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aÉcole Centrale de Nantes-LS2N, UMR CNRS 6004, 1 rue de la Noë, 44300 Nantes, France
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Abstract

The twisting algorithm is a second order sliding mode technique for which convergence conditions have been established.
However, these conditions are limited to systems that are affine in the control. In this paper, new convergence conditions that
are not limited to such systems, are proposed. Furthermore, it is shown that in the affine case, state-of-the-art convergence
conditions are more conservative than the new conditions. Two examples illustrate the difference of conservatism and the way
that the new conditions ensure the convergence of systems non-affine in the control input.
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1 Introduction

Sliding-mode control is now a well-established control
theory [3,17,21]. The principle is to drive and maintain
the system trajectory on a manifold, called “sliding
surface” with a discontinuous control signal, in spite of
perturbations and uncertainties. While evolving on this
surface, the system has the desired dynamic, and is not
sensitive to these perturbations and uncertainties.
An undesirable effect of the discontinuous control signal
is the so-called chattering effect [1,12,6], that is a high-
frequency oscillations phenomenon that can damage
actuators. In order to attenuate the chattering, higher
order sliding mode techniques have been developed,
in contrast with the standard first order sliding mode.
Among the higher order sliding mode techniques (see
for example [17,7]), second order sliding-mode (2-SM)
control has been extensively studied and successfully
applied to real case problems. Recent works propose
advanced 2-SM methods based on discontinuous sliding
surfaces depending on quantization levels of the un-
certainties to further limit control amplitude [8,4] and
chattering.
2-SM can be achieved through different controller struc-
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tures. The approach based on the contractivity property
of differential inclusion has provided 2-SM establish-
ment conditions for several 2-SM controllers [9,10,11]
(among them, the twisting algorithm and the super-
twisting controllers). Lyapunov-based conditions for
2-SM establishment have been proposed for twist-
ing [22,15] or super-twisting [13,14] controllers, and for
their adaptative extensions [18,20,19]. These conver-
gence conditions, derived either from the contractivity
property or from Lyapunov theory, are sufficient but not
necessary. Weaker convergence conditions are of great
benefit: they allow more freedom in choosing controller
parameters when designing a controller, generally lead-
ing to improved designs.
In this paper, we focus on the twisting trajectories
typically obtained using a twisting controller. By inves-
tigating the finite time convergence of these twisting
trajectories independently of any controller structure,
we obtain new finite time convergence conditions that
apply to systems with non-affine control input and no
assumption on the controller structure. In addition to
the novelty of handling non-affine control inputs and
non-twisting controller structures, these new sufficient
conditions turn out to be sensibly weaker than the pre-
viously proposed conditions [22,15,11] when restricted
to affine input systems with twisting controller.
This paper is organized as follows. Section 2 explains the
proposed approach to generalizing convergence condi-
tions to non-affine systems. Section 3 provides a theorem
that states the convergence conditions of the twisting



trajectory. This theorem leads to two corollaries that
give sufficient conditions on the twisting controller’s
parameters to ensure finite time 2-SM establishment.
Through two academic examples, Section 4 illustrates
that the new convergence conditions are less conserva-
tive than the state-of-the-art ones and can be applied
to non-affine systems. Finally, Section 5 summarizes the
results and provides directions for future works.

2 Proposed approach

Consider single input non-linear system given by the
differential equation,

ẋ = f(t, x, u), (1)

where x ∈ Rn is the state vector and u ∈ R is the control
input. The sliding variable is denoted σ(t, x), and it is
supposed that the system has a relative degree of 2, i.e.,
σ̇ does not depend on u while u explicitly appears in the
expression of σ̈,

σ̈ = σ̈(t, x, u). (2)

The function σ(t, x) is differentiable, σ̇(t, x) is continu-
ous and σ̈(t, x, u) is typically discontinuous because u is
discontinuous. The control objective consists in forcing
σ to zero, and we assume that u is a function of σ and σ̇,

u = ϕ(σ, σ̇). (3)

In the context of 2-SM, ϕ is discontinuous. We assume
that a trajectory x(t) exists ∀t ≥ 0 in the sense of Filip-
pov [5], and that x(t) ∈ X ⊆ Rn, with X a compact.

Usually, the time dependency of σ(t), σ̇(t) and σ̈(t) refers
to some dependency to perturbations p(t). In that case,
we assume known bounds p(t) ∈ [pmin, pmax] that hold
∀t ≥ 0.

