ExaMiniMD
at compile time and is made of two different types of SimGrid actors. The behavior of the analytics
actors, whose number can be configured on command line, is described by Algorithm 1. They are
in charge of the simulated execution of the analytics function with is computation of the different
metrics computed every thermo steps.

Algorithm 1 Analytics actor

1: loop
2: Get system state from the DTL
3: if Poisoned value then
4: if Last actor running then
5: Send poisoned value to metric collector
6: Return
7: Compute analytics
8: Send computed metrics to metric collector

Each analytics actor runs an infinite loop in which it waits for data to analyze to be available in
the DTL. When it is the case, the actor simulates the data analytics function. Thanks to the flexible
and expressive API of SimGrid, simple functions that simulate the execution of the amount of work
given as parameter at the compute speed of the node the actor is mapped on, or more complex data
analytics, including complex communication patterns and multi-node allocations, can be simulated. In
the latter case, communications of the simulation and analytics components share the same network
and contention will be captured by Sim-Situ if some occurs. We simulate the three functions of
ExaMiniMD analytics component using the former scenario.

8

Then the analytics actor asynchronously sends dummy results to the metric collector actor, and
waits again for new data. At the end of the execution of the simulation component, a poisoned value
is sent to all the analytics actors to properly stop them. The last actor running then stops the metric
collector by sending it a poisoned value (lines 4-5).

The objective of the metric collector (Algorithm 2) is to simulate the accumulation of the metrics
done in the analytics phase. As the analytics is decoupled from the MPI simulation in Sim-Situ,
a communication scheme, that only implies the SimGrid actors and not the MPI ranks, can be
implemented.

Algorithm 2 Metric collector actor

1: loop
2: n collected values = 0
3: repeat
4: Get metrics from analytics actors
5: if Poisoned value then
6: Return
7: Accumulate metrics
8: until n collected values = n ranks
9: for all n ranks do

10: Put a copy of accumulated metrics into the DTL

This actor simply waits for having received as many individually computed metrics to accumulate
as there are ranks executing the simulation component (lines 3-8). As the number of analytics actors
can be smaller than the number of MPI ranks, an actor can send more than one set of metrics to the
metric collector. Once all the metric values for a given analytics phase have been collected, this actor
puts as many copies of the accumulated values into the DTL (lines 10-11), so that each MPI rank can
retrieve one set of metrics and pursue its execution of the simulation component.

4.3 Data Transport Layer

The structure of the proposed Data Transport Layer (DTL) and the data exchanges between the
simulation and analytics components of the in-situ workflow are illustrated by Figure 5. It is organized
around two distinct message queues. The former stores the current system states sent by each of the
MPI ranks to the analytics actors (plain arrows) while the latter stores the metrics computed by the
analytics actors and aggregated by the metric collector that are sent back to the MPI ranks (dashed
arrows). The communications between the analytics and metric collector actors rely on a standard
SimGrid mailbox (dotted arrows), and are thus outside the MPI world.

These two message queues are accessed through a Producer-Consumer mechanism provided by
SimGrid. This reduces the amount of synchronization needed between the simulation and the analytics
components to a minimum. The MPI ranks ingest their current system state into the DTL in a fire-
and-forget mode and then immediately proceed with the next iteration of the main MD simulation
loop. They will then block to retrieve the analysis results, but only after thermo iterations, i.e., before
having to start a new analysis. This Producer-Consumer mechanism also improves the flexibility of
Sim-Situ as it allows us to start any number of analytics actors without having to further modify the
original code of the application.

9

Analysis actors

MPI ranks ...

...

Metric collector

DTL
System
state

Metrics

Figure 5: Data exchanges between the Simulation and Analytics components through the Data Trans-
port Layer.

5 Evaluation of In-Situ Allocation and Mapping Strategies
with Sim-Situ

In this section, we introduce a model and a metric to assess the performance of different allocation
and mapping schemes and illustrate how the Sim-Situ framework can be used2 to study their impact
on the performance of the MD in-situ workflow detailed in the previous section.