2.1 The twisting controller

In the particular case where f is affine in u, the second
time derivative of the sliding variable is also affine in u,
that is, (2) becomes,

σ̈ = h(t, x) + g(t, x)u(t). (4)

Consider the following well-known twisting controller [9]

ϕ(σ, σ̇) = −r1 sign(σ)− r2 sign(σ̇), (5)

where r1 > r2 > 0. In [17, pp.148], the principle of
the finite-time convergence proof relies on the following
global bounds on h(t, x) and g(t, x),

h(t, x) ∈ [−C,C], g(t, x) ∈ [k,K], ∀x ∈ X, ∀t ≥ 0,
(6)

with k > 0, which further ensures g(t, x) > 0. Those
bounds allow enclosing the dynamic of σ(t) in the fol-
lowing differential inclusion in the phase plan (σ, σ̇):

σ̈ ∈ [−C,C] + [k,K]ϕ(σ, σ̇). (7)

This problem being two-dimensional, a majorant curve
in the phase plan (σ, σ̇) can be used to capture all possi-
ble trajectories, and the finite-time convergence of this
majorant curve to the origin holds true for all the pos-
sible trajectories. The resulting sufficient convergence
conditions depending on the parameter r1 and r2 are
given in the first line of Table 1.

2.2 Generalized twisting conditions

The finite time convergence of the trajectories generated
by the twisting controller is the consequence of behavior
of the differential inclusion (7) that differs in each of the
four orthants Σi

Σ1 = {(σ, σ̇) |σ > 0 and σ̇ > 0},
Σ2 = {(σ, σ̇) |σ > 0 and σ̇ < 0},
Σ3 = {(σ, σ̇) |σ < 0 and σ̇ < 0},
Σ4 = {(σ, σ̇) |σ < 0 and σ̇ > 0}.

(8)

While in the standard approach the orthant dependent
dynamic enforced by the twisting controller is analyzed,
we propose here another approach: We directly analyze
the conditions on the orthant dependent dynamic to pro-
duce a finite time convergence, independently of the sys-
tem structure (that may be non-affine in the input) and
of the controller structure. Such conditions naturally in-
volve boundsmi andMi on the dynamic that are defined
orthant-wise:

σ̈ ∈ [mi,Mi], ∀(σ, σ̇) ∈ Σi, (9)

which are foreseen to be less conservative than the
bounds (6) since the latter hold in all orthants. In prac-
tice, orthant dependent bounds are evaluated on each

Xi(t) = {x ∈ X | (σ(t, x), σ̇(t, x)) ∈ Σi} (10)

instead of being evaluated on the whole space X:

σ̈(t, x) ∈ [mi,Mi], ∀t ≥ 0, ∀x ∈ Xi(t). (11)

Computing such bounds in each of the four orthants
roughly requires four times more work, but this is ad-
visable in a design phase aiming to obtain a less con-
servative design. Those general sufficient conditions are
stated in Theorem 1 and summarized in the last line of
Table 1. In Table 1 and in the rest of the paper, bounds
that need to hold ∀t ≥ 0 are usually enforced to hold
∀p ∈ [pmin, pmax].
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This general approach is finally instantiated to systems
with an affine input and the twisting controller. The re-
sulting sufficient conditions are stated in Corollary 1.1.
They are summarized in the second line of Table 1: A
comparison with the first line of the table shows that
they are similar to the usual sufficient conditions associ-
ated to the twisting controller, but defined orthant-wise
and are therefore less conservative.

3 Conditions of convergence

3.1 General case

Consider differential inclusion (9). Sufficient conditions
on the bounds mi, Mi are given in the next theorem
(Theorem 1), to ensure the finite-time convergence of σ
and σ̇ to zero in finite time with a twisting trajectory.
First, in the half plan σ ≥ 0, having σ̈ < 0 ensures that
the trajectory (σ(t), σ̇(t)) crosses the semi-axis σ̇ ≤ 0 in
finite time in the phase diagram, and vice-versa in the
half plan σ ≤ 0. This corresponds to Conditions (13)
and (14) of Theorem 1.
Secondly, every time the trajectory crosses the same
semi-axis, it must get closer to the origin. It is shown
in the proof that the ratio between the two consecutive
intersection points along the same semi-axis is bounded
by

|m2M4|
|M1m3|

, (12)

and having this ratio strictly lower than one, correspond-
ing to Condition (15), ensures the finite-time conver-
gence to the origin.