5.1 Modeling the ExaMiniMD In-Situ Workflow

The following execution model is adapted from the one proposed in [10]. The main difference lies in
the data transfer pattern between the simulation and analytics components. In the model in [10], the
simulation component only sends data to the analytics once, with some buffer constraints imposed by
the DTL, while in the considered in-situ workflow, the the results of analytics component have to be
received before starting a new analysis.

Such a model can help users to obtain a first approximation of the impact of the different config-
uration parameters of the in-situ workflow (i.e., cost and frequency of analysis) and of the allocation
and mapping scheme (i.e., number of nodes and core allocation ratio) on the performance of the ap-
plication. Then, faithful simulations with Sim-Situ can complement this approximation by taking
into account more complex phenomena that are captured by the simulator (e.g., contention over the
network, load imbalance, etc.).

Workflow Stages and Notations. Figure 6 shows the different stages of the execution of the
ExaMiniMD in-situ workflow. The simulation component (S) produces the data and ingests it into
the DTL (Ing). Then, the analytics component (A) retrieves this data from the DTL (R) and processes
it. Once done, the analytics component sends the analysis results back to the simulation component
(W), which collects (C) them before proceeding with its execution.

This sequence of stages, representing an execution step, is repeated iteratively until the completion
of the application. Then, we respectively denote as Si, Ingi, Ri, Ai, Wi, and Ci, the simulation,
ingestion, retrieving, analytics, sending, and collection stages at step i. In this model, Si actually
corresponds to the execution of a certain number of iterations of the main loop of ExaMiniMD between
two analyses. As mentioned earlier, this number of iterations is denoted as the stride which determines

2A reproducibility artifact for this paper is available online.

10

https://figshare.com/s/e71c57503025e2389779

S1

In
g
1

R1 A1

W
1

C
1S2 IS2

In
g
2

R2 A2

W
2

C
2S3 IS3

In
g
3

R3 A3

W
3

C
3S4 IS4

(a) IS Scenario: Ri +Ai > Si + Ingi

S1

In
g
1

R1 A1

W
1

C
1S2

IA1

In
g
2

R2 A2

W
2

C
2S3

IA2

In
g
3

R3 A3

W
3

C
3S4

IA3

(b) IA scenario: Si + Ingi > Ri +Ai

Figure 6: Two execution scenarios for the ExaMiniMD in-situ workflow.

how frequently the data analytics component is called. Then, for a total number of iterations of the
MD simulation loop N and a given stride T , the number of steps in our model will be denoted by
ρ = N

T , and we thus have
∑ρ
i=1 Si = S (the same applies for the other stages). Finally, we make the

hypothesis that the different stages are consistent across steps. This means that the time to execute
each stage remains constant over all the ρ steps of the application. This hypothesis holds when the
number of steps is large enough (ρ ≥ 3), and the impact of warming-up steps is negligible [10].

Dependencies Between Stages. The data flow within a given step imposes the following precedence
constraints among the different stages:

Si → Ingi → Ri → Ai →Wi → Ci, for 1 ≤ i ≤ ρ. (1)

Our model also enforces that an analytics stage cannot begin before the simulation component
has received the results of the previous analytics phase. This means that, from the second step, the
ingestion Ingi can be done if and only if the collection of the metrics from the previous step Ci−1 by
the simulation component has been done:

Ci−1 → Ingi, for 2 ≤ i ≤ ρ. (2)

Idle Periods. Due to the dependencies between stages described above, idle periods can appear in
the execution flow of the application if one of the two main components has to wait for the other.
Figure 6 illustrates two execution scenarios, Idle Analytics and Idle Simulation in which some idle
time occurs. The former (IA) corresponds to a case where the execution time of the simulation related
stages (i.e.,, simulation and data ingestion) is greater than that of the analytics related stages (i.e.,
data retrieving and analysis), that is Si + Ingi > Ri + Ai. Conversely, the later (IS) corresponds to
analytics stages that take more time than the simulation stages, i.e., Ri +Ai > Si + Ingi. We denote
by ISi (resp. IAi) the corresponding idle time for the simulation (resp. analytics) component at step
i. Then, we reformulate Equation 1 to include these potential idle times:

Si → ISi → Ingi → Ri → Ai →Wi → IAi → Ci (3)

To simplify the notations, we introduce S∗ = Si, for all i ≤ ρ. A similar simplification is applied
to the other stages in Equation 3.