Theorem 1 If differential inclusion (9) holds,

M1, M2 < 0, (13)

m3, m4 > 0, (14)

and
|m2M4|
|M1m3|

< 1, (15)

then σ and σ̇ converges to zero in finite time. Moreover,
with the initial conditions σ0 = 0 and σ̇0 > 0, the con-
vergence time is lower than

d
σ̇0

1− q
, (16)

where d and q < 1 are defined by,

d = − 1

M1
+

1√
M1M2

+
1

m3

√
m2

M1
+

√
m2

M1m3m4

q =

√
m2M4

M1m3
.

(17)

PROOF.

Consider the initial condition σ = 0, σ̇ = σ̇0 > 0 at time
t = 0. Due to Condition (13), σ̇ is strictly decreasing over
time and reaches 0 in a finite time denoted t1, σ̇(t1) = 0.
In the sub-space Σ1, since σ̈ is upper bounded by M1,
the trajectory (σ(t), σ̇(t)) is externally bounded by the
trajectory obtained by integrating M1, which is the the
so-called majorant curve [17, ch.4], [2], as represented in
Figure 1. Integrating the upper bound M1 provides the
trajectory (σ1(t), σ̇1(t)), with,

σ̇1(t) = M1t+ σ̇0,

σ1(t) =
1

2
M1t

2 + σ̇0t.
(18)

This bounding trajectory reaches the semi-axis σ ≥ 0 at
time t+1 ,

σ̇1(t+1 ) = 0 ⇐⇒ t+1 = − σ̇0
M1

,

σ1(t+1 ) = − σ̇0
2

2M1
.

(19)

It follows that σ(t1) ≤ σ1(t+1 ). Moreover, t1 is upper
bounded by t+1 . Indeed, since σ̇ ≥ 0 and is strictly de-
creasing in Σ1,

σ̈(t) ≤M1 =⇒ 0 ≤ σ̇(t) ≤M1t

=⇒ t1 ≤ t+1 .
(20)

Consider now the sub-space Σ2, with the initial condition
(σ(t1), 0). Since σ̈ is strictly negative in this sub-space, σ̇
is negative strictly decreasing and the trajectory reaches
the semi axis σ̇ ≤ 0 in finite time t2. In this sub-space
the trajectory is externally bounded by the trajectory
obtained by integrating m2 represented by the dotted
curve in Figure 1. Let t′ = t−t1 be a fictive time variable
which is such that t = t1 ⇐⇒ t′ = 0 to simplify the
following calculus. The trajectory (σ2(t′), σ̇2(t′)) is given
by,

σ̇2(t′) = m2t
′,

σ2(t′) =
1

2
m2t

′ + σ(t1),
(21)

and reaches the semi-axis σ̇ ≤ 0 for t′ = t−2 ,

σ2(t−2 ) = 0 ⇐⇒ t−2 =

√
−2σ(t1)

m2
,

σ̇2(t−2 ) = −
√
−2σ(t1)m2

(22)

It follows that σ̇(t2) ≥ σ̇2(t−2 ). Substituting σ̇(t1) by its
upper bound σ1(t+1 ) computed previously yields,

σ̇(t2) ≥ −σ̇0
√
m2

M1
. (23)
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Bounds to be computed Sufficient condition for finite time convergence

Levant [17, pp.148]
(Corollary 1.2)

C, k,K s. t.

h(t, x) ∈ [−C,C] , g(t, x) ∈ [k,K],

∀t ≥ 0, ∀x ∈ X

0 < k , 0 < r2 < r1

C < k(r1 − r2)

(r1 − r2)K + C < (r1 + r2)k − C

Corollary 1.1

ci, Ci, ki,Ki, i ∈ {1, . . . , 4} s. t.

h(t, x) ∈ [ci, Ci] , g(t, x) ∈ [ki,Ki],

∀t ≥ 0,∀x ∈ Xi(t)

0 < ki , 0 < r2 < r1

C1 < k1(r1 + r2) , C2 < k2(r1 − r2)

−c3 < k3(r1 + r2) , −c4 < k4(r1 − r2)(
C1 + k1(−r1 − r2)

)(
c3 + k3(r1 + r2)

)
<

(
c2 +K2(−r1 + r2)

)(
C4 +K4(r1 − r2)

)
Theorem 1

mi,Mi, i ∈ {1, . . . , 4} s. t.

σ̈(t, x) ∈ [mi,Mi]

∀t ≥ 0, ∀x ∈ Xi(t)

M1 < 0 , M2 < 0 , 0 < m3 , 0 < m4

M1m3 < m2M4

Table 1
Summary on bound definitions and convergence conditions presented in the paper, from the more conservative to the less
conservative. Corollary 1.2 and Corollary 1.1 are restricted to affine control inputs and to the twisting controller, i.e., σ̈ =
h(t, x) + g(t, x)(−r1 sign(σ) − r2 sign(σ̇)). On the contrary, Theorem 1 makes no hypothesis on the system or the controller,
therefore the design parameters of the controller do not appear explicitly in the constraints.