11

Assuming that the cost of C∗ and W∗ can be neglected because of the size of the exchanged
data, i.e., we consider these stages as synchronization points, and using the constraints expressed in
Equation 2 and 3, we define the total idle time I∗ of a step as:

I∗ = IS∗ + IA∗ =

{
Si + Ingi − (Ri +Ai) if IS∗ = 0

Ri +Ai − (Si + Ingi) if IA∗ = 0
= |Si + Ingi − (Ri +Ai)| (4)

Then, an efficient execution of an in-situ workflow does not induce any idle time, hence IS∗ = IA∗ =
0. In other words, such an idle-free execution is obtained when S∗ + Ing∗ = R∗ +A∗.

In-Situ Workflow Execution Efficiency Metric. Finally, we use the model above to refine a
metric presented in [10] to evaluate the performance of in-situ workflow executions. To this end, we
define the makespan m of the in-situ workflow as the sum of the makespan of each step i ≤ ρ:

m =

ρ∑
i=1

mi,

where mi is the maximum of the makespan of each component. Then we have:

m = ρ×max (S∗ + Ing∗, R∗ +A∗) (5)

Using this makespan definition, we compute an efficiency ratio η that depends on the total idle
time induced during the workflow execution. This ratio is defined as:

η = 1− ρ× I∗
m

= 1− |Si + Ingi − (Ri +Ai)|
max (S∗ + Ing∗, R∗ +A∗)

(6)

5.2 Assessing the Efficiency of In Situ Workflow Executions

For this evaluation, we consider a 3D Lennard-Jones melt on a 70× 70× 70 region problem instance.
The main MD simulation loop has 8,000 iterations. A performance analysis of ExaMiniMD allowed
us to set the compute cost per particle to 7.93e-7 and the data size per particle to transfer to 100.

For the allocation and mapping strategies, we base our study on the work of Malakar et al. [22]
in which they set the simulation to analysis core allocation ratio R as the number of cores allocated
to the simulation component over the number of cores allocated to the data analytics components.
As our target cluster has 32 cores per node, we consider 5 values for this ratio as shown in Table 1.
Then, we run simulations for 1, 2, 4, and 8 nodes (i.e., 32, 64, 128, and 256 cores). All the results
presented hereafter were obtained by running simulations on a single core of the Dahu cluster.

Table 1: Considered simulation to analysis core allocation ratios.
R # simulation cores # analysis cores

1 16 16

3 24 8

7 28 4

15 30 2

31 31 1

Impact of Simulation to Analysis Core Allocation Ratio. Let’s consider a user who would like
to perform a constant amount of analysis during the execution of their workflow and know, for a given
number of cores, what would be the most efficient simulation to analysis core allocation ratio to use.
This user can act on two parameters to execute the desired amount of analysis: the stride and the cost

12

of one execution of the data analytics component. For instance, if the MD simulation loop is executed
8,000 times and 400 units of analysis have to be performed, (at least) four (stride, cost) configurations
can be envisioned: (20, 1), (200, 10), (500, 25), and (1000, 50). Thanks to the flexibility of Sim-Situ,
generating a version of the ExaMiniMD in-situ workflow with a larger analysis cost simply amounts
to changing one of the command line parameter, i.e., the computing scaling factor.

0.25

0.50

0.75

32 64 128 256

Number of cores

η

(20, 1), Ratio = 31

(20, 1), Ratio = 15

(200, 10), Ratio = 31

(200, 10), Ratio = 15

(500, 25), Ratio = 31

(500, 25), Ratio = 15

(1000, 50), Ratio = 31

(1000, 50), Ratio = 15

Figure 7: Efficiency of ExaMiniMD in-situ workflow in four (stride, analytics cost) configurations for
two the core allocation ratios.

Figure 7 shows the achieved efficiency for these four combinations of stride and analysis costs and
two core-allocation ratios (R = 15 and R = 31). The other ratios lead to lower efficiency for any core
count and are thus not displayed for the sake of readability. It shows some interesting trends and
tradeoffs. We can see that the (stride, cost) configuration that leads to the best efficiency is not the
same for every core count. As the number of cores available for the execution of the in-situ workflow
increases, it appears to be more efficient to reduce the frequency and increase the cost of the analytics
component. This is confirmed by the trends of the (20, 1) and (200, 10) configurations with R = 31
whose efficiency steadily decreases with the increase of the number of cores. For these configurations,
the analytics actors do not have enough work to process and thus are idle most of the time. As
the total core count grows, more analytics actors are started, hence amplifying this phenomenon. A
similar trend can be seen for larger analytics cost, but the tipping point where the efficiency starts to
drop is for larger core counts.

We also observe a generally decreasing trend for the efficiency as the number of cores grows with
R = 15, but over a narrower range. Moreover, the (200, 10) configuration appears to be consistently
achieving good efficiency for this core allocation ratio, for all total core counts. This better stability
might be preferred by users when they have to adapt their executions to the number of currently
available cores they have access to and do want to risk to loose efficiency by selecting the wrong
configuration.

Figure 8 shows a different view of the (1000, 50) configuration, i.e., the evolution of the active and
idle times of the simulation and analytics components when the core allocation ratio and the total

13

number of cores increase3.

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

S
im

u
la

tio
n

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

A
n

a
ly

si
s

32 cores 64 cores 128 cores 256 cores

1 3 7 15 31 1 3 7 15 31 1 3 7 15 31 1 3 7 15 31

0

200

400

Simulation/Analysis core ratio

T
im

e
 (

in
 s

e
c
o
n
d
s)

Active

Idle

Figure 8: Evolution of the active and idle times of the simulation and analytics components when
increasing the core allocation ratio and the total number of cores for the (1000, 50) scenario.

In this scenario, we can see that the respective active times of the simulation and analytics com-
ponent follow opposite trends. For small core allocation ratios, the execution time is completely
dominated by the time to execute the MD simulation. Then, the time to execute the analytics com-
ponent increases linearly with the ratio, as less cores are allocated to execute the same amount of
analysis, until a tipping point is reached where the simulation waits for analytics (R = 31).

We also see that some “sweet spots” can be found, typically for R = 15, where the active times
of the simulation and analytics components are both efficient and well balanced. It is interesting to
note that it is in contradiction with the efficiency metric that indicates a better efficiency with a core
allocation ratio of 31 from 64 cores.

These results illustrate how Sim-Situ can be used to determine a good core-allocation ratio for
a given cost of analysis and number of nodes and that it is important for users of the Sim-Situ
framework to leverage all the metrics the tool can provide them while designing their workflow.

Impact of simulation to analysis data transfers. Another design choice faced by users of in-situ
workflows is to decide of the mapping of the resources allocated to the data analytics component. In
other words, the question is: “would it better to adopt an in-situ strategy, i.e., mapping the analytics
resources on the same nodes as the simulation resources, or an in-transit strategy, i.e., dedicating some
node(s) to the analytics?”. The former has the advantage of minimizing the cost of data exchanges
between simulation and analytics thanks to a shared memory space, but the scattering of the analytics
resources over multiple nodes may hinder the performance of this component (e.g., communication
intensive analytics function). Conversely, the latter benefits of having all the analytics located on a
single, or small number of dedicated nodes, but induces a larger communication overhead to exchange
data with the simulation component.