This substitution can be viewed as considering the initial
condition (σ1(t+1 ), 0) from which integratingm2 provides
the majorant curve represented by the solid curve in Σ2.
Let t′ = t+2 be the time taken by the trajectory, obtained
by integrating M2 from (σ(t1), 0) at t′ = 0, to reach the
semi-axis σ̇ ≤ 0,

t+2 =

√
−2σ(t1)

M2
. (24)

Since σ is positive decreasing in Σ2, it follows that,

σ̈(t) ≤M2 ⇐⇒ σ̇(t) ≤M2t,

⇐⇒ 0 ≤ σ(t) ≤ 1

2
M2t

2,
(25)

which implies that σ(t) reaches zero before the trajectory
obtained by integrating M2. This further implies that,

t2 ≤ t1 + t+2 ⇐⇒ t2 − t1 ≤ t+2 . (26)

Substituting σ(t1) by its upper bound σ1(t+1 ) in the ex-
pression of t+2 yields the upper bound,

t+2 ≤
σ̇0√
M1M2

. (27)

Following the same reasoning as previously in the half
plan σ ≤ 0 for t ≥ t2, with t3 and t4 the times when
the trajectory reaches the semi-axis σ ≤ 0 and σ̇ ≥ 0,
respectively, we obtain,

t3 − t2 ≤ t+3 , σ(t3) ≤ σ+
3 , t4 − t3 ≤ t+4 , σ̇(t4) ≤ σ̇+

4 .
(28)

The majorant curve is given by integratingm3 in Σ3 and
Σ4 in Σ4, and the bounds are expressed as

t+3 = − σ̇(t2)

m3
, (29)

σ−3 = − σ̇(t2)2

2m3
, (30)

t+4 =

√
−2

σ(t3)

m4
, (31)

σ̇+
4 =

√
−2σ(t3)M4. (32)

Substituting σ̇(t2) by its lower bound and t2 by its upper
bounds in (29) and (30) yields,

t+3 ≤
σ̇0
m3

√
m2

M1
, (33)

− σ̇0
2m2

2M1m3
≤ σ−3 (34)

Substituting σ−3 by (34) in (31) and (32) finally yields,

σ̇(t4) ≤ σ̇0
√
m2M4

M1m3
, (35)

and
t4 ≤ t+1 + t+2 + t+3 + t+4 = d σ̇0, (36)

where d is given by (17). Let σ̇i = σ̇(ti) be the value of
σ̇ the ith time the trajectory crosses the semi-axis σ̇ ≥ 0
at time ti. From equation (35) and Condition (15), we
have,

σ̇i+1

σ̇i
≤ q =

√
m2M4

M1m3
< 1. (37)
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σ

σ̇

Σ1

Σ2Σ3

Σ4

σ̇0

σ1(t+1 )

σ(t1)

σ̇2(t−2 )

σ̇(t2)

−σ̇0
√
m2

M1

σ(t3)

σ̇(t4)

Figure 1. Illustration of Theorem 1. The arrowed curve rep-
resents a possible trajectory and the solid curve the majo-
rant curve. The dotted curve bounds any trajectory from
the initial condition (σ(t1), 0). The cones represent the set
vector field obtained with the differential inclusion (9), and
the black arrows the vector field that provides the majorant
curve.

As a consequence, σ̇(t) tends to zero. By Equation (36),
and since q < 1, the convergence time T =

∑∞
i=1 ti is

bounded by,

∞∑
i=1

ti ≤ d
∞∑
i=1

σ̇i−1 ≤ d
∞∑
i=1

qiσ̇0 = d
σ̇0

1− q
. (38)

This completes the proof of Theorem 1.

Theorem 1 is illustrated in Figure 1. The trajectory
(σ(t), σ̇(t)) is represented by the arrowed curve, the
solid curve represents majorant curve that provides the
bounds on σ(t1), σ̇(t2), σ(t3) and σ̇(t4).

The convergence Condition (15) of Theorem 1 does not
impose that the majorant curve, and by extension any
possible trajectory, have to cross the opposite semi-axes

closer from the origin. For example, the ratio
m2

M1
can

be greater than one, implying that a trajectory starting
from (0, σ̇0) with σ̇0 > 0 might cross the semi-axis σ̇ ≤ 0
at σ̇1 with |σ̇1| > σ̇0; the trajectory will still converge to
the origin in finite time provided that Condition (15) is
respected. This case is illustrated in the second example
of Section 4.