3The lack of values for 256 cores and R = 7 is due to a crash of ExaMiniMD for this particular instance with 224
MPI ranks (w/ or w/o Sim-Situ). It seems to come from a badly handled division by 0 in ExaMiniMD’s code.

14

To illustrate how Sim-Situ can help users to evaluate the relative performance of in-situ and
in-transit mapping schemes, we consider the following scenario. The simulation component still
corresponds to the main loop of ExaMiniMD. The analytics component now corresponds to a function
that involves all the analytics resources and whose performance is impacted by the number of nodes
onto which these resources are allocated, i.e., its execution time increases with the resource scattering.
Finally, the user can decide of the volume of data produced by the simulation to transfer to the
analytics.

Simulating such a performance study is made easy by the features of Sim-Situ. Switching from in-
situ to in-transit mappings simply amounts to change the analytics hostfile, while changing the volume
of transferred data or the performance profile of the analytics function can be done on command line.
Figure 9 shows the evolution of the execution time of the simulation component of the workflow when
the volume of data to exchange with the analytics component is scaled up to a thousand times. The
workflow is executed on 16 nodes and two execution modes are considered. The in-situ mode uses a
core allocation ratio of 15, i.e., two cores per node are allocated to the analytics component while a
full node is dedicated to the analysis in the in-transit mode.

50

75

100

0 25 50 75 100 125 150 175 200 225 250 275

Transferred data size (in MB)

E
xe

c
u
tio

n
 T

im
e
 (

in
 s

e
c
o
n
d
s) in-situ (2 cores per node for analysis on 16 nodes)

in-transit (32 cores for analysis on a dedicated node)

Figure 9: Evolution of the execution time of the simulation component when the volume of data
transfer is scaled up in the in-situ and in-transit execution modes with 16 nodes and R = 15.

We can see that the scattering of the analytics resources across nodes makes the in-situ execution
mode less efficient than the in-transit execution mode when a small amount of data is exchanged.
However, as we increase this volume of transferred data, the execution time of the in-transit mode
starts to increase linearly, while the in-situ execution mode is only slightly impacted as the data
exchanges are done through a shared memory space. Such simulation-based studies may help users
in the design of their analytics component by showing them where lies the tipping point between
in-transit and in-situ modes for a given configuration of their workflow.

6 Conclusion and Future Work

Analyzing the results of large-scale numerical simulations as they are produced is an appealing alter-
native to classical post-hoc analyses that are more and more impacted by the increasing discrepancy
between the relative performance of computing and storage subsystems in extreme-scale supercomput-
ers. However, the development of such in-situ scientific workflows raises several challenging questions,

15

such as “what amount of analysis can be done and at which frequency?”, “how many resources can
be taken off of the execution of the simulation to execute the analysis?”, or “Is it better to perform
in-situ or in-transit analytics?”.

Determining answers to these questions that do not cause the performance of an in-situ workflow
to be worse than the classical “simulation then analysis” approach usually falls down to evaluating the
performance of different allocation and mapping strategies for different input configurations. However,
the state-of-the-art on the performance evaluation of in-situ workflows shows that it relies either
on time- and resource-consuming experiments on a limited set of scenarios or on the simulation of
abstracted versions of the initial applications that may lack of realism.

In this paper, we introduced the Sim-Situ framework, a generic simulation framework for in-
situ workflows based on the popular SimGrid toolkit. The modular design of Sim-Situ faithfully
captures the structure of classical in-situ workflows and the behavior of their different components.
We illustrated its simulation capacities on the ExaMiniMD Molecular Dynamics proxy-application.
With only a few minor code modifications, we showed how Sim-Situ could be used to study different
execution scenarios of in-situ workflows and highlight important performance tradeoffs.