Remark 1 The finite-time convergence conditions
based on Lyapunov approaches generally do not allow

the trajectories to get away from the origin along the
axes. This is due to the fact that the proposed Lyapunov
candidate functions V are symmetric with respect to
the origin (V (σ, σ̇) = V (−σ,−σ̇)), which implies that
V (0, σ̇) = V (0,−σ̇) and V (σ, 0) = V (−σ, 0) [15,18].
Therefore, any trajectory starting on a semi-axis will
necessarily cross the corresponding level curve of the Lya-
punov candidate before crossing the opposite semi-axis
further away from the origin. In that respect, any con-
vergence conditions derived from symmetric Lyapunov
functions are more conservative than the conditions of
Theorem 1.

Theorem 1 states sufficient convergence conditions on
the bounds mi and Mi, but does not specify how these
bounds are defined. So far, any bounds such that the dif-
ferential inclusion (9) holds, can be used with Theorem
1. However, the tighter these bounds are, the greater the
chances to satisfy the conditions of Theorem 1 are.
The tightest bounds such that the differential inclusion
(9) holds globally are the maxima and minima of σ̈ over
Σi,

m∗i = inf
t≥0

x∈Xi(t)

σ̈(t, x),

M∗i = sup
t≥0

x∈Xi(t)

σ̈(t, x).
(39)

In practice, the structure of the controller is chosen to
control system (1) that depends on tunable parameters,
held in a vector denoted r. It follows that the bounds
mi, Mi depend on r. The problem becomes twofold: the
bounds mi, Mi, ideally the optimal ones given by (39),
have to be computed and a relevant structure for the
controller such that there exists r satisfying the condi-
tions of Theorem 1 must be chosen. In some particular
cases, as illustrated in Section 4, it is possible to compute
explicit expressions for the optimal bounds as functions
of r and derive conditions on r from Theorem 1. The
problem of choosing a relevant controller structure is de-
vised in Section 4, that proposes a more general version
of the twisting controller. The affine case (4) with the
twisting controller (5) is easier to deal with, since it is
always possible to derive explicit expressions of mi, Mi

as a function of r and to derive explicit conditions on r.

3.2 Affine case

Consider the affine case (4) with the twisting controller
(5). In this case, it is possible to derive bounds on σ̈ that
are expressed as linear functions of r1 and r2. As a con-
sequence, the conditions of Theorem 1 directly provide
conditions on r1 and r2 that enforce finite-time conver-
gence as stated by Corollaries 1.1 and 1.2.

Corollary 1.1 Consider the system (4) with the twist-
ing controller (5). Let ci, Ci be bounds on h over the four
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sub-domains Xi,

h(t, x) ∈ [ci, Ci],∀x ∈ Xi(t)∀t ≥ 0, (40)

and ki, Ki be bounds on g,

g(t, x) ∈ [ki,Ki],∀x ∈ Xi(t)∀t ≥ 0. (41)

If (r1, r2) satisfies

0 ≤ ki, i = 1, 2, 3, 4,

0 < r2 < r1,
(42)

C1 < k1(r1 + r2),

C2 < k2(r1 − r2),
(43)

−c3 < k3(r1 + r2),

−c4 < k4(r1 − r2),
(44)

and (
C1 + k1(−r1 − r2)

)(
c3 + k3(r1 + r2)

)
<
(
c2 +K2(−r1 + r2)

)(
C4 +K4(r1 − r2)

) (45)

then σ and σ̇ converge to zero in finite time.

PROOF. Condition (42) implies that r1 + r2 > 0, and
the following bounds on σ̈ can be derived in Σ1,

σ̈(t, x, σ, σ̇) ∈ [c1, C1]− [k1,K1](r1 + r2)

=⇒ σ̈(t, x, σ, σ̇) ∈ [c1 −K1(r1 + r2), C1 − k1(r1 + r2)].

(46)
Doing the same computation in the other domains Σi

yields the bounds,

m1
1 = c1 −K1(r1 + r2), M1

1 = C1 − k1(r1 + r2),

m1
2 = c2 −K2(r1 − r2), M1

2 = C2 − k2(r1 − r2),

m1
3 = c3 + k3(r1 + r2), M1

3 = C3 +K3(r1 − r2),

m1
4 = c4 + k4(r1 − r2), M1

4 = C4 +K4(r1 − r2).

(47)

By injecting these bounds into Conditions (13), (14),
(15), one gets Conditions (43), (44), (45). It follows that
if the conditions of Corollary 1.1 are satisfied, then the
conditions of Theorem 1 are also satisfied.