As part of our future work, we plan to further demonstrate the simulation capacities of Sim-Situ
by investigation more allocation and mapping strategies on different use-case applications. We will
particularly focus on in-transit processing where nodes are dedicated to analytics. Studying such
strategies would be a first step in evaluating the impact of data transfers and network performance on
the execution of scientific workflows. We also plan to extend the simulation capacities and realism of
Sim-Situ by developing more complex versions of the Data Transport Layer component that mimic the
behavior of popular implementations such as DataSpaces [14] or Dimes [15]. The objective is to provide
Sim-Situ users with the capacity to select which flavor of the DTL they want to use in the simulation
of their in-situ workflows. Finally, we plan to leverage Sim-Situ to carry out performance evaluations
in scenarios that would be hardly possible to evaluate through actual experiments on supercomputers.
For instance, the necessity of running series of parallel MD simulations in ensembles [23] broadens the
range of feasible in-situ configurations and raises new allocation and scheduling challenges. Moreover,
the modularity of the Sim-Situ framework offers enough flexibility to envision the online evaluation
of scheduling decisions in the context of an adaptive sampling process [24].

Acknowledgments. Experiments presented in this paper were carried out using the Grid’5000 testbed, sup-

ported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities

as well as other organizations (see https://www.grid5000.fr). This research used resources of the Oak Ridge

Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of

Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

[1] R. Gerber, J. Hack, K. Riley, K. Antypas, R. Coffey, E. Dart, T. Straatsma, J. Wells, D. Bard,
S. Dosanjh, I. Monga, M. E. Papka, and L. Rotman, “Crosscut report: Exascale Requirements
Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by:
Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental
Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics,” 2018. [Online].
Available: https://www.osti.gov/biblio/1417653

[2] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Versatile, Scalable, and Accu-
rate Simulation of Distributed Applications and Platforms,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2899 – 2917, 2014.

[3] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A. Nguyen, J. Cao, H. Abbasi,
S. Klasky, N. Podhorszki, and H. Yu, “FlexIO: I/O Middleware for Location-Flexible Scientific
Data Analytics,” in Proc. of the 27th IEEE International Symposium on Parallel and Distributed
Processing, Boston, MA, 2013, pp. 320–331.

16

https://www.grid5000.fr
https://www.osti.gov/biblio/1417653

[4] P. Malakar, V. Vishwanath, T. Munson, C. Knight, M. Hereld, S. Leyffer, and M. E. Papka,
“Optimal Scheduling of In-Situ Analysis for Large-Scale Scientific Simulations,” in Proc. of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
Austin, TX, Nov. 2015.

[5] P. Malakar, V. Vishwanath, C. Knight, T. Munson, and M. E. Papka, “Optimal Execution
of Co-analysis for Large-Scale Molecular Dynamics Simulations,” in Proc. of the International
Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City,
UT, Nov. 2016, pp. 702–715.

[6] Q. Sun, T. Jin, M. Romanus, H. Bui, F. Zhang, H. Yu, H. Kolla, S. Klasky, J. Chen, and
M. Parashar, “Adaptive Data Placement for Staging-Based Coupled Scientific Workflows,” in
Proc. of the International Conference for High Performance Computing, Networking, Storage
and Analysis, Austin, TX, Nov. 2015, pp. 1–12.

[7] P. Subedi, P. E. Davis, and M. Parashar, “Leveraging Machine Learning for Anticipatory Data
Delivery in Extreme Scale In-situ Workflows,” in Proc. of the IEEE International Conference on
Cluster Computing, Albuquerque, NM, Sep. 2019, pp. 1–11.

[8] E. Lohrmann, Z. Lukić, D. Morozov, and J. Müller, “Programmable In Situ System for Iterative
Workflows,” in Proc. of the 21st Workshop on Job Scheduling Strategies for Parallel Processing.
Orlando, FL: Springer, 2018, pp. 122–131.

[9] G. Aupy, B. Goglin, V. Honoré, and B. Raffin, “Modeling High-Throughput Applications for
In Situ Analytics,” International Journal of High Performance Computing Applications, vol. 33,
no. 6, pp. 1185–1200, 2019.