Corollary 1.1 states directly conditions on (r1, r2) that
ensure finite-time convergence, provided that bounds ki,
Ki, ci, Ci are known, whereas Theorem 1 states condi-
tions only on the bounds mi, Mi but not on the tunable
parameters. This is due to the fact that the bounds (47)

considered in Corollary 1.1 are explicit functions of r1,
r2 and injecting them into the conditions of Theorem 1
makes them into conditions on r1, r2.

Finally, Corollary 1.2 proposes more conservative condi-
tions than Corollary 1.1 but requires only bounds on h
and g over X instead of the four sub-spaces Xi. Corol-
lary 1.2 provides the well-known convergence conditions
of the twisting algorithm [9], and is stated as in [17]. The
proof is nevertheless provided to make the connection
with Theorem 1.

Corollary 1.2 [17, pp.148] Consider the system (4)
with the twisting controller (5). Let C be an upper bound
on |h| over the state space,

|h(t, x)| ≤ C,∀x ∈ X, ∀t ≥ 0, (48)

and k, K be bounds on g,

g(t, x) ∈ [k,K],∀x ∈ X, ∀t ≥ 0. (49)

If (r1, r2) satisfies

k > 0,

0 < r2 < r1,
(50)

C < k(r1 − r2), (51)

and
(r1 − r2)K + C < (r1 + r2)k − C, (52)

then σ and σ̇ converge to zero in finite time.

PROOF. In a similar way as in the proof of Corollary
1.1, and due to Condition (50), one gets the bounds on
σ̈,

m2
1 = −C −K(r1 + r2), M2

1 = C − k(r1 + r2),

m2
2 = −C −K(r1 − r2), M2

2 = C − k(r1 − r2),

m2
3 = −C + k(r1 + r2), M2

3 = C +K(r1 + r2),

m2
4 = −C + k(r1 − r2), M2

4 = C +K(r1 − r2).

(53)

With these bounds, Condition (51) implies Conditions
(13), (14) of Theorem 1 and Condition (52) implies Con-
dition (15)

3.3 Discussion

The convergence conditions of Theorem 1 and Corollar-
ies 1.1 and 1.2 reveal three levels of conservatism. In-
deed, it can be noticed that if the conditions of Corollary

6



1.2 are satified, then the conditions of Corollary 1.1 are
satisfied by considering

Ci = −ci = C,

ki = k,

Ki = K.

(54)

Furthermore, if the conditions of Corollary 1.1 are sat-
isfied, then the conditions of Theorem 1 are satisfied as
shown in the proof of Corollary 1.1. As a consequence,
there is an implication relationship between the condi-
tions of Theorem 1 and Corollaries 1.1 and 1.2.

The conservatism can be further explained by the qual-
ity of the bounds on σ̈ that can be used by the differ-
ent convergence conditions. The conditions of Theorem
1 allow to consider tighter bounds on σ̈ than the con-
ditions of Corollary 1.1, which themselves can be used
with tighter bounds than the conditions of Corollary 1.2
due to the expression of these bounds. The tightest en-
closure [m1∗

i ,M
1∗
i ] that can be derived from bounds (47)

is obtained with

c∗i = inf
t≥0

x∈Xi(t)

h(t, x), C∗i = sup
t≥0

x∈Xi(t)

h(t, x),

k∗i = inf
t≥0

x∈Xi(t)

g(t, x), K∗i = sup
t≥0

x∈Xi(t)

g(t, x),
(55)

and the tightest enclosure [m2∗
i ,M

2∗
i ] that can be derived

from bounds (53) is obtained with

C∗ = sup
t≥0
x∈X

|h(t, x)|,

k∗ = inf
t≥0
x∈X

g(t, x), K∗ = sup
t≥0
x∈X

g(t, x).
(56)

These bounds are such that,

[m∗i ,M
∗
i ] ⊆ [m2∗

i ,M
2∗
i ] ⊆ [m3∗

i ,M
3∗
i ], (57)

and are equals only in particular cases. As a consequence,
using the conditions of Theorem 1 withm2∗

i ,M2∗
i is more

conservative than using them with m1∗
i , M1∗

i , which is
more conservative than using m∗i , M∗i .

Remark 2 Being less conservative means that the new
conditions describe a larger set of convergent tuning. The
most typical objective being to use small gains, the new
conditions will lead to smaller gains using such a perfor-
mance objective. This can be in contradiction with other
objectives like the converging time.

The twisting controller is appropriate if σ̈ has the affine
expression (7) and g is positive. In this case, choosing r1

and r2 sufficiently large ensures the convergence condi-
tions. However, Theorem 1 can be applied in the general
case where σ̈ in non-linear in u, and the twisting con-
troller may not always be a relevant control structure to
ensure the convergent conditions. This is emphasized by
the second example in Section 4.

4 Academic Examples

This section proposes to study two examples. The first
one illustrates the different levels of conservatism of the
three corollaries. The second example shows that Theo-
rem 1 can be employed in the case where σ̈ is non-affine
in u. The software Mathematica was used to generate
Figures 2 and 3.

4.1 Example 1: Conservatism illustration

Consider the system

ẋ1 = x2,

ẋ2 = x1 + (1 + |x1|)u+ p(t),
(58)

with p an unknown perturbation bounded in [pmin, pmax].
Notice that this system has a form similar to (4) with
h(t, x) = x1 + p(t) and g(t, x) = 1 + |x1|. The sliding
variable is defined as σ = x1. Supposing that the system
is controlled by a twisting controller, the second time
derivative of the sliding variable reads as

σ̈ = x1 + (1 + |x1|)(−r1 sign(x1)− r2 sign(x2)) + p(t).
(59)

It follows that h and g are expressed as,

h(x, t) = x1 + p(t), g(x) = 1 + |x1|. (60)

For this example, the expressions of mi and Mi can be
determined by studying the sign of

∂σ̈

∂x1
= 1 + sign(x1)(−r1 sign(x1)− r2 sign(x2)), (61)

that depends only on r1 and r2 in the four sub-spacesXi.
In the following, state r1 > r2 > 0 and limit the study
to the bounded subset of the state space X = [−1, 1]×
[−1, 1]. Computations yield the following bounds.

• In X1 =]0, 1[×]0, 1[, one has C∗1 = 1, k∗1 = 1 and

M∗1 =

{
1− 2(r1 + r2) + pmax if r1 + r2 < 1,

−(r1 + r2) + pmax otherwise.

(62)
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• InX2 =]0, 1[×]−1, 0[, one has c∗2 = 0, C∗2 = 1, k∗2 = 1,
K∗2 = 2 and

m∗2 =

{
−r1 + r2 + pmin if r1 − r2 < 1,

1 + 2(−r1 + r2) + pmin otherwise,

M∗2 =

{
1 + 2(−r1 + r2) + pmax if r1 − r2 < 1,

−r1 + r2 + pmax otherwise.

(63)
• In X3 =]− 1, 0[×]1, 0[, one has c∗3 = −1, k∗3 = 1 and

m∗3 =

{
−1 + 2(r1 + r2) + pmin if r1 + r2 < 1,

r1 + r2 + pmin otherwise,

(64)
• In X4 =] − 1, 0[×]0, 1[, one has c∗4 = −1, C∗4 = 0,
k∗4 = 1, K∗4 = 2 and

m∗4 =

{
−1 + 2(r1 − r2) + pmin if r1 − r2 < 1,

r1 − r2 + pmin otherwise,

M∗4 =

{
r1 − r2 + pmax if r1 − r2 < 1,

−1 + 2(r1 − r2) + pmax otherwise.

(65)

Conditions of Theorem 1 and Corollaries 1.1 and 1.2,
are used to characterize sets of pairs (r1, r2) for three
different bounds [pmin, pmax]. In the first case, suppose
that there is no perturbation, pmin = pmax = 0. In
the two other cases, we use pmax = −pmin = 1 and
pmax = −pmin = 2. The set of pairs (r1, r2) defined by
the constraints of Theorem 1 with the bounds m∗i , M∗i is
represented by the dark gray areas in Figure 2. By The-
orem 1, any value (r1, r2) in these dark gray sets guar-
antees the finite time establishment of a 2-SM.
The values ki are all positive and satisfy Condition (42)
of Corollary 1.1. Conditions (42) to (45) of Corollary 1.1
with c∗i , C

∗
i , k
∗
i ,K

∗
i define the sets represented in gray in

Figure 2.
From the bounds on g and h over the four sub-spaces
Xi, we derive C∗ = 1 and [k∗,K∗] = [1, 2]. The set de-
fined by Conditions (50) and (51) of Corollary 1.2 using
C∗, k∗,K∗ provide the light gray sets in Figure 2.

It can be seen in Figure 2 that the light gray set defined
by the conditions of Corollary 1.2 is contained in the gray
set, defined by the conditions of Corollary 1.1, which
is itself a subset of the dark gray set defined by the
conditions of Theorem 1. This illustrates the different
levels of conservatism of the three Corollaries yields by
the inclusion (57).