[10] T. M. A. Do, L. Pottier, S. Cáıno-Lores, R. Ferreira da Silva, M. A. Cuendet, H. Weinstein,
T. Estrada, M. Taufer, and E. Deelman, “A Lightweight Method for Evaluating In Situ Workflow
Efficiency,” Journal of Computational Science, vol. 48, p. 101259, 2021.

[11] P. Velho, L. M. Schnorr, H. Casanova, and A. Legrand, “On the Validity of Flow-Level Tcp
Network Models for Grid and Cloud Simulations,” ACM TOMACS, vol. 23, no. 4, Dec. 2013.

[12] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell, and F. Suter, “Simulating
MPI applications: the SMPI approach,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 8, pp. 2387–2400, 2017.

[13] P. Bédaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
F. Suter, and B. Videau, “Toward Better Simulation of MPI Applications on Ethernet/TCP
Networks,” in Proc. of the 4th International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems, Denver, CO, Nov. 2013.

[14] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Interaction and Coordination Framework
for Coupled Simulation Workflows,” Cluster Computing, vol. 15, no. 2, pp. 163–181, 2012.

[15] F. Zhang, T. Jin, Q. Sun, M. Romanus, H. Bui, S. Klasky, and M. Parashar, “In-memory Staging
and Data-Centric Task Placement for Coupled Scientific Simulation Workflows,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 12, p. e4147, 2017.

[16] A. Thompson and C. Trott, “A Brief Description of the Kokkos implementation of the SNAP
potential in ExaMiniMD,” Office of Scientific and Technical Information, Tech. Rep. 1409290,
Nov. 2017.

[17] “ExaMiniMD Proxy Application GitHub Repository,” [Online] https://github.com/ECP-copa/
ExaMiniMD, May 2021.

17

https://github.com/ECP-copa/ExaMiniMD
https://github.com/ECP-copa/ExaMiniMD

[18] O. Aaziz, C. Vaughan, J. Cook, J. Cook, J. Kuehn, and D. Richards, “Fine-Grained Analy-
sis of Communication Similarity between Real and Proxy Applications,” in Proc. of the 10th
IEEE International Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems, Denver, CO, Nov. 2019.

[19] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Com-
putational Physics, vol. 117, no. 1, pp. 1–19, 1995.

[20] T. Cornebize, “High Performance Computing: towards better Performance Predictions and Ex-
periments,” Ph.D. dissertation, Université Grenoble-Alpes, Grenoble, France, Jun. 2021.

[21] D. Richards, O. Aaziz, J. Cook, H. Finkel, B. Homerding, T. Juedeman, T. McCorquodale, Peter
an Mintz, and S. Moore, “Quantitative Performance Assesment of Proxy Apps and Parents,”
Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-750182, Apr. 2018.

[22] P. Malakar, T. Munson, C. Knight, V. Vishwanath, and M. E. Papka, “Topology-Aware Space-
Shared Co-Analysis of Large-Scale Molecular Dynamics Simulations,” in Proc. of the Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis, Dallas,
TX, Nov. 2018.

[23] R. Chelli and G. F. Signorini, “Serial generalized ensemble simulations of biomolecules with self-
consistent determination of weights,” Journal of Chemical Theory and Computation, vol. 8, no. 3,
2012.

[24] E. Hruska, V. Balasubramanian, H. Lee, S. Jha, and C. Clementi, “Extensible and Scalable
Adaptive Sampling on Supercomputers,” Journal of Chemical Theory and Computation, vol. 16,
no. 12, pp. 7915–7925, 2020.

18

	Introduction
	Related Work
	Sim-Situ Architecture
	Application to MD In-situ Workflows
	Simulation Component
	Data Analytics Component
	Data Transport Layer

	Evaluation of In-Situ Allocation and Mapping Strategies with Sim-Situ
	Modeling the ExaMiniMD In-Situ Workflow
	Assessing the Efficiency of In Situ Workflow Executions

	Conclusion and Future Work