4.2 Example 2 : Non-affine system

Consider the dynamical system

ẋ1 = x2,

ẋ2 = −2 + x2 + u2,
(66)

for x1, x2 ∈ [−1, 1]. The sliding variable is chosen as
σ = x1. If follows that the second time derivative of σ
reads as

σ̈ = −2 + x2 + u2. (67)

However, Theorem 1 does not require σ̈ to be affine in
u and can be employed to find a control u that ensures
finite-time convergence. To do so, compute mi and Mi

as functions of u.

• In X1 =]0, 1[×]0, 1[, one has M∗1 = −1 + u2.
• In X2 =]0, 1[×] − 1, 0[, one has m∗2 = −3 + u2 and
M∗2 = −2 + u2.
• In X3 =]− 1, 0[×]− 1, 0[, one has m∗3 = −3 + 4u2.
• In X4 =] − 1, 0[×]0, 1[, one has m∗4 = −2 + 4u2, and
M∗4 = −1 + 4u2.

Condition (13) imposes −1 + u2 < 0 in X1 whereas
Condition (14) imposes −3 + u2 > 0 in X3. With the
twisting controller (5), these conditions become

−1 + (−r1 − r2)2 < 0,

−3 + (r1 + r2)2 > 0.
(68)

As a consequence, there exists no (r1, r2) such that the
twisting controller enforces these two conditions.

Let us consider a more general controller structure than
the twisting controller, given by,

u = ui if (σ, σ̇) ∈ Σi, (69)

with ui ∈ R. With controller (69), Condition (13) be-
comes,

−1 < u1 < 1, −
√

2 < u2 <
√

2, (70)

and Condition (14) becomes,

u3 ∈]−∞,−
√

3/2[∪]
√

3/2,∞[,

u4 ∈]−∞,−1/
√

2[∪]1/
√

2,∞[.
(71)

Choosing arbitrarily u1 = u2 = 0, Condition (15)
rewrites,

(−1)(−3 + 4u23) < (−3)(−1 + 4u24) (72)

The set of values for (u3, u4) satisfying the convergence
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Figure 2. Sets of (r1, r2) values that ensures establishment of 2-SM resulting from the convergence conditions. Dark gray:
Theorem 1, gray: Corollary 1.1, light gray: Corollary 1.2.
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Figure 3. Sets of (u3, u4) values that ensure establishment of
2-SM resulting from the conditions of Theorem 1. The white
crosses represent the values used for simulation.

conditions are represented by the dark grey set in Fig-
ure 3. Figure 4 displays the simulation of the system with
the initial condition (σ0, σ̇0) = (0, 0.8) and the param-
eters (u3, u4) = (2.1, 0.9). As one can remark, the sys-
tem converges by a twisting convergence even if σ̇ moves
away from the origin in the half space σ > 0.

5 Conclusion

In this paper, new convergence conditions that are not
limited to systems that are affine in the control nor to
the twisting controller structure are proposed in order
to guarantee the finite time convergence. The approach

Figure 4. Phase diagram of Example 2 simulated with
(u3, u4) = (2.1, 0.9) or equivalently (2.1,−0.9), (−2.1, 0.9)
or (−2.1,−0.9).

relies on considering a piece-wise set vector field over
several domain of the phase plan, that enables to ignore
the underlying system and interconnected controller. It
was shown over two academic examples that the new
conditions

(1) are less conservative than state-of-the-art condi-
tions based on majorant curve for affine systems,

(2) can enforce a twisting convergence for non-affine
systems.

In particular, the second example illustrated that the
twisting controller might not ensure twisting-like con-
vergence of non-affine systems. A more flexible control
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structure was proposed that enabled to meet the con-
vergence conditions. Although more flexible, this struc-
ture might not work for any non-affine plants. Future
work includes finding control strategies for large classes
of non-affine plants.

The examples featured in Section 4 could be solved
analytically, but that might not be possible for more
complex real case problems. Indeed, it is not always
possible to derive explicit expressions of bounds on σ̈ in
the non-affine case. However, σ̈ has an explicit expres-
sion depending on r, which makes it possible employ a
global non-convex numerical solver to compute these
bounds [16]. A numerical approach would spare the
search of analytic solutions, and enable to consider more
complex and flexible control structure to ensure the
convergence of non-affine plants. Future work includes
the formulation of the problems as programs that can
be solved with numerical solvers.

Another direction for future research would be to extend
the generalized approach based on piece-wise differential
inclusion proposed in this paper to other existing 2-SM
algorithms, such as the super-twisting.
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